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1 Introduction

Let O be an open bounded domain of Rn with smooth boundary ∂O. We
consider the linear operator ∆ in L2(O) defined on H2(O)∩H1

0 (O). It is well
known that −∆ is self-adjoint positive and anti-compact. So, there exists a
complete orthonormal system {ek} in L2(O) of eigenfunctions of −∆. We
denote by {λk} the corresponding sequence of eigenvalues,

∆ek = −λkek, k ∈ N.

We shall consider a Wiener process in L2(O) of the following form

W (t) =
∞∑

k=1

µkβk(t)ek, t ≥ 0,
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where {µk} is a sequence of positive numbers and {βk} a sequence of mutu-
ally independent standard Brownian motions on a filtered probability space
(Ω,F , {Ft}t≥0, P). To be more specific, we shall assume that 1 ≤ n ≤ 3.

In this work we consider the stochastic partial differential equation,
dX(t)−∆β(X(t))dt = XdW (t), t ≥ 0,

β(X(t)) = 0, on ∂O, t ≥ 0,

X(0, x) = x.

(1.1)

Here β is a continuous, monotonically increasing function on R which satisfies
the following conditions,

|β(r)| ≤ α1|r|m + α2|r|, ∀ r ∈ R,

j(r) : =

∫ r

0

β(s)ds ≥ α3|r|m+1 + α4r
2, ∀ r ∈ R,

(1.2)

where αi > 0, i = 1, 2, 3, 4 and m ≥ 2. We note that since β is increasing,
the mean value theorem implies that

rβ(r) ≥ j(r), r ≥ 0. (1.3)

Equation (1.1) with additive noise was recently studied in [3],[4],[6], [7],[8],
see also [2]. In particular, in [6] was given an existence result under similar
conditions on β. Here we consider a multiplicative noise (of a special form,
but it would be possible to consider a more general noise f(X)dW (t) with
f(0) = 0), which is needed in order to ensure positivity of solutions.

As was shown in [11] existence and uniqueness of solutions follow by the
general results in [11] (see also [12] for generalizations). In this paper we
present an alternative proof, based on the Yosida approximation of −∆β,
and prove the positivity of solutions for nonnegative initial data x.

As in deterministic case the Sobolev space H−1(O) is natural for studying
equation (1.1). Equation (1.1) can be written in the abstract form

dX(t) + AX(t) = σ(X(t))dW (t), t ≥ 0,

X(0) = x,
(1.4)
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where the operator A : D(A) ⊂ H−1(O) → H−1(O) is defined by
Ax = −∆β(x), x ∈ D(A),

D(A) = {x ∈ H−1(O) ∩ L1(O) : β(x) ∈ H1
0 (O)},

(1.5)

and where

σ(X)dW (t) =
∞∑

k=1

µkXekdβk(t), X ∈ H−1(O). (1.6)

To give a rigorous sense to this noise term we first note that since n ≤ 3, by
Sobolev embedding it follows that

sup
k∈N

1

λk

|ek|∞ < ∞. (1.7)

Furthermore, troughout this paper we shall assume that

∞∑
k=1

µ2
kλ

2
k =: C < ∞. (1.8)

(1.8) implies for some constant c1 > 0

∞∑
k=1

µ2
k|xek|2−1 ≤ c1

∞∑
k=1

µ2
k λ2

k |x|2−1 ≤ c1C|x|2−1, ∀ x ∈ H−1(O), (1.9)

because |xek|2−1 ≤ c1λ
2
k|x|2−1 by an elementary calculation, since n ≤ 3 and

due to (1.7).
Defining

σ(x)h :=
∞∑

k=1

µk(h, ek)xek, x ∈ H−1(O), h ∈ L2(O), (1.10)

we obtain by (1.9) that σ(x) ∈ L2(L
2(O), H−1(O)). Considering (βk)k∈N as

a cylindrical Wiener process on L2(O), it follows that (1.6) is well defined.
Note that since σ is linear we have that x → σ(x) is Lipschitz from H−1(O)
to L2(L

2(O), H−1(O)) (in particular [10], [11], [12] really apply).

The plan of the paper is the following: main results are stated in §2 and
proofs are given in §3.

The following notations will be used troughout in the following.
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(i) H1
0 (O), H2(O) are standard Sobolev spaces on O endowed with their

usual norms denoted by | · |H1
0 (O) and | · |H2(O) respectively.

(ii) H is the space H−1(O) (the dual of H1
0 (O)) endowed with the norm

|x|H = |x|−1 = | −∆−1x|H1
0 (O).

(Here (−∆)−1x = y is the solution to Dirichlet problem −∆y = x in
O, y ∈ H1

0 (O)). The scalar product in H is

〈x, z〉−1 =

∫
O
(−∆)−1 x z dξ, ∀ x, z ∈ H1

0 (O).

(iii) The scalar product and the norm in L2(O) will be denoted by (·, ·) and
| · |2, respectively and the norm in Lp(O), 1 ≤ p ≤ ∞ by | · |p.

(iv) For two Hilbert spaces H1, H2 the space of Hilbert-Schmidt operators
from H1 to H2 is denoted by L2(H1, H2).

