ESTIMATES OF SOBOLEV NORMS OF TRIANGLE TRANSFORMATIONS

R.I. Zhdanov, Y.V. Ovsienko

Abstract

We study increasing triangular transformations T of the n-dimensional cube $\Omega=[0,1]^{n}$ which transform a measure μ into a measure ν, where μ and ν are absolutely continuous Borel probability measures with densities ρ_{μ} and ρ_{ν}. It is shown that if there exist positive numbers ε and M such that $\varepsilon<\rho_{\mu}<M$, $\varepsilon<\rho_{\nu}<M$ and numbers $\alpha, \beta>1$ that such $p=\alpha \beta(n-1)^{-1}(\alpha+\beta)^{-1}>1$ and $\varrho_{\mu} \in W^{\alpha, 1}(\Omega)$, $\varrho_{\nu} \in W^{\beta, 1}(\Omega)$, where $W^{\alpha, 1}$ denotes the Sobolev class, then the transformation T belongs to the class $W^{p, 1}(\Omega)$.

The so called increasing triangular transformations have been investigated in work [1]. These are transformations of the form $T=\left(T_{1}, \ldots, T_{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, where T_{1} is a function of x_{1}, T_{2} is a function of $\left(x_{1}, x_{2}\right)$ and so on, T_{i} is a function of $\left(x_{1}, \ldots, x_{i}\right)$, and T_{i} is increasing in x_{i}. The canonical version of T is described in work [1]. Since our statements do not depend on a Lebesgue version of T (and do not depend on a μ-version as well because μ is equivalent to Lebesgue measure), we may assume that the transformation T is canonical. The main result of the paper is the following theorem.

Theorem. Let μ and ν be absolutely continuous Borel probability measures with densities ρ_{μ} and ρ_{ν} on $\Omega=[0,1]^{n}$. Let T be an increasing triangular transformation that transforms the measure μ into ν. Let us assume that there exist
(1) positive numbers ε and M such that $\varepsilon<\rho_{\mu}<M, \varepsilon<\rho_{\nu}<M$;
(2) positive numbers $\alpha, \beta>1$ such that $p_{n}=\alpha \beta(n-1)^{-1}(\alpha+\beta)^{-1}>1, \varrho_{\mu} \in W^{\alpha, 1}(\Omega)$, and $\varrho_{\nu} \in W^{\beta, 1}(\Omega)$.

Then the transformation T belongs to the class $W^{p_{n}, 1}(\Omega)$.
Proof. We shall prove the statement in the case $n=2$. We recall that the Sobolev class $W^{p, r}(\Omega)$ (another notion is $H^{p, r}(\Omega)$) is defined as the set of functions $f \in L^{p}(\Omega)$ whose derivatives up to order r are elements of $L^{p}(\Omega)$ (regarding Sobolev classes the reader is referred to [2]). In order to show that the transformation T belongs to the Sobolev class we shall express its derivatives as functions of the densities of the measures μ and ν. It is shown in work [1] that

$$
T_{1}(x)=F_{\nu_{1}}^{-1}\left(F_{\mu_{1}}(x)\right), \quad T_{2}(x, y)=F_{\nu_{T_{1}(x)}}^{-1}\left(F_{\mu_{x}}(y)\right),
$$

where μ_{x} and ν_{x} are conditional measures on $\{x\} \times[0,1]$ (on conditional measures see [3]). In our case the conditional measures determined by the densities

$$
\rho_{\mu_{x}}(y)=\frac{\rho_{\mu}(x, y)}{\int_{0}^{1} \rho_{\mu}(x, t) d t}, \quad \varrho_{\nu_{x}}(y)=\frac{\rho_{\nu}(x, y)}{\int_{0}^{1} \rho_{\nu}(x, t) d t}
$$

with respect to Lebesgue measure. These densities are referred to as conditional densities. We shall denote the projections of the measures μ and ν to the interval $\{(x, 0), x \in[0,1]\}$ as μ_{1} and ν_{1}. We denote by F_{ξ} the distribution function of an absolutely coninuous measure ξ with a positive density ϱ_{ξ} defined on the interval $[0,1]$, i.e.,

$$
F_{\xi}(x)=\int_{0}^{x} \rho_{\xi}(t) d t, x \in[0,1] .
$$

The function F_{ξ} has an inverse function because it is strictly increasing. Thus

