The uniqueness problem for subordinate resolvents with potential theoretical methods

Nicu Boboc¹⁾ and Gheorghe Bucur^{1),2)}

¹⁾Faculty of Mathematics and Informatics, University of Bucharest, str. Academiei 14, RO-010014 Bucharest, Romania

²⁾Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1-764, RO-014700 Bucharest, Romania

Abstract. We present an analytic version of the following uniqueness problem for Markov processes: if two subprocesses of a given transient, Borel right process have the same excessive functions then they coincide. Our treatment is given in terms of subordinate sub-Markovian resolvents of kernels in the sense of P.A. Mayer and uses essentially the subordination operators introduced by G. Mokobodzki.

Mathematics Subject Classification (2000): 31D05, 60J45, 60J35, 60J40.

Key words: sub-Markovian resolvent, subordination operator, subordinate resolvent, excessive function, right process, subprocess.

Introduction

In this paper (E, \mathcal{B}) is a Lusin measurable space and $\mathcal{U} = (U_{\alpha})_{\alpha>0}$ is a proper sub-Markovian resolvent of kernels on (E, \mathcal{B}) such that the set $\mathcal{E}(\mathcal{U})$ of all \mathcal{U} -excessive \mathcal{B} -measurable functions is min-stable, contains the positive constant functions and generates \mathcal{B} . We assume also that E is semisaturated with respect to \mathcal{U} , i.e. any \mathcal{U} -excessive measure dominated by a potential measure is also a potential measure. We recall that a potential measure is a σ -finite measure of the form $\mu \circ U$ where μ is a positive measure on (E, \mathcal{B}) and U is the initial kernel of \mathcal{U} . In the sequel any sub-Markovian resolvent of kernels on (E, \mathcal{B}) which possesses the above properties will be called *natural*.

Let $\mathcal{U}' = (U'_{\alpha})_{\alpha>0}$ be a second natural sub-Markovian resolvent on (E, \mathcal{B}) . The resolvent \mathcal{U}' is called *exact subordinate* to \mathcal{U} if we have (see [3])

- a) $U'_{\alpha} \leq U_{\alpha}$ for all $\alpha > 0$
- b) $Uf U'f \in \mathcal{E}(\mathcal{U})$ if $f \in p\mathcal{B}, Uf < \infty$, where U' is the initial kernel of \mathcal{U}' .

A kernel P on (E, \mathcal{B}) is called *exact subordination operator* with respect to \mathcal{U} (see [3]) if the following properties hold:

1) $P(\mathcal{E}(\mathcal{U})) \subset \mathcal{E}(\mathcal{U});$

2) $Ps \leq s$ for all $s \in \mathcal{E}(\mathcal{U});$

3) $\inf(s, Ps + t - Pt + Pf) \in \mathcal{E}(\mathcal{U})$ for all $s, t \in \mathcal{E}(\mathcal{U})$ with $s < \infty, t < \infty$, $f \in p\mathcal{B}$;

4) For all $x \in E$ there exists $s \in \mathcal{E}(\mathcal{U})$ with Ps(x) < s(x).

This notion was introduced by G. Mokobodzki (cf. [7]). We notice that if $\mathcal{V} = (V_{\alpha})_{\alpha>0}$ is a second natural sub-Markovian resolvent of kernels on (E, \mathcal{B}) such that $\mathcal{E}(\mathcal{U}) = \mathcal{E}(\mathcal{V})$ then a kernel P on (E, \mathcal{B}) will be an exact subordination operator with respect to \mathcal{U} if and only if it is an exact subordination operator with respect to \mathcal{V} .

It is known (see [3]) that if P is an exact subordination operator with respect to \mathcal{U} then there exists a natural sub-Markovian resolvent $\mathcal{U}^P = (U^P_{\alpha})_{\alpha>0}$ on (E, \mathcal{B}) which is exact subordinate to \mathcal{U} , such that

$$Uf = U^P f + P U f$$

for all $f \in p\mathcal{B}$ where U^P is the initial kernel of \mathcal{U}^P . Conversely for any natural sub-Markovian resolvent of kernels $\mathcal{U}' = (U'_{\alpha})_{\alpha>0}$ on (E, \mathcal{B}) which is exact subordinate to \mathcal{U} , there exists an exact subordination operator P with respect to \mathcal{U} such that

$$Uf = U'f + PUf$$

for all $f \in p\mathcal{B}$, where U' is the initial kernel of \mathcal{U}' .

A function $h \in p\mathcal{B}$ is called *exact* with respect to \mathcal{U} (see [1], [6]) if there exists a kernel U_h on (E, \mathcal{B}) such that for all $f \in p\mathcal{B}$ we have:

$$Uf = U_h f + U_h (hUf)$$
 and $U_h (hUf) = U(hU_h f)$.

We notice that if h is exact with respect to \mathcal{U} then $h < \infty \mathcal{U}$ -a.e. (i.e., $U(1_{[h=+\infty]}) = 0$) and the kernel U_h with the above properties is unique. Moreover it is known (see [1], [6]) that if $h \in p\mathcal{B}$ is exact with respect to \mathcal{U} then for any $\alpha > 0$ the function $h + \alpha$ is also exact with respect to \mathcal{U} and the family of kernels $\mathcal{U}^h = (U_{h+\alpha})_{\alpha}$ is a natural sub-Markovian resolvent of kernels on (E, \mathcal{B}) having U_h as initial kernel which is exact subordinate to \mathcal{U} . In addition the kernel P^h defined by

