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Abstract. In this paper, we first extend the classical Itô stochastic integral to the case
of measurable fields of Hilbert spaces. Then, a Kusuoka-Stroock formula on configuration
space is proved. Using this formula, we study the fractional regularities of local times
with jumps in the sense of the Malliavin calculus.
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1. Introduction

The purpose of the present paper is to establish some regularity results for local times of
semimartingales with jumps. By regularities we mean here smoothness in the sense of the

Key words and phrases. Hilbert measurable fields, Stochastic integral, Kusuoka-Stroock formula, Con-
figuration space, Local time.
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Malliavin calculus, i.e., its membership in Sobolev spaces over the basic probability space
on the one side, and its quasi sure existence in the sense of capacities of the associated
Dirichlet forms on the other side. The study of such regularities have been the subject
of several works, see e.g. [21, 17, 24] for the Brownian case and [1, 11] for continuous
semimartingales.

Originally, these two kinds of regularities were studied separately and no connection
between them were realized. A connection was later established in [11, 19] which says
that smoothness in Sobolev spaces can lead to quasi sure existence. In the present paper
we propose to develop the ideas of these latter papers on Wiener-Poisson spaces.

To this end, as is already seen on the Wiener space, one has to differentiate stochastic
integrals in the sense of the Malliavin calculus, and thus a Kusuoka-Stroock formula(cf.
[13]) on the commutation relation between the gradient operator and the stochastic inte-
gral is needed, and this in turn involves stochastic integration of gradients of differentiable
functionals. On Wiener space one can use the well developed theory of stochastic integra-
tion in Hilbert space since the common tangent space at all points is the Cameron-Martin
subspace; this is essentially the case even for the continuous path space of a Riemannian
manifold since one can use stochastic parallel transport to transport vector fields into the
same Hilbert space (see [16]). But on the configuration space the situation is different
since no such stochastic parallel transport yet exists.

So, as preparation our first task is the construction of a new kind of stochastic integrals.
Compared with the standard ones, the main feature of such integrals consists in that the
integrand takes its values at any sample point of the underlying probability space, say
ω ∈ Ω, in a Hilbert space which depends on ω, and it will be considered as a function
of time taking values in a direct integral of measurable field of Hilbert spaces. This
construction will be done in Section 2 and we hope that this construction will be of
independent interest.

In Section 3 we will introduce all necessary terminology concerning configuration spaces.
The said Kusuoka-Stroock formula will be stated and proved in Section 4.
Then after briefly recalling the theory of quasi-regular Dirichlet forms in Section 5 and

defining fractional Sobolev spaces in Section 6, we state and prove our main results in the
final section.

Convention: The letter C with or without subscripts will denote a positive constant,
which is unimportant and may change from one line to another line.

2. Extension of stochastic integrals

The aim of this section is to develop a theory of stochastic integration of processes
taking values in the direct integral of measurable fields of Hilbert spaces with respect to
martingales and random measures.

2.1. Preliminaries on measurable fields of Hilbert spaces. We begin by introducing
notions of the theory of measurable fields of K-Hilbert spaces in a language familiar to
probabilists. Here K = C or R. For a systematic study see [22].

Definition 2.1. ( [22, Ch. IV, Definition 8.9]) Let (Ω,F) be a measurable space. An
F-measurable field of Hilbert spaces on (Ω,F) is a family

(
H(ω)

)
ω∈Ω

of separable Hilbert

spaces indexed by ω ∈ Ω together with a linear subspace M = M(F) of the product vector
space

∏
ω∈ΩH(ω) with the following properties:

(A1) For any ζ ∈M, the function Ω 3 ω 7→ ‖ζ(ω)‖H(ω) is F-measurable.
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(A2) For any η ∈
∏

ω∈ΩH(ω), if the function ω ∈ Ω 7→
(
ζ(ω), η(ω)

)
H(ω)

∈ K is F-

measurable for every ζ ∈M, then η belongs to M.
(A3) There exists a countable subset (hn)n∈N of M such that for every ω ∈ Ω, (hn(ω))n∈N

is total in H(ω).

An element of M is called an F-measurable vector field. The family in (A3) is called a
fundamental sequence of F-measurable vector fields.

Remark 2.2. Consider (Ω,F) and (H(ω))ω∈Ω as in Definition 2.1.

(i) (See [22, Ch. IV, Lemma 8.10]) Let hn ∈
∏

ω∈ΩH(ω), n ∈ N, be such that ω 7→(
hn(ω), hm(ω)

)
H(ω)

is F-measurable for all n,m ∈ N, and (hn(ω))n∈N is total in

H(ω) for all ω ∈ Ω. Then

M := Mh (2.1)

:=
{
ζ ∈

∏
ω∈Ω

H(ω)
∣∣∣ ω 7→ (

ζ(ω), hn(ω)
)

H(ω)
is F-measurable ∀ n ∈ N

}
satisfies (A1)–(A3) in Definition 2.1.

(ii) (See [22, Ch. IV, Lemma 8.12]) Let M = M(F) be a linear subspace of
∏

ω∈ΩH(ω)
satisfying (A1)–(A3) in Definition 2.1. Then ω 7→ d(ω) := dimH(ω) (∈ N ∪
{0,+∞}) is F-measurable and there exists a fundamental sequence (w.r.t.M) (en)n∈N
of F-measurable vector fields such that for all ω ∈ Ω, (en(ω))n6d(ω) is an orthonormal
basis of H(ω) and en(ω) = 0 for all n > d(ω).

(iii) It follows from (A2) (and the proof of [22, Ch. IV, Lemma 8.12]) that if M is as
in Definition 2.1 (satisfying (A1)–(A3)) and (hn)n∈N is any fundamental sequence,
then M = Mh with Mh defined in (2.1).

(iv) Suppose
ω 7→ d(ω) := dimH(ω) is F-measurable. (2.2)

Then picking an orthonormal basis (en(ω))n6d(ω) of H(ω) and setting en(ω) = 0 for
n > d(ω), ω ∈ Ω, we are in the situation of (i), so we obtain M := Me defined by
(2.1) satisfying (A1)–(A3) in Definition 2.1. Thus by (ii), the existence of M as
in Definition 2.1 is equivalent to (2.2). Furthermore, let σ(d) denote the σ-algebra
generated by ω 7→ d(ω). Then

σ(d) = σ({ω 7→ (en(ω), em(ω))H(ω), n,m ∈ N}).
(v) Let M be as in Definition 2.1 and (hn)n∈N any fundamental sequence. It follows by

(iv) and the construction of (en)n∈N in [22, Ch. IV, Lemma 8.12]) from (hn)n∈N, that

σ(d) ⊂ σ({ω 7→ (hn(ω), hm(ω))H(ω), n,m ∈ N}).
(vi) If H(ω) = H for all ω, then M coincides with the set of all F/B(H)-measurable

mappings from Ω to H.

The following is obvious.

Lemma 2.3. If ζ is an F-measurable vector field and f : Ω → R is an F-measurable
function, then h := fζ is an F-measurable vector field.

Below let
(
H(ω)

)
ω∈Ω

(with M) be an F -measurable field of Hilbert spaces.

Definition 2.4. A map λ : [0, 1] →M, t 7→ (λ(t, ω))ω∈Ω is called a process and it is called
measurable if, in addition for some(hence every by Proposition 2.5 below) fundamental
sequence (hn)n∈N of M, (t, ω) 7→ (λ(t, ω), hn(ω))H(ω) is B([0, 1]) × F measurable for all
n ∈ N.
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Proposition 2.5. Let λ be a measurable process. Then for any ζ ∈ M, (t, ω) 7→
(λ(t, ω), ζ(ω))H(ω) is B([0, 1])×F measurable. Moreover, the process (t, ω) 7→ ‖λ(t, ω)‖H(ω)

is B([0, 1])×F measurable.

Proof. Let (en)n∈N be the Gram-Schmidt orthogonalization of (hn)n∈N as in the proof of
[22, Ch. IV, Lemma 8.12]. Then from the procedure of the orthogonalization, we know
that (t, ω) 7→ (λ(t, ω), en(ω))H(ω) is measurable for each n ∈ N. The results now follows
from

(λ(t, ω), ζ(ω))H(ω) =
∑
n∈N

(λ(t, ω), en(ω))H(ω)(ζ(ω), en(ω))H(ω),

and

‖λ(t, ω)‖2
H(ω) =

∑
n∈N

(λ(t, ω), en(ω))2
H(ω).

�

For ω ∈ Ω, let J(ω) be an (orthogonal) projection on H(ω) and define for ζ ∈M

(Jζ(ω))ω∈Ω := (J(ω)ζ(ω))ω∈Ω. (2.3)

Assume that

JM⊂M. (2.4)

Then
(
J(ω)H(ω)

)
ω∈Ω

with JM is obviously again an F -measurable field of Hilbert spaces.

Now we want to see what happens when we replace F by a sub σ-algebra F̃ on Ω. Let
σ(d) denote the σ-algebra generated by ω 7→ d(ω) := dimH(ω). Suppose

σ(d) ⊂ F̃ . (2.5)

Note that if there exists M(F̃) satisfying (A1)–(A3) in Definition 2.1 with F̃ replacing
F then (2.5) must hold by Remark 2.2 (iv).

Now let (hn)n∈N be a fundamental sequence inM(F) such that ω 7→
(
hn(ω), hm(ω)

)
H(ω)

is F̃ -measurable for all n,m ∈ N. Let (en)n∈N be constructed as in the proof of [22, Ch. IV,
Lemma 8.12] starting with (hn)n∈N. Define

Mh(F̃) :=

{
ζ ∈

∏
ω∈Ω

H(ω)
∣∣∣ ω 7→ (

ζ(ω), hn(ω)
)

H(ω)
is F̃ -measurable ∀n ∈ N

}
. (2.6)

Then Mh(F̃) satisfies (A1)–(A3) in Definition 2.1 with F̃ replacing F and (as above)

Mh(F̃) = Me(F̃).