$$
\begin{gather*}
\partial_{y} T_{1}(x)=0, \quad \partial_{x} T_{1}(x)=\frac{F_{\mu_{1}}^{\prime}(x)}{F_{\nu_{1}}^{\prime}\left(T_{1}(x)\right)}=\frac{\rho_{\mu_{1}}(x)}{\rho_{\nu_{1}}\left(T_{1}(x)\right)} \\
\partial_{y} T_{2}(x, y)=\frac{F_{\mu_{x}}^{\prime}(y)}{F_{\nu_{T_{1}(x)}}^{\prime}\left(T_{2}(x, y)\right)}=\frac{\rho_{\mu_{x}}(y)}{\rho_{\nu_{T_{1}(x)}}\left(T_{2}(x, y)\right)} \tag{1}
\end{gather*}
$$

All the three functions are bounded because the densities ρ_{μ} and ρ_{ν} are bounded and are separated from zero and thus their conditional densities and the densities of their projections are separated from zero too. Therefore, they are integrable on Ω in any power. It only remains to prove that the function $\partial_{x} T_{2}$ belongs to $L^{p_{2}}(\Omega)$. Let the density ρ_{ν} be a smooth function. Then one has the equalities

$$
\begin{gathered}
\partial_{x} F_{\mu_{x}}(y)=\partial_{x}\left(\frac{\int_{0}^{y} \rho_{\mu}(x, t) d t}{\int_{0}^{1} \rho_{\mu}(x, t) d t}\right) \\
=\frac{\int_{0}^{y} \partial_{x} \rho_{\mu}(x, t) d t \int_{0}^{1} \rho_{\mu}(x, t) d t-\int_{0}^{1} \partial_{x} \rho_{\mu}(x, t) d t \int_{0}^{y} \rho_{\mu}(x, t) d t}{\left(\int_{0}^{1} \rho_{\mu}(x, t) d t\right)^{2}}, \\
\begin{array}{c}
\partial_{x} F_{\nu_{T_{1}(x)}}(y)=\partial_{x}\left(\frac{\int_{0}^{y} \rho_{\nu}\left(T_{1}(x), t\right) d t}{\int_{0}^{1} \rho_{\nu}\left(T_{1}(x), t\right) d t}\right) \\
=\frac{\int_{0}^{y}\left[\partial_{x} \rho_{\nu}\right]\left(T_{1}(x), t\right) T_{1}^{\prime}(x) d t \int_{0}^{1} \rho_{\nu}\left(T_{1}(x), t\right) d t}{\left(\int_{0}^{1} \rho_{\nu}\left(T_{1}(x), t\right) d t\right)^{2}} \\
-\frac{\int_{0}^{1}\left[\partial_{x} \rho_{\nu}\right]\left(T_{1}(x), t\right) T_{1}^{\prime}(x) d t \int_{0}^{y} \rho_{\nu}\left(T_{1}(x), t\right) d t}{\left(\int_{0}^{1} \rho_{\nu}\left(T_{1}(x), t\right) d t\right)^{2}} \\
F_{\nu_{T_{1}(x)}^{\prime}}^{\prime}(y)=\partial_{y}\left(\frac{\int_{0}^{y} \rho_{\nu}\left(T_{1}(x), t\right) d t}{\int_{0}^{1} \rho_{\nu}\left(T_{1}(x), t\right) d t}\right)=\frac{\rho_{\nu}\left(T_{1}(x), y\right)}{\int_{0}^{1} \rho_{\nu}\left(T_{1}(x), t\right) d t} .
\end{array}
\end{gathered}
$$

The following equality holds true as well:

$$
\begin{equation*}
\left[\partial_{x} F_{\nu_{T_{1}(x)}}^{-1}\right](y)=-\frac{\left[\partial_{x} F_{\nu_{T_{1}(x)}}\right]\left(F_{\nu_{T_{1}(x)}}^{-1}(y)\right)}{F_{\nu_{T_{1}(x)}}^{\prime}\left(F_{\nu_{T_{1}(x)}}^{-1}(y)\right)} \tag{2}
\end{equation*}
$$