$$P^h f = U_h(hf)$$

is an exact subordination operator with respect to \mathcal{U} and we have

$$\mathcal{U}^h = \mathcal{U}^{P^h}$$

Let $\mathcal{W} = (W_{\alpha})_{\alpha>0}$ be a proper sub-Markovian resolvent of kernels on (E, \mathcal{B}) such that its initial kernel W is a regular \mathcal{U} - excessive kernel (see [3]) and moreover there exists $f_0 \in p\mathcal{B}, \ 0 < f_0 \leq 1$ with Uf_0 bounded and

$$\inf \alpha W_{\alpha}(Uf_0) = 0.$$

It is known (see [3]) that the kernel W_1 is an exact subordination operator with respect to \mathcal{U} . We notice that if there exists $h \in p\mathcal{B}$ with $Wf = U(h \cdot f)$ for all $f \in p\mathcal{B}$ then it is known (see [6]) that h is exact with respect to \mathcal{U} and we have

$$W_1 f = P^h(f)$$

for all $f \in p\mathcal{B}$ and so $\mathcal{U}^{W_1} = \mathcal{U}^h$. The problem of uniqueness for exact subordination operators is the following: Is an exact subordination operator P with respect to \mathcal{U} uniquely determined by $\mathcal{E}(\mathcal{U}^P)$?

In this paper we obtain essentially two results. The first one is the following: Let P, Q be two exact subordination operators with respect to \mathcal{U} such that $\mathcal{E}(\mathcal{U}^P) = \mathcal{E}(\mathcal{U}^Q)$ and such that P (resp. Q) is a regular \mathcal{U}^P -excessive (resp \mathcal{U}^Q excessive) kernel. Then if there is no \mathcal{U} -absorbent point in E we have P = Q. This result extend a similar one obtained in [2] in the particular case when $\mathcal{U}, \mathcal{U}^P$, \mathcal{U}^Q are such that $\mathcal{E}(\mathcal{U}), \mathcal{E}(\mathcal{U}^P)$ satisfy the sheaf property on a Lusin topological space E.

The second result is the following. Assume that there is no \mathcal{U} -finely open singleton in E. Then for any $h \in p\mathcal{B}$ which is exact with respect to \mathcal{U} the kernel P^h is the unique exact subordination operator P with respect to \mathcal{U} such that $\mathcal{E}(\mathcal{U}^P) = \mathcal{E}(\mathcal{U}^h)$. Particularly let $\mathcal{W} = (W_{\alpha})_{\alpha>0}$ be a proper sub-Markovian resolvent of kernels on (E, \mathcal{B}) such that its initial kernel W is a regular \mathcal{U} -excessive kernel and

$$\inf_{\alpha} \alpha W_{\alpha}(Uf_0) = 0$$

for a suitable $f_0 \in p\mathcal{B}$, $0 < f_0 \leq 1$ with Uf_0 bounded. Then the kernel W_1 is the unique exact subordination operator P with respect to \mathcal{U} such that

$$\mathcal{E}(\mathcal{U}^P) = \mathcal{E}(\mathcal{U}^{W_1}).$$

This last consequence was suggested to us by L. Beznea.

For a probabilistic approach concerning the above problem of uniqueness one can see [5].

Uniqueness problem for exact subordination operators

Let $\mathcal{U}' = (U'_{\alpha})_{\alpha>0}$ be a natural sub-Markovian resolvent on (E, \mathcal{B}) such that

$$U'_{\alpha} \leq U_{\alpha} \quad \forall \alpha > 0$$
$$Uf - U'f \in \mathcal{E}(\mathcal{U}) \quad \forall f \in p\mathcal{B}, Uf < \infty.$$

and let P be an exact subordination operator with respect to \mathcal{U} such that $\mathcal{U}^P = \mathcal{U}'$. It is known (cf. [3]) that if $A \in \mathcal{B}$ then we have

$$R^A f - 'R^A f = P(R^A f) - 'R^A P(R^A f).$$

for all $f \in p\mathcal{B}$ when R^A (resp. $'R^A$) is the reduite kernel on (E, \mathcal{B}) associated with A and \mathcal{U} (resp. \mathcal{U}'). Also the set A will be a basic set with respect to \mathcal{U} if and only if it is a basic set with respect to \mathcal{U}' . We notice that for any $A \in \mathcal{B}$ we have

$$'R^A f \le R^A f \quad \forall \ f \in p\mathcal{B}$$

and that the fine topology with respect to \mathcal{U} and \mathcal{U}' are the same. From [4] we deduce that there exists an exact subordination operator Q with respect to \mathcal{U} such that $\mathcal{E}(\mathcal{U}^Q) = \mathcal{E}(\mathcal{U}')$ and such that

$$Qs \preccurlyeq_{\mathcal{E}(\mathcal{U}')} Ps \quad \forall s \in \mathcal{E}(\mathcal{U})$$

for all exact subordination operator P with respect to \mathcal{U} with $\mathcal{E}(\mathcal{U}^P) = \mathcal{E}(\mathcal{U}')$, where $\preccurlyeq_{\mathcal{E}(\mathcal{U}')}$ means the specific order with respect to $\mathcal{E}(\mathcal{U}')$.

Theorem 1. Let P, Q be two exact subordination operators with respect to \mathcal{U} such that $\mathcal{E}(\mathcal{U}^P) = \mathcal{E}(\mathcal{U}^Q) = \mathcal{E}(\mathcal{U}')$ and P, Q are regular \mathcal{U}' -excessive kernels. If there is no \mathcal{U} -absorbent point in E then P = Q.

