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Introduction

In this paper (E,B) is a Lusin measurable space and U = (Uα)α>0 is a proper sub-
Markovian resolvent of kernels on (E,B) such that the set E(U) of all U-excessive
B-measurable functions is min-stable, contains the positive constant functions
and generates B. We assume also that E is semisaturated with respect to U , i.e.
any U-excessive measure dominated by a potential measure is also a potential
measure. We recall that a potential measure is a σ-finite measure of the form
µ ◦U where µ is a positive measure on (E,B) and U is the initial kernel of U . In
the sequel any sub-Markovian resolvent of kernels on (E,B) which possesses the
above properties will be called natural.

Let U ′ = (U ′
α)α>0 be a second natural sub-Markovian resolvent on (E,B).

The resolvent U ′ is called exact subordinate to U if we have (see [3])
a) U ′

α ≤ Uα for all α > 0
b) Uf − U ′f ∈ E(U) if f ∈ pB, Uf < ∞, where U ′ is the initial kernel of U ′.
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A kernel P on (E,B) is called exact subordination operator with respect to U
(see [3]) if the following properties hold:

1) P (E(U)) ⊂ E(U);
2) Ps ≤ s for all s ∈ E(U);
3) inf(s, Ps + t − Pt + Pf) ∈ E(U) for all s, t ∈ E(U) with s < ∞, t < ∞,

f ∈ pB;
4) For all x ∈ E there exists s ∈ E(U) with Ps(x) < s(x).
This notion was introduced by G. Mokobodzki (cf. [7]). We notice that if

V = (Vα)α>0 is a second natural sub-Markovian resolvent of kernels on (E,B)
such that E(U) = E(V) then a kernel P on (E,B) will be an exact subordination
operator with respect to U if and only if it is an exact subordination operator
with respect to V.

It is known (see [3]) that if P is an exact subordination operator with respect
to U then there exists a natural sub-Markovian resolvent UP = (UP

α )α>0 on (E,B)
which is exact subordinate to U , such that

Uf = UP f + PUf

for all f ∈ pB where UP is the initial kernel of UP . Conversely for any natural sub-
Markovian resolvent of kernels U ′ = (U ′

α)α>0 on (E,B) which is exact subordinate
to U , there exists an exact subordination operator P with respect to U such that

Uf = U ′f + PUf

for all f ∈ pB, where U ′ is the initial kernel of U ′.
A function h ∈ pB is called exact with respect to U (see [1], [6]) if there exists

a kernel Uh on (E,B) such that for all f ∈ pB we have:

Uf = Uhf + Uh(hUf) and Uh(hUf) = U(hUhf).

We notice that if h is exact with respect to U then h < ∞U-a.e. (i.e., U(1[h=+∞]) =
0) and the kernel Uh with the above properties is unique. Moreover it is known
(see [1], [6]) that if h ∈ pB is exact with respect to U then for any α > 0 the func-
tion h+α is also exact with respect to U and the family of kernels Uh = (Uh+α)α

is a natural sub-Markovian resolvent of kernels on (E,B) having Uh as initial
kernel which is exact subordinate to U . In addition the kernel P h defined by

P hf = Uh(hf)

is an exact subordination operator with respect to U and we have

Uh = UP h

.

2



Let W = (Wα)α>0 be a proper sub-Markovian resolvent of kernels on (E,B)
such that its initial kernel W is a regular U- excessive kernel (see [3]) and moreover
there exists f0 ∈ pB, 0 < f0 ≤ 1 with Uf0 bounded and

inf
α

αWα(Uf0) = 0.

It is known (see [3]) that the kernel W1 is an exact subordination operator with
respect to U . We notice that if there exists h ∈ pB with Wf = U(h · f) for all
f ∈ pB then it is known (see [6]) that h is exact with respect to U and we have

W1f = P h(f)

for all f ∈ pB and so UW1 = Uh. The problem of uniqueness for exact subor-
dination operators is the following: Is an exact subordination operator P with
respect to U uniquely determined by E(UP )?

