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Abstract

By using Bernstein functions, existence and concentration properties are studied
for invariant measures of the infinitesimal generators associated to a large class of
stochastic generalized porous media equations. In particular, results derived in [4]
are extended to equations with non-constant and stronger noises. Analogous results
are also proved for invariant probability measures for strong solutions.
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1 Introduction

Let (E, M , m) be a probability space and (E , D(E )) a Dirichlet form on L2(m), whose
generator (L, D(L)) has discrete spectrum. Let

0 > −λ1 ≥ −λ2 ≥ · · · → −∞

be all eigenvalues of L counting multiplicity, and let {ei} be the corresponding unit
eigenfunctions. Throughout the paper, let r > 1 be a fixed number and assume that
ei ∈ Lr+1(m) for all i ≥ 1. Let
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H1 :=
{

x ∈ L2(m) :
∞∑
i=1

λi m(eix)2 < ∞
}

and let H := H−1 be the dual space of H1 w.r.t. L2(m). Thus, H is the completion of
L2(m) under the inner product

〈x, y〉H :=
∞∑
i=1

1

λi

〈ei, x〉〈ei, y〉,

where 〈 , 〉 is the inner product in L2(m).
Let Ψ and Φ be two continuous functions on R satisfying the following assumptions:

(H1) either Ψ(0) = 0 or 1 ∈ D(L);

(H2) there exist constants C, η > 0 and σ ≥ 0 such that |Ψ(s)|+ |Φ(s)| ≤ C(1+ |s|r) and

(s− t)(Ψ(s)−Ψ(t)) ≥ η|ξr(s)− ξr(t)|2 + σ(s− t)2, s, t ∈ R,

where ξr(s) := |s|(r+1)/2sgn(s).

Next, let LHS(L2(m); H) be the set of all Hilbert-Schmidt operators from L2(m) to
H, and let Q : Lr+1(m) → LHS(L2(m); H) be a measurable and bounded mapping.
Let Wt be the cylindrical Brownian motion on L2(m), that is, Wt = {Bi

tei}i≥1 for a
{Bi

t} a sequence of independent one-dimensional Brownian motions on a complete filtered
probability space (Ω, F , Ft, P ).

The main purpose of this paper is to study the invariant measures, in particular,
their support (concentration) properties, associated to the following stochastic generalized
porous medium equation (see [1, 2] and references within for the study of porous media
equations):

(1.1) dXt = (LΨ(Xt) + Φ(Xt))dt + Q(Xt)dWt.

When L = ∆ on a regular domain in Rd, this equation has been studied intensively in
[3, 4, 6, 7], where both weak solutions and invariant measures of the infinitesimal generator
of (1.1) are investigated. Recently, under the a rather general framework, the existence,
uniqueness and ergodicity of strong solutions to (1.1) have been proved in [8] and [12].

To introduce the infinitesimal generator L on the space of cylindrical functions, let

FC∞
b :=

{
f(〈·, e1〉, · · · , 〈·, eN〉) : N ≥ 1, f ∈ C∞

b (RN)
}
,

bi(x) :=

∫
E

(
Ψ(x)Lei + Φ(x)ei

)
dm =: m

(
Ψ(x)Lei + Φ(x)ei

)
,

qij(x) := 〈Q(x)ei, ej〉, x ∈ Lr+1(m), i, j ≥ 1.
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Then the infinitesimal generator L associated to (1.1) is expressed as

Lf :=
∞∑

i,j,k=1

qkiqkj∂i∂jf +
∞∑
i=1

bi∂if, f ∈ FC∞
b ,

where for f(x) := f(〈x, e1〉, · · · , 〈x, eN〉),

∂if(x) := (∂if)(〈x, e1〉, · · · , 〈x, eN〉).

Recall that a probability measure µ on H is called an (infinitesimally) invariant mea-
sure of L, denoted by L∗µ = 0, if µ(Lr+1(m)) = 1 and∫

Lfdµ = 0, f ∈ FC∞
b .

We first study the existence and the concentration of µ using Bernstein functions.
Recall that a positive function f ∈ C[0,∞) is called a Bernstein function if f ∈ C∞

b (0,∞)
with (−1)nf (n) ≤ 0 for all n ≥ 1. It is well-known that for any Bernstein function f , the
operator −f(−L) is still a sub-Markovian generator (cf. [11, Chapter 5]. Some typical
examples of f are sε (ε ∈ [0, 1]) and log(1 + s).

