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Abstract

We study increasing triangular transformations T of the n-dimensional cube Ω = [0, 1]n which transform

a measure µ into a measure ν, where µ and ν are absolutely continuous Borel probability measures with

densities ρµ and ρν . It is shown that if there exist positive numbers ε and M such that ε < ρµ < M ,

ε < ρν < M and numbers α, β > 1 that such p = αβ(n − 1)−1(α + β)−1 > 1 and %µ ∈ Wα,1(Ω),
%ν ∈ W β,1(Ω), where Wα,1 denotes the Sobolev class, then the transformation T belongs to the class

W p,1(Ω).

The so called increasing triangular transformations have been investigated in work

[1]. These are transformations of the form T = (T1, . . . , Tn) : Rn → Rn, where T1 is a

function of x1, T2 is a function of (x1, x2) and so on, Ti is a function of (x1, . . . , xi),

and Ti is increasing in xi. The canonical version of T is described in work [1]. Since

our statements do not depend on a Lebesgue version of T (and do not depend on a

µ-version as well because µ is equivalent to Lebesgue measure), we may assume that the

transformation T is canonical. The main result of the paper is the following theorem.

Theorem. Let µ and ν be absolutely continuous Borel probability measures with

densities ρµ and ρν on Ω = [0, 1]n. Let T be an increasing triangular transformation that

transforms the measure µ into ν. Let us assume that there exist

(1) positive numbers ε and M such that ε < ρµ < M , ε < ρν < M ;

(2) positive numbers α, β > 1 such that pn = αβ(n−1)−1(α+β)−1 > 1, %µ ∈ W α,1(Ω),

and %ν ∈ W β,1(Ω).

Then the transformation T belongs to the class W pn,1(Ω).

Proof. We shall prove the statement in the case n = 2. We recall that the Sobolev

class W p,r(Ω) (another notion is Hp,r(Ω)) is defined as the set of functions f ∈ Lp(Ω)

whose derivatives up to order r are elements of Lp(Ω) (regarding Sobolev classes the

reader is referred to [2]). In order to show that the transformation T belongs to the

Sobolev class we shall express its derivatives as functions of the densities of the measures

µ and ν. It is shown in work [1] that

T1(x) = F−1
ν1

(Fµ1(x)) , T2(x, y) = F−1
νT1(x)

(Fµx(y)) ,

where µx and νx are conditional measures on {x} × [0, 1] (on conditional measures see

[3]). In our case the conditional measures determined by the densities

ρµx(y) =
ρµ(x, y)∫ 1

0
ρµ(x, t) dt

, %νx(y) =
ρν(x, y)∫ 1

0
ρν(x, t) dt
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with respect to Lebesgue measure. These densities are referred to as conditional densities.

We shall denote the projections of the measures µ and ν to the interval {(x, 0), x ∈ [0, 1]}
as µ1 and ν1. We denote by Fξ the distribution function of an absolutely coninuous

measure ξ with a positive density %ξ defined on the interval [0, 1], i.e.,

Fξ(x) =

∫ x

0

ρξ(t) dt, x ∈ [0, 1].

The function Fξ has an inverse function because it is strictly increasing. Thus

∂yT1(x) = 0, ∂xT1(x) =
F ′

µ1
(x)

F ′
ν1

(T1(x))
=

ρµ1(x)

ρν1(T1(x))
,

∂yT2(x, y) =
F ′

µx
(y)

F ′
νT1(x)

(T2(x, y))
=

ρµx(y)

ρνT1(x)
(T2(x, y))

. (1)

All the three functions are bounded because the densities ρµ and ρν are bounded

and are separated from zero and thus their conditional densities and the densities of

their projections are separated from zero too. Therefore, they are integrable on Ω in any

power. It only remains to prove that the function ∂xT2 belongs to Lp2(Ω). Let the density

ρν be a smooth function. Then one has the equalities

∂xFµx(y) = ∂x

(∫ y

0
ρµ(x, t) dt∫ 1

0
ρµ(x, t) dt

)