In this paper we obtain essentially two results. The first one is the follow-
ing: Let P, Q be two exact subordination operators with respect to U such that
E(UP ) = E(UQ) and such that P (resp. Q) is a regular UP -excessive (resp UQ-
excessive) kernel. Then if there is no U-absorbent point in E we have P = Q.
This result extend a similar one obtained in [2] in the particular case when U , UP ,
UQ are such that E(U), E(UP ) satisfy the sheaf property on a Lusin topological
space E.

The second result is the following. Assume that there is no U-finely open
singleton in E. Then for any h ∈ pB which is exact with respect to U the
kernel P h is the unique exact subordination operator P with respect to U such
that E(UP ) = E(Uh). Particularly let W = (Wα)α>0 be a proper sub-Markovian
resolvent of kernels on (E,B) such that its initial kernel W is a regular U-excessive
kernel and

inf
α

αWα(Uf0) = 0

for a suitable f0 ∈ pB, 0 < f0 ≤ 1 with Uf0 bounded. Then the kernel W1 is the
unique exact subordination operator P with respect to U such that

E(UP ) = E(UW1).

This last consequence was sugested to us by L. Beznea.
For a probabilistic approach concerning the above problem of uniqueness one

can see [5].

3



Uniqueness problem for exact subordination

operators

Let U ′ = (U ′
α)α>0 be a natural sub-Markovian resolvent on (E,B) such that

U ′
α ≤ Uα ∀α > 0

Uf − U ′f ∈ E(U) ∀ f ∈ pB, Uf < ∞.

and let P be an exact subordination operator with respect to U such that UP = U ′.
It is known (cf. [3]) that if A ∈ B then we have

RAf − ′RAf = P (RAf) − ′RAP (RAf).

for all f ∈ pB when RA (resp. ′RA) is the reduite kernel on (E,B) associated
with A and U (resp. U ′). Also the set A will be a basic set with respect to U if
and only if it is a basic set with respect to U ′. We notice that for any A ∈ B we
have

′RAf ≤ RAf ∀ f ∈ pB

and that the fine topology with respect to U and U ′ are the same. From [4] we
deduce that there exists an exact subordination operator Q with respect to U
such that E(UQ) = E(U ′) and such that

Qs 4E(U ′) Ps ∀ s ∈ E(U)

for all exact subordination operator P with respect to U with E(UP ) = E(U ′),
where 4E(U ′) means the specific order with respect to E(U ′).

Theorem 1. Let P, Q be two exact subordination operators with respect to U
such that E(UP ) = E(UQ) = E(U ′) and P, Q are regular U ′-excessive kernels. If

there is no U-absorbent point in E then P = Q.

Proof. We consider a Ray topology T on E associate with U such that B(T ) =
B, Uαf is lower semicontinuous for all positive bounded lower semicontinuous
function f and α > 0 and such that Uf0 is bounded and continuous for a suitable
f0 ∈ pB, 0 < f0 ≤ 1. Let further A be a Borel basic set, Ac := E\A and s := Uf0.
Since

P (RAs) − ′RA(PRAs) = RAs − ′RAs = Q(RAs) − ′RAQ(RAs),

P (1ARAs) = ′RAP (1ARAs), Q(1ARAs) = ′RAQ(1ARAs)
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we deduce the relation

(∗) P (1AcRAs) − ′RAP (1AcRAs) = Q(1AcRAs) − ′RAQ(1AcRAs).

We show that the function

t := P (1AcRAs) fE(U ′)
′RAP (1AcRAs)

is zero. Indeed, let (Fn)n be an increasing sequence of Borel finely closed subsets
of E such that

⋃

n

Fn = Ac.