Theorem 1.1. Assume (H1), (H2). Let Q(x)ei := qi(x)ei for some qi ∈ C(Lr+1(m))

such that
∑∞

i=1
q2
i

λi
is bounded.

(1) Let f be a Bernstein function with f(∞) = ∞ and f̃(s) := s/f(s) satisfying

(1.2) m
(
Φ(x)(f̃(−L))−1x

)
≤ θ m(|x|r+1) + c, x ∈ sgn{ei : i ≥ 1}

for some constants θ < ηf(λ1) and c > 0. If

(1.3) sup
Lr+1(m)

∞∑
i=1

f(λi)q
2
i

λi

< ∞

then L has an invariant measure µ such that

(1.4)
∞∑
i=1

f(λi)

∫ (
m(ξr(x)ei)

2 + σ m(xei)
2
)
µ(dx) < ∞.

(2) Assume that |Ψ′(s)| ≤ C(1 + |s|r) and

(1.5) |Φ(s)| ≤ ε|Ψ(s)|+ C for some C > 0, ε < λ1 and all s ∈ R.

If
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(1.6) sup
Lr+1(m)

∞∑
i

q2
i m(|ei|r+1)2/(r+1) < ∞,

then L has an invariant measure µ such that

(1.7)
∞∑
i=1

λi

∫
H

m(Ψ(x)ei)
2µ(dx) < ∞.

If in particular f̃ is a Bernstein function, then (1.2) and (1.5) are implied by (see
Lemma 2.1 below)

(1.8) there exist c > 0 and ε′ < 2ηλ1/(r + 1) such that |Φ(s)| ≤ ε′|s|r + c, s ∈ R.

Thus, we have the following consequence of Theorem 1.1 recovering the main results
in [4]. In particular, Theorem 1.1(2) (or Corollary 1.2(1)) improves [4, Theorem 1.1
(ii)], where (1.6) is replaced by the stronger condition that q′is are constant such that∑∞

i=1 q2
i ‖ei‖2

∞ < ∞.

Corollary 1.2. Consider the situation of Theorem 1.1 and let (1.8) hold.
(1) If (1.6) holds then L∗µ = 0 has a solution satisfying (1.7).
(2) Let f be a Bernstein function such that f(∞) = ∞ and f̃(s) := s/f(s) is also a

Bernstein function (which is the case for e.g. f(s) := sε, ε ∈ (0, 1]). Then (1.3) implies
(1.4) for some invariant measure µ of L.

Next, we consider the invariant measure for strong solutions to (1.1). According to
[8] and more generally [12], an H-valued continuous adapted process X is called a strong
solution to (1.1), if X ∈ Lr+1([0, T ]× Ω× E; dt× P × m) for any T > 0 and

〈Xt, ei〉 = 〈X0, ei〉+

∫ t

0

m
(
Ψ(Xs)Lei + Φ(Xs)ei

)
ds +

∞∑
j=1

∫ t

0

qji(Xs)dBj
s , t ≥ 0, i ≥ 1.

As observed in [8] and [12], this implies that

Xt = X0 +

∫ t

0

(LΨ(Xs) + Φ(Xs))ds, t > 0

exists and is continuous w.r.t. t in H.
By [8, Theorem 1.1] (more general, by [12, Theorem 3.1]), if (H2) and

1

2
‖Q(x)−Q(y)‖2

LHS(L2(m);H) + 〈Φ(x)− Φ(y), x− y)〉H

≤ θ m(|x− y|r+1) + δ m(|x− y|2), x, y ∈ Lr+1(m),
(1.9)
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holds for some θ < 21−rη and δ ≤ σ, then (1.1) has a unique strong solution which is
ergodic, and the unique invariant probability measure µ is concentrated on Lr+1(m).

In the same spirit of Theorem 1.1, the following theorem provides stronger concentra-
tion properties of µ.

Theorem 1.3. Assume (H2) and (1.9) for some θ < 21−rη and δ ≤ σ. Let µ be the
unique invariant probability measure of the strong solution to (1.1).

(1) Let f be a Bernstein function such that f(∞) = ∞ and (1.2) holds. If σ > 0 then
(1.3) implies

(1.10)
∞∑
i=1

f(λi)

∫
m(xei)

2dµ < ∞.

