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By using coupling and Girsanov transformations, the dimension-
free Harnack inequality and the strong Feller property are proved
for transition semigroups of solutions to a class of stochastic general-
ized porous media equations. As applications, explicit upper bounds
of the Lp-norm of the density as well as hypercontractivity, ultra-
contractivity and compactness of the corresponding semigroup are
derived.

1. Introduction. The dimension-free Harnack inequality, first intro-
duced by the author in [19] for diffusions on Riemannian manifolds, has
been applied and extended intensively in the study of finite- and infinite-
dimensional diffusion semigroups, see e.g. [16, 17, 20, 22] for applications
to contractivity properties and functional inequalities, [1, 2, 11] for applica-
tions to short time behaviors of infinite-dimensional diffusions, and [7, 8] for
applications to the transportation-cost inequality and heat kernel estimates.

To establish the dimension-free Harnack inequality, the gradient estimate
of the type |∇Ptf | ≤ eKtPt|∇f | has played a key role in the above men-
tioned references, where the gradient is induced by the underlying diffusion
coefficient. On the other hand, however, in many cases the semigroup is not
regular enough to satisfy this gradient estimate; indeed, this gradient esti-
mate is equivalent to Bakry-Emery’s curvature condition for a very general
framework as in [5]. To establish the dimension-free Harnack inequality on
manifolds with unbounded below curvatures, a new approach is developed
in the recent work [3] by using coupling and Girsanov transformations.

In this paper, we intend to study the transition semigroup for solutions
to a class of stochastic generalized porous media equations, for which the
semigroup is merely known to be Lipschitzian in the natural norm rather
than in the intrinsic distance (cf. [6]). So, we are not able to prove the
Harnack inequality by using intrinsic gradient estimates. On the other hand,
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since the intrinsic distance is usually too big to be exponential integrable
w.r.t. the underlying reference measure, we prefer to establish a Harnack
inequality depending only on the natural norm. Such a stronger inequality
will provide more information including the strong Feller property and the
ultracontractivity of the semigroup. To modify the argument in [3], we shall
construct a new coupling which only depends on the natural distance rather
than the intrinsic one between the marginal processes (see Section 2 below).

Strong solutions of the stochastic generalized porous medium equation
have been studied intensively in recent years: see [6] for the existence, unique-
ness and long-time behavior of some stochastic generalized porous media
equations with finite reference measures; see [12] for the stochastic porous
media equation on Rd where the reference (Lebesgue) measure is infinite;
and see [18] for large deviation principles. Recently, a general result con-
cerning existence and uniqueness is presented in [15] for strong solutions of
stochastic generalized porous media and fast diffusion equations.

Let (E,M,m) be a separable probability space and (L,D(L)) a negative
definite self-adjoint linear operator on L2(m) having discrete spectrum. Let

(0 <)λ1 ≤ λ2 ≤ · · ·

be all eigenvalues of −L with unit eigenfunctions {ei}i≥1.
To state our equation, we first introduce the state space of the solutions.

Let H be the completion of L2(m) under the inner product

〈x, y〉H :=
∞∑

i=1

1
λi
〈x, ei〉〈y, ei〉,

where 〈 , 〉 is the inner product in L2(m). It is well-known that H is the dual
space of the Sobolev space H1 := D((−L)1/2) and hence, is often denoted
by H−1 in the literature. Let LHS denote the space of all Hilbert-Schmidt
operators from L2(m) to H. Let Wt be the cylindrical Brownian motion
on L2(m) w.r.t. a complete filtered probability space (Ω,Ft,P); that is,
Wt := {Bi

tei}i≥1 for a sequence of independent one-dimensional Ft-Brownian
motions {Bi

t}. Let

Ψ,Φ : [0,∞)×R× Ω → R

be progressively measurable and continuous in the second variable, and let

Q : [0,∞)× Ω → LHS

be progressively measurable such that
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STOCHASTIC POROUS MEDIUM EQUATION 3

(1.1) E
∫ T

0
‖Qt‖2

LHS
dt < ∞, T > 0.

We consider the equation

(1.2) dXt =
{
LΨ(t,Xt) + Φ(t,Xt)

}
dt + QtdWt.

In particular, if Φ = 0, Q = 0 and Ψ(t, s) := |s|r−1s for some r > 1, then
(1.2) reduces back to the classical porous medium equation (see e.g. [4]).

In general, for a fixed number r ≥ 1, we assume that there exist functions
δ, η, γ, σ ∈ C([0,∞)) with δ > 0 such that

|Ψ(t, s)|+ |Φ(t, s)− σts| ≤ ηt(1 + |s|r), s ∈ R, t ≥ 0,

2〈Ψ(t, x)−Ψ(t, y), y − x〉 − 2〈Φ(t, x)− Φ(t, y), L−1(x− y)〉
≤ −δ2

t ‖x− y‖r+1
r+1 + γt‖x− y‖2

H , x, y ∈ Lr+1(m), t ≥ 0,

(1.3)

where and in the sequel, ‖ · ‖p denotes the norm in Lp(m) for p ≥ 1. A very
simple example satisfying (1.3) is that Ψ(t, s) := |s|r−1s and Φ(t, s) := γts.