Proof. We consider a Ray topology \mathcal{T} on E associate with \mathcal{U} such that $\mathcal{B}(\mathcal{T}) = \mathcal{B}$, $U_{\alpha}f$ is lower semicontinuous for all positive bounded lower semicontinuous function f and $\alpha > 0$ and such that Uf_0 is bounded and continuous for a suitable $f_0 \in p\mathcal{B}, 0 < f_0 \leq 1$. Let further A be a Borel basic set, $A^c := E \setminus A$ and $s := Uf_0$. Since

$$P(R^{A}s) - 'R^{A}(PR^{A}s) = R^{A}s - 'R^{A}s = Q(R^{A}s) - 'R^{A}Q(R^{A}s),$$
$$P(1_{A}R^{A}s) = 'R^{A}P(1_{A}R^{A}s), \quad Q(1_{A}R^{A}s) = 'R^{A}Q(1_{A}R^{A}s)$$

we deduce the relation

(*)
$$P(1_{A^{c}}R^{A}s) - {}^{\prime}R^{A}P(1_{A^{c}}R^{A}s) = Q(1_{A^{c}}R^{A}s) - {}^{\prime}R^{A}Q(1_{A^{c}}R^{A}s).$$

We show that the function

$$t := P(1_{A^c} R^A s) \curlywedge_{\mathcal{E}(\mathcal{U}')} {}^{\prime} R^A P(1_{A^c} R^A s)$$

is zero. Indeed, let $(F_n)_n$ be an increasing sequence of Borel finely closed subsets of E such that

$$\bigcup_{n} F_n = A^c$$

If we put

$$t_n := P(1_{F_n} R^A s) \, \downarrow_{\mathcal{E}(\mathcal{U}')} {}' R^A P(1_{F_n} R^A s)$$

we remark that the fine carrier of t_n is included in F_n and also in A and so $t_n = 0$. Hence $t = \Upsilon_{\mathcal{E}(\mathcal{U}')} t_n = 0$. Analogously, we deduce the relation

$$Q(1_{A^c}R^As) \downarrow_{\mathcal{E}(\mathcal{U}')} {}^{\prime}R^AQ(1_{A^c}R^As) = 0.$$

From the above considerations, using the relation (*) we get

(**)
$$P(1_{A^c}R^As) = Q(1_{A^c}R^As)$$

Let now $x_0 \in E$ and let $(G_n)_n$ be an increasing sequence of open subsets of (E, \mathcal{T}) such that

$$\overline{G}_n \subset G_{n+1} \ \forall \ n \in N, \ \cup_n G_n = E \setminus \{x_0\}.$$

Since the set $\{x_0\}$ is not \mathcal{U} -absorbent we deduce that there exists $n_0 \in \mathbb{N}$ such that

$$R^{G_n}s(x_0) > 0 \quad \forall \ n \ge n_0.$$

On the other hand for all $n \in \mathbb{N}$ we have $R^{G_n}s = {}^{\mathcal{S}}R^{G_n}s$, where ${}^{\mathcal{S}}R^{G_n}$ is the reduite on G_n with respect to the cone \mathcal{S} of all Borel supermedian functions with respect to \mathcal{U} . It is known that if \mathcal{S}_k denote the set off all Borel supermedian functions with respect to kU_k we have

$$\mathcal{S}_k R^{G_n} s = \mathcal{S}_k R(1_{G_n} s) = \inf\{t \in \mathcal{S}_k \mid t \ge 1_{G_{N_n}} s\}$$

and the sequence $S_k R^{G_n} s$ increases to $R^{G_n} s$ when $k \nearrow \infty$. Using now Mokobodzki's formula in computing $S_k R(1_{G_n} s)$ (see e.g. [3]) and the fact that 1_{G_n} is lower semicontinuous, we deduce that $S_k R^{G_n} s$ is also lower semicontinuous. From the above considerations it follows that the function $R^{G_n}s$ is lower semicontinuous. Since $R^{G_n}s(x_0) > 0$ for all $n \ge n_0$ it follows that there exists $\rho_0 > 0$ and an open neighbourhood D_0 of x_0 such that $R^{G_n}s(x) > \rho_0$ for all $x \in D_0$ and $n \ge n_0$. If we denote by A_n the fine closure of G_n then we get

$$G_n \subset A_n \subset \overline{G}_n, \ D_0 \cap (E \setminus \overline{G}_n) \subset A_n^c.$$

and

$$R^{G_n}s = R^{A_n}s > \rho_0$$
 on $D_0 \cap (E \setminus \overline{G}_n)$

Using the relation (**) it follows that for all $f \in p\mathcal{B}$ we have

$$P(1_{A_n^c} f R^{A_n} s) = Q(1_{A_n^c} f R^{A_n} s)$$

and so Pf = Qf for all $f \in p\mathcal{B}$ with f = 0 on $E \setminus \overline{G}_n$. The point x_0 being arbitrary in E and \mathcal{T} having a countable basis we deduce that P = Q.

Theorem 2. Assume that $h \in p\mathcal{B}$ is an exact function with respect to \mathcal{U} and that there is no \mathcal{U} -absorbent point in E. Then for any exact subordination operator P with respect to \mathcal{U} such that $\mathcal{E}(\mathcal{U}^P) = \mathcal{E}(\mathcal{U}^h)$ and

$$P^{h}Uf \preccurlyeq_{\mathcal{E}(\mathcal{U}^{h})} PUf \quad \forall f \in p\mathcal{B}$$

we have

$$P^h = P.$$

Proof. Let us denote $W := U^P$. Since $U_h f = Uf - P^h Uf \succeq_{\mathcal{E}(\mathcal{U}^h)} Uf - PUf = U^P f$ for all $f \in p\mathcal{B}$ with $Uf < \infty$ it follows that there exists $g \in p\mathcal{B}$, $0 < g \leq 1$ such that for all $f \in p\mathcal{B}$ we have

$$Wf = U_h(gf), \quad PUf = U_h((1-g)f + hUf).$$

Let now $f_1, f_2 \in p\mathcal{B}$ with $Uf_2 < \infty$ and $Uf_1 \leq Uf_2$. Since