If we put
tn := P (1Fn

RAs) fE(U ′)
′RAP (1Fn

RAs)

we remark that the fine carrier of tn is included in Fn and also in A and so tn = 0.
Hence t = gE(U ′)tn = 0. Analogously, we deduce the relation

Q(1AcRAs) fE(U ′)
′RAQ(1AcRAs) = 0.

From the above considerations, using the relation (∗) we get

(∗∗) P (1AcRAs) = Q(1AcRAs)

Let now x0 ∈ E and let (Gn)n be an increasing sequence of open subsets of
(E, T ) such that

Ḡn ⊂ Gn+1 ∀ n ∈ N, ∪nGn = E\{x0}.

Since the set {x0} is not U-absorbent we deduce that there exists n0 ∈ N such
that

RGns(x0) > 0 ∀ n ≥ n0.

On the other hand for all n ∈ N we have RGns = SRGns, where SRGn is the
reduite on Gn with respect to the cone S of all Borel supermedian functions with
respect to U . It is known that if Sk denote the set off all Borel supermedian
functions with respect to kUk we have

SkRGns = SkR(1Gn
s) = inf{t ∈ Sk | t ≥ 1GNg

s}

and the sequence SkRGns increases to RGns when k ր ∞. Using now Moko-
bodzki’s formula in computing SkR(1Gn

s) (see e.g. [3]) and the fact that 1Gn
is

lower semicontinuous, we deduce that SkRGns is also lower semicontinuous. From
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the above considerations it follows that the function RGns is lower semicontinu-
ous. Since RGns(x0) > 0 for all n ≥ n0 it follows that there exists ρ0 > 0 and an
open neighbourhood D0 of x0 such that RGns(x) > ρ0 for all x ∈ D0 and n ≥ n0.
If we denote by An the fine closure of Gn then we get

Gn ⊂ An ⊂ Ḡn, D0 ∩ (E\Ḡn) ⊂ Ac
n.

and
RGns = RAns > ρ0 on D0 ∩ (E \ Ḡn).

Using the relation (∗∗) it follows that for all f ∈ pB we have

P (1Ac
n
fRAns) = Q(1Ac

n
fRAns)

and so Pf = Qf for all f ∈ pB with f = 0 on E\Ḡn. The point x0 being
arbitrary in E and T having a countable basis we deduce that P = Q.

Theorem 2. Assume that h ∈ pB is an exact function with respect to U
and that there is no U-absorbent point in E. Then for any exact subordination

operator P with respect to U such that E(UP ) = E(Uh) and

P hUf 4E(Uh) PUf ∀f ∈ pB

we have

P h = P.

Proof. Let us denote W := UP . Since Uhf = Uf − P hUf <E(Uh) Uf − PUf =
UP f for all f ∈ pB with Uf < ∞ it follows that there exists g ∈ pB, 0 < g ≤ 1
such that for all f ∈ pB we have

Wf = Uh(gf), PUf = Uh((1 − g)f + hUf).

Let now f1, f2 ∈ pB with Uf2 < ∞ and Uf1 ≤ Uf2. Since

PUf1 4E(Uh) PUf2

we deduce that

Uh((1 − g)f1 + hUf1) 4E(Uh) Uh((1 − g)f2 + hUf2)

and therefore

(1 − g)f1 + hUf1 ≤ (1 − g)f2 + hUf2 U − a.e.
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Let now f0 ∈ pB, 0 < f0 ≤ 1, be such that s := Uf0 is bounded. For every
strictly positive real number r we consider the sets

Ar :=

{

x ∈ E|1 − g(x) ≥
r

Uhf0(x)

}

and Ar,0 := {x ∈ Ar | lim inf
α→∞

αUα(1Ar
)(x) = 1}.

Using ([3], Theorem 1.3.8) it follows that the set Ar\Ar,0 is U-negligible and for
any finely open set D ∈ B the set Ar,0∩D is subbasic with respect to U and there
exists a sequence (fn)n in bpB with Ufn < ∞, fn = 0 on E\(Ar,0 ∩ D) such that

Ufn ր RAr,0∩Ds.