(2) If Φ = 0 and |Ψ′(s)| ≤ C(1+ |s|r) for some C > 0 and all s ∈ R, then (1.6) implies
(1.7).

2 Proofs of Theorem 1.1 and Corollary 1.2

To prove Theorem 1.1, we follow the line of arguments in [4] to make use of the general
result [5, Theorem 5.1]. To this end, let

En := span{e1, · · · , en},

Ln :=
n∑

i=1

q2
i ∂

2
i +

n∑
i=1

∂i.

Proof of Theorem 1.1 (1). Take V (x) :=
∑∞

i=1
f(λi)

λi
〈x, ei〉2, x ∈ H and

Θ(x) :=

{∑∞
i=1 f(λi)

(
m(ξr(x)ei)

2 + σ m(xei)
2
)
, if x ∈ Lr+1(m),

∞, otherwise.

We have En ⊂ {Θ < ∞} for any n ≥ 1. To apply [5, Theorem 5.1], it suffices to verify
the following:

(i) V |En is smooth and is a compact function, that is, {x ∈ En : V (x) ≤ r} is a
relatively compact set in En, n ≥ 1.

(ii) Θ is a compact function in H.

(iii) qi and bi are continuous on En and {Θ ≤ r} in the topology of H, n ≥ 1, r > 0.

(iv) For any i ≥ 1 there exist a constant ci > 0 and a positive function δi with δi(s) → 0
as s →∞ such that |bi(x)| ≤ ci + (δi ◦Θ(x))Θ(x), x ∈ En, n ≥ 1.
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(v) There exist two constant c, κ > 0 such that LnV (x) ≤ c− κΘ(x), x ∈ En, n ≥ 1.

Once these conditions are satisfied, Ln has an invariant measure on En (hence on H
by setting µn(H \En) = 0) such that µn(Θ) ≤ c for some constant c > 0 and all n ≥ 1, so
that {µn} is tight and, up to subsequence, converges weakly to some probability measure
µ solving L∗µ = 0 with µ(Θ) ≤ c.

(i) is obvious for the above specific function V , while (ii) follows immediately from the
Sobolev embedding theorem since f(λi) → ∞ as i → ∞. So, below we verify (iii), (iv)
and (v) respectively.

Proof of (iii). Since Ψ and Φ are continuous, the continuity of qi and bi on En is trivial.
So, we only prove their continuity on Ar := {Θ ≤ r}. Let xn ∈ Ar with xn → x ∈ Ar in
the topology of H. We intend to show that qi(xn) → qi(x) and

(2.1) lim
n→∞

(
|m

(
(Ψ(xn)−Ψ(x))ei

)
|+ |m

(
(Φ(xn)− Φ(x))ei

)
|
)

= 0.

By Sobolev’s embedding theorem, Ar is relatively compact in L2(m). Thus, xn → x in H
implies the convergence in L2(m) and hence, qi(xn) → qi(x) according to the continuity
of qi in Lr+1(m). If (2.1) does not hold, let, for instance,

|m
(
(Ψ(xnk

)−Ψ(x))ei

)
| ≥ ε0

for some ε0 > 0 and a subsequence nk → ∞. Since xn → x in Lr+1(m), there exists a
subsequence n′k of nk such that xn′

k
→ x a.e.-m. Moreover, since |Ψ(xn)| ≤ c(1+|xn|r) and

ei ∈ Lr+1(m), xn → x in Lr+1(m) implies the uniform integrability of (Ψ(xn)−Ψ(x))ei

in L1(m). Therefore, by the dominated convergence theorem we arrive at

lim
k→∞

m
(
(Ψ(xn′

k
)−Ψ(x))ei

)
= 0

which is a contradiction.

Proof of (iv): Let ‖ · ‖p denote the norm in Lp(m). Since ei ∈ Lr+1(m) and

Θ(x) ≥ f(λ1)m(|x|r+1), x ∈ En, n ≥ 1,

(H2) implies

|bi(x)| ≤ ci

(
‖Ψ(x)‖(r+1)/r + ‖Φ(x)‖(r+1)/r

)
≤ c′i(1 + m(|x|r+1)r/(r+1)) ≤ c′i + c′′i Θ(x)r/(r+1), x ∈ En, n ≥ 1

for some constants ci, c
′
i, c

′′
i > 0. Thus, (iv) holds for δi(s) := c′′i s

−1/(r+1).