But, nevertheless, the space in (2.6) might depend on the choice of (hn)n∈N.
For our applications we have to take into account the time evolution. So, in the sequel

we assume that for each ω ∈ Ω there is a family of projections (Jt(ω))t∈[0,1] in H(ω) such
that each Jt satisfies (2.4) and for s, t ∈ [0, 1]

Jt(ω)Js(ω) = Js∧t(ω).

Set

Ht(ω) := Jt(ω)H(ω), ht(ω) := Jt(ω)h(ω).

We also fix a filtration (Ft)t∈[0,1] of sub-σ-algebras of F and assume the following com-
patibility condition with (Jt(ω))t∈[0,1]
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(A4) There exists a fundamental sequence (hn)n∈N of M such that for every n, m and
every t ∈ [0, 1], the function:

Ω 3 ω 7→ (hn,t(ω), hm,t(ω))H(ω) = (hn(ω), hm,t(ω))H(ω) ∈ K

is Ft-measurable.

In case (A4) holds, set

Mt :=

{
ζ ∈

∏
ω∈Ω

Ht(ω)
∣∣∣ ω 7→ (ζ(ω), hn(ω))H(ω) ∈ Ft for every n ∈ N

}
.

Then obviously(cf. (2.6))

Mt = (JtM)Jth(Ft). (2.7)

So, by Remark 2.2 (i), Mt satisfies (A1)–(A3) in Definition 2.1 with Ft replacing F .
Elements of Mt are called Ft-measurable.

Remark 2.6. (i) Not every fundamental sequence of M satisfies (A4) above.
(ii) In the same way as in Remark 2.2 (vi), when H(ω) is independent of ω and Jt = I

for all t ∈ [0, 1], Mt is just the set of all Ft-measurable mappings from Ω to H.

The following lemma is important for the definition of stochastic integrals below.

Lemma 2.7. (i) For s < t, Ms ⊂Mt.
(ii) For ξ ∈Mt and ζ ∈Ms,

ω 7→ (ξ(ω), ζ(ω))H(ω) ∈ Ft∨s.

Proof. (i) is obvious by definition.
(ii) is a special case of Proposition 2.5. �

Definition 2.8. A process λ is called Ft-adapted if λ(t) ∈ Mt for all t ∈ [0, 1]. All
measurable and adapted processes are denoted by A. A process λ is continuous(resp. left
and right continuous) if for all ω ∈ Ω, the path t 7→ λ(t, ω) is continuous in H(ω)(resp.
left and right continuous).

The following lemma is immediate from Proposition 2.5.

Lemma 2.9. For any λ ∈ A, the process (t, ω) 7→ ‖λ(t, ω)‖H(ω) is a real measurable and
adapted process. Moreover, any left or right continuous process λ is measurable.

2.2. Example: Tangent bundle on configuration space. Before proceeding, we first
give a concrete example which shows the necessity of considering measurable fields of
Hilbert spaces, and which is indeed our main motivation to extend the Itô stochastic
integral to the case of measurable fields of Hilbert spaces.

Let X be a connected C∞ complete Riemannian manifold. The tangent space of X
at point x will be denoted by TxX. TX := ∪x∈XTxX denotes the tangent bundle. The
Riemannian metric on X associates to each x ∈ X an inner product 〈·, ·〉TxX on TxX.
The associated norm will be denoted by | · |TxX .

Let us consider the product space X := [0, 1]×X. The configuration space ΓX over X
is defined as the set of all locally finite subsets(configurations) in X:

ΓX :=
{
γ ⊂ X : #(γ ∩ [0, 1]×K) <∞ for any compact K ⊂ X

}
.

Here #(Λ) denotes the cardinality of a set Λ.
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We can identify γ ∈ ΓX with a positive Z+∪{+∞}-valued Radon measure on (X,B(X))
by

γ =
∑

(t,x)∈γ

δ(t,x),

where
∑

(t,x)∈∅ δ(t,x) = zero measure by convention and δ(t,x) denotes the Dirac measure

at point (t, x). The space ΓX can hence be endowed with the vague topology, i.e., the
weakest topology on ΓX such that the maps

ΓX 3 γ 7→ γ(f) :=

∫ 1

0

∫
X

f(t, x)γ(dt, dx) =
∑

(t,x)∈γ

f(t, x) ∈ R

are continuous for all f ∈ C0(X) (the set of all continuous functions on X with compact
support). Let B(ΓX) denote the corresponding Borel σ-algebra on ΓX.

To define the filtration on the space ΓX we let FΓ
t be the smallest σ-algebra on ΓX

such that all the mappings ΓX 3 γ 7→ γ(B) := #(γ ∩ B) ∈ Z+, B ∈ B([0, t] × X) are
measurable. In particular, FΓ := FΓ

1 = B(ΓX).

Definition 2.10. The tangent space Tγ(ΓX) to the configuration space ΓX at the point γ ∈
ΓX is defined as the Hilbert space of γ-square-integrable time dependent sections(measurable
vector fields) v : X 7→ TX with the scalar product

(v1, v2)Tγ(ΓX) :=

∫ 1

0

∫
X

〈v1(t, x), v2(t, x)〉TxXγ(dt, dx),

for v1, v2 ∈ Tγ(ΓX). The norm in Tγ(ΓX) is denoted by | · |Tγ(ΓX).

Let V0(X) denote the set of continuous vector fields on X with compact support,
endowed with the topology of compact uniform convergence, {V1, V2, · · · } a dense subset
of V0(X) and {f1, f2, · · · } the totality of all polynomials with rational coefficients on
[0, 1]. Then for every γ ∈ ΓX, U := {Vi(x)fj(t), i, j ∈ N} is a dense subset of H(γ) :=
L2([0, 1]×X 7→ TX, γ) = Tγ(ΓX). Hence it follows from Remark 2.2 (i) that

M :=

{
V ∈

∏
γ∈ΓX

H(γ)
∣∣∣ γ 7→ (V (γ), Z(γ))H(γ) is FΓ-measurable for all Z ∈ U

}
satisfies (A1)-(A3) of Definition 2.1. Furthermore, we define

Jth := h1[0,t].

We clearly have that U together with Jt satisfies (A4). Then of course we have the
corresponding Mt.

2.3. Martingale with values in Hilbert measurable fields. Apart from (H(ω))ω∈Ω,
M, (Jt)t∈[0,1] and (Ft)t∈[0,1] in subsection 2.1, we now also fix a probability measure P
on (Ω,F) so that (Ω,F , P ) is complete and (Ft)t∈[0,1] satisfies the usual conditions. A
fundamental sequence (hn)n∈N of M satisfying (A4) is fixed.

In the following, we shall identify two vector fields ξ, ζ ∈M if ξ(ω) = ζ(ω) for P -almost
all ω ∈ Ω. Let H be the set of all ζ ∈M such that

‖ζ‖H :=

{∫
Ω

‖ζ(ω)‖2
H(ω)P (dω)

}1/2

< +∞. (2.8)

Then H is a Hilbert space which is called the direct integral of measurable fields of
Hilbert spaces and is denoted by
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H :=

∫ ⊕

Ω

H(ω)P (dω). (2.9)

In the same way using Mt(ω) instead of M(ω) we get Ht. Clearly, Ht is a closed
subspace of H. Let Πt denote the corresponding orthogonal projection. As usual, for
ξ ∈ H we set

E(ξ|Mt) := Πtξ,

and call it the conditional expectation of ξ with respect to Mt.

Definition 2.11. Let λ be a measurable adapted process. If, for all 0 6 s < t 6 1,
E(λ(t)|Ms) = λ(s) , we then call λ an Mt-martingale.

Lemma 2.12. Let λ be an Mt-martingale. For 0 6 s < t 6 1 and ζ ∈Ms, we have

E
(
(λ(t), ζ)2

H(·)
)

> E
(
(λ(s), ζ)2

H(·)
)
.

Proof. Noting that ζ(·)(λ(s), ζ)H(·) ∈Ms, we have

0 6 E
(
(λ(t)− λ(s), ζ)2

H(·)
)

= E
(
(λ(t), ζ)2

H(·)
)
− 2E

(
(λ(t), ζ)H(·)(λ(s), ζ)H(·)

)
+ E

(
(λ(s), ζ)2

H(·)
)

= E
(
(λ(t), ζ)2

H(·)
)
− E

(
(λ(s), ζ)2

H(·)
)
,

which gives the result. �

Proposition 2.13. Let λ be an Mt-martingale. Then {‖λ(t)‖2
H(·), t ∈ [0, 1]} is a real

submartingale with respect to Ft.

Proof. Let 0 6 s < t 6 1. It suffices to prove that for any F ∈ Fs

E
(
‖λ(t)‖2

H(·)1F

)
> E

(
‖λ(s)‖2

H(·)1F

)
.

Let (en,s)n∈N be the Gram-Schmidt orthogonalization of (hn,s)n∈N as in the proof of [22,
Ch. IV, Lemma 8.12]. Then, en,s ∈Ms. Hence, by Lemmas 2.12 and 2.3

E
(
‖λ(t)‖2

H(·)1F

)
> E

(
‖Jsλ(t)‖2

H(·)1F

)
=

∑
n

E
(
(Jsλ(t), en,s)

2
H(·)1F

)
=

∑
n

E
(
(λ(t), 1F en,s)

2
H(·)
)

>
∑

n

E
(
(λ(s), 1F en,s)

2
H(·)
)

= E
(
‖λ(s)‖2

H(·)1F

)
.

�

Let us also prove the following Kolmogorov’s continuity criterion.