 $PUf_1 \preccurlyeq_{\mathcal{E}(\mathcal{U}^h)} PUf_2$

we deduce that

$$U_h((1-g)f_1 + hUf_1) \preccurlyeq_{\mathcal{E}(\mathcal{U}^h)} U_h((1-g)f_2 + hUf_2)$$

and therefore

$$(1-g)f_1 + hUf_1 \le (1-g)f_2 + hUf_2 \qquad \mathcal{U} - a.e.$$

Let now $f_0 \in p\mathcal{B}$, $0 < f_0 \leq 1$, be such that $s := Uf_0$ is bounded. For every strictly positive real number r we consider the sets

$$A_r := \left\{ x \in E | 1 - g(x) \ge \frac{r}{U_h f_0(x)} \right\} \text{ and } A_{r,0} := \{ x \in A_r \mid \liminf_{\alpha \to \infty} \alpha U_\alpha(1_{A_r})(x) = 1 \}$$

Using ([3], Theorem 1.3.8) it follows that the set $A_r \setminus A_{r,0}$ is \mathcal{U} -negligible and for any finely open set $D \in \mathcal{B}$ the set $A_{r,0} \cap D$ is subbasic with respect to \mathcal{U} and there exists a sequence $(f_n)_n$ in $bp\mathcal{B}$ with $Uf_n < \infty$, $f_n = 0$ on $E \setminus (A_{r,0} \cap D)$ such that

 $Uf_n \nearrow R^{A_{r,0} \cap D}s.$

If A_r is \mathcal{U} -negligible for any r > 0 we deduce that g = 1 \mathcal{U} -a.e. on E and so $W = U_h$, $P = P^h$. Let us suppose that there exists r > 0 such that A_r is not \mathcal{U} -negligible. In this case $A_{r,0}$ is also not \mathcal{U} -negligible. If we consider $a \in A_{r,0}$ and a decreasing sequence $(D_n)_n$ of \mathcal{U} -finely open set in \mathcal{B} such that $\bigcap_n D_n = \{a\}$ then using the fact that $U(1_D)(x) \neq 0 \forall x \in D$ where $D \in \mathcal{B}$ is \mathcal{U} -finely open set we deduce that

$$\sup_{n} U(f_0 \cdot 1_{E \setminus D_n}) = U(f_0 \cdot 1_{E \setminus \{a\}}) > 0$$

on $1_{E \setminus \{a\}}$. Since $\{a\}$ is not \mathcal{U} -absorbent it follows that $U(f_0 \cdot 1_{E \setminus \{a\}})(a) > 0$ and therefore there exists $n_0 \in \mathbb{N}$ such that

$$U(f_0 \cdot 1_{E \setminus D_{n_0}})(a) > 0.$$

Let us put $D := D_{n_0}$,

$$t := U(f_0 \cdot 1_{E \setminus D})$$

and let $(f_n)_n$ be a sequence in $bp\mathcal{B}$ with $f_n = 0$ on $E \setminus (D \cap A_{r,0})$ and $Uf_n \nearrow \mathbb{R}^{D \cap A_{r,0}}t$. From

$$Uf_n \le R^{D \cap A_{r,0}} t \le t \le U(f_0 \cdot 1_{E \setminus D})$$

we deduce that

$$(1-g)f_n + hUf_n \le (1-g)f_0 \cdot 1_{E \setminus D} + h \cdot U(f_0 1_{E \setminus D}) \mathcal{U} - a.e$$

Since $f_n = 0$ on $E \setminus (D \cap A_{r,0})$,

$$1 - g \ge \frac{r}{U_h f_0} \text{ on } D \cap A_{r,0}$$

and the sequence $(hUf_n)_n$ increases to ht on $D \cap A_{r,0}$ we deduce that $\lim_n f_n = 0$ \mathcal{U} -a.e. on E. On the other hand we have \mathcal{U} -a.e.

$$(1-g)f_n \le hU(f_0 \mathbb{1}_{E\setminus D}) \le hUf_0, \quad \frac{r}{U_h f_0} \cdot f_n \le (1-g)f_n \le hUf_0.$$

Using the fact that Uf_0 is bounded we get

$$f_n \le \frac{h}{r} \| Uf_0 \|_{\infty} U_h f_0 \quad \mathcal{U} - a.e., \quad U(\frac{h}{r} \| Uf_0 \|_{\infty} U_h f_0) \le \frac{\| Uf_0 \|_{\infty}}{r} Uf_0 < \infty$$

and so $\lim_{n} U f_n = 0$ which contradicts the fact that

$$\lim_{n} Uf_n(a) = R^{D \cap A_{r,0}} t(a) > 0.$$

Theorem 3. Assume that $h \in p\mathcal{B}$ is exact with respect to \mathcal{U} and that there is no \mathcal{U} -finely open singleton in E.

Then the kernel P^h is the unique exact subordination operator P with respect to \mathcal{U} such that $\mathcal{E}(\mathcal{U}^P) = \mathcal{E}(\mathcal{U}^h)$.

Proof. From [4] there exists an exact subordination operator Q with respect \mathcal{U} such that $\mathcal{E}(\mathcal{U}^Q) = \mathcal{E}(\mathcal{U}^h)$ and moreover

$$Qs \preccurlyeq_{\mathcal{E}(\mathcal{U}^h)} Ps \quad \forall s \in \mathcal{E}(\mathcal{U})$$

for all exact subordination operator P with respect to \mathcal{U} with $\mathcal{E}(\mathcal{U}^P) = \mathcal{E}(\mathcal{U}^h)$. Particularly we have

$$Qs \preccurlyeq_{\mathcal{E}(\mathcal{U}^h)} P^h s \quad \forall s \in \mathcal{E}(\mathcal{U}).$$

The assertion of the theorem will be a consequence of Theorem 2 if we show that $Q = P^h$.