By the first inequality in (1.3), the first term in the left hand side of the
second inequality makes sense for any x, y ∈ Lr+1(m). Since L−1 is bounded
in L2(m), if |Φ(t, s)| ≤ σt(1+|s|(r+1)/2) for some positive σ ∈ C([0,∞)), then
the another term 〈Φ(t, x)−Φ(t, y), L−1(x− y)〉 makes sense too. Otherwise,
since the first condition in (1.3) only implies |Φ(t, s)| ≤ ηt(1 + |s|r), in
general, to make the second condition in (1.3) meaningful, we should and
do assume that L−1 is bounded in Lr+1(m). In particular, this assumption
holds automatically if L is a Dirichlet operator (cf. e.g. [14]).

Recall that an adapted continuous process Xt is called a solution to (1.2)
if (cf. [6])

E
∫ T

0
‖Xt‖r+1

r+1dt < ∞, T > 0

and for any f ∈ Lr+1(m),

〈Xt, f〉H =〈X0, f〉H −
∫ t

0
m

(
fΨ(s,Xs) + Φ(s,Xs)L−1f

)
ds

+
∫ t

0
〈Q(s,Xs)dWs, f〉H , t ≥ 0.

Due to (1.1), (1.3) and [13, Theorems II.2.1 and II.2.2], for any X0 ∈
L2(Ω → H;F0,P) the equation (1.2) has a unique solution (cf. Theorem
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A.2 below). For any x ∈ H, let Xt(x) be the unique solution to (1.2) with
X0 = x. Define

PtF (x) := EF (Xt(x)), x ∈ H

for any bounded measurable function F on H.
We first study Harnack inequalities for Pt. To this end, we assume that

Qt(ω) is non-degenerate for t > 0 and ω ∈ Ω; that is, Qt(ω)x = 0 implies
x = 0. Let

‖x‖Qt :=

{
‖y‖2, if y ∈ L2(m), Qty = x,

∞, otherwise.

We call ‖ · ‖Qt the intrinsic distance induced by Qt.

Theorem 1.1. Assume (1.1) and (1.3). If there exists a nonnegative
constant θ ∈ (r − 3, r − 1] such that

(1.4) ‖x‖r+1
r+1 ≥ ξ2

t ‖x‖2+θ
Qt

‖x‖r−1−θ
H , x ∈ Lr+1(m), t ≥ 0

holds on Ω for some strictly positive function ξ ∈ C([0,∞)), then for any
t > 0, Pt is strong Feller and for any positive bounded measurable function
F on H, any α > 1, and any x, y ∈ H,

(1.5) (PtF )α(y) ≤ (
PtF

α(x)
)
exp

[
αc(θ, t)‖x− y‖2(3−r+θ)/(2+θ)

H

(α− 1)

]
,

where

c(θ, t) :=
2(4 + θ)(6+2θ)/(2+θ)

( ∫ t
0 δ2

sξ
2
s exp

[− 3−r+θ
4+θ

∫ s
0 γudu

]
ds

)θ/(2+θ)

(3− r + θ)(6+2θ)/(2+θ)
( ∫ t

0 δsξs exp[−3−r+θ
4+θ

∫ s
0 γudu]ds

)2 .

Unlike known Harnack inequalities established in [1, 2, 11] where the in-
volved distance is almost surely infinite, (1.5) only includes the usual norm
on the state space H. This enables one to derive stronger regularity proper-
ties of the semigroup, such as the strong Feller property of Pt and estimates
of its transition density pt(x, y). Moreover, as have done in [16, 19, 20] that
this inequality can also be applied to derive the hypercontractivity and ul-
tracontractivity of the semigroup (cf. Theorem 1.2 below).

To apply Theorem 1.1 to contractivity properties of Pt, we consider the
following time-homogenous case.
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STOCHASTIC POROUS MEDIUM EQUATION 5

Theorem 1.2. Assume (1.1), (1.3) with γ ≤ 0, and (1.4) for some
nonnegative constant θ > r−3. Furthermore, let Ψ,Φ and Q be deterministic
and time-free such that ξ, δ > 0 and γ are constant with γ1{r=1} < δ2λ1.

(1) The Markov semigroup Pt has an invariant probability measure µ with
full support on H and µ(eε0‖·‖r+1

H + ‖ · ‖r+1
r+1) < ∞ for some ε0 > 0. If

in addition γ ≤ 0 then the invariant probability measure is unique.
(2) For any x ∈ H, any t > 0 and any α > 1, the transition density

pt(x, y) of Pt w.r.t. µ satisfies

(1.6)

‖pt(x, ·)‖Lp(µ) ≤
{ ∫

H
exp

[
− αc(θ)‖x− y‖2(3−r+θ)/(2+θ)

H

{ 1
γ (1− exp[−3−r+θ

4+θ γt])}(4+θ)/(2+θ)

]
µ(dy)

}−(α−1)/α

,

where c(θ) := 2(4+ θ)/(3− r + θ)(ξδ)4/(4+θ) and when γ = 0, the right hand
side means its limit as γ ↓ 0.

(3) If r = 1 then Pt is hyperbounded (i.e. ‖Pt‖L2(µ)→L4(µ) < ∞) and com-
pact on L2(µ) for some t > 0. If moreover γ ≤ 0 then Pt is hypercon-
tractive, i.e. ‖Pt‖L2(µ)→L4(µ) ≤ 1 for large t > 0.