Theorem 2.14. Let λ be a measurable process. Assume that there are positive constants
p, α, C such that for all s, t ∈ [0, 1]

E‖λ(t, ·)− λ(s, ·)‖p
H(·) 6 C|t− s|1+α. (2.10)
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Then there exists a continuous process λ̃ such that for every t ∈ [0, 1], λ̃(t, ·) = λ(t, ·) a.e.
and for any ε ∈ (0, α

p
)

E

(
sup

s 6=t∈[0,1]

‖λ̃(t, ·)− λ̃(s, ·)‖p
H(·)

|t− s|εp

)
< +∞. (2.11)

Proof. We use the Sobolev embedding theorem to prove the assertion (see Da Prato-
Zabczyk [9]). By Proposition 2.5, the function

(t, s, ω) 7→
‖λ(t, ω)− λ(s, ω)‖p

H(ω)

|t− s|2+εp
=: f(t, s, ω)

is B([0, 1]2)×F -measurable. For any ε ∈ (0, 1+α
p

), by Fubini’s theorem we have

E
(∫

[0,1]2
f(t, s, ·)dsdt

)
=

∫
[0,1]2

Ef(t, s, ·)dsdt

6 C

∫
[0,1]2

|t− s|α−εp−1dsdt < +∞. (2.12)

So, P (Ω0) = 1, where

Ω0 :=

{
ω ∈ Ω :

∫
[0,1]2

f(t, s, ω)dsdt < +∞
}
∈ F .

For any ω0 ∈ Ω0, by the Sobolev embedding theorem there is a continuous map t 7→
λ̃(t, ω0) ∈ H(ω0) such that λ̃(·, ω0) = λ(·, ω0) a.e. on [0, 1] and

sup
s 6=t∈[0,1]

‖λ̃(t, ω0)− λ̃(s, ω0)‖p
H(·)

|t− s|pε
6 C

∫
[0,1]2

f(t, s, ω0)dsdt. (2.13)

Note that for any t ∈ (0, 1]

λ̃(t, ω0) = lim
n→∞

n

∫ t

t−1/n

λ̃(s, ω0)ds = lim
n→∞

n

∫ t

t−1/n

λ(s, ω0)ds =: lim
n→∞

λn(t, ω0).

Clearly, λn is a continuous process for each n ∈ N. For the limit, we obtain that λ̃(t, ·) ∈
M for each t ∈ (0, 1]. Similarly, λ̃(0, ·) ∈M follows from

λ̃(0, ω0) = lim
n→∞

n

∫ 1/n

0

λ̃(s, ω0)ds = lim
n→∞

n

∫ 1/n

0

λ(s, ω0)ds.

On the other hand, by Fubini’s theorem again we have for almost all t ∈ [0, 1]

P (ω ∈ Ω : λ̃(t, ω) = λ(t, ω)) = 1,

which together with (2.10) gives that λ̃(t, ·) = λ(t, ·) a.e. for all t ∈ [0, 1]. The estimate
(2.11) follows from (2.12) and (2.13). �

2.4. Stochastic integration with respect to real martingales. Now suppose that
we are given, on a complete filtered probability space, a direct integral of measurable fields
of Hilbert spaces H and a real continuous square integrable martingale M . For simplicity
we suppose that the square variation process 〈M〉t of M is absolutely continuous with
respect to the Lebesgue measure.

Set for p > 2

LM
p :=

{
λ ∈ A : ‖λ‖p

LM
p

:= E
(∫ 1

0

‖λ(s, ·)‖p
H(·)d〈M〉s

)
< +∞

}
,

8



where A is the set of measurable and adapted processes in Definition 2.8.
We first define stochastic integrals for step functions.

Definition 2.15. Let λ be a step function in LM
2 of the form:

λ(t, ω) =
n−1∑
k=0

λk(ω)1[tk,tk+1)(t),

where 0 = t0 < t1 < · · · < tn = 1 and λk ∈ Htk ⊂Mtk . Define for t ∈ [0, 1]

IM
t (λ) :=

∫ t

0

λ(s)dM(s) :=
n−1∑
k=0

λk(M(tk+1 ∧ t)−M(tk ∧ t)) ∈Mt

and call it the stochastic integral of λ with respect to M on [0, t].

This integral enjoys many familiar properties of the ordinary stochastic integral. For
example we have

Lemma 2.16. Let λ, λ̃ be step functions in LM
2 and set ξ(t) := IM

t (λ) and ξ̃(t) := IM
t (λ̃).

(i) For any a, b ∈ R and t ∈ [0, 1]

IM
t (a · λ+ b · λ̃) = a · IM

t (λ) + b · IM
t (λ̃).

(ii) {ξ(t), t ∈ [0, 1]} is a continuous Mt-martingale. In particular, the real process
{‖ξ(t)‖2

H(·), t ∈ [0, 1]} is a continuous submartingale.

(iii) {(ξ(t), ξ̃(t))H(·), t ∈ [0, 1]} is a real semimartingale and

d(ξ(t), ξ̃(t))H(·) =
(
(λ(t), ξ̃(t))H(·) + (ξ(t), λ̃(t))H(·)

)
dM(t)

+(λ(t), λ̃(t))H(·)d〈M〉t. (2.14)

In particular, we have the following isometry property

‖IM
1 (λ)‖H = ‖λ‖LM

2
. (2.15)

(iv) If A(t) is a real valued adapted process of bounded variation, then for any t ∈ [0, 1]

ξ(t)A(t) =

∫ t

0

A(s)λ(s)dM(s) +

∫ t

0

ξ(s)dA(s). (2.16)

Proof. (i) needs no proof.
(ii) From Definition 2.15, we know that t 7→ ξ(t) is a continuous and adapted process.

Let 0 6 ti 6 s < ti+1 6 tj 6 t < tj+1 6 1 and ζ ∈ Hs, we have

(ξ(t), ζ)H =

j∑
k=0

E((λk, ζ)H(·)(M(tk+1 ∧ t)−M(tk ∧ t)))

=
i∑

k=0

E((λk, ζ)H(·)(M(tk+1 ∧ s)−M(tk)))

+

j∑
k=i+1

E((λk, ζ)H(·)(M(tk+1 ∧ t)−M(tk)))

+E((λi, ζ)H(·)(M(ti+1)−M(s)))

= (ξ(s), ζ)H,
9



where we used Lemma 2.7 (ii) and the martingale property in the last step. This implies
that E(ξ(t)|Ms) = ξ(s).

(iii) Without loss of generality, we assume that the step functions λ, λ̃ have the same
partitions of [0, 1]. Then

(ξ(t), ξ̃(t))H(·) =
∑
i,j

(λi, λ̃j)H(·)(M(ti+1 ∧ t)−M(ti ∧ t))(M(tj+1 ∧ t)−M(tj ∧ t)).

Note that

(M(ti+1 ∧ t)−M(ti ∧ t))(M(tj+1 ∧ t)−M(tj ∧ t))

=

∫ t

0

(M(ti+1 ∧ s)−M(ti ∧ s))1[tj ,tj+1)(s)dM(s)

+

∫ t

0

(M(tj+1 ∧ s)−M(tj ∧ s))1[ti,ti+1)(s)dM(s)

+

∫ t

0

1[ti,ti+1)(s)1[tj ,tj+1)(s)d〈M〉s

and (λi, λ̃j)H(·) ∈ Fti∨tj by Lemma 2.7 (ii). The formula (2.14) now follows.
(iv) can be proved similarly. �

We now extend the domain of the integrands to LM
2 . For λ ∈ LM

2 , since 〈M〉t is
absolutely continuous with respect to dt, by a standard approximation, we may choose a
sequence of step functions λn ∈ LM

2 such that

lim
n→∞

‖λ− λn‖2
LM

2
= lim

n→∞
E
(∫ 1

0

‖λ(t)− λn(t)‖2
H(·)d〈M〉t

)
= 0.

By (ii) of Lemma 2.16, t 7→ ‖IM
t (λn) − IM

t (λm)‖2
H(·) is a continuous submartingale. So,

by Doob’s maximal inequality and the isometric property (2.15) we have

E

(
sup

t∈[0,1]

‖IM
t (λn)− IM

t (λm)‖2
H(·)

)
6 4E

(
‖IM

1 (λn)− IM
1 (λm)‖2

H(·)
)

= 4‖λn − λm‖2
LM

2
→ 0,

as n,m→∞. It follows then that there is a subsequence of {λn}, still denoted by {λn},
such that {IM

t (λn), t ∈ [0, 1]} is uniformly convergent in t with probability one as n→∞.
The limit is hence a continuous adapted process and we define it as the integral of λ with
respect to M :

IM
t (λ) :=

∫ t

0

λ(s)dM(s) := lim
n→∞

IM
t (λn).

It is easily seen that this integral is well-defined, i.e., the limit is independent of the
choice of the approximating sequence. By a limit process, we obtain:

Theorem 2.17. The stochastic integral operator IM
1 (λ) on LM

2 is linear and isometric.

Moreover, all the conclusions in Lemma 2.16 hold for any λ, λ̃ ∈ LM
2 .

We can prove a Burkholder inequality using (2.14).
10



Theorem 2.18. If p > 1, then there exist two constants cp and Cp depending only on p
such that for any t ∈ [0, 1]

cpE
(∫ t

0

‖λ(s)‖2
H(·)d〈M〉s

)p

6 E
(
‖IM

t (λ)‖∗2p
H(·)

)
6 CpE

(∫ t

0

‖λ(s)‖2
H(·)d〈M〉s

)p

,

for all λ ∈ LM
2 , where ‖IM

t (λ)‖∗H(·) := sup06s6t ‖IM
s (λ)‖H(·).

Moreover, let W be one dimensional standard Brownian motion, if λ ∈ LW
p for p > 2,

then {IW
t (λ), t ∈ [0, 1]} has a Hölder continuous version.