=

∫ y

0
∂xρµ(x, t) dt

∫ 1

0
ρµ(x, t) dt−

∫ 1

0
∂xρµ(x, t) dt

∫ y

0
ρµ(x, t) dt(∫ 1

0
ρµ(x, t) dt

)2 ,

∂xFνT1(x)
(y) = ∂x

(∫ y

0
ρν(T1(x), t) dt∫ 1

0
ρν(T1(x), t) dt

)

=

∫ y

0
[∂xρν ](T1(x), t)T ′

1(x) dt
∫ 1

0
ρν(T1(x), t) dt(∫ 1

0
ρν(T1(x), t) dt

)2

−
∫ 1

0
[∂xρν ](T1(x), t)T ′

1(x) dt
∫ y

0
ρν(T1(x), t) dt(∫ 1

0
ρν(T1(x), t) dt

)2 ,

F ′
νT1(x)

(y) = ∂y

(∫ y

0
ρν(T1(x), t) dt∫ 1

0
ρν(T1(x), t) dt

)
=

ρν(T1(x), y)∫ 1

0
ρν(T1(x), t) dt

.

The following equality holds true as well:

[
∂xF

−1
νT1(x)

]
(y) = −

[
∂xFνT1(x)

]
(F−1

νT1(x)
(y))

F ′
νT1(x)

(F−1
νT1(x)

(y))
. (2)
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Indeed, suppose that f(x, y) = FνT1(x)
(y) and ϕ(x, y) = F−1

νT1(x)
(y). For any x and y we

have the equality f(x, ϕ(x, y)) = y. Differentiation in x leads to the equality

∂xf(x, ϕ(x, y)) + ∂yf(x, ϕ(x, y))∂xϕ(x, y) = 0.

We obtain the equality

∂xϕ(x, y) = −∂xf(x, ϕ(x, y))

∂yf(x, ϕ(x, y))
. (3)

This leads to equality (2) in the case of smooth densities. Then we obtain the following

chain of equalities:

∂xT2(x, y) =
[
∂xF

−1
νT1(x)

]
(Fµx(y))∂xFµx(y) = −

[
∂xFνT1(x)

]
(T2(x, y))[

F ′
νT1(x)

]
(T2(x, y))

∂xFµx(y). (4)

We get ∣∣∣[∂xFνT1(x)

]
(T2(x, y))

∣∣∣ ≤ 2

∫ 1

0
|[∂xρν ](T1(x), t)|T ′

1(x) dt∫ 1

0
ρν(T1(x), t) dt

.

In addition, one has

|∂xFµx(y)| ≤ 2

∫ 1

0
|∂xρµ(x, t)| dt∫ 1

0
ρµ(x, t) dt

.

Due to the inequalities ρν ≥ ε and
∫ 1

0
ρµ(x, t)dt ≥ ε for conditional density we have

|∂xT2(x, y)| ≤ 4

∫ 1

0
|[∂xρν ](T1(x), t)|T ′

1(x) dt
∫ 1

0
|∂xρµ(x, t)| dt

ρν(T1(x), T2(x, y))
∫ 1

0
ρµ(x, t) dt

≤ 4

ε2

∫ 1

0

|[∂xρν ](T1(x), t)|T ′
1(x) dt

∫ 1

0

|∂xρµ(x, t)| dt. (5)

It is easy to see that, for any function f ∈ Lp(Ω), where p > 1, the function
∫ 1

0
f(x, t) dt

belongs to Lp(Ω) by Fubini's theorem. It follows by H�older's inequality that if f ∈ Lα(Ω),

g ∈ Lβ(Ω), then fg ∈ Lp(Ω) where p = αβ(α + β)−1. Thus to prove our statement in

the case of smooth a density ρν it is enough to show that [∂xρν ](T1(x), y)T ′
1(x) ∈ Lβ(Ω),