(4) If r > 1 then Pt is ultracontractive and compact on L2(µ) for any
t > 0. More precisely, there exists c > 0 such that

(1.7) ‖Pt‖L2(µ)→L∞(µ) ≤ exp
[
c
(
1 + t−(1+r)/(r−1))], t > 0.

To apply Theorems 1.1 and 1.2, one has to verify condition (1.4). To this
end, we present below some simple sufficient conditions for (1.4) to hold.

Corollary 1.3. Let Qei := qiei for i ≥ 1 with
∑∞

i=1
q2
i

λi
< ∞, so that

Q is Hilbert-Schmidt from L2(m) to H. If infi q2
i > 0 then (1.4) holds for

any nonnegative constant θ ∈ (r − 3, r − 1] and a constant function ξ > 0.
Consequently, if moreover Ψ and Φ are deterministic and time-free such that
(1.3) holds with γ1{r=1} < λ1δ

2, then all assertions in Theorems 1.1 and 1.2
hold for θ ∈ (r − 3, r − 1] ∩ [0,∞).

Proof. Simply note that ‖ · ‖2
r+1 ≥ ‖ · ‖2

2 ≥ 1
infi q2

i
‖ · ‖2

Q.

Remark 1.1. In Corollary 1.3 there are two conditions on qi, where
∑

i≥1
q2
i

λi

< ∞ means that {q2
i } should be small enough as i →∞ but the other says
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that the sequence should be at least uniformly positive. In particular, such
sequence exists if the spectrum of L is discrete enough such that

∑
i≥1

1
λi

<
∞. This is the case if e.g. L = ∆ on a bounded domain in R with the
Dirichlet boundary condition, or more generally, L is the Laplace operator
on a post critical finite self-similar fractal with s > 0 the Hausdorff dimension
of the fractal in the effective resistance metric. In the first case it is well-
known that λi ≥ ci2 for some c > 0 and all i ≥ 1, while according to [10,
Theorem 2.11] for the second case one has λi ≥ ci(s+1)/s for some c > 0
and all i ≥ 1. See Section 3 below for more examples of L in an abstract
framework including high order elliptic differential operators on Rd.

Complete proofs of the above two theorems will be presented in Section 2.
Assertions in Theorem 1.2 are direct consequences of Theorem 1.1 as soon
as the desired concentration of µ is confirmed. To prove the first theorem,
we adopt the coupling method and Girsanov transformations as in [3]. Com-
paring to the argument developed in [19], this method enables one to avoid
verifying (intrinsic) gradient estimates of the semigroup.

In section 3, concrete sufficient conditions for Corollary 1.3 to hold are pro-
vided in Section 3 for a large class of linear operators L in a rather abstract
framework. Finally, in Appendix we confirm the existence and uniqueness of
the solution to (1.2) as well as the existence and uniqueness of our coupling
constructed below (cf. (2.2)).

2. Proofs of Theorems 1.1 and 1.2.

2.1. The main idea. To make the proofs easy to follow, let us first briefly
explain the main idea to obtain a Harnack inequality using coupling. Let
x 6= y be two fixed points in H, and let T > 0 be a fixed time. Let Xt(x)
and Xt(y) be the solutions to (1.2) with initial data x and y respectively. If

(2.1) τ(x, y) := inf{t ≥ 0 : Xt(x) = Xt(y)} ≤ T, a.s.

Then by the uniqueness of the solution, we have XT (x) = XT (y) a.s. Thus,
for any nonnegative measurable function F on H,

PT f(x) := EF (XT (x)) = EF (XT (y)) = PT F (y).

This is much more than the Harnack inequality we wanted. Of course, in
general (2.1) is wrong since it is so strong that PT maps any bounded func-
tion to constant. What we can hope is that τ(x, y) ≤ T happens in a high
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STOCHASTIC POROUS MEDIUM EQUATION 7

probability (for x and y close enough). This is however not sufficient to imply
the Harnack inequality.

To ensure that τ(x, y) ≤ T happens in probability 1, we shall add a strong
enough drift term which forces Xt(y) to move to Xt(x). To this end, let us
take a constant ε ∈ (0, 1/2] and a reference function β ∈ C([0,∞);R+), and
consider the modified equation

(2.2) dYt =
{
LΨ(t, Yt)+Φ(t, Yt)+

βt(Xt − Yt)
‖Xt − Yt‖ε

H

1{t<τ}
}
dt+QtdWt, Y0 = y,

where Xt := Xt(x) and τ := inf{t ≥ 0 : Xt = Yt}.
By Theorem A.2 below, (2.2) has a unique solution. Moreover, by the

uniqueness, we have Xt = Yt for t ≥ τ.
Now, to derive the desired Harnack inequality, we need only to find out

ε > 0 and nonnegative function βt such that

(i) τ ≤ T a.s.
(ii) E exp

[ ∫ T
0

β2
t
2 ‖Xt − Yt‖−2ε

H ‖Xt − Yt‖2
Qt

dt
]
< ∞.

Let

ζt :=
βtQ

−1
t (Xt − Yt)

‖Xt − Yt‖ε
H

1{t<τ}.

Once (i) and (ii) are confirmed, we may rewrite (2.2) as

dYt = (LΨ(t, Yt) + Φ(t, Yt))dt + QtdW̃t, Y0 = y,

where

W̃t := Wt +
∫ t

0
ζsds, t ∈ [0, T ].