Indeed, suppose that $f(x, y)=F_{\nu_{T_{1}(x)}}(y)$ and $\varphi(x, y)=F_{\nu_{T_{1}(x)}}^{-1}(y)$. For any x and y we have the equality $f(x, \varphi(x, y))=y$. Differentiation in x leads to the equality

$$
\partial_{x} f(x, \varphi(x, y))+\partial_{y} f(x, \varphi(x, y)) \partial_{x} \varphi(x, y)=0
$$

We obtain the equality

$$
\begin{equation*}
\partial_{x} \varphi(x, y)=-\frac{\partial_{x} f(x, \varphi(x, y))}{\partial_{y} f(x, \varphi(x, y))} . \tag{3}
\end{equation*}
$$

This leads to equality (2) in the case of smooth densities. Then we obtain the following chain of equalities:

$$
\begin{equation*}
\partial_{x} T_{2}(x, y)=\left[\partial_{x} F_{\nu_{T_{1}(x)}}^{-1}\right]\left(F_{\mu_{x}}(y)\right) \partial_{x} F_{\mu_{x}}(y)=-\frac{\left[\partial_{x} F_{\nu_{T_{1}(x)}}\right]\left(T_{2}(x, y)\right)}{\left[F_{\nu_{T_{1}(x)}}^{\prime}\right]\left(T_{2}(x, y)\right)} \partial_{x} F_{\mu_{x}}(y) \tag{4}
\end{equation*}
$$

We get

$$
\left|\left[\partial_{x} F_{\nu_{T_{1}(x)}}\right]\left(T_{2}(x, y)\right)\right| \leq 2 \frac{\int_{0}^{1}\left|\left[\partial_{x} \rho_{\nu}\right]\left(T_{1}(x), t\right)\right| T_{1}^{\prime}(x) d t}{\int_{0}^{1} \rho_{\nu}\left(T_{1}(x), t\right) d t}
$$

In addition, one has

$$
\left|\partial_{x} F_{\mu_{x}}(y)\right| \leq 2 \frac{\int_{0}^{1}\left|\partial_{x} \rho_{\mu}(x, t)\right| d t}{\int_{0}^{1} \rho_{\mu}(x, t) d t}
$$

Due to the inequalities $\rho_{\nu} \geq \varepsilon$ and $\int_{0}^{1} \rho_{\mu}(x, t) d t \geq \varepsilon$ for conditional density we have

$$
\begin{align*}
\left.\left|\partial_{x} T_{2}(x, y)\right| \leq 4 \frac{\int_{0}^{1}\left|\left[\partial_{x} \rho_{\nu}\right]\left(T_{1}(x), t\right)\right| T_{1}^{\prime}(x) d t \int_{0}^{1}\left|\partial_{x} \rho_{\mu}(x, t)\right| d t}{\rho_{\nu}\left(T_{1}(x)\right.}, T_{2}(x, y)\right) \int_{0}^{1} \rho_{\mu}(x, t) d t \\
\quad \leq \frac{4}{\varepsilon^{2}} \int_{0}^{1}\left|\left[\partial_{x} \rho_{\nu}\right]\left(T_{1}(x), t\right)\right| T_{1}^{\prime}(x) d t \int_{0}^{1}\left|\partial_{x} \rho_{\mu}(x, t)\right| d t \tag{5}
\end{align*}
$$

It is easy to see that, for any function $f \in L^{p}(\Omega)$, where $p>1$, the function $\int_{0}^{1} f(x, t) d t$ belongs to $L^{p}(\Omega)$ by Fubini's theorem. It follows by Hölder's inequality that if $f \in L^{\alpha}(\Omega)$, $g \in L^{\beta}(\Omega)$, then $f g \in L^{p}(\Omega)$ where $p=\alpha \beta(\alpha+\beta)^{-1}$. Thus to prove our statement in the case of smooth a density ρ_{ν} it is enough to show that $\left[\partial_{x} \rho_{\nu}\right]\left(T_{1}(x), y\right) T_{1}^{\prime}(x) \in L^{\beta}(\Omega)$, $\partial_{x} \rho_{\mu}(x, y) \in L^{\alpha}(\Omega)$. The hypotheses of the theorem imply that $\partial_{x} \rho_{\mu}(x, y) \in L^{\alpha}(\Omega)$. By the change of variables formula and the fact that $T_{1}^{\prime}(x) \leq M / \varepsilon$ we deduce that