∂xρµ(x, y) ∈ Lα(Ω). The hypotheses of the theorem imply that ∂xρµ(x, y) ∈ Lα(Ω). By

the change of variables formula and the fact that T ′
1(x) ≤ M/ε we deduce that∫

Ω

|[∂xρν ](T1(x), y)T ′
1(x)|β dx dy =

∫
Ω

|∂xρν(x, y)|β
(
T ′

1(T
−1
1 (x))

)β−1
dx dy

≤ Mβ−1

εβ−1

∫
Ω

|∂xρν(x, y)|β dxdy,
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where the existence of the right hand side of the equality implies the existence of the left

hand side. Thus ∂xT2 belongs to Lp2(Ω) and we obtain the following estimate:

‖ ∂xT2 ‖Lp2 (Ω)≤ C‖∂xρν‖Lβ(Ω)‖∂xρµ‖Lα(Ω), (6)

where C is a constant which depends only on ε and M .

From now on we do not assume that the density ρν is smooth, but we suppose that the

hypotheses of the theorem are fulfilled. There exists a sequence of smooth densities ρν(m)

convergent to ρν in the norm of W β,1. In addition, we can choose it so that for ρν(m) the

hypotheses of the theorem are fulfilled with the same ε, M and β for any m. Inequality

(6) applied to the densities ρν(m) and the corresponding triangular transformations T (m)

implies the boundedness of the sequence of functions ∂xT
(m)
2 in the class Lp2(Ω). Now to

prove the theorem it is enough to show that the sequence of functions T
(m)
2 converges to

T2 in Lp2(Ω). Notice that because the absolute values of T
(m)
2 and T2 do not exceed 1, it

is enough to establish convergence in measure. It is proved in work [1] that if a sequence

of absolutely continuous probability measures νj defined on Rn converges in variation

to measure ν, then sequence of canonical triangular transformations Tµ,νj
converge in

measure to Tµ,ν (in work [4], a generalization is obtained in the case where measure µ

also vary). Because convergence of densities in W β,1(Ω) implies convergence of measures

in the variation norm, the sequence T
(m)
2 converges to T2 in Lp2(Ω). The statement in

the case n = 2 proved.

Now we apply induction on n and assume that the statement is proved if k < n.

According to the construction of the canonical transformation T (see [1]), the first

n − 1 coordinates of the transformation T form the canonical transformation of the

projections of the measures on the (n − 1)-dimensional cube in the hyperplane xn = 0.

We shall denote it by S, and the vector (x1, . . . , xn−1) is denoted by x. Obviously,

the hypotheses of the theorem are fulfilled for the projections of our measures. Indeed,

the densities of the projections are positive, bounded and separated from zero, their

derivatives
∫ 1

0
∂xi

ρν(x, xn) dxn,
∫ 1

0
∂xi

ρµ(x, xn) dxn are integrable in necessary powers.

Therefore, the components Ti, i = 1, . . . , n− 1, belong to the Sobolev class W pn−1,1(Ω),

pn−1 > pn. Thus it remains to prove the membership of ∂xi
Tn(x, xn) in Lpn(Ω).

We shall use the following relation for Tn(x, xn):

Tn(x, xn) = F−1
νS(x)

(Fµx(xn)),

where µx and νx are conditional measures defined on the segments {x} × [0, 1]. The

derivative of Tn(x, xn) in xn has the same form as in (1), i.e.,

∂xnTn(x, xn) =
ρµx(xn)

ρνS(x)
(Tn(x, xn))

. (7)
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Hence it is integrable in any power. Suppose that the density ρν is a smooth function.

Then the derivative in xi, i < n, has the same form as in (4), i.e.,

∂xi
Tn(x, xn) = −

[
∂xi

FνS(x)

]
(Tn(x, xn))

F ′
νS(x)

(Tn(x, xn))
∂xi

Fµx(xn).