By (ii) and Girsanov’s theorem, it is easy to see that {W̃t}t∈[0,T ] is a cylin-
drical Brownian motion on L2(m) under the weighted probability measure
RP, where

R := exp
[ ∫ T

0
〈dWt, ζt〉 − 1

2

∫ T

0
‖ζt‖2

2dt

]
.

Thus, by the uniqueness of the solution, the distribution of {Yt}t∈[0,T ] under
RP coincides with that of {Xt(y)}t∈[0,T ] under P. Therefore, combining this
with (i) we arrive at

imsart-aap ver. 2006/03/07 file: 05d-3.tex date: August 1, 2006



8

PT F (y) = ERF (YT ) = ERF (XT )

≤ (
ERα/(α−1))(α−1)/α(

EF (XT )α)1/α

=
(
ERα/(α−1))(α−1)/α(

PT Fα(x)
)1/α

.

(2.3)

Then the desired Harnack inequality follows by estimating the moments of
R.

2.2. Proofs. We first study (i). By (1.3) and the Itô formula due to [13,
Theorem I.3.2], we have

d‖Xt−Yt‖2
H ≤ (−δ2

t ‖Xt−Yt‖r+1
r+1+γt‖Xt−Yt‖2

H−βt‖Xt−Yt‖2−ε
H

)
dt, t ≤ T.

Then

d
{‖Xt − Yt‖2

He−
∫ t

0
γsds}

≤ −(
δ2
t ‖Xt − Yt‖r+1

r+1 + βt‖Xt − Yt‖2−ε
H

)
e−

∫ t

0
γsdsdt, t ≤ T.

(2.4)

Lemma 2.1. If β satisfies

(2.5)
∫ T

0
exp

[
− ε

2

∫ t

0
γsds

]
βtdt ≥ 2

ε
‖x− y‖ε

H ,

then XT = YT .

Proof. By (2.4),

2
ε
d
{‖Xt − Yt‖2

He−
∫ t

0
γsds}ε/2 ≤ −βte

− ε
2

∫ t

0
γsdsdt, t ≤ τ.

If T < τ then it follows from this and (2.5) that

{‖XT−YT ‖2
He−

∫ T

0
γsds}ε/2−‖x−y‖ε

H ≤ −ε

2

∫ T

0
βte

− ε
2

∫ t

0
γsdsdt ≤ −‖x−y‖ε

H .

This implies XT = YT and hence, is contradictory to T < τ.
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STOCHASTIC POROUS MEDIUM EQUATION 9

Proof of Theorem 1.1. By (2.4), (1.4) and letting ε := (3 − r + θ)/(4 + θ)
which is in (0, 1/2] since θ ∈ [0, r − 1], we obtain

d
{‖Xt − Yt‖2

He−
∫ t

0
γsds}ε

≤ −εδ2
t ‖Xt − Yt‖2(ε−1)

H e−ε
∫ t

0
γsds‖Xt − Yt‖r+1

r+1dt

≤ −εδ2
t ξ

2
t ‖Xt − Yt‖2+θ

Qt
e−ε

∫ t

0
γsds‖Xt − Yt‖2(ε−1)+r−1−θ

H dt

= −εδ2
t ξ

2
t e−ε

∫ t

0
γsds ‖Xt − Yt‖2+θ

Qt

‖Xt − Yt‖(2+θ)ε
H

dt.

(2.6)

Let

(2.7) β2
t := c2δ2

t ξ
2
t e−ε

∫ t

0
γsds, c :=

2‖x− y‖ε
H

ε
∫ T
0 δtξt exp[−ε

∫ t
0 γs]ds

.

Then (2.5) holds so that XT = YT according to Lemma 2.1. So, (2.6) implies

ε

c2

∫ T

0

β2
t ‖Xt − Yt‖2+θ

Qt

‖Xt − Yt‖(2+θ)ε
H

dt ≤ ‖x− y‖2ε
H .

By this and the Hölder inequality,

∫ T

0

β2
t ‖Xt − Yt‖2

Qt

‖Xt − Yt‖2ε
H

dt

≤
( ∫ T

0

β2
t ‖Xt − Yt‖2+θ

Qt

‖Xt − Yt‖(2+θ)ε
H

dt

)2/(2+θ)( ∫ T

0
β2

t dt

)θ/(2+θ)

≤ (
ε−1c2‖x− y‖2ε

H

)2/(2+θ)
( ∫ T

0
β2

t dt

)θ/(2+θ)

.

(2.8)

This implies, for α′ := α/(α− 1), that

ERα′ = E exp
[
α′

∫ T

0
〈dWt, ζt〉 − α′

2

∫ T

0
‖ζt‖2

2dt

]

= E exp
[
α′(α′ − 1)

2

∫ T

0
‖ζt‖2

2dt

]

≤ exp
[
α′(α′ − 1)

2
(
ε−1c2‖x− y‖2ε

H

)2/(2+θ)
( ∫ T

0
β2

t dt

)θ/(2+θ)]
.

(2.9)
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Combining (2.9) with (2.3), we arrive at

(PT F (y))α

≤ (PT Fα)(x) exp
[

α

2(α− 1)
(
ε−1c2‖x− y‖2ε

H

)2/(2+θ)
( ∫ T

0
β2

t dt

)θ/(2+θ)]
.

Taking (2.7) into account, we obtain (1.5).
We now prove the strong Feller property. Since

PT F (y) = ERF (YT ) = ERF (XT ),

we have

(2.10) |PT F (y)− PT F (x)| = |E(R− 1)F (XT )| ≤ ‖F‖∞E|R− 1|.