If Ar is U-negligible for any r > 0 we deduce that g = 1 U-a.e. on E and so
W = Uh, P = P h. Let us suppose that there exists r > 0 such that Ar is not
U-negligible. In this case Ar,0 is also not U-negligible. If we consider a ∈ Ar,0

and a decreasing sequence (Dn)n of U-finely open set in B such that ∩nDn = {a}
then using the fact that U(1D)(x) 6= 0 ∀ x ∈ D where D ∈ B is U-finely open set
we deduce that

sup
n

U(f0 · 1E\Dn
) = U(f0 · 1E\{a}) > 0

on 1E\{a}. Since {a} is not U-absorbent it follows that U(f0 · 1E\{a})(a) > 0 and
therefore there exists n0 ∈ N such that

U(f0 · 1E\Dn0
)(a) > 0.

Let us put D := Dn0
,

t := U(f0 · 1E\D)

and let (fn)n be a sequence in bpB with fn = 0 on E\(D ∩ Ar,0) and Ufn ր
RD∩Ar,0t. From

Ufn ≤ RD∩Ar,0t ≤ t ≤ U(f0 · 1E\D)

we deduce that

(1 − g)fn + hUfn ≤ (1 − g)f0 · 1E\D + h · U(f01E\D) U − a.e.

Since fn = 0 on E\(D ∩ Ar,0),

1 − g ≥
r

Uhf0

onD ∩ Ar,0

and the sequence (hUfn)n increases to ht on D∩Ar,0 we deduce that limn fn = 0
U-a.e. on E. On the other hand we have U-a.e.

(1 − g)fn ≤ hU(f01E\D) ≤ hUf0,
r

Uhf0

· fn ≤ (1 − g)fn ≤ hUf0.
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Using the fact that Uf0 is bounded we get

fn ≤
h

r
‖Uf0‖∞Uhf0 U − a.e., U(

h

r
‖Uf0‖∞Uhf0) ≤

‖Uf0‖∞
r

Uf0 < ∞

and so limn Ufn = 0 which contradicts the fact that

lim
n

Ufn(a) = RD∩Ar,0t(a) > 0.

Theorem 3. Assume that h ∈ pB is exact with respect to U and that there is

no U-finely open singleton in E.

Then the kernel P h is the unique exact subordination operator P with respect

to U such that E(UP ) = E(Uh).

Proof. From [4] there exists an exact subordination operator Q with respect U
such that E(UQ) = E(Uh) and moreover

Qs 4E(Uh) Ps ∀s ∈ E(U)

for all exact subordination operator P with respect to U with E(UP ) = E(Uh).
Particularly we have

Qs 4E(Uh) P hs ∀s ∈ E(U).

The assertion of the theorem will be a consequence of Theorem 2 if we show
that Q = P h.

As in Theorem 2 we deduce that if we denote W := UQ then we have

Uhf 4E(Uh) Wf ∀f ∈ pB, Uf < ∞.

Hence there exists g ∈ bpB, 0 < g ≤ 1 such that

Uhf = W (gf) ∀f ∈ pB

or equivalently
Wf = Uh(g

′f) ∀f ∈ pB

where g′ ∈ pB, g′ ≥ 1.
Let f ∈ pB with Uf < ∞. We have

QUf = Uf − Wf = Uh(f + hUf − g′f).

If f1, f2 ∈ pB are such that Uf1 ≤ Uf2 < ∞ we get

Uh(f1 + hUf1 − g′f1) = QUf1 4E(Uh) QUf2 = Uh(f2 + hUf2 − g′f2)
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and therefore
(g′ − 1)(f2 − f1) ≤ h(Uf2 − Uf1) U − a.e.

Particularly if f ∈ pB and Uf < ∞ we get

(g′ − 1)f ≤ hUf U − a.e.