$$
\begin{aligned}
& \int_{\Omega}\left|\left[\partial_{x} \rho_{\nu}\right]\left(T_{1}(x), y\right) T_{1}^{\prime}(x)\right|^{\beta} d x d y=\int_{\Omega}\left|\partial_{x} \rho_{\nu}(x, y)\right|^{\beta}\left(T_{1}^{\prime}\left(T_{1}^{-1}(x)\right)\right)^{\beta-1} d x d y \\
& \leq \frac{M^{\beta-1}}{\varepsilon^{\beta-1}} \int_{\Omega}\left|\partial_{x} \rho_{\nu}(x, y)\right|^{\beta} d x d y
\end{aligned}
$$

where the existence of the right hand side of the equality implies the existence of the left hand side. Thus $\partial_{x} T_{2}$ belongs to $L^{p_{2}}(\Omega)$ and we obtain the following estimate:

$$
\begin{equation*}
\left\|\partial_{x} T_{2}\right\|_{L^{p_{2}}(\Omega)} \leq C\left\|\partial_{x} \rho_{\nu}\right\|_{L^{\beta}(\Omega)}\left\|\partial_{x} \rho_{\mu}\right\|_{L^{\alpha}(\Omega)}, \tag{6}
\end{equation*}
$$

where C is a constant which depends only on ε and M.
From now on we do not assume that the density ρ_{ν} is smooth, but we suppose that the hypotheses of the theorem are fulfilled. There exists a sequence of smooth densities $\rho_{\nu(m)}$ convergent to ρ_{ν} in the norm of $W^{\beta, 1}$. In addition, we can choose it so that for $\rho_{\nu^{(m)}}$ the hypotheses of the theorem are fulfilled with the same ε, M and β for any m. Inequality (6) applied to the densities $\rho_{\nu^{(m)}}$ and the corresponding triangular transformations $T^{(m)}$ implies the boundedness of the sequence of functions $\partial_{x} T_{2}^{(m)}$ in the class $L^{p_{2}}(\Omega)$. Now to prove the theorem it is enough to show that the sequence of functions $T_{2}^{(m)}$ converges to T_{2} in $L^{p_{2}}(\Omega)$. Notice that because the absolute values of $T_{2}^{(m)}$ and T_{2} do not exceed 1, it is enough to establish convergence in measure. It is proved in work [1] that if a sequence of absolutely continuous probability measures ν_{j} defined on \mathbb{R}^{n} converges in variation to measure ν, then sequence of canonical triangular transformations $T_{\mu, \nu_{j}}$ converge in measure to $T_{\mu, \nu}$ (in work [4], a generalization is obtained in the case where measure μ also vary). Because convergence of densities in $W^{\beta, 1}(\Omega)$ implies convergence of measures in the variation norm, the sequence $T_{2}^{(m)}$ converges to T_{2} in $L^{p_{2}}(\Omega)$. The statement in the case $n=2$ proved.

Now we apply induction on n and assume that the statement is proved if $k<n$. According to the construction of the canonical transformation T (see [1]), the first $n-1$ coordinates of the transformation T form the canonical transformation of the projections of the measures on the $(n-1)$-dimensional cube in the hyperplane $x_{n}=0$. We shall denote it by S, and the vector $\left(x_{1}, \ldots, x_{n-1}\right)$ is denoted by x. Obviously, the hypotheses of the theorem are fulfilled for the projections of our measures. Indeed, the densities of the projections are positive, bounded and separated from zero, their derivatives $\int_{0}^{1} \partial_{x_{i}} \rho_{\nu}\left(x, x_{n}\right) d x_{n}, \int_{0}^{1} \partial_{x_{i}} \rho_{\mu}\left(x, x_{n}\right) d x_{n}$ are integrable in necessary powers. Therefore, the components $T_{i}, i=1, \ldots, n-1$, belong to the Sobolev class $W^{p_{n-1}, 1}(\Omega)$, $p_{n-1}>p_{n}$. Thus it remains to prove the membership of $\partial_{x_{i}} T_{n}\left(x, x_{n}\right)$ in $L^{p_{n}}(\Omega)$.