Proof of (v): By the definition of V , we have
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LnV (x) = 2
n∑

i=1

qi(x)2f(λi)

λi

+ 2
n∑

i=1

bi(x)f(λi)

λi

m(xei)

≤ 2
∞∑
i=1

qi(x)2f(λi)

λi

+ 2
n∑

i=1

bi(x)f(λi)

λi

m(xei) =: C + I,

(2.2)

where C is bounded. By the definition of bi and noting that f̃(s) := s/f(s), we obtain
from (1.2) that

I =

∫
E

(
Ψ(x)(−f(−L)x) + Φ(x)(f̃(−L))−1x

)
dm

≤ −m
(
Ψ(x)f(−L)x

)
+ θ m(|x|r+1) + c, x ∈ En, n ≥ 1.

(2.3)

Moreover, since f is a Bernstein function, Tt := e−tf(−L) is a sub-Markovian semigroup.
Let Kt := 1 − Tt1 ≥ 0 and let Jt be the symmetric sub-probability measure on E × E
determined by Jt(A × B) := m(1ATt1B), A,B ∈ M . Since for any x ∈ En one has
Ψ(x) ∈ L(r+1)/r(m) and

x− Ttx

t
=

n∑
i=1

1− e−f(λi)t

t
µ(xei)ei → f(−L)x in Lr+1(m) as t → 0,

by the symmetry of Tt we obtain,

∫
E

Ψ(x)(f(−L)x)dm = lim
t→0

1

t

∫
E

Ψ(x)(x− Ttx)dm

= lim
t→0

1

2t

{ ∫
E×E

(
x(u)− x(v)

)(
Ψ ◦ x(u)−Ψ ◦ x(v)

)
Jt(du, dv) + m(KtxΨ(x))

}
.

(2.4)

We now consider the two situations in (H1) respectively.
(a) If (H1) holds with Ψ(0) = 0, then (H2) with t = 0 implies sΨ(s) ≥ η|ξr(s)|2+σs2.

Thus, (2.4) and (H2) lead to

∫
E

Ψ(x)(f(−L)x)dm

≥ lim sup
t→0

1

2t

{ ∫
E×E

[
η
(
ξr ◦ x(u)− ξr ◦ x(v)

)2
+ σ

(
x(u)− x(v)

)2
]
Jt(du, dv)

+ m
(
Kt

[
ηξr(x)2 + σx2

])}
= η

n∑
i=1

f(λi)m(ξr(x)ei)
2 + σ

n∑
i=1

f(λi)m(xei)
2, x ∈ En.

(2.5)
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Since by the Poincaré inequality one has Θ(x) ≥ f(λ1)m(|x|r+1), combining (2.2), (2.3),
(2.5) and noting that θ < ηf(λ1), we prove (v) for some κ, c > 0.

(b) If (H1) holds with 1 ∈ D(L) then 1 ∈ D(f(−L)). Moreover, by (H2) with t = 0
one has sΨ(s) ≥ η(ξr(s))

2 + σs2 + Ψ(0)s. Hence, (2.4) implies

∫
E

Ψ(x)(−f(−L)x)dm

≥ lim sup
t→0

1

2t

{ ∫
E×E

[
η
(
ξr ◦ x(u)− ξr ◦ x(v)

)2
+ σ

(
x(u)− x(v)

)2
]
Jt(du, dv)

+ m
(
Kt

[
ηξr(x)2 + σx2

])}
− Ψ(0)

2
m(xf(−L)1)

= η
n∑

i=1

f(λi)m(ξr(x)ei)
2 + σ

n∑
i=1

f(λi)m(xei)
2 − cm(|x|2)1/2, x ∈ En

(2.6)

for some c > 0 and all x ∈ En, n ≥ 1. Therefore, (v) holds by the same reason as in
(a).

Proof of Theorem 1.1(2). We modify the proof of [4, Theorem 1.1(ii)] by using our weaker
assumptions. Since (1.6) is stronger than (1.3), Theorem 1.1(1) applies. It suffices to prove
that if (1.6) holds instead of (1.3), then the invariant measure obtained in the proof of
Theorem 1.1(1) also satisfies (1.7). Following the line of [4], we take Ξ(s) :=

∫ s

0
Ψ(t)dt

and

Vn(x) := m(Ξ(x)), x ∈ En.