From (2.9) we know that R is uniformly integrable for bounded ‖x − y‖H .
Therefore, by (2.8) and the dominated convergence theorem we obtain

lim
y→x

E|R− 1| = E lim
y→x

|R− 1| = 0.

Combining this with (2.10) we see that PT F ∈ Cb(H). Thus, PT is strong
Feller.

Proof of Theorem 1.2(1). (a) The existence of µ. Let Xt(0) be the solution
to (1.2) with X0 = 0, and let

µn :=
1
n

∫ n

0
δ0Ptdt, n ≥ 1,

where δ0Pt is the distribution of Xt(0), t ≥ 0. Since by Theorem 1.1 Pt

is a (even strong) Feller Markov semigroup, to prove the existence of the
invariant probability measure, we only need to verify the tightness of {µn :
n ≥ 1}. Indeed, if µnk

→ µ weakly for some subsequence nk →∞, then for
any F ∈ Cb(H) one has PtF ∈ Cb(H) and thus,

(µPt)(F ) = lim
k→∞

µnk
(PtF ) = lim

k→∞
1
nk

∫ nk+t

t
PsF (0)ds

= lim
k→∞

1
nk

∫ nk

0
PsF (0)ds = µ(F ), t ≥ 0.

By (1.3) with δ > 0 and γ1{r=1} < λ1δ
2, we have
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STOCHASTIC POROUS MEDIUM EQUATION 11

− 2〈Ψ(x), x〉 − 2〈Φ(x), L−1x〉
≤ −δ2‖x‖r+1

r+1 + 2|Φ(0)|‖L−1‖r+1‖x‖r+1 + 2|Ψ(0)|‖x‖r+1 + γ‖x‖2
H

≤ θ2 − θ1‖x‖r+1
r+1, x ∈ Lr+1(m)

for some θ1, θ2 > 0. Combining this with the Itô formula for the square of
the norm, we obtain

(2.11) d‖Xt‖2
H ≤ (

c− θ‖Xt‖r+1
r+1

)
dt + 2〈QdWt, Xt〉H

for some c, θ > 0. Then

µn(‖ · ‖r+1
r+1) :=

1
n

∫ n

0
E‖Xt(0)‖r+1

r+1dt ≤ c

θ
− 1

n
‖Xn(0)‖2

H ≤ c

θ
, n ≥ 1.

Hence, to prove the tightness of {µn}, it suffices to prove that ‖ · ‖r+1 is
a compact function, i.e. KN := {‖ · ‖r+1 ≤ N} is relatively compact in H
for any N > 0. Since the embedding Lr+1(m) ⊂ H is continuous, it follows
that ‖ · ‖Q is bounded on KN . Moreover, since Q is Hilbert-Schmidt from
L2(m) to H, ‖ · ‖Q is a compact function on H. Therefore, KN is relatively
compact in H.

(b) The uniqueness and full support of µ. By (1.3) with γ ≤ 0 and the
Itô formula, there exist δ, θ > 0 such that

d‖Xt(x)−Xt(y)‖2
H ≤ −δ2‖Xt(x)−Xt(y)‖r+1

r+1dt

≤ −θ‖Xt(x)−Xt(y)‖r+1
H dt, x, y ∈ H.

Thus, limt→∞ ‖Xt(x) − Xt(y)‖H = 0, x, y ∈ H. This implies that µ is the
unique invariant probability measure of Pt.

Next, since µ is the invariant probability measure of Pt, by (1.5) with
α := 2,

(Pt1A(x))2
∫

H
e−2c(θ,t)‖x−y‖2(3−r+θ)/(2+θ)

H µ(dy)

≤
∫

H
Pt1A(y)µ(dy) = µ(A), A ∈M.

Then the transition kernel Pt(x,dy) is absolutely continuous w.r.t. µ so that
it has a density pt(x, y). Thus, if suppµ 6= H, then there exists x0 ∈ H
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and r > 0 such that B(x0, r) := {y ∈ H : ‖x0 − y‖H ≤ r} is a null set of
µ. Hence, Pt(x0, B(x0, r)) = 0. Therefore, letting Xt(x0) be the solution to
(1.2) with X0(x0) = x0, we obtain

P(‖Xt(x0)− x0‖H ≤ r) = 0, t > 0.

Since Xt(x0) is a continuous process on H, this implies P(‖X0(x0)−x0‖H ≤
r) = 0 which is impossible. So, µ has full support on H.

(c) Concentration of µ. By (2.11), for c′ := (r + 1)ε0/2 we have

deε0‖Xt‖r+1
H + dMt

≤ (
c− θ‖Xt‖r+1

r+1 + 2c′‖Q‖2
LHS

‖Xt‖r+1
H

)
c′‖Xt‖r−1

H eε0‖Xt‖r+1
H dt

(2.12)

for some local martingale Mt. Since ‖ · ‖r+1 ≥ c0‖ · ‖H for some constant
c0 > 0, when ε0 > 0 is small enough there exist c1, θ1 > 0 such that

deε0‖Xt‖r+1
H ≤ (

c1 − θ1‖Xt‖r+1
r+1e

ε0‖Xt‖r+1
H

)
dt + dMt.