Since B is countable generated, there exists a countable subset A of pB such
that the monotone class generated by A is equal pB and any element f of A is
bounded and Uf < ∞. In this case there exists a subset E0 of E, E0 ∈ B with
U(1E\E0

) = 0 such that on E0 we have

(g′ − 1)f ≤ hUf

for all f ∈ A and therefore the above inequality holds for every f ∈ pB. The
proof will be finished if we show that g′ = 1 on E0. Assume that there exists
a ∈ E0 with

ρ :=
g′(a) − 1

h(a)
> 0.

Since
ρf(a) ≤ Uf(a) ∀ f ∈ pB

it follows that the set {a} is not U-negligible. We take now f = 1{a} and we
deduce

g′(a) − 1

h(a)
≤ U1{a}(a).

Since {a} is not U-finely open then we get

RE\{a}U(1{a}) = U(1{a})

and so there exists a sequence (fn)n in bpB with fn(a) = 0 for all n ∈ N and

Ufn ր RE\{a}U1{a}
.

We get
(g′ − 1)(1{a} − fn) ≤ h(U(1{a}) − Ufn) U − a.e.

and so g′(a) − 1 ≤ 0, which contradicts the relation ρ > 0.

Theorem 4. Let W = (Wα)α>0 be a proper sub-Markovian resolvent on

(E,B) such that its initial kernel W is a regular U-excessive kernel and

inf
α

αWα(Uf0) = 0
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for some f0 ∈ pB, 0 < f0 ≤ 1, Uf0 bounded. If there is no U-finely open singleton

in E then W1 is the unique exact subordination operator P with respect to U such

that

E(UP ) = E(UW1).

Proof. Let U ′ be the regular U-excessive kernel U ′ = U +W . Using ([3] Theorem
6.3.2 and Theorem 6.3.4), it follows that there exists a natural sub-Markovian
resolvent U ′ = (U ′

α)α>0 on (E,B) having as initial kernel U ′. Since W is a regular
U-excessive kernel there exists h ∈ pB, h ≤ 1 such that Wf = U ′(hf) for all
f ∈ pB. From ([6]) it follows that h is exact with respect to U ′ and so there exists
a kernel U ′

h on (E,B) such that W1f = U ′
h(hf),

U ′f = U ′
hf + U ′

h(hU ′f) and U ′
h(hU ′f) = U ′(hU ′

hf)

for all f ∈ pB. Hence W1 becomes an exact subordination operator with respect
to U ′ and U

′W1 = U
′h. Obviously E(U ′W1) = E(UW1). Using Theorem 3 it follows

that for any exact subordination operator P with respect to U ′ such that

E(U ′P ) = E(U ′h)

we have P = W1. If P is an exact subordination operator with respect to U with
E(UP ) = E(UW1) then P will be an exact subordination operator with respect to
U ′ with

E(U ′P ) = E(UP ) = E(UW1) = E(U ′W1)

and so P = W1.

Theorem 5. Let V = (Vα)α>0 a second natural sub-Markovian resolvent on

(E,B) such that there is no finely open singleton in E with respect to U and V.

Then the following assertions are equivalent:

1) U = V
2) E(Uα) = E(Vα) for any α ≥ 0
3) There exist α, β ≥ 0, α < β, such that E(Uα) = E(Vα) and E(Uβ) = E(Vβ).

Proof. The implications 1) =⇒ 2) =⇒ 3) are obvious.
3) =⇒ 1). By hypothesis and using Theorem 3 we deduce that (β−α)Vβ is the

only exact subordination operator with respect to the resolvent Vα = (Vα+γ)γ>0

such that
E((Vα)(β−α)Vβ ) = E(Vβ) = E(Uβ).