Then Vn is a compact function on En. By (1.6) we have

LnVn(x) =
n∑

i=1

qi(x)2 m(Ψ′(x)e2
i ) +

n∑
i=1

bi(x)m(Ψ(x)ei)

≤c0 m(|x|r+1)(r−1)/(r+1) −
n∑

i=1

λi m(Ψ(x)ei)
2

+
1

2λ1

n∑
i=1

m
(
Φ(x)ei)

2 +
λ1

2

n∑
i=1

m(Ψ(x)ei)
2, x ∈ En

(2.7)

for some c0 > 0. Noting that |Ξ(s)| ≤ c(1 + |s|r+1) for some c > 0 and that the proof of
Theorem 1.1(1) implies µn(| · |r+1) ≤ C for some constant C > 0 and all n ≥ 1, we obtain
from (2.7) that

(2.8)

∫
H

N∑
i=1

λi m(Ψ(x)ei)
2dµn ≤ c1 +

1

λ1

∫
H

m(Φ(x)2)dµn, n ≥ N ≥ 1
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for some c1 > 0.
(a) Assume that Φ is bounded. Then m(Φ(·)2) is a bounded continuous function on

L1+r(m). Since |Ψ(x)| ≤ C(1 + |x|r+1) for some C > 0 and ei ∈ Lr+1(m), there exists
ci > 0 such that

m(Φ(x)ei)
2 ≤ ci(1 + m(|x|r+1)2/(r+1)), x ∈ Lr+1(m).

Noting that r + 1 > 2 and µn(m(| · |r+1) ≤ C for some C > 0 and all n ≥ 1, we conclude
that m(Ψ(x)ei)

2 is uniformly integrable w.r.t. µn, that is,

(2.9) lim
N→∞

sup
n≥1

∫
H

m(Ψ(x)ei)
21{m(Ψ(x)ei)2>N}µn(dx) = 0.

Since ei ∈ Lpi(m) and pi > r + 1, there exists qi < r + 1 such that m(Ψ(x)ei)
2 and

m(Φ(x)ei)
2 are continuous in x with respect to the topology of Lqi(m). Since, as observed

in the proof of (iii), Θ is a compact function in Lr+1(m), {µn} is tight in Lr+1(m) due
to µn(Θ) ≤ C for some c > 0 and all n ≥ 1. Hence, we may assume that µn → µ weakly
in Lr+1(m). Therefore, (2.9) implies

lim
n→∞

∫
H

m(Ψ(x)ei)
2µn(dx)

= lim
N→∞

lim
n→∞

∫
H

[m(Ψ(x)ei)
2 ∧N ]µn(dx) =

∫
H

m(Ψ(x)ei)µ(dx).

Combining this with (2.8) by first letting n →∞ then N →∞, we arrive at∫
H

∞∑
i=1

λi m(Ψ(x)ei)
2dµ ≤ c1 +

1

λ1

∫
H

m(|Φ(x)|2)dµ < ∞.

Combining this with (1.5), there exists a constant C > 0 independent of the upper bound
of Φ such that

(2.10)

∫
H

∞∑
i=1

λi m(Ψ(x)ei)
2dµ ≤ C.

(b) In general, we take, as in [4], Φn := (Φ ∧ n) ∨ (−n), n ≥ 1 and let µ̃n be the
corresponding invariant measure of L with Φn in place of Φ such that as in (2.10)

(2.11)

∫
H

∞∑
i=1

λi m(Ψ(x)ei)
2µ̃n(dx) ≤ C, n ≥ 1

holds for some constant C > 0. Since |Ψ(s) − Ψ(t)| ≥ η|s − t| for all s, t ∈ R, the same
reasoning as in the proof of (iii) leads to the compactness of Θ in Lr+1(m). Hence, {µ̃n}
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is tight in L2r(m) so that we may assume that µ̃n → µ weakly in L2r(m) as n → ∞.
Since 2r > r+1, (2.11) implies (2.9) and hence, it is easy to check that L∗µ = 0 and (1.7)
holds.

Finally, Corollary 1.2 follows immediately from Theorem 1.1 and the following lemma.