This implies

µn(eε0‖·‖r+1
H ) ≤ 1

θ1n
+

c1

θ1
, n ≥ 1.

Hence, µ(eε0‖·‖r+1
H ) < ∞ since µ is the weak limit of a subsequence of µn.

Finally, by (2.11) we have
∫ 1

0
Pt‖ · ‖r+1

r+1(x)dt ≤ c2(1 + ‖x‖2
H), x ∈ H

for some c2 > 0. Thus, µ(‖ · ‖r+1
r+1) ≤ c2(1 + µ(‖ · ‖2

H)) < ∞.

Proof of Theorem 1.2(2). For any p > 1 and any nonnegative measurable
function f with µ(fp/(p−1)) ≤ 1, it follows from (1.5) with α := p/(p − 1)
that

(
Ptf(x)

)p/(p−1) ≤ (
Ptf

p/(p−1)(y)
)
exp

[
pct‖x− y‖2(3−r+θ)/(2+θ)

H

]
, x, y ∈ H.

Thus,

(
Ptf(x)

)p/(p−1)
∫

H
e−pct‖x−y‖2(3−r+θ)/(2+θ)

H µ(dy) ≤ µ(fp/(p−1)) ≤ 1.
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STOCHASTIC POROUS MEDIUM EQUATION 13

Therefore,

〈pt(x, ·), f〉µ = Ptf(x) ≤
( ∫

H
e−pct‖x−y‖2(3−r+θ)/(2+θ)

H µ(dy)
)−(p−1)/p

.

This implies (1.6).

Proof of Theorem 1.2(3). Let f ∈ L2(µ) with µ(f2) = 1. By (1.5) with γ = 0
and constants ξ, δ > 0, there exists a constant c > 0 depending on r and θ
such that

(Ptf)2(x) exp
[
− c‖x− y‖2(3−r+θ)/(2+θ)

H

t(4+θ)/(2+θ)

]
≤ Ptf

2(y), x, y ∈ H, t > 0.

Taking integration for both sides w.r.t. µ(dy), we obtain

(Ptf)2(x)

≤ 1
µ(B(0, 1))

exp
[c(‖x‖H + 1)2(3−r+θ)/(2+θ)

t(4+θ)/(2+θ)

]
, x ∈ H, t > 0,

(2.13)

where B(0, 1) := {y ∈ H : ‖y‖H ≤ 1} has positive mass of µ.
If r = 1 then by (2.13) and Theorem 1.2(1) we have

∫

H
(Ptf)4(x)µ(dx) ≤ 1

µ(B(0, 1))

∫

H
exp

[c(‖x‖H + 1)2(3−r+θ)/(2+θ)

t(4+θ)/(2+θ)

]
µ(dx) < ∞

for sufficiently big t > 0. Thus, Pt is hyperbounded, i.e. ‖Pt‖2→4 < ∞ for
some t > 0. Since Pt has transition density w.r.t. µ, according to e.g. [23] it
is compact in L2(µ) for large t > 0. In particular, if γ ≤ 0 then the process
is ergodic so that its generator has a spectral gap. Thus, ‖Pt − µ‖2 ≤ ce−λt

for some c > 0 and all t > 0. Therefore, by a standard argument we obtain
the hypercontractivity from the hyperboundedness.

If r > 1, then (2.12) implies

deε0‖Xt‖r+1
H ≤ c2 − θ2‖Xt‖2r

H eε0‖Xt‖r+1
H dt + dMt

for some small ε0 > 0 and some c2, θ2 > 0. Thus, letting h(t) solve the
equation
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(2.14) h′(t) = c2 − θ2ε
−2r/(1+r)
0 h(t)

{
log h(t)

}2r/(r+1)
, h(0) = eε0‖x‖r+1

H ,

we have

(2.15) Eeε0‖Xt(x)‖r+1
H ≤ h(t).

Since 2r
r+1 > 1, (2.14) and (2.15) imply

(2.16) Eeε0‖Xt(x)‖r+1
H ≤ exp

[
c3

(
1 + t−(r+1)/(r−1))], t > 0, x ∈ H

for some constant c3 > 0. Next, by (2.13) we have

‖Ptf‖∞ = ‖Pt/2Pt/2f‖∞
≤ c4 sup

x∈H
E exp

[ c4

t(4+θ)/(2+θ)
‖X t

2
(x)‖2(3−r+θ)/(2+θ)

H

]
, t > 0

(2.17)

for some c4 > 0. Since there exists c5 > 0 such that

c4

t(4+θ)/(2+θ)
u2(3−r+θ)/(2+θ) ≤ ε0u

r+1 + c5t
−(r+1)/(r−1), u, t > 0,

(1.7) follows immediately from (2.16) and (2.17). Finally, according to [23]
(see also [8, Lemma 3.1]), the compactness of Pt follows immediately since
Pt is uniform integrable in L2(µ) and has transition density w.r.t. µ.

3. Examples. As explained in Remark 1.1, for L := ∆ the Dirichlet
Laplace operator, our results only apply to a space of dimension less than 2.
The aim of this section is to show that, by means of spectral representation,
we have much more choices of L to illustrate our theorems.