Let us write out multipliers separately:(
F ′

νS(x)
(Tn(x, xn))

)−1

=

∫ 1

0
ρν(S(x), t) dt

ρν(S(x), Tn(x, xn))
;

∣∣∣[∂xi
FνS(x)

]
(Tn(x, xn))

∣∣∣ =

∣∣∣∣∣∣∂xi

(∫ y

0
ρν(S(x), t) dt∫ 1

0
ρν(S(x), t) dt

)∣∣∣∣∣
y=Tn(x,xn)

∣∣∣∣∣∣
≤ 2∫ 1

0
ρν(S(x), t) dt

∫ 1

0

n−1∑
j=i

|[∂xj
ρν ](S(x), t)∂xi

Tj(x1, . . . , xj)| dt,

|∂xi
Fµx(xn)| =

∣∣∣∣∣∂xi

(∫ xn

0
ρµ(x, t) dt∫ 1

0
ρµ(x, t) dt

)∣∣∣∣∣ ≤ 2

∫ 1

0
|∂xi

ρµ(x, t)| dt∫ 1

0
ρµ(x, t) dt

.

Similarly to inequality (5) we obtain the estimate

∂xi
Tn(x, xn) ≤ 4

ε2
·
∫ 1

0

n−1∑
j=i

|[∂xj
ρν ](S(x), t)∂xi

Tj(x1, . . . , xj)| dt

∫ 1

0

|∂xi
ρµ(x, t)| dt. (8)

By the inductive assumption for j = 1, . . . , n − 1 the function ∂xi
Tj(x1, . . . , xj) belongs

to Lpj(Ω). In particular, for any j this expression belongs to Lpn−1(Ω). The function∫ 1

0
|∂xi

ρµ(x, t)| dt belongs to Lα(Ω) and one has ∂xj
ρν(x, t) ∈ Lβ(Ω) for any j. Then by

the change of variable formula (see [1, p. 7]) we obtain∫
Ω

∣∣[∂xj
ρν ](S(x), t)

∣∣β dx dt =

∫
Ω

∣∣∂xj
ρν(x, t)

∣∣β n−1∏
k=1

∂xk
Tk(x1, . . . , xk) dx dt,

where ε/M ≤ ∂xk
Tk(x1, . . . , xk) ≤ M/ε according to (7). Thus [∂xj

ρν ](S(x), t) belongs

to Lβ(Ω). By using H�older's inequality we obtain that the right hand side of inequality

(8) and therefore the left hand side belongs to Lq(Ω) where 1/q = 1/α + 1/β + 1/pn−1,

i.e., q = pn. In addition, the following chain of equalities holds true:

‖∂xi
Tn‖Lpn (Ω) ≤ C max

i≤j≤n−1
‖∂xi

Tj‖Lpn−1 (Ω) max
i≤j≤n−1

‖∂xj
ρν‖Lβ(Ω)‖∂xi

ρµ‖Lα(Ω)

≤ C max
i≤j≤n−1

‖∂xi
Tj‖Lpj (Ω)‖ρν‖W β,1(Ω)‖ρµ‖W α,1(Ω),
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where C is a constant depending only on ε and M . Then by induction we can obtain the

estimate

‖∂xi
Tn‖Lpn (Ω) ≤ C1‖ρν‖n−1

W β,1(Ω)
‖ρµ‖n−1

W α,1(Ω), (9)

where C1 is a constant number depending only on ε and M .

From now on we do not assume that the density ρν is smooth. As in the case n = 2

let us find a sequence of smooth densities ρν(m) for which the hypotheses of the theorem

are fulfilled with the same ε, M and β for any m, and the sequence ρν(m) converges to

ρν in W β,1(Ω). By inequality (9) applied to the densities ρν(m) and the corresponding

triangular transformations T (m), it is easy to show the boundedness of the sequence of

functions ∂xi
T

(m)
n in the class Lpn(Ω). The functions T

(m)
n converge to Tn in Lpn(Ω).

Hence Tn is a limit of the sequence of functions T
(m)
n in W pn,1(Ω). Theorem is completely

proved.
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