On the other hand (β − α)Uβ is an exact subordination operator with respect to
Uα = (Uα+γ)γ>0 and therefore, using the fact that E(Uα) = E(Vα) it is an exact
subordination operator with respect to Vα and we have

E((Uα)(β−α)Uβ ) = E((Vα)(β−α)Uβ).
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Since, from hypothesis
E(Vβ) = E(Uβ)

we deduce using the above considerations

E((Vα)(β−α)Vβ ) = E(Vβ) = E(Uβ) = E((Uα)(β−α)Uβ) = E((Vα)(β−α)Uβ).

Hence (β−α)Uβ is an exact subordination operator with respect to Vα such that

E((Vα)(β−α)Uβ) = E((Vα)(β−α)Vβ )

and therefore, from Theorem 3 we have

(β − α)Uβ = (β − α)Vβ, Uβ = Vβ.

Since the resolvents Uβ, VP are bounded and sub-Markovian they coincide having
the same initial kernel Uβ = Vβ i.e.

Uλ = Vλ ∀ λ ≥ β.

Because for any λ < β we have

Uλ = Uβ +
∑

i≥1

(β − λ)iU i+1
β , Vλ = Vβ +

∑

i≥1

(β − λ)iV i+1
β

we deduce that Uλ = Vλ for all λ ≥ 0.

Remark. 1. If in Theorems 1 and 2 the condition “there is no U-absorbent
point in E” is not satisfied then these results do not hold. Indeed, if U is the
trivial sub-Markovian resolvent of kernels on (E,B) i.e. U = (Uα)α>0 where
Uαf = 1

1+α
f for all f ∈ pB then for any α ≥ 0 we have E(Uα) = E(U) = pB. In

this case any point a ∈ E is U-absorbent.
2. In fact the condition “there is no U-absorbent point in E” is a necessary con-
dition such that Theorems 1 and 2 hold. Indeed, if a is a U-absorbent point in

E then the kernel P =
1

2
B{a} (where B{a} is the balayage kernel on {a} with

respect to U) is an exact subordination operator with respect to U and we have
E(U) = E(UP ). Obviously P is a regular U-excesive kernel with respect to U .
3. If in Theorem 5 we assume that E(Uα) = E(Vα) for only one α ∈ R+ then
Theorem 5 does not hold. Indeed, if we consider V = (Vα)α>0 such that V0 = 2U0

then we have E(U) = E(V) but U 6= V.

Proposition 6. Assume that there is a point x0 ∈ E which is finely open.

Then there exist two exact subordination operators P , Q with respect to U such

that E(UP ) = E(UQ) and P 6= Q. Moreover P and Q are U-excessive kernels and

P is a regular UP -excessive kernel.
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Proof. We denote by P the kernel on (E, B) given by

Ps =
1

2
R{x0}s ∀s ∈ E(U).

where R{x}s is the reduite of s on the set {x} with respect to U . If we denote
u = R{x0}1 we have Pf = 1

2
f(x0)u. Since the family of kernels V = (Vα)α>0 on

(E,B) given by Vαf =
1

1 + α
f(x0)u is a sub-Markovian resolvent on (E,B) such

that infα αVαUf0 = 0 for f0 ∈ bpB, 0 < f0 with Uf0 bounded and P = V1 it
follows (cf. [3]) that P is an exact subordination operator with respect to U .
We remark that P is a U-excessive kernel and it is a regular UP -excessive kernel.
Moreover the set

{s −
1

2
s(x0)u/s ∈ E(U), s < ∞}

is solid and increasingly dense in E(UP ).
Let now Q the following kernel on (E,B) defined by

Qs = P (RE\{x0}s), s ∈ E(U).

Since {x0} is finely open it follows that there exists s ∈ E(U), s < ∞ such that

RE\{x0}s(x0) < s(x0).

Obviously we have

Qs =
1

2
RE\{x0}s(x0) · u ∀s ∈ E(U)

and so

Qf =
1

2
RE\{x0}f(x0) · u.

Consequently Q is a U-excessive kernel on (E,B), Qs ≤ Ps for all s ∈ E(U) and
P 6= Q.