Let L0 be a self-adjoint operator on L2(m) with discrete spectrum

(0 ≤)λ(0)
1 ≤ λ

(0)
2 ≤ · · ·

and the corresponding unit eigenfunctions {ei}i≥1. As in Corollary 1.3, let
Qei := qiei for a sequence {qi 6= 0}i≥1. Let, for simplicity, Φ(s) = −c0s and
Ψ ∈ C(R) satisfy

(Ψ(s1)−Ψ(s2))(s1 − s2) ≥ δ2|s1 − s2|r+1,

|Ψ(s)| ≤ c(1 + |s|r), s, s1, s2 ∈ R
(3.1)
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STOCHASTIC POROUS MEDIUM EQUATION 15

for some c0 ≥ 0 and c, δ > 0. For any positive and strictly increasing function
ϕ on [0,∞), we consider the equation (1.2) for

L := −ϕ(−L0) = −
∞∑

i=1

ϕ(λ(0)
i )〈ei, ·〉ei.

That is, consider

(3.2) dXt = −{
ϕ(−L0)Ψ(Xt) + c0Xt

}
dt + QdWt.

Proposition 3.1. Let infi≥1 q2
i > 0 and Φ = 0, and let Ψ satisfy (3.1).

If ϕ is strictly positive such that

(3.3)
∞∑

i=1

q2
i

ϕ(λ(0)
i )

< ∞,

then the Markov semigroup of the solution to (3.2) satisfies all assertions in
Theorems 1.1 and 1.2 for any θ ∈ (r − 3, r − 1] and some ξ > 0.

Proof. Let L := −ϕ(−L0) whose eigenvalues are −λi := −ϕ(λ(0)
i ), i ≥

1. Obviously, all conditions in Corollary 1.3 are satisfied for the present
situation. Thus, the proof is completed by Corollary 1.3.

To conclude this paper, we present two examples where L0 is either
the Dirichlet Laplacian on a finite volume domain in Rd or the Ornstein-
Uhlenbeck operator on Rd, so that L can be taken as high order differential
operators on Rd or on a domain.

Example 3.2.. In the situation of Proposition 3.1 but simply take qi =
1, i ≥ 1.

(1) Let L0 := ∆−x·∇ and m the standard Gaussian measure on E := Rd.
It is well-known that the set of eigenvalues of −L0 is Z+, and the eigenspace
of each k ≥ 0 is

span
{ d∏

i=1

Hki
(xi) : k1 + · · · kd = k, k1, · · · , kd ≥ 0

}
,

where H0 ≡ 1 and

Hn(s) :=
(−1)n

√
n!

es2/2 dn

dsn
e−s2/2, s ∈ R, n ≥ 1.
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Thus, there exists σ > 0 such that

λ
(0)
i ≥ σ(i− 1)1/d, i ≥ 1.

Then (3.3) holds for ϕ(s) := (ε + s)q for any ε > 0 and q > d, so that all
assertions in Theorems 1.1 and 1.2 hold for the solution to (3.2).

(2) Let L0 := ∆ be the Dirichlet Laplace operator on a domain D ⊂ Rd

with finite volume, and let m be the normalized volume measure on D. By
the Sobolev inequality we have (see [21, Corollaries 1.1 and 3.1])

λ
(0)
i ≥ σi2/d, i ≥ 1

for some σ > 0. Then (3.3) holds for ϕ(s) := sq for any q > d/2, so that all
assertions in Theorems 1.1 and 1.2 hold for the solution to (3.2).

APPENDIX A: EXISTENCE AND UNIQUENESS OF SOLUTIONS

We first recall the following result due to [13], then derive the existence
and the uniqueness for the solution to generalized stochastic porous media
equations.

Theorem A.1. ([13, Theorems II.2.1, II.2.2]) Let H be a real sep-
arable Hilbert space and V and V ∗ two real Banach space such that the
embeddings V ⊂ H ⊂ V ∗ are dense and continuous. Let LHS be the space
of all Hilbert-Schmidt operators from some real separable Hilbert space G to
H and Wt the cylindrical Brownian motion on G. Let T > 0 be fixed and

A : [0, T ]× V × Ω → V ∗ and Q : [0, T ]× V × Ω → LHS

be progressively measurable such that

(A1) Semicontinuity of A: for any v1, v2, v ∈ V and any t ∈ [0, T ], R 3
λ 7→V ∗ 〈A(t, v1 +λv2), v〉V is continuous, where V ∗〈·, ·〉V is the duality
between V ∗ and V .

(A2) Monotonicity of (A,Q): there exists a constant K > 0 such that for
any t ∈ [0, T ],

2V ∗〈A(t, v1)−A(t, v2), v1 − v2〉V + ‖Q(t, v1)−Q(t, v2)‖2
LHS

≤ K‖v1 − v2‖2
H , v1, v2 ∈ V.

(A3) Coercivity of (A,Q): there exist two constants α, K > 0 and a positive
adapted process f ∈ L1([0, T ]× Ω; dt×P) such that

2V ∗〈A(t, v), v〉V + ‖Q(t, v)‖2
LHS

+ α‖v‖r+1
V ≤ ft + K‖v‖2

H
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holds for all t ∈ [0, T ], v ∈ V.
(A4) Boundedness of A: there exist a constant K > 0 and a positive adapted

process f ∈ L1([0, T ]× Ω; dt×P) such that

‖A(t, v)‖V ∗ ≤ f
r/(r+1)
t + K‖v‖r

H , t ∈ [0, T ], v ∈ V.

