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Abstract
The problem of asymptotic normality of occupation mea-

sure for Markov continuous time processes with the finite phase
space is investigated in the book of G.Yin and Q.Zhang [1]. We
propose some other approach based on asymptotic analysis of
random evolution process by using a solution of the singular
perturbation problem for reducible-invertible operator [2]. For
simplicity the homogeneous in time Markov and semi-Markov
processes are considered.



1 Introduction

The semi-Markov process α(t), t ≥ 0 in the finite phase space E =
{1, . . . , N} is given by the semi-Markov matrix

Qkr(t) = pkrFk(t), k, r ∈ E. (1)

The stochastic matrix P = [pkr ; k, r ∈ E] determines transition
probabilities of the embedded Markov chain αn = α(τn), n ≥ 0:

pkr = P {αn+1 = r |αn = k} (2)

The renewal moments of jump

τn+1 = τn + θn+1, n ≥ 0, τ0 = 0, (3)

is determined by the distribution functions of sojourn times θn+1, n ≥
0:

Fk(t) = P {θn+1 ≤ t |αn = k} (4)

In particular case of exponential distributions Fk(t) = 1−exp (−qkt), k ∈
E, the corresponding process α(t), t ≥ 0, is Markovian and can be de-
fined by the generating matrix

Q = [qkr; k, r ∈ E] , qkr = qkpkr, k 6= r (5)

qkk = −qk, k ∈ E.

The main assumption is that the semi-Markov process α(t), t ≥
0, is ergodic with the stationary distribution π = (πk, k ∈ E) which
satisfies the relation

πkqk = qρk, k ∈ E, q =
∑

k∈E

πkqk (6)

The vector ρ = (ρk, k ∈ E) defines the stationary distribution of the
embedded Markov chain αn, n ≥ 0. In semi-Markov case

qk := 1/mk, mk :=

∫ ∞

0

F̄k(t)dt, F̄k(t) := 1− Fk(t). (7)
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2 Occupation measure

Definition 2.1 [1] The normalized occupation measure process for the
semi-Markov process α(t), t ≥ 0, in the series scheme with the small
parameter series ε → 0 (ε > 0) is defined by the integral functional

ζε
k(t) = ε−1

∫ t

0

[
I

(
α(s/ε2) = k

)− πk

]
βkds, (8)

where I(A) is the indicator function of event A, β = (βk, k ∈ E) is the
scaling vector.

It is worth noticing that under the main assumption the following
convergence

EI
(
α(s/ε2) = k

) → πk, ε → 0, k ∈ E

takes place. So, the normalizing factor ε−1 is used to obtain some
non-trivial limit for the vector

ζε(t) = (ζε
k(t), k ∈ E)

as ε → 0.
The main results are formulated below:

Theorem 2.1 Under the main assumption of ergodicity of the semi-
Markov process α(t), t ≥ 0, on the finite phase space E = {1, 2, . . . , N}
the normalized occupation measure process (8) weakly converges

ζε(t) ⇒ Wσ(t), ε → 0. (9)

The limit Wiener process Wσ(t), t ≥ 0, is defined by zero mean value
and the variance matrix

B = σσ? = [Bkr; k, r ∈ E] ,

Bkr = πkβkRkrβr + πrβrRrkβk + Bµ
kr (10)

where

µk =
[
m

(2)
k −m2

k

]
/mk, m

(2)
k :=

∫ ∞

0

tF̄k(t)dt k ∈ E,

Bµ
kr := [πkµkδkr + πkπr(µ̂− µk − µr)] βkβr,
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µ̂ :=
∑

k∈E

πkµk,

and the potential matrix R0 = [Rkr; k, r ∈ E] is defined by the relations:

QR0 = R0Q = Π− I,

or by the form

R0 =

∫ ∞

0

[Pt − Π] dt,

where Pt, t ≥ 0, is the semigroup defined by the generator Q (see (5)).
The projector Π acts as follows:

Πϕ(k) = ϕ̂11, ϕ̂ :=
∑

k∈E

πkϕ(k), 11 := 1(k) ≡ 1, k ∈ E.

Remark 2.1 In particular case of Markov process α(t), t ≥ 0, the
variance matrix is defined as follows:

B0
kr = πkβkRkrβr + πrβrRrkβk, k. r ∈ E (11)

Remark 2.2 The values µk =
[
m

(2)
k −m2

k

]
/mk, k ∈ E, can be posi-

tive as well as negative [3]. For the exponential distribution µk = 0.