Lemma 2.1. Consider the situation of Theorem 1.1.
(1) (1.8) implies (1.5).
(2) If f̃ is a Bernstein function then (1.8) implies (1.2) for some θ < ηf(λ1) and c > 0.

Proof. The first assertion follows immediately since (H2) with t = 0 implies |Ψ(s)| ≥
η|s|r − c for some constant c > 0.

To prove the second assertion, let ‖ · ‖p denote the norm in Lp(m). Since f̃ is a Bern-

stein function, T̃s := e−sf̃(−L) is a sub-Markovian semigroup. In particular, ‖T̃s‖∞→∞ ≤ 1.

On the other hand, by the spectral mapping theorem one has ‖T̃s‖2→2 ≤ e−f̃(λ1)s. Then
it follows from Riesz-Thorin’s interpolation theorem that

‖T̃s‖r+1→r+1 ≤ e−2f̃(λ1)s/(r+1), s ≥ 0.

Hence,

‖f̃(−L)−1x‖r+1 ≤
∫ ∞

0

‖T̃sx‖r+1ds ≤ ‖x‖r+1(r + 1)

2f̃(λ1)
.

Combining this with (1.8) we obtain

m
(
Φ(x)(f̃(−L)−1x)

)
≤ ‖Φ(x)‖(r+1)/r‖f̃(−L)−1x‖r+1 ≤

(r + 1)ε0 m(|x|r+1)

2f̃(λ1)
+ c0

for some ε0 < 2ηλ1/(r + 1) and c0 > 0. This completes the proof.

3 Proof of Theorem 1.3

We first briefly recall the construction of the strong solution in [8]. For any n ≥ 1 and

any x ∈ H, let r
(n)
t := (r

(n)
t,1 , · · · , r

(n)
t,n ) solve the following SDE on Rn:

(3.1)

dr
(n)
t,i =

n∑
j=1

qji

( n∑
k=1

r
(n)
t,k ek

)
dBj

t − λim
(
eiΨ

( n∑
k=1

r
(n)
t,k ek

))
dt + m

(
eiΦ

( n∑
k=1

r
(n)
t,k ek

))
dt

with r
(n)
0,i = 〈x, ei〉, 1 ≤ i ≤ n. Since the coefficients are continuous under our assumption,

the solution to (2.1) exists uniquely (see [9] for a much stronger result). As shown in [8],

under (H2) and (1.9) there exists a subsequence nk such that Xnk(x) :=
∑n

i=1 r
(n)
t,i ei →
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X(x) weakly in Lr+1([0, T ]×Ω×E; dt×P × m) for any T > 0, where X(x) is the unique
strong solution to (1.1) with X0(x) = x.

Proof of Theorem 1.3(1). Let V and Θ be as in the proof of Theorem 1.1 (1). By Itô’s
formula and the calculations in the proof of (v) using

∑∞
j=1 q2

ji in place of q2
i , we have

dV (Xn
t (x)) ≤ dMt + cdt− κΘ(X

(n)
t (x))dt

for some local martingale Mt and some constants c, κ > 0. Since V (x) ≤ cm(|x|2) for
some c > 0, this implies

(3.2) E
∫ 1

0

n∑
i=1

f(λi)m(X
(n)
t (x)ei)

2dt ≤ 1

σ
E

∫ 1

0

Θ(X
(n)
t (x))dt ≤ C + C m(|x|2)

for some constant C > 0. On the other hand, by the proof of [10, Theorem II.2.1] on page
1246 (see also [8, Section 3]) there exists a subsequence nk → ∞ such that X(nk)(x) →
X(x) weakly in Lr+1([0, 1]× E × Ω; dt× m× P ). Then, for any N ≥ 1 we have

E
∫ 1

0

N∑
i=1

f(λi)m(Xt(x)ei)
2 dt = E

∫ 1

0

N∑
i=1

f(λi) lim
k→∞

m(Xtei)m(X
(nk)
t (x)ei) dt

≤ 1

2
E

∫ 1

0

N∑
i=1

f(λi)m(Xt(x)ei)
2 dt +

1

2
lim inf

k→∞
E

∫ 1

0

N∑
i=1

f(λi)m(X
(nk)
t (x)ei)

2 dt.

Combining this with (3.2) we arrive at

E
∫ 1

0

N∑
i=1

f(λi)m(Xt(x)ei)
2 dt ≤ C + C m(|x|2).