Proof. We adopt a standard stochastic calculus proof (cf. e.g. [12]).
We suppose that p > 1 since for p = 1 the equality holds with Cp = 1. Set ξ(t) := IM

t (λ).
We have by (2.14) and the usual Itô formula

‖ξ(t)‖2p
H(·) = 2p

∫ t

0

‖ξ(s)‖2(p−1)
H(·) (ξ(s), λ(s))H(·)dM(s)

+p

∫ t

0

‖ξ(s)‖2(p−1)
H(·) ‖λ(s)‖2

H(·)d〈M〉s

+2p(p− 1)

∫ t

0

‖ξ(s)‖2(p−2)
H(·) (ξ(s), λ(s))2

H(·)d〈M〉s.

Here as usual, set ξ(s)/‖ξ(s)‖H(·) = 0 on {‖ξ(s)‖H(·) = 0}.
Set

A(t) :=

∫ t

0

‖λ(s)‖2
H(·)d〈M〉s.

Then,

E
(
‖ξ(t)‖2p

H(·)

)
6 CpE

(∫ t

0

‖ξ(s)‖2(p−1)
H(·) dA(s)

)
6 CpE

(
‖ξ(t)‖∗2(p−1)

H(·) A(t)
)

6 Cp

(
E
(
‖ξ(t)‖∗2p

H(·)

)) p−1
p

(EA(t)p)
1
p ,

which gives

E
(
‖ξ(t)‖2p

H(·)

)
6 CpE(A(t)p).

To prove the other inequality, we set

N(t) :=

∫ t

0

A(s)
p−1
2 λ(s)dM(s).

Then

E
(
‖N(t)‖2

H(·)
)

= E
(∫ t

0

A(t)p−1‖λ(s)‖2
H(·)d〈M〉s

)
= E

(∫ t

0

A(t)p−1dA(s)

)
=

1

p
E (A(t)p) .

11



By the integration by parts formula (2.16) we have

ξ(t)A(t)
p−1
2 =

∫ t

0

A(s)
p−1
2 λ(s)dM(s) +

∫ t

0

ξ(s)dA(s)
p−1
2

= N(t) +

∫ t

0

ξ(s)dA(s)
p−1
2 .

Consequently,

‖N(t)‖H(·) 6 2‖ξ(t)‖∗H(·)A(t)
p−1
2 .

Thus we obtain

1

p
E (A(t)p) = E

(
‖N(t)‖2

H(·)
)

6 4E
(
‖ξ(t)‖∗2H(·)A(t)p−1

)
6 4

(
E‖ξ(t)‖∗2p

H(·)

) 1
p
(EA(t)p)

p−1
p ,

and therefore

E (A(t)p) 6 cpE
(
‖ξ(t)‖∗2p

H(·)

)
.

Finally, the Hölder continuity of t 7→ IW
t (λ) follows from Theorem 2.14 and

E‖IW
t (λ)− IW

t′ (λ)‖p
H(·) 6 CpE

∣∣∣∣∣
∫ t′

t

‖λ(s)‖2
H(·)ds

∣∣∣∣∣
p/2

6 Cp · ‖λ‖p
LW

p
· |t′ − t|

p
2
−1.

The proof is then complete. �

2.5. Stochastic integration with respect to random measures. Let (X,X ) be a
measurable space, (Ω,F , (Ft)t∈[0,1], P ) a complete filtered probability space and γ a ho-
mogeneous point measure on X := [0, 1] ×X defined on (Ω,F , (Ft)t∈[0,1], P ). By this we
mean that γ has the following property:

(B1) for each A ∈ B([0, 1])×X , γ(·, A) takes its value in Z ∪ {+∞};
(B2) γ(ω, {t} ×X) 6 1 for all t ∈ [0, 1] and P -almost all ω ∈ Ω ;
(B3) for every t ∈ [0, 1] and U ∈ X , γ(·, (0, t]× U) is Ft-measurable;
(B4) for P -almost every ω ∈ Ω, γ(ω, ·) is a σ-finite measure on (X,B([0, 1])×X );
(B5) there exists a σ-finite measure m on (X,X ) such that

t 7→ γ̃(·, t, U) := γ(·, (0, t]× U)− t ·m(U)

is an (Ft)-martingale for all U ∈ X .

Definition 2.19. A function f : X × Ω 3 (t, x, ω) 7→ f(t, x, ω) ∈ H(ω) is called adapted
if for every (t, x) ∈ X, f(t, x) ∈ Mt and for every n, (x, ω) 7→ (f(t, x, ω), hn(ω))H(ω) is
X × Ft-measurable. Let AL denote the set of all adapted processes such that ∀(x, ω) ∈
X × Ω, t 7→ f(t, x, ω) ∈ H(ω) is left continuous and let

P :=
{
λ : ∃{fn} ⊂ AL such that ∀(t, x) ∈ X,

lim
n→∞

‖fn(t, x, ·)− f(t, x, ·)‖H(·) = 0 a.e.
}
.

Elements of P are called strongly predictable.
12



Set ν(dt, dx) := dt×m(dx). Define

F1 :=

{
f ∈ P :

∫ 1

0

∫
X

E
(
‖f(s, x, ·)‖H(·)

)
ν(ds, dx) <∞

}
,

F2 :=

{
f ∈ P :

∫ 1

0

∫
X

E
(
‖f(s, x, ·)‖2

H(·)
)
ν(ds, dx) <∞

}
.

For f ∈ F1 ∩ F2, by definition we know that ‖f(·, x, ·)‖H(·) is predictable. By the same
argument as in [12, p.62], we have for any t ∈ [0, 1]

E

[∫ t+

0

∫
X

‖f(s, x, ·)‖H(·)γ(·, ds, dx)

]
= E

[∫ t

0

∫
X

‖f(s, x, ·)‖H(·)ν(ds, dx)

]
. (2.17)

Here and in the sequel,
∫ t+

0
:=
∫

(0,t]
. Hence F1 ⊂ F, where

F :=

{
f ∈ P :

∫ 1

0

∫
X

‖f(s, x, ·)‖H(·)γ(·, ds, dx) <∞ a.e.

}
.

For f ∈ F1 and P -a.e. ω ∈ Ω, we define∫ t+

0

∫
X

f(s, x, ω)γ̃(ω, ds, dx)

:=

∫ t+

0

∫
X

f(s, x, ω)γ(ω, ds, dx)−
∫ t

0

∫
X

f(s, x, ω)ν(ds, dx).

The right hand is understood as Bochner’s integrals taking values in H(ω).
We use the following notations for f ∈ F1:

γ̃t(f) :=

∫ t+

0

∫
X

f(s, x)γ̃(ds, dx),

γt(f) :=

∫ t+

0

∫
X

f(s, x)γ(ds, dx),

νt(f) :=

∫ t

0

∫
X

f(s, x)ν(ds, dx).

We also simply write γ̃(f), γ(f) and ν(f) for γ̃1(f), γ1(f) and ν1(f) respectively.
Similarly to Lemma 2.16, we have

Theorem 2.20. (i) For f1, f2 ∈ F1 ∩ F2 and a, b ∈ R, we have

γ̃(a · f1 + b · f2) = a · γ̃(f1) + b · γ̃(f2).

(ii) For f ∈ F1 ∩ F2, {γ̃t(f), t ∈ [0, 1]} is a right continuous Mt-martingale. Conse-
quently, the real process {‖γ̃t(f)‖2

H(·), t ∈ [0, 1]} is a right continuous submartingale.

(iii) For f ∈ F1 ∩ F2,

‖γ̃t(f)‖2
H(·) = 2

∫ t+

0

∫
X

(f(s, x), γ̃s−(f))H(·)γ̃(ds, dx) + γt

(
‖f‖2

H(·)
)
. (2.18)

In particular, for all t ∈ [0, 1]

E
(
‖γ̃t(f)‖2

H(·)

)
= E

(
νt

(
‖f‖2

H(·)
))
. (2.19)
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Proof. (i) needs no proof.
(ii) can be proved by approximation and similar calculations as in the proof of (ii) of

Lemma 2.16.
(iii) First of all we prove the assertion for f of the following form

f(s, x) =
2n−1∑
k=0

∑
i

fi(k2
−n)1Ui

(x)1(k2−n,(k+1)2−n](s),

where Ui’s with m(Ui) < +∞ are disjoint and fi(k2
−n) ∈ Hk2−n ⊂Mk2−n .

Set γ̃k,i(t) := γ̃(k2−n ∧ t, Ui), then we have

γ̃t(f) =
2n−1∑
k=0

∑
i

fi(k2
−n)(γ̃k+1,i(t)− γ̃k,i(t)),

and

‖γ̃t(f)‖2
H(·) =

∑
k,k′

∑
i,i′

(fi(k2
−n), fi′(k

′2−n))H(·)

·(γ̃k+1,i(t)− γ̃k,i(t))(γ̃k′+1,i′(t)− γ̃k′,i′(t)). (2.20)

Using the familiar formula(cf. [6])

γ̃2
t (1U) = 2

∫ t+

0

γ̃s−(1U)γ̃(ds, U) + γt(1U)

and polarization, we obtain

(γ̃k+1,i(t)− γ̃k,i(t))(γ̃k′+1,i′(t)− γ̃k′,i′(t))

=

∫ t+

0

(γ̃k+1,i(s−)− γ̃k,i(s−))1(k′2−n,(k′+1)2−n](s)γ̃(ds, Ui′)

+

∫ t+

0

(γ̃k′+1,i′(s−)− γ̃k′,i′(s−))1(k2−n,(k+1)2−n](s)γ̃(ds, Ui)

+

∫ t+

0

1(k2−n,(k+1)2−n](s)1(k′2−n,(k′+1)2−n](s)γ(ds, Ui ∩ Ui′).

Substituting this into (2.20) yields the desired formula.
Notice that s 7→ (f(s, x), γ̃s−(f))H(·) is a left continuous and adapted real process by

Lemma 2.7. Using (2.17) and taking expectation for (2.18) gives (2.19). Lastly, by
standard approximation, we complete the proof. �

Now we define the stochastic integral of any element f ∈ F2. Choose Un ∈ B(X) such
that Un ↑ X and m(Un) <∞ for every n. Let

fn(s, x, ω) := 1[0,n)(s)(‖f(s, x, ω)‖H(ω))1Un(x)f(s, x, ω).