We shall use the following relation for $T_{n}\left(x, x_{n}\right)$:

$$
T_{n}\left(x, x_{n}\right)=F_{\nu_{S(x)}}^{-1}\left(F_{\mu_{x}}\left(x_{n}\right)\right),
$$

where μ_{x} and ν_{x} are conditional measures defined on the segments $\{x\} \times[0,1]$. The derivative of $T_{n}\left(x, x_{n}\right)$ in x_{n} has the same form as in (1), i.e.,

$$
\begin{equation*}
\partial_{x_{n}} T_{n}\left(x, x_{n}\right)=\frac{\rho_{\mu_{x}}\left(x_{n}\right)}{\rho_{\nu_{S(x)}}\left(T_{n}\left(x, x_{n}\right)\right)} . \tag{7}
\end{equation*}
$$

Hence it is integrable in any power. Suppose that the density ρ_{ν} is a smooth function. Then the derivative in $x_{i}, i<n$, has the same form as in (4), i.e.,

$$
\partial_{x_{i}} T_{n}\left(x, x_{n}\right)=-\frac{\left[\partial_{x_{i}} F_{\nu_{S(x)}}\right]\left(T_{n}\left(x, x_{n}\right)\right)}{F_{\nu_{S(x)}}^{\prime}\left(T_{n}\left(x, x_{n}\right)\right)} \partial_{x_{i}} F_{\mu_{x}}\left(x_{n}\right) .
$$

Let us write out multipliers separately:

$$
\begin{gathered}
\left(F_{\nu_{S(x)}}^{\prime}\left(T_{n}\left(x, x_{n}\right)\right)\right)^{-1}=\frac{\int_{0}^{1} \rho_{\nu}(S(x), t) d t}{\rho_{\nu}\left(S(x), T_{n}\left(x, x_{n}\right)\right)} ; \\
\left.\left|\left[\partial_{x_{i}} F_{\nu_{S(x)}}\right]\left(T_{n}\left(x, x_{n}\right)\right)\right|=\left|\partial_{x_{i}}\left(\frac{\int_{0}^{y} \rho_{\nu}(S(x), t) d t}{\int_{0}^{1} \rho_{\nu}(S(x), t) d t}\right)\right|_{y=T_{n}\left(x, x_{n}\right)} \right\rvert\, \\
\leq \frac{2}{\int_{0}^{1} \rho_{\nu}(S(x), t) d t} \int_{0}^{1} \sum_{j=i}^{n-1}\left|\left[\partial_{x_{j}} \rho_{\nu}\right](S(x), t) \partial_{x_{i}} T_{j}\left(x_{1}, \ldots, x_{j}\right)\right| d t, \\
\left|\partial_{x_{i}} F_{\mu_{x}}\left(x_{n}\right)\right| \\
=\left|\partial_{x_{i}}\left(\frac{\int_{0}^{x_{n}} \rho_{\mu}(x, t) d t}{\int_{0}^{1} \rho_{\mu}(x, t) d t}\right)\right| \leq 2 \frac{\int_{0}^{1}\left|\partial_{x_{i}} \rho_{\mu}(x, t)\right| d t}{\int_{0}^{1} \rho_{\mu}(x, t) d t} .
\end{gathered}
$$

Similarly to inequality (5) we obtain the estimate

$$
\begin{equation*}
\partial_{x_{i}} T_{n}\left(x, x_{n}\right) \leq \frac{4}{\varepsilon^{2}} \cdot \int_{0}^{1} \sum_{j=i}^{n-1}\left|\left[\partial_{x_{j}} \rho_{\nu}\right](S(x), t) \partial_{x_{i}} T_{j}\left(x_{1}, \ldots, x_{j}\right)\right| d t \int_{0}^{1}\left|\partial_{x_{i}} \rho_{\mu}(x, t)\right| d t \tag{8}
\end{equation*}
$$

By the inductive assumption for $j=1, \ldots, n-1$ the function $\partial_{x_{i}} T_{j}\left(x_{1}, \ldots, x_{j}\right)$ belongs to $L^{p_{j}}(\Omega)$. In particular, for any j this expression belongs to $L^{p_{n-1}}(\Omega)$. The function $\int_{0}^{1}\left|\partial_{x_{i}} \rho_{\mu}(x, t)\right| d t$ belongs to $L^{\alpha}(\Omega)$ and one has $\partial_{x_{j}} \rho_{\nu}(x, t) \in L^{\beta}(\Omega)$ for any j. Then by the change of variable formula (see [1, p. 7]) we obtain