As in Theorem 2 we deduce that if we denote $W := U^Q$ then we have

$$U_h f \preccurlyeq_{\mathcal{E}(\mathcal{U}^h)} W f \quad \forall f \in p\mathcal{B}, Uf < \infty.$$

Hence there exists $g \in bp\mathcal{B}$, $0 < g \leq 1$ such that

$$U_h f = W(gf) \quad \forall f \in p\mathcal{B}$$

or equivalently

$$Wf = U_h(g'f) \quad \forall f \in p\mathcal{B}$$

where $g' \in p\mathcal{B}, g' \geq 1$.

Let $f \in p\mathcal{B}$ with $Uf < \infty$. We have

$$QUf = Uf - Wf = U_h(f + hUf - g'f).$$

If $f_1, f_2 \in p\mathcal{B}$ are such that $Uf_1 \leq Uf_2 < \infty$ we get

$$U_h(f_1 + hUf_1 - g'f_1) = QUf_1 \preccurlyeq_{\mathcal{E}(\mathcal{U}^h)} QUf_2 = U_h(f_2 + hUf_2 - g'f_2)$$

and therefore

$$(g'-1)(f_2-f_1) \le h(Uf_2-Uf_1) \quad \mathcal{U}-a.e.$$

Particularly if $f \in p\mathcal{B}$ and $Uf < \infty$ we get

$$(g'-1)f \le hUf \quad \mathcal{U}-a.e.$$

Since \mathcal{B} is countable generated, there exists a countable subset \mathcal{A} of $p\mathcal{B}$ such that the monotone class generated by \mathcal{A} is equal $p\mathcal{B}$ and any element f of \mathcal{A} is bounded and $Uf < \infty$. In this case there exists a subset E_0 of $E, E_0 \in \mathcal{B}$ with $U(1_{E \setminus E_0}) = 0$ such that on E_0 we have

$$(g'-1)f \le hUf$$

for all $f \in \mathcal{A}$ and therefore the above inequality holds for every $f \in p\mathcal{B}$. The proof will be finished if we show that g' = 1 on E_0 . Assume that there exists $a \in E_0$ with

$$\rho := \frac{g'(a) - 1}{h(a)} > 0.$$

Since

$$\rho f(a) \leq U f(a) \; \forall \; f \in p \mathcal{B}$$

it follows that the set $\{a\}$ is not \mathcal{U} -negligible. We take now $f = 1_{\{a\}}$ and we deduce

$$\frac{g'(a) - 1}{h(a)} \le U1_{\{a\}}(a).$$

Since $\{a\}$ is not \mathcal{U} -finely open then we get

$$R^{E \setminus \{a\}} U(1_{\{a\}}) = U(1_{\{a\}})$$

and so there exists a sequence $(f_n)_n$ in $bp\mathcal{B}$ with $f_n(a) = 0$ for all $n \in \mathbb{N}$ and

$$Uf_n \nearrow R^{E \setminus \{a\}} U_{1_{\{a\}}}.$$

We get

$$(g'-1)(1_{\{a\}}-f_n) \le h(U(1_{\{a\}})-Uf_n) \qquad \mathcal{U}-a.e.$$

and so $g'(a) - 1 \leq 0$, which contradicts the relation $\rho > 0$.

Theorem 4. Let $\mathcal{W} = (W_{\alpha})_{\alpha>0}$ be a proper sub-Markovian resolvent on (E, \mathcal{B}) such that its initial kernel W is a regular \mathcal{U} -excessive kernel and

$$\inf_{\alpha} \alpha W_{\alpha}(Uf_0) = 0$$

for some $f_0 \in p\mathcal{B}$, $0 < f_0 \leq 1$, Uf_0 bounded. If there is no \mathcal{U} -finely open singleton in E then W_1 is the unique exact subordination operator P with respect to \mathcal{U} such that

$$\mathcal{E}(\mathcal{U}^P) = \mathcal{E}(\mathcal{U}^{W_1}).$$

Proof. Let U' be the regular \mathcal{U} -excessive kernel U' = U + W. Using ([3] Theorem 6.3.2 and Theorem 6.3.4), it follows that there exists a natural sub-Markovian resolvent $\mathcal{U}' = (U'_{\alpha})_{\alpha>0}$ on (E, \mathcal{B}) having as initial kernel U'. Since W is a regular \mathcal{U} -excessive kernel there exists $h \in p\mathcal{B}$, $h \leq 1$ such that Wf = U'(hf) for all $f \in p\mathcal{B}$. From ([6]) it follows that h is exact with respect to \mathcal{U}' and so there exists a kernel U'_h on (E, \mathcal{B}) such that $W_1f = U'_h(hf)$,

$$U'f = U'_{h}f + U'_{h}(hU'f)$$
 and $U'_{h}(hU'f) = U'(hU'_{h}f)$

for all $f \in p\mathcal{B}$. Hence W_1 becomes an exact subordination operator with respect to \mathcal{U}' and $\mathcal{U}'^{W_1} = \mathcal{U}'^h$. Obviously $\mathcal{E}(\mathcal{U}'^{W_1}) = \mathcal{E}(\mathcal{U}^{W_1})$. Using Theorem 3 it follows that for any exact subordination operator P with respect to \mathcal{U}' such that

$$\mathcal{E}(\mathcal{U}'^P) = \mathcal{E}(\mathcal{U}'^h)$$

we have $P = W_1$. If P is an exact subordination operator with respect to \mathcal{U} with $\mathcal{E}(\mathcal{U}^P) = \mathcal{E}(\mathcal{U}^{W_1})$ then P will be an exact subordination operator with respect to \mathcal{U}' with

$$\mathcal{E}(\mathcal{U}'^P) = \mathcal{E}(\mathcal{U}^P) = \mathcal{E}(\mathcal{U}^{W_1}) = \mathcal{E}(\mathcal{U}'^{W_1})$$

and so $P = W_1$.