Then fn ∈ F1∩F2. Hence for every n, γ̃t(fn) is well defined. Moreover, by Doob’s maximal
inequality and (ii) of Theorem 2.20

E

[
sup

t∈[0,1]

‖γ̃t(fn)− γ̃t(fm)‖2
H(·)

]
6 CE

(
νt

(
‖fn − fm‖2

H(·)
))
→ 0, m, n→∞.

Hence extracting a subsequence if necessary we may and will assume that almost surely
γ̃t(fn) converge uniformly in t ∈ [0, 1]. We then define the limit as the integral of f :

γ̃t(f) := lim
n→∞

γ̃t(fn).
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It is easily seen that the isometry property (2.19) is preserved.
We have also the following moment estimates on stochastic integrals, analogous to

Theorem 2.18.

Theorem 2.21. Let f be in F1 ∩ F2. Set ‖γ̃t(f)‖∗H(·) := sup06s6t ‖γ̃s(f)‖H(·). Then

(i) For any p > 1 there exists a constant Cp such that

E
(
‖γ̃t(f)‖∗2p

H(·)

)
6 CpE

(
γt

(
‖f‖2

H(·)
))p

6 Cp

(
E
(
νt

(
‖f‖2

H(·)
))p

+ E
(
γ̃t

(
‖f‖2

H(·)
))p)

. (2.21)

(ii) For any positive integer k there exists a constant Ck such that

E
(
‖γ̃t(f)‖∗2k

H(·)

)
6 Ck

k∑
i=1

E
[
νt

(
‖f‖2i

H(·)

)]2k−i

. (2.22)

Proof. By the BDG’s inequality(see [5]), we have

E

∣∣∣∣∣ sup
06t′6t

∫ t′+

0

∫
X

(f(s, x), γ̃s−(f))H(·)γ̃(ds, dx)

∣∣∣∣∣
p

6 CpE
(∫ t

0

∫
X

|(f(s, x), γ̃s−(f))H(·)|2γ(ds, dx)
)p/2

6 CpE

[
‖γ̃t(f)‖∗pH(·)

(∫ t

0

∫
X

‖f(s, x)‖2
H(·)γ(ds, dx)

)p/2
]

6 Cp

[
E
(
‖γ̃t(f)‖∗2p

H(·)

)]1/2

·
[
E
(
γt

(
‖f‖2

H(·)
))p]1/2

.

So by formula (2.18) we have

E
(
‖γ̃t(f)‖∗2p

H(·)

)
6 Cp

[
E
(
‖γ̃t(f)‖∗2p

H(·)

)]1/2

·
[
E
(
γt

(
‖f‖2

H(·)
))p]1/2

+CpE
(
γt

(
‖f‖2

H(·)
))p

,

which yields by Young’s inequality that

E
(
‖γ̃t(f)‖∗2p

H(·)

)
6 CpE

(
γt

(
‖f‖2

H(·)
))p

.

(2.22) is easily deduced from (2.21). �

3. Review on Malliavin calculus on configuration space

This section is modelled on [2, 7]. Continuing subsection 2.2, let m(dx) denote the
volume element on Riemannian manifold X, and assume that m(X) = ∞. Set ν(dt, dx) =
dt×m(dx). The gradient operator on X is denoted by ∇X . Recalling that X := [0, 1]×X,
on (ΓX,FΓ) we have a unique Poisson probability measure πν such that(cf. [12])

(D1) πν(γ ∈ ΓX : #(γ ∩ {t} ×X) > 2,∃t ∈ [0, 1]) = 0.
(D2) For each B ∈ B(X) with ν(B) < +∞, γ(B) is Poisson distributed, i.e.,

πν(γ(B) = n) = ν(B)n exp(−ν(B))/n!, n = 0, 1, 2, · · · .

(D3) If B1, · · · , Bn ∈ B(X) are disjoint, then γ(B1), γ(B2), · · · , γ(Bn) are mutually
independent.
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The completions of FΓ and FΓ
t+ with respect to πν are still denoted by FΓ and FΓ

t

respectively. Then it is not hard to verify that (ΓX,FΓ, πν ;FΓ
t ) satisfy (B1)-(B5).

As in (2.8) and (2.9), we define

A :=

∫ ⊕

ΓX

H(γ)dπν(γ) :=

{
V ∈M : ‖V ‖2

A :=

∫
ΓX

‖V (γ)‖2
H(γ)dπν(γ) <∞

}
,

and

At =

∫ ⊕

ΓX

Ht(γ)dπν(γ) :=

{
V ∈Mt : ‖V ‖2

At
:=

∫
ΓX

‖V (γ)‖2
Ht(γ)dπν(γ) <∞

}
.

These spaces will play a basic role in the rest of the paper.
We denote by C∞

p (Rk)(resp. C∞
b (Rk)) the space of infinitely differentiable functions on

Rn, whose derivatives of all orders are of polynomial growth(resp. bounded).
We denote by D the set of all measurable functions φ : X 7→ R such that φ(t, ·) ∈ C∞

0 (X)
for each t > 0. As in [2] introduce FC∞

p (X,D) (test function space) as the set of all
random variables of the form:

f(γ) = F (γ(φ1), · · · , γ(φk)), (3.1)

where F ∈ C∞
p (Rk), φi ∈ D, i = 1, · · · , k. For abbreviation we set G := FC∞

p (X,D). The
elements in G are called cylindrical functions.

For any map v : [0, 1] 7→ V0(X), let ε 7→ ϕv
ε (t, x) be the integral curve of the vector field

v(t, ·) for each t ∈ [0, 1]. The natural action of ϕv
ε on the configuration space ΓX is given

by
ΓX 3 γ 7→ ϕv

ε (γ) := {(t, ϕv
ε (t, x)), (t, x) ∈ γ} ∈ ΓX.

For f ∈ G of the form (3.1), the gradient of f is defined by

∇Γ
t,xf(γ) :=

k∑
i=1

∂iF (γ(φ1), · · · , γ(φk))∇X
x φi(t, ·) ∈ Tγ(ΓX) =: H(γ),

where ∂i denotes the usual partial derivative with respect to the i-th variable. In the
sequel, we sometimes write ∇Γ instead of ∇Γ

t,x.
Then for any v : R+ 7→ V0(X) we have

∇Γ
vf(γ) := (∇Γf(γ), v)H(γ) =

∫ 1

0

∫
X

〈∇Γ
t,xf(γ), v(t, x)〉TxXγ(dt, dx)

= lim
ε→0

f(ϕv
ε (γ))− f(γ)

ε
.

For p > 2, we define the norm on G as follows(cf. [2]):

‖f‖H1
p

:= ‖f‖Lp(ΓX,πν) + ‖‖∇Γf‖H(·)‖Lp(ΓX,πν).

We can now give the following definition of Sobolev spaces on (ΓX,FΓ, πν).

Definition 3.1. Let p > 2. The Sobolev space H1
p is defined as the completion of G with

respect to the norm ‖ · ‖H1
p
.

We set
H1
∞ := ∩26p<∞H1

p.

By the integration by parts formula proved in [2] (see also the [7, Lemma 3.3]), we know
that these spaces are naturally embedded into Lp(ΓX, πν) and that the gradients extend
uniquely to all functions in H1

p. Also the following is obvious:
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Proposition 3.2. If f ∈ H1
2, then ∇Γf is a measurable function of (t, x, γ) which will

again be denoted by ∇Γf in the sequel. Moreover, ∇Γf ∈ L2(X× ΓX, ν(ds× dx)× dπν).

E.g. by using the integration by parts formula from [2] one easily sees that the following
is true.

Proposition 3.3. Let f ∈ H1
2 be measurable with respect to FΓ

t . Then we have

∇Γ
s,xf(γ) = 0 for any s > t and x ∈ X, πν − a.e. γ.

Moreover, ∇Γf ∈ At.

4. Kusuoka-Stroock formula

We are about to establish a commutation formula between the gradient and stochastic
integrals. On Wiener space this formula is given by Kusuoka and Stroock in [13].

Remember that X := [0, 1]×X. The following is immediate from the definition of ∇Γ

by suitable approximation.

Theorem 4.1. Let f : X × ΓX → R be a measurable function such that for all γ ∈ ΓX,
suppf(·, ·, γ) ⊂ [0, 1] × K, where K is a compact subset of X, f(s, x, ·) ∈ H1

2 for all
(s, x) ∈ X, and ν(‖f‖2

H1
2
) <∞. Then

∇Γ(ν(f)) = ν(∇Γf), πν − a.e..

We introduce G̃ as the set of all functions of the form:

f(x, γ) = F (x; γ(φ1), · · · , γ(φk)), (4.1)

where φi ∈ D, i = 1, · · · , k and F ∈ C∞(X × Rk) satisfying that for each x ∈ X,
F (x; ·) ∈ C∞

p (Rk) and there is a compact set K such that F (x; ·) = 0 for all x ∈ Kc.

For p > 2, we define the norm on G̃ as follows:

‖f‖H̃1
p

:= ‖f‖Lp(m×πν) + ‖‖∇Γf‖H(·)‖Lp(m×πν) + ‖|∇Xf |TxX‖Lp(m×πν).

We will need the following Sobolev spaces on (X × ΓX,B(X)×FΓ,m× πν).

Definition 4.2. For p > 2, the Sobolev space H̃1
p is defined as the completion of G̃ with

respect to the norm ‖ · ‖H̃1
p
.

By a standard integration by parts argument we can prove that H̃1
p embeds into Lp(X×

ΓX,m × πν) and that the corresponding gradient operators are well defined (cf. e.g.,
[2, 7, 6]).