$$
\int_{\Omega}\left|\left[\partial_{x_{j}} \rho_{\nu}\right](S(x), t)\right|^{\beta} d x d t=\int_{\Omega}\left|\partial_{x_{j}} \rho_{\nu}(x, t)\right|^{\beta} \prod_{k=1}^{n-1} \partial_{x_{k}} T_{k}\left(x_{1}, \ldots, x_{k}\right) d x d t
$$

where $\varepsilon / M \leq \partial_{x_{k}} T_{k}\left(x_{1}, \ldots, x_{k}\right) \leq M / \varepsilon$ according to (7). Thus $\left[\partial_{x_{j}} \rho_{\nu}\right]$ ($\left.S(x), t\right)$ belongs to $L^{\beta}(\Omega)$. By using Hölder's inequality we obtain that the right hand side of inequality (8) and therefore the left hand side belongs to $L^{q}(\Omega)$ where $1 / q=1 / \alpha+1 / \beta+1 / p_{n-1}$, i.e., $q=p_{n}$. In addition, the following chain of equalities holds true:

$$
\begin{aligned}
&\left\|\partial_{x_{i}} T_{n}\right\|_{L^{p_{n}}(\Omega)} \leq C \max _{i \leq j \leq n-1}\left\|\partial_{x_{i}} T_{j}\right\|_{L^{p_{n-1}(\Omega)}} \max _{i \leq j \leq n-1}\left\|\partial_{x_{j}} \rho_{\nu}\right\|_{L^{\beta}(\Omega)}\left\|\partial_{x_{i}} \rho_{\mu}\right\|_{L^{\alpha}(\Omega)} \\
& \leq \leq \max _{i \leq j \leq n-1}\left\|\partial_{x_{i}} T_{j}\right\|_{L^{p_{j}}(\Omega)}\left\|\rho_{\nu}\right\|_{W^{\beta, 1}(\Omega)}\left\|\rho_{\mu}\right\|_{W^{\alpha, 1}(\Omega)},
\end{aligned}
$$

where C is a constant depending only on ε and M. Then by induction we can obtain the estimate

$$
\begin{equation*}
\left\|\partial_{x_{i}} T_{n}\right\|_{L^{p_{n}}(\Omega)} \leq C_{1}\left\|\rho_{\nu}\right\|_{W^{\beta, 1}(\Omega)}^{n-1}\left\|\rho_{\mu}\right\|_{W^{\alpha, 1}(\Omega)}^{n-1} \tag{9}
\end{equation*}
$$

where C_{1} is a constant number depending only on ε and M.
From now on we do not assume that the density ρ_{ν} is smooth. As in the case $n=2$ let us find a sequence of smooth densities $\rho_{\nu^{(m)}}$ for which the hypotheses of the theorem are fulfilled with the same ε, M and β for any m, and the sequence $\rho_{\nu^{(m)}}$ converges to ρ_{ν} in $W^{\beta, 1}(\Omega)$. By inequality (9) applied to the densities $\rho_{\nu^{(m)}}$ and the corresponding triangular transformations $T^{(m)}$, it is easy to show the boundedness of the sequence of functions $\partial_{x_{i}} T_{n}^{(m)}$ in the class $L^{p_{n}}(\Omega)$. The functions $T_{n}^{(m)}$ converge to T_{n} in $L^{p_{n}}(\Omega)$. Hence T_{n} is a limit of the sequence of functions $T_{n}^{(m)}$ in $W^{p_{n}, 1}(\Omega)$. Theorem is completely proved.

This work has been partially supported by the RFBR Grant 04-01-00748 and the DFG Grant 436 RUS 113/343/0(R).

References

[1] Bogachev V.I., Kolesnikov A.V., Medvedev K.V. Triangular transformations of measures, Sbornik Math., 2005, v. 196, no. 3, p. 309-335.
[2] Maz'ja V.G. Sobolev spaces, Springer-Verlag, Berlin, 1985.
[3] Bogachev V.I. Measure Theory, Springer-Verlag, Berlin, 2006.
[4] Aleksandrova D.E. Convergence of triangular transformations of measures, Theory Probab. Appl., 2006, v. 50, no. 1, p. 113-118.

Department of Mechanics and Mathematics, Moscow State University, 119992 Moscow, Russia