Theorem 5. Let $\mathcal{V} = (V_{\alpha})_{\alpha>0}$ a second natural sub-Markovian resolvent on (E, \mathcal{B}) such that there is no finely open singleton in E with respect to \mathcal{U} and \mathcal{V} . Then the following assertions are equivalent:

- 1) $\mathcal{U} = \mathcal{V}$
- 2) $\mathcal{E}(\mathcal{U}^{\alpha}) = \mathcal{E}(\mathcal{V}^{\alpha})$ for any $\alpha \geq 0$
- 3) There exist $\alpha, \beta \geq 0, \alpha < \beta$, such that $\mathcal{E}(\mathcal{U}^{\alpha}) = \mathcal{E}(\mathcal{V}^{\alpha})$ and $\mathcal{E}(\mathcal{U}^{\beta}) = \mathcal{E}(\mathcal{V}^{\beta})$.

Proof. The implications $1) \Longrightarrow 2) \Longrightarrow 3$ are obvious.

3) \implies 1). By hypothesis and using Theorem 3 we deduce that $(\beta - \alpha)V_{\beta}$ is the only exact subordination operator with respect to the resolvent $\mathcal{V}^{\alpha} = (V_{\alpha+\gamma})_{\gamma>0}$ such that

$$\mathcal{E}((\mathcal{V}^{\alpha})^{(\beta-\alpha)V_{\beta}}) = \mathcal{E}(\mathcal{V}^{\beta}) = \mathcal{E}(\mathcal{U}^{\beta}).$$

On the other hand $(\beta - \alpha)U_{\beta}$ is an exact subordination operator with respect to $\mathcal{U}^{\alpha} = (U_{\alpha+\gamma})_{\gamma>0}$ and therefore, using the fact that $\mathcal{E}(\mathcal{U}^{\alpha}) = \mathcal{E}(\mathcal{V}^{\alpha})$ it is an exact subordination operator with respect to \mathcal{V}^{α} and we have

$$\mathcal{E}((\mathcal{U}^{\alpha})^{(\beta-\alpha)U_{\beta}}) = \mathcal{E}((\mathcal{V}^{\alpha})^{(\beta-\alpha)U_{\beta}}).$$

Since, from hypothesis

$$\mathcal{E}(\mathcal{V}^{\beta}) = \mathcal{E}(\mathcal{U}^{\beta})$$

we deduce using the above considerations

$$\mathcal{E}((\mathcal{V}^{\alpha})^{(\beta-\alpha)V_{\beta}}) = \mathcal{E}(\mathcal{V}^{\beta}) = \mathcal{E}(\mathcal{U}^{\beta}) = \mathcal{E}((\mathcal{U}^{\alpha})^{(\beta-\alpha)U_{\beta}}) = \mathcal{E}((\mathcal{V}^{\alpha})^{(\beta-\alpha)U_{\beta}}).$$

Hence $(\beta - \alpha)U_{\beta}$ is an exact subordination operator with respect to \mathcal{V}^{α} such that

$$\mathcal{E}((\mathcal{V}^{\alpha})^{(\beta-\alpha)U_{\beta}}) = \mathcal{E}((\mathcal{V}^{\alpha})^{(\beta-\alpha)V_{\beta}})$$

and therefore, from Theorem 3 we have

$$(\beta - \alpha)U_{\beta} = (\beta - \alpha)V_{\beta}, \quad U_{\beta} = V_{\beta}.$$

Since the resolvents \mathcal{U}^{β} , \mathcal{V}^{P} are bounded and sub-Markovian they coincide having the same initial kernel $U_{\beta} = V_{\beta}$ i.e.

$$U_{\lambda} = V_{\lambda} \quad \forall \ \lambda \ge \beta.$$

Because for any $\lambda < \beta$ we have

$$U_{\lambda} = U_{\beta} + \sum_{i \ge 1} (\beta - \lambda)^{i} U_{\beta}^{i+1}, \quad V_{\lambda} = V_{\beta} + \sum_{i \ge 1} (\beta - \lambda)^{i} V_{\beta}^{i+1}$$

we deduce that $U_{\lambda} = V_{\lambda}$ for all $\lambda \ge 0$.

Remark. 1. If in Theorems 1 and 2 the condition "there is no \mathcal{U} -absorbent point in E" is not satisfied then these results do not hold. Indeed, if \mathcal{U} is the trivial sub-Markovian resolvent of kernels on (E, \mathcal{B}) i.e. $\mathcal{U} = (U_{\alpha})_{\alpha>0}$ where $U_{\alpha}f = \frac{1}{1+\alpha}f$ for all $f \in p\mathcal{B}$ then for any $\alpha \geq 0$ we have $\mathcal{E}(\mathcal{U}^{\alpha}) = \mathcal{E}(\mathcal{U}) = p\mathcal{B}$. In this case any point $a \in E$ is \mathcal{U} -absorbent.