3 Algorithm of asymptotic normality

3.1 Random evolution approach

The random evolution approach, described in the book [4], means that
the occupation measure process (8) is considered as a random evolution
in the following form:

ζε(t) = u + ε−1

∫ t

0

b(αε(s))ds, t ≥ 0 (12)

where
αε(s) := α(s/ε2)

and the vector function

b(r) = (bk(r), k ∈ E)
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is defined by the relation

bk(r) = [δk(r)− πk] βk, k ∈ E, r ∈ E (13)

here

δk(r) =

{
1, if r = k,

0, otherwise

is the Kronecker symbol.
Introduce the deterministic evolution in RN

u(t; r) := u + b(r)t, t ≥ 0, r ∈ E, (14)

and the corresponding evolution in the Banach space B(RN) of bounded
real-valued test-functions ϕ(u), u ∈ RN , with the sup-norm: ||ϕ|| :=
supu∈RN |ϕ(u)|, by the family of semigroups

Bt(r)ϕ(u) := ϕ(u(t; r)), t ≥ 0, u(0; r) = u. (15)

the generators of semigroups (15) are defined by the relation

B(r)ϕ(u) = b(r)ϕ′(u) :=
∑

k∈E

bk(r)ϕ
′
k(u), (16)

where, by definition, vector

ϕ′(u) = (ϕ′k(u) := ∂ϕ(u)/∂uk, k ∈ E) .

3.2 The characterization of the random evolution

process (12)

The characterization of the random evolution process (12) is considered
in two cases:

i) The switching process α(t), t ≥ 0, is Markovian given by the
generator (5).

ii) The switching process α(t), t ≥ 0, is semi-Markovian, given by
the semi-Markov kernel (1).

Lemma 3.1 i) The coupled Markov process

ζε(t), αε(t) := α(t/ε2), t ≥ 0,

can be characterized by the generator

Lεϕ(u, r) =
[
ε−2Q + ε−1B(r)

]
ϕ(u, r). (17)
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ii) The extended Markov renewal process

ζε
n = ζε(τ ε

n), αn = α(τn), τ ε
n := ε2τn, n ≥ 0,

can be characterized by the compensative operator [4].

Lεϕ(u, r) = ε−2qr

[∫ ∞

0

Fr(dt)Bεt(r)Pϕ(u, r)− ϕ(u, r)

]
(18)

or, in other equivalent form

Lεϕ(u, r) =
[
ε−2Q + ε−1Bε(r)

]
ϕ(u, r), (19)

where Q is the generator of the associated Markov process α0(t), t ≥ 0,
given by the generating matrix (5) with intensities (7). The operators

Bε(r)ϕ(u, r) = qrB(r)

∫ ∞

0

F̄r(t)Bεt(r)dt Pϕ(u, r) (20)

F ε
0 (r) =

∫ ∞

0

Fr(dt)Bεt(r) = I + B(r)F ε
1 (r),

F ε
1 (r) =

∫ ∞

0

F̄r(t)Bεt(r)dt.

Corollary 3.1 The compensative operator (19) admit the following
asymptotic extension on the test-functions ϕ(u) ∈ Ck(RN), k ≥ 3:

Lεϕ(u, r) =
[
ε−2Q + ε−1B(r)P + B0(r)P + θε(r)

]
ϕ(u, r), (21)

where
B0(r)ϕ(u) = m̄(2)

r B2(r)ϕ(u), m̄(2)
r := m(2)

r /mr (22)

and the residual term θε(r) is negligible:

||θε(r)ϕ(u)|| → 0, ε → 0, ϕ(u) ∈ Ck(RN), k ≥ 3

also, here by the definition

B2(r)ϕ(u) :=
∑

k, k′∈E

bk(r)bk′(r)ϕ
′′
kk′(u),

and
ϕ′′kk′(u) := ∂2ϕ(u)/∂uk∂uk′ .
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Proof of Lemma 3.1. The first representation (17) follows from the
asymptotic analysis of conditional expectation

E
[
ϕ(u +4ζε(t), αε

t+4)− ϕ(u, r) |αε
t = r

]
=

E
[
ϕ(u + ε−1b(r)4, αε

t+4)− ϕ(u, r) |αε
t = r

]
=

4 [
ε−2Q + ε−1B(r)

]
ϕ(u, r) + o(4).

The second representation (18) follows from calculation of conditional
expectation

(4ζε
n := ζε

n+1 − ζε
n

)

E
[
ϕ(u +4ζε

n(t), αε
n+1)− ϕ(u, r) | ζε

n = u, αε
n = r

]
=

E [ϕ(u + εθn+1b(r), αn+1)− ϕ(u, r) |αε
n = r] =

∫ ∞

0

Fr(dt)Bεt(r)Pϕ(u, r)− ϕ(u, r).