Since µ is the invariant probability measure of X and, similarly to [8, Theorem 1.1],∫
m(|x|r+1)dµ < ∞, we obtain

∫
H

N∑
i=1

f(λi)[m(xei)
2 ∧N ]µ(dx) =

∫
H

(
E

∫ 1

0

N∑
i=1

f(λi)
(
N ∧ m(Xt(x)ei)

2
)
dt

)
µ(dx)

≤ C + C

∫
m(|x|2)µ(dx) < ∞, N > 1.

Then the proof is completed by letting N →∞.

Proof of Theorem 1.3(2). Since Φ = 0, according to [8, (3.6)] we have

Ψ(X(nk)(x)) → Ψ(X(x)) weakly in L(r+1)/r([0, T ]× Ω× E; dt× P × m), T > 0.
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Then for any N ≥ 1,

E
∫ 1

0

m(Ψ(Xt(x))ei)
21{|m(Ψ(Xt(x))ei)|≤N}dt

= lim
k→∞

E
∫ 1

0

m(Ψ(Xt(x))ei)1{|m(Ψ(Xt(x))ei)|≤N}m(Ψ(X
(nk)
t (x))ei)dt

≤ 1

2
E

∫ 1

0

m(Ψ(Xt(x))ei)
21{|m(Ψ(Xt(x))ei)|≤N}dt +

1

2
lim inf

k→∞
E

∫ 1

0

m(Ψ(X
(nk)
t (x))ei)

2dt.

This implies

E
∫ 1

0

m(Ψ(Xt(x))ei)
2dt = lim

N→∞
E

∫ 1

0

m(Ψ(Xt(x))ei)
21{|m(Ψ(Xt(x))ei)|≤N}dt

≤ lim inf
k→∞

E
∫ 1

0

m(Ψ(X
(nk)
t (x))ei)

2dt.

(3.3)

On the other hand, let V (x) := m(Ξ(x)) be defined as in the proof of Theorem 1.1(2).
Since Φ = 0, by Itô’s formula and our assumptions we obtain

dV (X
(n)
t (x)) = dMt +

[ n∑
i,j=1

∞∑
k=1

qki(x)qkj(x)m(Ψ′(x)eiej)−
n∑

i=1

λi m(Ψ(X
(n)
t (x))ei)

2
]
dt

≤ dMt +
[
cm(|X(n)

t (x)|r+1)(r−1)/(r+1) −
n∑

i=1

λi m(Ψ(X
(n)
t (x))ei)

2
]
dt

for some c > 0 and some local martingale Mt. Since V is bounded below and |V (x)| ≤
c(1 + m(|x|r+1)) for some c > 0 and all x ∈ Lr+1(m), this implies

E
∫ 1

0

n∑
i=1

λi m(Ψ(X
(n)
t (x))ei)

2dt

≤ c + cm(|x|r+1) + cE
∫ 1

0

m(|X(n)
t (x)|r+1)(r−1)/(r+1)dt

(3.4)

for some c > 0 and all n ≥ 1, x ∈ Lr+1(m). Moreover, since (1.6) is stronger than (1.3),
we have (3.2) for some constant C > 0. Combining the second inequality in (3.2) with
the fact that Θ(x) ≥ f(λ1)m(|x|r+1), we obtain

E
∫ 1

0

m((X
(n)
t (x)|r+1)(r−1)/(r+1)dt ≤ c(1 + m(|x|2))

for some c > 0 and all n ≥ 1, x ∈ Lr+1(m). Thus, it follows from (3.4) that
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E
∫ 1

0

n∑
i=1

λi m(Ψ(X
(n)
t (x))ei)

2dt ≤ c(1 + m(|x|r+1)), x ∈ Lr+1(m)

for some constant c > 0. Combining this with (3.3) and noting that µ is the invariant
measure of X, we arrive at

∫
H

N∑
i=1

λi

[
m(Ψ(x)ei)

2 ∧N
]
µ(dx) =

∫
H

E
∫ 1

0

N∑
i=1

λi

[
m(Ψ(Xt(x))ei)

2 ∧N
]
µ(dx)

≤ c

∫
H

(1 + m(|x|r+1))µ(dx) < ∞.

Then the proof is completed by letting N →∞.
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