Remark 4.3. For g ∈ H̃1
p, it is clear that for m(dx)-a.e. x ∈ X, g(x, ·) ∈ H1

p.

In the following, the expectation E is taken with respect to πν and set

H̃1
∞ := ∩26p<∞H̃1

p.

In order to prove the Kusuoka-Stroock formula. We first prepare the following lemma.

Lemma 4.4. For fixed t0 ∈ R+, let g(x, γ) be a B(X)×FΓ
t0

measurable function. Assume

that g(·, ·) ∈ H̃1
∞ and for all γ ∈ ΓX, supp g(·, γ) ⊂ K, where K is a compact subset of

X. Set f(s, x, γ) := 1[t0,1](s)g(x, γ), then γ̃t(f) ∈ H1
∞ and

∇Γ (γ̃t(f)) = γ̃t(∇Γf) + (∇Xf(·, γ))1[t0,t] ∈ At. (4.2)
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Proof. For k ∈ N, let gn ∈ G̃ be such that

lim
n→∞

‖gn − g‖H̃1
2k

= 0.

Set fn(s, x, γ) := 1[t0,1](s)gn(x, γ). Then by the definition of ∇Γ, we have for each n

∇Γ (γ̃t(fn)) = γ̃t(∇Γfn) + (∇Xgn(·, γ))1[t0,t].

Now by inequality (2.22), we have for any k ∈ N

E
(
‖γ̃t(∇Γfn −∇Γf)‖2k

H(·)

)
6 C

k∑
i=1

E
[
νt

(
‖fn − f‖2i

H(·)

)]2k−i

6 CK,k‖gn − g‖2k

H̃1
2k
→ 0 as n→∞.

On the other hand, set

Vn(s, x, γ) := ∇X(gn − g)(·, γ)1[t0,t](s) ∈ H(γ)

and

hn(s, x, γ) := |∇X(gn − g)(·, γ)|2TxX1[t0,t](s).

Then

‖Vn(·, ·, γ)‖2
H(γ) = γ(hn(·, ·, γ)).

So by (2.22)

E
(
‖Vn(·, ·, γ)‖2k

H(γ)

)
= E|γ(hn)|2k−1

6 Cr

(
E|γ̃(hn)|2k−1

+ E|ν(hn)|2k−1
)

6 Cr

(
k−1∑
i=1

E
(
ν(|hn|2

i

)
)2k−1−i

+ E|ν(hn)|2k−1

)
6 CK,r‖gn − g‖2k

H̃1
2k
→ 0 as n→∞,

and the proof is complete. �

Lemma 4.5. Let f(s, x, γ) : X×ΓX 7→ R be a measurable function satisfying the following
conditions:

(i) suppf(·, ·, γ) ⊂ [0, 1]×K for some compact subset K of X and all γ ∈ ΓX;
(ii) for each s ∈ [0, 1], f(s, ·, ·) ∈ H̃1

∞;
(iii) for each x, (s, γ) 7→ f(s, x, γ),∇X

x f(s, ·, γ) are left-continuous and adapted process;
(iv) for any p > 2 ∫ 1

0

‖f(s, ·, ·)‖p

H̃1
p
ds < +∞.

Then γ̃t(f) ∈ H1
∞ for all t ∈ [0, 1] and

∇Γ (γ̃t(f)) = γ̃t(∇Γf) + (∇Xf)1[0,t] ∈ At. (4.3)

Proof. We first construct the approximating sequence f ε of f . Let ρ(t) be a C∞-function
with support in [0, 1] and with total mass 1. Set

f ε(s, x, γ) :=

∫ s

0

f(t, x, γ)ρε(s− t)dt, (s, x, γ) ∈ X× ΓX,

18



where ρε(s) = 1
ε
ρ(s/ε) is a regularizing sequence. Then f ε is a continuous adapted process.

Secondly, we define

f ε
n(s, x, γ) :=

2n−1∑
k=0

f ε(k2−n, x, γ)1(k2−n,(k+1)2−n](s),

and write

γt(f
ε
n) = γk2−n(f ε

n) +

∫ t+

k2−n

∫
X

f ε(k2−n, x)γ(ds, dx),

where t ∈ (k2−n, (k + 1)2−n].
By induction and Lemma 4.4, we obtain that

∇Γ (γ̃t(f
ε
n)) = γ̃t(∇Γf ε

n) + (∇Xf ε
n)1[0,t]

and γt(f
ε
n) ∈ H1

∞ for each n, t, ε. Applying inequality (2.22), and passing to the limit we
prove (4.3). �

Now we can state and prove our main result.

Theorem 4.6. (Kusuoka-Stroock formula) If (i) and (iv) in Lemma 4.5 are replaced by
(iv)′ For any r ∈ N

k∑
i=0

E
(
ν
(
‖∇Γf‖2i

H(·) + |∇Xf |2i

TX + |f |2i
))2k−i

< +∞, (4.4)

then the conclusion of Lemma 4.5 still holds.

Proof. Let Bn ↑ X be an exhausting sequence of compact sets such that there exist smooth
functions ψn : X → [0, 1] satisfying(cf. [3])

ψn(z) =

{
1, z ∈ Bn

0, z /∈ B2n,

and

|∇Xψn(x)|TxX 6 C for any x ∈ X, (4.5)

where the constant C does not depend on n. Then we set

fn(s, x, γ) = ψn(x)f(s, x, γ).

It is clear that each fn satisfies all the conditions in Lemma 4.5 and fn(resp. ∇Γfn)
pointwisely converge to f (resp. ∇Γf). By (2.22), (4.4) and the dominated convergence
theorem, we have for any k ∈ N

lim
n→∞

E|γ̃t(fn − f)|2k

6 C lim
n→∞

k∑
i=1

E
[
νt

(
|fn − f |2i

)]2k−i

= 0,

and as n→∞

E
(∥∥γ̃t

(
∇Γfn −∇Γf

)∥∥2k

H(·)

)
6 C

k∑
i=1

E
[
νt

(
‖∇Γfn −∇Γf‖2i

H(·)

)]2k−i

→ 0.

As in Lemma 4.4, set

Vn(s, x, γ) := (∇X(fn − f)(s, ·, γ))(x)1[t0,t](s) ∈ H(γ),

and
αn(s, x, γ) := |∇X(fn − f)(s, ·, γ)|2TxX1[t0,t](s).

19



Then αn(s, x, γ) is strongly predictable and

|Vn(·, ·, γ)|2H(γ) = γ(αn(·, ·, γ)).
Noticing that

∇X
x fn(s, ·, γ) = f(s, x, γ)∇X

x ψn + ψn(x)∇X
x f(s, ·, γ),

by (4.5) (4.4) and the dominated convergence theorem, we hence have

E
(
‖Vn(·, ·, γ)‖2k

H(γ)

)
= E|γ(αn)|2k−1

6 C
(
E|γ̃(αn)|2k−1

+ E|ν(αn)|2k−1
)

6 C

(
k−1∑
i=1

E
(
ν(|αn|2

i

)
)2k−1−i

+ E|ν(αn)|2k−1

)
→ 0 as n→∞,

and the proof is thus complete. �

Remark 4.7. Under the same assumptions as in Theorem 4.6, we also have that γt(f) ∈
H1
∞ for all t ∈ [0, 1] and

∇Γ (γt(f)) = γt(∇Γf) + (∇Xf)1[0,t] ∈ At.

5. Quasi-regular Dirichlet forms on Wiener-Poisson space

First of all, let us recall the definition of a quasi-regular Dirichlet form according to
[14]. Let E be a separable Hausdorff topological space. B(E) denotes its Borel σ-algebra.
We fix a finite positive measure m on (E,B(E)).

Let (E ,D(E)) be a Dirichlet form on L2(E,m), and we assume 1 ∈ D(E). The notion
of capacity associated with (E ,D(E)) is defined as follows:

Definition 5.1. (i) For an arbitrarily open set A, define

VA := {f ∈ D(E); f > 1 m-a.e. on A} ,
Cap(A) := inf

f∈VA
E1(f, f)1/2,

where E1(f, f) := (f, f)L2 + E(f, f), and for any set A ⊂ E, we let

Cap(A) := inf {Cap(B);A ⊂ B ⊂ E,B open} .
We use eA to denote its equilibrium potential.

(ii) We say that a statement holds E-quasi everywhere (abbreviated E-q.e.) if there exists
a set N of zero capacity such that the statement is true for every x ∈ N c.

(iii) A function f : E → R is called E-quasi continuous if for any ε > 0 there exists an
open set G ⊂ E such that Cap(G) < ε and f restricted on Gc is continuous.

The following definition is taken from [14].

Definition 5.2. A Dirichlet form (E ,D(E)) is called quasi-regular if:

(i) There exists an increasing sequence (Kn)n∈N of compact subsets of E such that

lim
n→∞

Cap(Kc
n) = 0.

(ii) There exists an E1/2
1 -dense subset of D(E) whose elements have E-quasi continuous

m-versions.
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(iii) There exist {fn}n∈N ⊂ D(E), having E-quasi continuous m-version f̃n, and a zero

capacity set N ⊂ E such that {f̃n, n ∈ N} separates the points of N c.

5.1. Dirichlet form on Poisson space. On the Poisson space (ΓX,FΓ, πν), we define
the following symmetric bilinear form

EΓ(Φ,Ψ) := Eπν
(
〈∇ΓΦ,∇ΓΨ〉H(γ)

)
; Φ,Ψ ∈ G.

Then we have

Proposition 5.3. (EΓ,G) is a closable Dirichlet form on L2(ΓX, πν).

Using the integration by parts formula from [2], the proof of this proposition is entirely
standard (see [14]), and the closure of (EΓ,G) is denoted by (EΓ,D(EΓ)). Note that
D(EΓ) = H2.