Then for any X0 ∈ L2(Ω → H;F0;P), (A.1) has a unique solution {Xt}t∈[0,T ]

which is an adapted continuous process on H such that E
∫ T
0 ‖Xt‖r+1

V dt < ∞
and

〈Xt, v〉H = 〈X0, v〉H +
∫ t

0
V ∗〈A(s,Xs), v〉V ds +

∫ t

0
〈Q(s,Xs)dWs, v〉H

holds for all v ∈ V, t ∈ [0, T ].

We now return back to the framework in Section 1 and consider the
following equation which is even more general than (1.2):

(A.1) dXt =
{
LΨ(t,Xt) + Φ(t,Xt)

}
dt + Q(t,Xt)dWt,

where

Q : [0,∞)×H × Ω → LHS

is a progressively measurable mapping such that

(A.2) ‖Q(t, x)‖2
LHS

≤ ht(1 + ‖x‖2
H), ‖Q(t, x)−Q(t, y)‖2

LHS
≤ ht‖x− y‖2

H

holds for some positive function h ∈ C([0,∞)) and all x, y ∈ H.

Theorem A.2. Assume (1.3) and (A.2) for some positive function h ∈
C([0,∞)) and all x, y ∈ H.

(1) (A.1) has a unique solution for any X0 ∈ L2(Ω → H;F0;P).
(2) Let Xt solve (A.1) for X0 = x ∈ H. Then (2.2) has a unique solution.

Proof. (1) Let

A(t, x) := LΨ(t, x) + Φ(t, x), t ≥ 0, x ∈ Lr+1(m).

To make this quantity meaningful, let V := Lr+1(m). Then the embedding
V ⊂ H is continuous. Let V ∗ be the dual space of V w.r.t. H. By (1.3)
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and the assumption of L; i.e. L−1 is bounded in Lr+1(m) if |Φ(t, s)| ≤
σt(1 + |s|(1+r)/2) does not hold for any positive σ ∈ C([0,∞)), we conclude
that A(t, x) is well-defined as an element in V ∗ by letting

V ∗〈A(t, x), v〉V := −〈Ψ(t, x), v〉 − 〈Φ(t, x), L−1v〉, v ∈ V.

It is now easy to see that under (1.3), (A.2) and the continuity of Ψ(t, s)
and Φ(t, s) in s, all assumptions in the above theorem hold. Therefore, the
proof is completed.

(2) By (1) we only have to prove (A1)− (A4) for Q = 0 and

A(t, x) :=
Xt − x

‖Xt − x‖ε
H

1{Xt 6=x}

for ε ∈ (0, 1
2 ]. Since by (1.3) and the Itô formula (see [13, Theorem I.3.2])

one has

d‖Xt‖2
H ≤ 2〈Q(t,Xt)dWt, Xt〉H − σ‖Xt(x)‖r+1

r+1dt + (c + ‖Q(t,Xt)‖2
LHS

)dt

for some c, σ > 0, it follows from (A.2) that

sup
t∈[0,T ]

E‖Xt‖2
H < ∞.

Thus, A(t, x) ∈ H with

‖A(t, x)‖H = ‖Xt − x‖1−ε
H , x ∈ H.

Therefore, (A1), (A3) and (A4) hold. To verify (A2), it suffices to prove

(A.3) 〈A(t, x)−A(t, y), x− y〉H ≤ 0 on Ω, x, y ∈ H.

Without loss of generality, for a fixed ω ∈ Ω we only verify (A.3) for x, y ∈ H
with

(A.4) ‖Xt − x‖H ≤ ‖Xt − y‖H .

We now prove (A.3) for the following two situations respectively.
(i) If ‖Xt − x‖H ≥ ‖x − y‖H , then by (A.3), the mean valued theorem

and the triangle inequality, we have
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〈A(t, x)−A(t, y), x− y〉H
= − ‖x− y‖2

H

‖Xt − x‖ε
H

+
‖Xt − y‖ε

H − ‖Xt − x‖ε
H

‖Xt − y‖ε
H‖Xt − x‖ε

H

〈Xt − y, x− y〉H

≤ − ‖x− y‖2
H

‖Xt − x‖ε
H

+
ε‖Xt − y‖1−ε

H ‖x− y‖2
H

‖Xt − x‖H

≤ − ‖x− y‖2
H

‖Xt − x‖ε
H

+
ε(‖Xt − x‖1−ε

H + ‖x− y‖1−ε
H )‖x− y‖2

H

‖Xt − x‖H

≤ −(1− 2ε)‖x− y‖2
H

‖Xt − x‖ε
H

≤ 0.

(ii) If ‖Xt − x‖H ≤ ‖x − y‖H , then by (A.3) and the triangle inequality,
we have

〈A(t, x)−A(t, y), x− y〉H
= − ‖x− y‖2

H

‖Xt − y‖ε
H

+
‖Xt − x‖ε

H − ‖Xt − y‖ε
H

‖Xt − y‖ε
H‖Xt − x‖ε

H

〈Xt − x, x− y〉H

≤ − ‖x− y‖2
H

‖Xt − x‖ε
H

+
‖x− y‖ε

H‖Xt − x‖H‖x− y‖H

‖Xt − x‖ε
H‖Xt − y‖ε

H

≤ − ‖x− y‖2
H

‖Xt − x‖ε
H

+
‖x− y‖1+ε

H ‖Xt − x‖1−ε
H

‖Xt − y‖ε
H

≤ 0.
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