We show now that Q is an exact subordination operator with respect to U .
By the preceding considerations it remains to show that

w := inf(s, Qs + t − Qt + Qf) ∈ E(U)

for all s, t ∈ E(U), f ∈ pB, s < ∞, t < ∞. If RE\{x0}s(x0) ≥ RE\{x0}t(x0) then

Qs + t − Qt + Qf =
1

2
(RE\{x0}s(x0) − RE\{x0}t(x0) + RE\{x0}f(x0))u + t ∈ E(U)

and therefore w ∈ E(U).
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Assume that
RE\{x0}s(x0) < RE\{x0}t(x0).

We have

w = inf(s, R{x0}RE\{x0}s+(t−R{x0}t)+
1

2
R{x0}(2t−RE\{x0}t−RE\{x0}s+RE\{x0}f).

But
RE\{x0}t(x0) + RE\{x0}s(x0) < 2RE\{x0}t(x0) ≤ 2t(x0)

or equivalently
2t(x0) − RE\{x0}t(x0) − RE\{x0}s(x0) > 0.

We put

β := 2t(x0) − RE\{x0}t(x0) − RE\{x0}s(x0) + RE\{x0}s(x0) + RE\{x0}f(x0).

and we have β > 0 and

R{x0}(2t − RE\{x0}t − RE\{x0}s + RE\{x0}f)) = βu.

Hence
w = inf(s, R{x0}RE\{x0}s + t − R{x0}t + βu

2
) =

= inf(s, inf(s, R{x0}RE\{x0}s + t − R{x0}t) + inf(s,
βu

2
))

and so it will be sufficient to show that

inf(s, R{x0}RE\{x0}s + t − R{x0}t) ∈ E(U).

We have
R{x0}RE\{x0}s(x0) + (t − R{x0}t)(x0) = RE\{x0}s(x0)

i.e.
inf(s, R{x0}RE\{x0}s + t − R{x0}t)(x0) = RE\{x0}s(x0)

and so

inf(s, R{x0}RE\{x0}s + t − R{x0}t) = inf(RE\{x0}s, R{x0}RE\{x0}s + t − R{x0}t).

Since
inf(s′, R{x0}s′ + t − R{x0}t) ∈ E(U)

for all s′, t ∈ E(U), s′ < ∞, t < ∞ we get that

inf(s, R{x0}RE\{x0}s + t − R{x0}t) ∈ E(U).
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To finish the proof we show that E(UP ) = E(UQ). If s ∈ E(U) then we have

s − Qs = s −
1

2
RE\{x0}s(x0) · u = s −

1

2
s(x0) · u +

1

2
(s(x0) − RE\{x0}s(x0))u =

s − Ps + (s(x0) − RE\{x0}s(x0))u ∈ E(UP ).

Conversely, let f ∈ pB with Uf < ∞. We have

(U − PU)(f) = (U − PU)(f · 1E\{x0}) + (U − PU)(f · 1{x0}) =

=
1

2
U(f · 1{x0}) + U(f · 1E\{x0}) − PRE\{x0}U(f · 1E\{x0}) =

=
1

2
U(f · 1{x0}) + U(f · 1E\{x0}) − QU(f · 1E\{x0}) ∈ E(UQ).

From the above considerations we conclude that E(UP ) = E(UQ).

Remark. 1. Proposition 6 shows that the condition “there is no U-finely
open singleton” is necessary such that Theorem 4 holds.

2. The kernel Q considered in Proposition 6 is not regular U-exessive if x0 is
not U-absorbent. Indeed, if G = E\{x0} and u = R{x0}1 then we have

RGu = u on G, RGu(x0) < u(x0).

If α :=
1

2
RG1G(x0) then we get α > 0 and

Q1G = αu = αRGu on G

but Q1G(x0) = αu(x0) > αRGu(x0).
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