In [15] the authors constructed diffusions on configuration spaces applying the theory
of quasi-regular Dirichlet forms. Their arguments easily go through to the setting of the
present paper and, in particular, we have that the Dirichlet form (EΓ,D(EΓ)) on L2(ΓX, πν)
is quasi-regular in the sense of Definition 5.2.

5.2. Dirichlet forms on Wiener space. Let (W,FW , µ; H; (FW
t )t∈[0,1]) be the classical

Wiener space of the d-dimensional Brownian motion on [0, 1]. Namely, W is the space of
continuous functions w : [0, 1] → Rd satisfying w(0) = 0, endowed with the topology of
uniform convergence. H is the Cameron-Martin space. FW denotes the Borel σ-algebra
over W , and for each 0 6 t 6 1, FW

t denotes the σ-algebra σ{w(s) : 0 6 s 6 t}. µ is the
standard Wiener measure on (W,FW ).

Let C be the set of cylindrical functions on W , i.e.

C :=
{
f(w) := F (w(t1), · · · , w(tn)), 0 6 t1 6 · · · 6 tn 6 1, F ∈ C∞

0 (Rn×d)
}
.

For f ∈ C, we define ∇Wf(w) ∈ H by

∇Wf(w)(s) =
n∑

i=1

∂iF (w(t1), · · · , w(tn)) · (s ∧ ti), s ∈ [0, 1].

And we set

EW (Φ,Ψ) := Eµ((∇W Φ,∇W Ψ)H); Φ,Ψ ∈ C.
Then (EW , C) is closable in L2(W,µ), and the closure is denoted by (EW ,D(EW )). The
following result is well known.

Proposition 5.4. (EW ,D(EW )) is a quasi-regular Dirichlet form on L2(W,µ).

5.3. Product of quasi-regular Dirichlet forms. Bouleau and Hirsch in [4, p.200]
defined the product of two Dirichlet forms. This naturally leads to the definition of
Dirichlet forms on Wiener-Poisson space.

Definition 5.5. Let (Ω,F , P ;Ft) := (ΓX ×W,FΓ ×FW , πν × µ;FΓ
t ×FW

t ) be the com-
pleted product probability space. The Dirichlet form on L2(Ω, P ) is defined as

E(Φ,Ψ) :=

∫
ΓX

EW (Φ(γ, ·),Ψ(γ, ·))πν(dγ) +

∫
W

EΓ(Φ(·, w),Ψ(·, w))µ(dw),

where Φ and Ψ belong to D(E), and

D(E) :=
{

Φ ∈ L2(Ω, P ) : γ 7→ Φ(γ, ·) belongs to L2(ΓX, πν ;D(EW ))
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and w 7→ Φ(·, w) belongs to L2(W,µ;D(EΓ))
}
.

It is easy to check that (E ,D(E)) in Definition 5.5 is indeed a Dirichlet form. We define
the gradient for Φ ∈ D(E) by

(∇Φ)(γ, w) := (∇ΓΦ(γ, w),∇W Φ(γ, w)) ∈ H(γ)×H,
and for Φ,Ψ ∈ D(E)

(∇Φ,∇Ψ)H(γ)×H := (∇ΓΦ(γ, w),∇ΓΨ(γ, w))H(γ) + (∇W Φ(γ, w),∇W Ψ(γ, w))H.

Then

E(Φ,Ψ) = EP ((∇Φ,∇Ψ)H(·)×H).

We have the following result.

Theorem 5.6. The Dirichlet form (E ,D(E) is quasi-regular in the sense of Definition
5.2.

Proof. Let (Kn)n∈N(resp.(Un)n∈N) be an increasing sequence of compact sets of ΓX (resp.
W ) such that limn→∞ CapΓ(Kc

n) = 0 (resp. limn→∞ CapW (U c
n) = 0). We need to prove

that
lim

n→∞
Cap((Kn × Un)c) = 0,

where CapΓ, CapW and Cap are the capacities corresponding to (EΓ,D(EΓ)), (EW ,D(EW ))
and (E ,D(E)).

Let eKc
n

and eUc
n

be the respectively equilibrium potentials of Kc
n and U c

n. By the above
definition, we know that

eKc
n
· 1W ∈ D(E), 1ΓX · eUc

n
∈ D(E),

and

E1(eKc
n
· 1W , eKc

n
· 1W ) = EΓ

1 (eKc
n
, eKc

n
),

E1(1ΓX · eUc
n
, 1ΓX · eUc

n
) = EW

1 (eUc
n
, eUc

n
).

Hence

Cap((Kn × Un)c)

6 Cap(Kc
n ×W ) + Cap(ΓX × U c

n)

6 E1(eKc
n
· 1W , eKc

n
· 1W )1/2 + E1(1ΓX · eUc

n
, 1ΓX · eUc

n
)1/2

= EΓ
1 (eKc

n
, eKc

n
)1/2 + EW

1 (eUc
n
, eUc

n
)1/2

= CapΓ(Kc
n) + CapW (U c

n)

→ 0, as n→∞,

which gives (i) of Definition 5.2. (ii) and (iii) of Definition 5.2 are easily verified, and we
complete the proof. �

As a consequence of Theorem 5.6 and [14, pp.153 Theorem 1.11], we now obtain

Theorem 5.7. There exists a conservative (strong Markov) diffusion process

M = (Ω′,F ′, (F ′
t)t>0, (Xt)t>0, (P

′
ω)ω∈Ω)

on Ω which is properly associated with (E , D(E)). In particular, M is P -symmetric.

Henceforth, we shall work on the Wiener-Poisson space (Ω,F , P ;Ft).
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6. Fractional Sobolev spaces and capacities on Wiener-Poisson spaces

For p > 2, define a norm on D(E) as follows:

‖f‖D1
p

:= ‖f‖Lp + ‖∇f‖Lp .

We set

D1
p := {f ∈ D(E) ∩ Lp; ‖f‖D1

p
<∞}.

Then D1
p is a Banach space.

Applying the K-method in real interpolation theory (see [23]), for 0 < r < 1 we define
the fractional Sobolev spaces:

Dr
p := (Lp,D1

p)r,p =

{
f ∈ Lp : ‖f‖Dr

p
:=

(∫ 1

0

[ε−rK(ε, f)]p
dε

ε

) 1
p

<∞

}
,

where

K(ε, f) := inf
f=f1+f2

{‖f1‖Lp + ε‖f2‖D1
p
}.

Let L be the generator of the Dirichlet form (E ,D(E)). We define another type of Sobolev
space by

D̃r
p := (I − L)−

r
2 (Lp).

Then we have

Theorem 6.1. For 0 < r < 1, 0 < ε < r and p > 2,

Dr
p ⊂ D̃r−ε

p .

Proof. By a general result of [8, Theorem 1], there is a constant Cp,θ such that

‖(I − L)
θ
2f‖Lp 6 Cp,θ(‖∇f‖Lp + ‖f‖Lp)

for p > 2 and 0 < θ < 1. This means that

D1
p ⊂ D̃θ

p.

Hence, by [23, Theorem 1.15.2] we have for any 0 < θ < 1 and 0 < ε < rθ

Dr
p ⊂ (Lp, D̃θ

p)r,p = (Lp, D̃1
p)rθ,p ⊂ (Lp, D̃1

p)rθ−ε,1 ⊂ D̃rθ−ε
p .

The result then follows. �

Since Dr
p is uniformly convex (see e.g. [11, Lemma 3.5]), we may define the (p, r)-

capacity on Dr
p similar to Definition 5.1.

Definition 6.2. For an open set A of Ω, we define

VA
p,r := {f ∈ Dr

p; f > 1 m-a.e. on A},
Capp,r(A) := inf

f∈VA
p,r

‖f‖Dr
p
,

and for any set A ⊂ Ω, we let

Capp,r(A) := inf
{
Capp,r(B);A ⊂ B ⊂ Ω, B is an open set

}
.

We also have the respective notions of redefinition, equilibrium potential, etc.(cf. e.g.
[11]).

Using Theorem 5.7, the following result is proved in [19].
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Theorem 6.3. If 0 < r 6 1, pr > 2, then there exists a constant C = C(p, r) such that

[Cap2,1(A)]2 6 C · [Capp,r(A)]p, ∀A ⊂ Ω.

7. Regularities of local times with jumps

Consider a semimartingale of the following form:

Ut = U0 +

∫ t

0

MsdWs +

∫ t+

0

∫
X

g(s, x)γ̃(ds, dx) +

∫ t

0

Nsds,

where U0 ∈ R, {Ws}06s61 is a standard one dimensional Brownian motion, and Ms, Ns,
g(s, x) satisfy the following regularity hypotheses:

(H1) Ms is an (Fs)-measurable adapted real-valued process, Ns is an (Fs)-adapted real-
valued process and g(s, x) is an (Fs)-predictable real-valued process for each x.

(H2) For each s, x, Ms, Ns, g(s, x) ∈ ∩p>2D1
p, and

∫ 1

0
‖Ms‖p

D1
p
+ ‖Ns‖p

D1
p
ds < +∞ for each

p > 2. Moreover, for any p > 2

g(s, ·, ·) ∈ H̃1
p,

and for any k ∈ N
k∑

i=0

E
(
ν
(
‖∇Γg‖2i

H(γ) + ‖∇Wg‖2i

H + |∇Xg|2i

TX + |g|2i
))2k−i

< +∞.

(H3) There exists an (Fs)-measurable adapted process ξs such that
∫ 1

0
E|ξs|pds < +∞

for each p > 2, and |Ns| ∨
∫

X
|g(s, x)|m(dx) 6 |Ms||ξs| a.e. for each s ∈ [0, 1].