2. In fact the condition "there is no \mathcal{U} -absorbent point in E" is a necessary condition such that Theorems 1 and 2 hold. Indeed, if a is a \mathcal{U} -absorbent point in E then the kernel $P = \frac{1}{2}B^{\{a\}}$ (where $B^{\{a\}}$ is the balayage kernel on $\{a\}$ with respect to \mathcal{U}) is an exact subordination operator with respect to \mathcal{U} and we have $\mathcal{E}(\mathcal{U}) = \mathcal{E}(\mathcal{U}^P)$. Obviously P is a regular \mathcal{U} -excessive kernel with respect to \mathcal{U} .

3. If in Theorem 5 we assume that $\mathcal{E}(\mathcal{U}^{\alpha}) = \mathcal{E}(\mathcal{V}^{\alpha})$ for only one $\alpha \in \mathbb{R}_+$ then Theorem 5 does not hold. Indeed, if we consider $\mathcal{V} = (V_{\alpha})_{\alpha>0}$ such that $V_0 = 2U_0$ then we have $\mathcal{E}(\mathcal{U}) = \mathcal{E}(\mathcal{V})$ but $\mathcal{U} \neq \mathcal{V}$.

Proposition 6. Assume that there is a point $x_0 \in E$ which is finely open. Then there exist two exact subordination operators P, Q with respect to \mathcal{U} such that $\mathcal{E}(\mathcal{U}^P) = \mathcal{E}(\mathcal{U}^Q)$ and $P \neq Q$. Moreover P and Q are \mathcal{U} -excessive kernels and P is a regular \mathcal{U}^P -excessive kernel. *Proof.* We denote by P the kernel on (E, B) given by

$$Ps = \frac{1}{2}R^{\{x_0\}}s \quad \forall s \in \mathcal{E}(\mathcal{U}).$$

where $R^{\{x\}}s$ is the reduite of s on the set $\{x\}$ with respect to \mathcal{U} . If we denote $u = R^{\{x_0\}}1$ we have $Pf = \frac{1}{2}f(x_0)u$. Since the family of kernels $\mathcal{V} = (V_\alpha)_{\alpha>0}$ on (E, \mathcal{B}) given by $V_\alpha f = \frac{1}{1+\alpha}f(x_0)u$ is a sub-Markovian resolvent on (E, \mathcal{B}) such that $\inf_\alpha \alpha V_\alpha U f_0 = 0$ for $f_0 \in bp\mathcal{B}, \ 0 < f_0$ with Uf_0 bounded and $P = V_1$ it follows (cf. [3]) that P is an exact subordination operator with respect to \mathcal{U} . We remark that P is a \mathcal{U} -excessive kernel and it is a regular \mathcal{U}^P -excessive kernel. Moreover the set

$$\{s-\frac{1}{2}s(x_0)u/s\in\mathcal{E}(\mathcal{U}),s<\infty\}$$

is solid and increasingly dense in $\mathcal{E}(\mathcal{U}^P)$.

Let now Q the following kernel on (E, \mathcal{B}) defined by

$$Qs = P(R^{E \setminus \{x_0\}}s), \quad s \in \mathcal{E}(\mathcal{U}).$$

Since $\{x_0\}$ is finely open it follows that there exists $s \in \mathcal{E}(\mathcal{U}), s < \infty$ such that

$$R^{E \setminus \{x_0\}} s(x_0) < s(x_0).$$

Obviously we have

$$Qs = \frac{1}{2} R^{E \setminus \{x_0\}} s(x_0) \cdot u \quad \forall s \in \mathcal{E}(\mathcal{U})$$

and so

$$Qf = \frac{1}{2}R^{E \setminus \{x_0\}}f(x_0) \cdot u.$$

Consequently Q is a \mathcal{U} -excessive kernel on (E, \mathcal{B}) , $Qs \leq Ps$ for all $s \in \mathcal{E}(\mathcal{U})$ and $P \neq Q$.

We show now that Q is an exact subordination operator with respect to \mathcal{U} . By the preceding considerations it remains to show that

$$w := \inf(s, Qs + t - Qt + Qf) \in \mathcal{E}(\mathcal{U})$$

for all $s, t \in \mathcal{E}(\mathcal{U}), f \in p\mathcal{B}, s < \infty, t < \infty$. If $R^{E \setminus \{x_0\}} s(x_0) \ge R^{E \setminus \{x_0\}} t(x_0)$ then

$$Qs + t - Qt + Qf = \frac{1}{2} (R^{E \setminus \{x_0\}} s(x_0) - R^{E \setminus \{x_0\}} t(x_0) + R^{E \setminus \{x_0\}} f(x_0)) u + t \in \mathcal{E}(\mathcal{U})$$

and therefore $w \in \mathcal{E}(\mathcal{U})$.

Assume that

$$R^{E \setminus \{x_0\}} s(x_0) < R^{E \setminus \{x_0\}} t(x_0).$$

We have

$$w = \inf(s, R^{\{x_0\}} R^{E \setminus \{x_0\}} s + (t - R^{\{x_0\}} t) + \frac{1}{2} R^{\{x_0\}} (2t - R^{E \setminus \{x_0\}} t - R^{E \setminus \{x_0\}} s + R^{E \setminus \{x_0\}} f).$$

But

$$R^{E \setminus \{x_0\}} t(x_0) + R^{E \setminus \{x_0\}} s(x_0) < 2R^{E \setminus \{x_0\}} t(x_0) \le 2t(x_0)$$

or equivalently

$$2t(x_0) - R^{E \setminus \{x_0\}} t(x_0) - R^{E \setminus \{x_0\}} s(x_0) > 0.$$