The normalizing factor ε−2qr leads to (18). The corollary 3.1 can be
obtained by using the following transformation

F ε
0 (r) :=

∫ ∞

0

Fr(dt)Bεt(r) = I + εB(r)F ε
1 (r),

F ε
1 (r) :=

∫ ∞

0

Fr(dt)

∫ εt

0

Bs(r)ds =

∫ ∞

0

F̄r(t)Bεt(r)dt =

= mrI + εB(r)F ε
2 (r),

F ε
2 (r) :=

∫ ∞

0

F̄ (2)
r (t)Bεt(r)dt = m(2)

r I + εB(r)F ε
3 (r),

F ε
3 (r) :=

∫ ∞

0

F̄ (3)
r (t)Bεt(r)dt.

Here, by the definition,

F̄ (k+1)
r (t) =

∫ ∞

t

F̄ (k)
r (s)ds, k ≥ 1, F̄ (1)

r (t) := F̄r(t).

In above transformation the relations for the semigroup

Bεt(r) = I + εB(r)

∫ εt

0

Bs(r)ds,
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and
dBεt(r) = εB(r)Bεt(r)dt,

are used.
As result we get the expansion

F ε
0 (r) =

∫ ∞

0

Fr(dt)Bεt(r) = I + εmrB(r) + ε2m(2)
r B2(r) + ε2θε(r),

with the negligibly term θε(r). Here, by the definition

m(2)
r :=

∫ ∞

0

F̄ (2)
r (t)dt =

∫ ∞

0

tF̄ (t)dt.

3.3 Problem of singular perturbation

The asymptotic representations (17) and (21) can be used to construct
the limit operator by using a solution of singular perturbation problem
in the following form (see [2], Lemma 3.2, p.52).

Lεϕε :=
[
ε−2Q + ε−1B(r)

] [
ϕ(u) + εϕ1(u, r) + ε2ϕ2(u, r)

]
= (23)

L0ϕ(u) + θε
l (r)ϕ(u),

with the negligibly term

||θε
l (r)ϕ|| ⇒ 0, ε → 0, ϕ(u) ∈ Ck(RN), k ≥ 3.

The limit operator is given by the relation

L0 = ΠB(r)R0B(r)Π. (24)

The limit operator in the case of semi-Markov switching is constructed
by using a solution of singular perturbation problem for the truncated
generator (21) in the following form (see [2], Lemma 3.2, p.52).

Lε
0ϕ

ε :=
[
ε−2Q + ε−1B(r)P + B0(r)P

] [
ϕ(u) + εϕ1(u, r) + ε2ϕ2(u, r)

]
=

(25)
Lϕ(u) + θε

l (r)ϕ(u),

with he negligibly term

||θε
l (r)ϕ|| ⇒ 0, ε → 0, ϕ(u) ∈ Ck(RN), k ≥ 3.

The limit operator L is calculated by the formula

L = ΠB(r)PR0B(r)Π + ΠB0(r)Π. (26)
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Corollary 3.2 i) The limit operator (24) in case of Markov process is
given by the relation

L0ϕ(u) =
1

2
B0ϕ

′′(u) :=
1

2

N∑

k, r =1

B0
krϕ

′′
kr(u), (27)

where the variance matrix B0 = [B0
kr; k, r ∈ E] is given in (11).

ii)The limit operator (26) in the case of semi-Markov process is
given by the relation

L0ϕ(u) =
1

2
Bϕ′′(u) :=

1

2

N∑

k, r =1

Bkrϕ
′′
kr(u), (28)

where the variance matrix B = [Bkr; k, r ∈ E] is given in (10).

To proof the Corollary 3.2 in the case of Markov process the limit
operator L0 is calculated by the relation (24) using the definition of the
operator B(r) in (13) and (16).

The calculation of the limit operator L in the case of semi-Markov
process is more complicated. At first we use the following relation (see
[2])

PR0 = R0 + m [Π− I] .

So in (26) we set

L = ΠB(r)R0B(r)Π + ΠµrB
2(r)Π (29)

with
µr := m(2)

r qr −mr =
[
m(2)

r −m2
r

]
/mr (30)

As result we obtain the second order operator L given by the variance
matrix (10).

The representations (23) and (25) can be used to proof the con-
vergence for the finite dimensional distributions (see, for example [5]).
To proof the weak convergence in Theorem we have to use additional
compact containment conditions (see [4], [6]).
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