By the Kusuoka-Stroock formula in Theorem 4.6 and Theorem 2.21, it is trivial to see
that under these hypotheses we have for any p > 2

E
(

sup
06t61

(
|Ut|p + ‖∇Ut‖p

H(·)⊗H

))
< +∞. (7.1)

By Tanaka’s formula (see [10]), the local time of Ut is given by

1

2
La

t = (Ut − a)+ − (U0 − a)+ −
∫ t+

0

1(a,∞)(Us−)dUs

−
∑

0<s6t

[
1(a,∞)(Us−)(Us − a)− + 1(−∞,a](Us−)(Us − a)+

]
.

It will be convenient to write the above sum as an integral. By (D1), for πν-almost
all γ ∈ ΓX, γ can be regarded as a point function from [0, 1] to X. For such γ, we have
Us − Us− = g(s, x), where x = γ(s). Noting that

y+ − x+ − 1(a,∞)(x)(y − x) =

{
y−, x > a
y+, x 6 a,

we have for πν-almost all γ ∈ ΓX∑
0<s6t

[
1(a,∞)(Us−)(Us − a)− + 1(−∞,a](Us−)(Us − a)+

]
=

∫ t+

0

∫
X

[
(Us− + g(s, x)− a)+ − (Us− − a)+ − 1(a,∞)(Us−)g(s, x)

]
γ(ds, dx).
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By (H3), we know that g(s, x) ∈ F1 ∩ F2. Thereby we obtain that

1

2
La

t =
[
(Ut − a)+ − (X0 − a)+

]
−
∫ t

0

1(a,∞)(Us)MsdWs −
∫ t

0

1(a,∞)(Us)Nsds

−
∫ t+

0

∫
X

[
(Us− + g(s, x)− a)+ − (Us− − a)+

]
γ(ds, dx)

+

∫ t

0

∫
X

g(s, x)1(a,∞)(Us)ν(ds, dx)

:= I1(t)− I2(t)− I3(t)− I4(t) + I5(t).

We can now state and prove our main result of this section.

Theorem 7.1. For fixed t ∈ [0, 1], a ∈ R, if p > 2 and r < 1
2
, then we have La

t ∈ Dr
p and

La
t ∈ D̃r

p.

Proof. By Theorem 6.1, it suffices to prove that La
t ∈ Dr

p for any r < 1
2

and p > 2.

In the following, without loss of generality, we may assume that a = 0 and p = 2k for
k ∈ N. Let us first construct some approximating functions. Set for ε > 0

Fε(x) :=

 1, x > ε,
1
2ε

(x+ ε), |x| 6 ε,
0, x < −ε

and fε(x) :=
∫ x

−∞ Fε(y)dy. Then Fε(x) → 1(0,+∞)(x) + 1
2
1{0}(x) and fε(x) → f(x) := x+

as ε ↓ 0. Since f(x) = x+ is a Lipschitz function, it is not hard to see that for fixed
t ∈ [0, 1]

sup
x∈R

E|Lx
t |p < +∞ (7.2)

and I1(t) ∈ D1
p. For I4(t), define

Iε
4(t) :=

∫ t+

0

∫
X

[fε(Us− + g(s, x))− fε(Us−)] γ(ds, dx)

=

∫ t+

0

∫
X

g(s, x)

(∫ 1

0

Fε(Us− + θg(s, x))dθ

)
γ(ds, dx).

By Remark 4.7 and (7.1), we clearly have

sup
ε
‖Iε

4(t)‖D1
p
< +∞.

Moreover, by the elementary inequality

|x+ − (x− y)+ − fε(x)− fε(x− y)| 6 2ε|y|,
we may deduce that

‖Iε
4(t)− I4(t)‖Lp 6 Cε.

Hence, I4(t) ∈ D1
p.

Set

Iε
2(t) :=

∫ t

0

Fε(Us)MsdWs.
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Then

∇W Iε
2(t) =

∫ ·

0

Fε(Us)Msds+

∫ t

0

∇WFε(Us)Msds+

∫ t

0

Fε(Us)∇WMsdWs

= I21(t) + I22(t) + I23(t),

and

∇ΓIε
2(t) =

∫ t

0

∇ΓFε(Us)MsdWs +

∫ t

0

Fε(Us)∇ΓMsdWs

= I24(t) + I25(t).

By (H2), we obviously have

E‖I21(t)‖p
H + E‖I23(t)‖p

H + E
(
‖I25(t)‖p

H(·)

)
6 C.

By Hölder’s inequality, we have for any q > 1

E‖I22(t)‖p
H 6 CE

(∫ t

0

‖∇WFε(Us) ·Ms‖2
Hds

) p
2

6 Cε−pE
(∫ t

0

1(−ε,ε)(Us)|Ms|
2
q ‖∇WUs‖2

H|Ms|2(1−
1
q
)ds

) p
2

6 Cε−pE

{(∫ t

0

1(−ε,ε)(Us)|Ms|2ds
) p

2q
(∫ t

0

‖∇WUs‖
2q

q−1

H |Ms|2ds
) p

2
(1− 1

q
)
}

6 Cε−p

(
E
(∫ t

0

1(−ε,ε)(Us)d〈X〉s
) p

q

) 1
2 [

by the occupation time formula
]

·

(
E
(∫ t

0

‖∇WUs‖
2q

q−1

H |Ms|2ds
)p(1− 1

q
)
) 1

2

6 Cε−p

(
E
(∫ ε

−ε

L0
t dx

) p
q

) 1
2 [

by (7.1)
]

6 Cε−p

(
εp−1

∫ ε

−ε

E|L0
t |pdx

) 1
2q [

by (7.2)
]

6 Cεp(−1+ 1
2q

).

Similar arguments lead to

E
(
|I24(t)|pH(·)

)
6 Cεp(−1+ 1

2q
).

Hence

‖Iε
2(t)‖D1

p
6 C · ε−1+ 1

2q .

In the same way, let

Iε
3(t) :=

∫ t

0

Fε(Us)Nsds.

Then by (H3) we also have

‖Iε
3(t)‖D1

p
6 C · ε−1+ 1

2q .
26



Now we deal with I5. Let

Iε
5(t) :=

∫ t

0

∫
X

g(s, x)Fε(Us)ν(ds, dx).

We have

∇W Iε
5(t) =

∫ t

0

∫
X

∇Wg(s, x)Fε(Us)ν(ds, dx)

+

∫ t

0

∫
X

g(s, x)∇WFε(Us)ν(ds, dx)

= I51(t) + I52(t).

By (H2), we have

E‖I51(t)‖p 6 E
(∫ t

0

∫
X

‖∇Wg(s, x)Fε(Us)‖Hν(ds, dx)

)p

6 C.

By (H3), as in the estimate for I22(t), we have

E‖I52(t)‖p 6 E
(∫ t

0

∫
X

‖g(s, x)∇WFε(Us)‖Hm(dx)ds

)p

6 E
(∫ t

0

|ξs||Ms| · ‖∇WFε(Us)‖Hds

)p

6 Cε−p/2,

consequently,

E‖∇W Iε
5(t)‖

p
H 6 ε−p/2.

In the same way

E
(
‖∇ΓIε

5(t)‖
p
H(·)

)
6 ε−p/2,

hence

‖∇Iε
5(t)‖D1

p
6 C · ε−

1
2 .

Moreover, obviously

E (‖Iε
2(t)− I2(t)‖p + ‖Iε

3(t)− I3(t)‖p + ‖Iε
5(t)− I5(t)‖p) 6 Cεp/2.

By the definition of Dr
p, the result now follows. �

As a direct consequence of Theorem 6.3 and Theorem 7.1, we have

Theorem 7.2. For any t ∈ [0, 1], a ∈ R, La
t admits an E-quasi continuous modification.

Lastly, we study the regularity of La
t in t, a. Let C([0, 1]) denote the Banach space of

continuous functions defined on [0, 1] and taking values in R, endowed with the topology
of uniform convergence. Assume that

(H4) For any p > 2,

E
∣∣∣∣∫ 1

0

∫
X

|g(s, x)|1/2γ(ds, dx)

∣∣∣∣p < +∞.

We have
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Theorem 7.3. The local time La
t satisfies that for any p > 2

E

(
sup

t∈[0,1]

|La
t − Lb

t |p
)

6 C|a− b|p/2.

In particular, the process a 7→ La
· ∈ C([0, 1]) admits a continuous modification.

Proof. Let us only deal with I2(t) and I4(t), the others being analogous. Assume that
b > a. For I2(t), we have by (7.2) and Hölder’s inequality

E

(
sup

t∈[0,1]

∣∣∣∣∫ t

0

1(a,b](Us)MsdWs

∣∣∣∣p
)

6 E
(∫ 1

0

1(a,b](Us)|Ms|2ds
)p/2

= E
(∫

R
1(a,b](x)L

x
1dx

)p/2

6 C|b− a|p/2.

By the elementary inequality,

(x− a)+ − (y − a)+ − (x− b)+ + (y − b)+

6 |b− a| ∧ |x− y| 6 |b− a|1/2 · |x− y|1/2.

we have for I4(t)

E

(
sup

t∈[0,1]

∣∣∣∣∣
∫ t+

0

∫
X

[(Us− + g(s, x)− a)+ − (Us− − a)+

−(Us− + g(s, x)− b)+ + (Us− − b)+]γ(ds, dx)

∣∣∣∣∣
p)

6 (b− a)p/2E
∣∣∣∣∫ 1+

0

∫
X

|g(s, x)|1/2γ(ds, dx)

∣∣∣∣p
6 C(b− a)p/2.

So, the first assertion is proved. The second follows from this by Kolmogorov’s criterion
for Banach space valued processes, see e.g. [20]. �

Using [19] and arguments similar to [11, Theorem 2.25], we have finally

Theorem 7.4. There is a set A ⊂ Ω such that

(i) Cap2,1(A) = 0,
(ii) the occupation time formula∫ t

0

φ(Us(ω))d〈X〉s(ω) =

∫
R
φ(x)La

t (ω)dx

holds for every ω ∈ Ac, every t ∈ [0, 1] and every positive Borel function φ.
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