We put

$$\beta := 2t(x_0) - R^{E \setminus \{x_0\}} t(x_0) - R^{E \setminus \{x_0\}} s(x_0) + R^{E \setminus \{x_0\}} s(x_0) + R^{E \setminus \{x_0\}} f(x_0).$$

and we have $\beta>0$ and

$$R^{\{x_0\}}(2t - R^{E \setminus \{x_0\}}t - R^{E \setminus \{x_0\}}s + R^{E \setminus \{x_0\}}f)) = \beta u.$$

Hence

$$w = \inf(s, R^{\{x_0\}} R^{E \setminus \{x_0\}} s + t - R^{\{x_0\}} t + \frac{\beta u}{2}) = \\ = \inf(s, \inf(s, R^{\{x_0\}} R^{E \setminus \{x_0\}} s + t - R^{\{x_0\}} t) + \inf(s, \frac{\beta u}{2}))$$

and so it will be sufficient to show that

$$\inf(s, R^{\{x_0\}}R^{E\setminus\{x_0\}}s + t - R^{\{x_0\}}t) \in \mathcal{E}(\mathcal{U}).$$

We have

$$R^{\{x_0\}}R^{E\setminus\{x_0\}}s(x_0) + (t - R^{\{x_0\}}t)(x_0) = R^{E\setminus\{x_0\}}s(x_0)$$

i.e.

$$\inf(s, R^{\{x_0\}} R^{E \setminus \{x_0\}} s + t - R^{\{x_0\}} t)(x_0) = R^{E \setminus \{x_0\}} s(x_0)$$

and so

$$\inf(s, R^{\{x_0\}} R^{E \setminus \{x_0\}} s + t - R^{\{x_0\}} t) = \inf(R^{E \setminus \{x_0\}} s, R^{\{x_0\}} R^{E \setminus \{x_0\}} s + t - R^{\{x_0\}} t).$$

Since

$$\inf(s', R^{\{x_0\}}s' + t - R^{\{x_0\}}t) \in \mathcal{E}(\mathcal{U})$$

for all $s', t \in \mathcal{E}(\mathcal{U}), \, s' < \infty, \, t < \infty$ we get that

$$\inf(s, R^{\{x_0\}} R^{E \setminus \{x_0\}} s + t - R^{\{x_0\}} t) \in \mathcal{E}(\mathcal{U}).$$

To finish the proof we show that $\mathcal{E}(\mathcal{U}^P) = \mathcal{E}(\mathcal{U}^Q)$. If $s \in \mathcal{E}(\mathcal{U})$ then we have

$$s - Qs = s - \frac{1}{2}R^{E \setminus \{x_0\}}s(x_0) \cdot u = s - \frac{1}{2}s(x_0) \cdot u + \frac{1}{2}(s(x_0) - R^{E \setminus \{x_0\}}s(x_0))u = s - Ps + (s(x_0) - R^{E \setminus \{x_0\}}s(x_0))u \in \mathcal{E}(\mathcal{U}^P).$$

Conversely, let $f \in p\mathcal{B}$ with $Uf < \infty$. We have

$$(U - PU)(f) = (U - PU)(f \cdot 1_{E \setminus \{x_0\}}) + (U - PU)(f \cdot 1_{\{x_0\}}) =$$

= $\frac{1}{2}U(f \cdot 1_{\{x_0\}}) + U(f \cdot 1_{E \setminus \{x_0\}}) - PR^{E \setminus \{x_0\}}U(f \cdot 1_{E \setminus \{x_0\}}) =$
= $\frac{1}{2}U(f \cdot 1_{\{x_0\}}) + U(f \cdot 1_{E \setminus \{x_0\}}) - QU(f \cdot 1_{E \setminus \{x_0\}}) \in \mathcal{E}(\mathcal{U}^Q).$

From the above considerations we conclude that $\mathcal{E}(\mathcal{U}^P) = \mathcal{E}(\mathcal{U}^Q)$.

Remark. 1. Proposition 6 shows that the condition "there is no \mathcal{U} -finely open singleton" is necessary such that Theorem 4 holds.

2. The kernel Q considered in Proposition 6 is not regular \mathcal{U} -exessive if x_0 is not \mathcal{U} -absorbent. Indeed, if $G = E \setminus \{x_0\}$ and $u = R^{\{x_0\}}1$ then we have

$$R^G u = u \text{ on } G, \quad R^G u(x_0) < u(x_0).$$

If $\alpha := \frac{1}{2} R^G \mathbb{1}_G(x_0)$ then we get $\alpha > 0$ and

$$Q1_G = \alpha u = \alpha R^G u$$
 on G

but $Q1_G(x_0) = \alpha u(x_0) > \alpha R^G u(x_0).$

References

- [1] Ben Saad, H.: Generalization des noyaux V_h et applications. In Sém. de Th. du Potentièl Paris, 7 (Lecture Notes in Math. 1061), Springer Verlag, Berlin 1984, pp 14-39.
- Beznea, L.: Potential type subordinations. Rev. Roum. Math. Pures et Appl. 36 (1991), 115-135.
- [3] Beznea, L. and Boboc, N.: *Potential Theory and Right Processes*. Kluwer Acad. Publish 2004.

- [4] Boboc, N. and Bucur, G.; Hitting distributions domination and subordinate resolvents; an analytic approach. *Central European J. of Math.* 4 (2006), 138-162.
- [5] Franchi, J. and Le Jan, Y.; Sur les trajectories intrinseques des processus de Markov et le theéorèm de Shih. Ann. Inst. H. Poincaré. Probab. Statist. 20 (1984), 103-126.
- [6] Hirsch, F.: Condition nécessaires et suffisantes d'existence de résolvantes. Z. Warsch. verw. Gebiete 29 (1974), 73-85.
- [7] Mokobodzki, G.: Operateurs de subordination des resolvantes, 1983 (manuscript).