2 The main result

To begin with let us define the solution concept we shall work with. Formally,
a solution to (1.1) (equivalently (1.4)) might be an H–valued continuous
adapted process such that X, AX ∈ CW ([0, T ]; L2(Ω; H)) and

X(t) = x−
∫ t

0

AX(s)ds +

∫ t

0

σ(X(s))dW (s), t ∈ [0, T ]. (2.1)

(By CW ([0, T ]; L2(Ω; H)) we mean the Banach space of all the processes X in
(Ω,F , P) with values in H which are adapted and mean square continuous,
endowed with the norm

‖X‖2
CW ([0,T ];L2(Ω;H)) := sup

t∈[0,T ]

E|X(t)|2H .

Spaces Lp
W ([0, T ]; L2(Ω; H)), p ∈ [1,∞], are defined similarly.)

However, such a concept of solution might fail to exist for equation (1.1)
and so we shall confine to a weaker one inspired by [6] and [10].

4



Definition 2.1 An H-valued continuous Ft-adapted process X is called a
solution to (1.1) on [0, T ] if X ∈ Lm+1(Ω× (0, T )×O) and

(X(t), ej) = (x, ej) +

∫ t

0

∫
O

β(X(s))∆ejdξds

+
∞∑

k=1

µk

∫ t

0

(X(s)ek, ej)βk(s), ∀ j ∈ N, t ∈ [0, T ].

(2.2)

Taking into account that −∆ej = λjej in O we may equivalently write (2.2)
as follows

〈X(t), ej〉−1 = 〈x, ej〉−1 −
∫ t

0

∫
O

β(X(s))ejdξds

+
∞∑

k=1

µk

∫ t

0

〈X(s)ek, ej〉−1dβk(s), ∀ j ∈ N,

i.e.

d〈X(t), ej〉−1 + (β(X(t)), ej)2dt =
∞∑

k=1

µk〈X(s)ek, ej〉−1dβk(s).

Recalling (1.6) we see that

∞∑
k=1

µk(X(t)ek, ej)βk(t) = (σ(X(t))W (t), ej), j ∈ N.

We also note that since by assumption (1.2), β(X) ∈ L
m+1

m ((0, T )×Ω×O),
the integral arising in the right hand side of (2.2) makes sense because ej ∈
C∞(O) for all j ∈ N. Of course, one might derive a vector valued version of
Definition 2.1 as in [6]. Now we are ready to formulate the main results.

Theorem 2.2 Assume that (1.2) and (1.8) hold. Then for each x ∈ H−1(O)
there is a unique solution X to (1.1). Moreover, if x ∈ L4(O) is nonnegative
a.e. on O then X ∈ L∞W (0, T ; L4(Ω; L4(O))) and X ≥ 0 a.e. on (0,∞)×O,
P-a.s. If x ∈ H−1(O) is such that x ≥ 0, i.e. x is a positive measure, then
X(t) ≥ 0 for all t ≥ 0, P-a.s.

The positivity of the solution X to (1.1) will be proven below by choosing
an appropriate Lyapunov function.
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3 Proof of Theorem 2.2

As mentionned before the existence and uniqueness part of Theorem 2.2
follows from [10], [11] which is based on finite dimensional Galerkin approx-
imations. However, for later purpose to prove positivity, we shall use an
alternative approach based on the Yosida approximation of the monotone
operator −∆β which may have an intrinsic interest.

We mention that in our estimates in the sequel constants may change
from line to line though we do not express this in our notation.

We recall that the operator A, defined by (1.5), is maximal monotone in
H (see e.g. [5]). Then we consider the Yosida approximation

Aε(x) =
1

ε
(x− Jε(x)) = A(1 + εA)−1(x), ε > 0, x ∈ H,

where Jε(x) = (1 + εA)−1(x). The operator Aε is monotone and Lipschitzian
on H. Then, by (1.9) it follows by standard existence theory for stochastic
equations in the Hilbert spaces (see e.g. [9]) that the approximating equation

dXε(t) + AεXε(t)dt = σ(Xε(t))dW (t), t ≥ 0,

Xε(0) = x,
(3.1)

has a unique solution Xε ∈ CW ([0, T ]; L2(Ω; H)) with AεXε ∈ CW ([0, T ]; L2(Ω; H)).

A priori estimates. By Itô’s formula we have

1

2
d|Xε(t)|2−1 + 〈AεXε(t), Xε(t)〉−1dt

= 〈σ(Xε(t))dW (t), Xε(t)〉−1 +
1

2

∞∑
k=1

µ2
k|Xεek|2−1dt.

(3.2)

This yields (see (1.9))

1

2
E|Xε(t)|2−1 + E

∫ t

0

〈AεXε(s), Xε(s)〉−1ds

≤ 1

2
|x|2−1 + CE

∫ t

0

|Xε(s)|2−1ds
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and therefore

1

2
E|Xε(t)|2−1 + E

∫ t

0

〈AεXε(s), Xε(s)〉−1ds ≤ C|x|2−1, ∀ ε > 0. (3.3)

We set Yε(t) = Jε(Xε(t)) (see (3.1)). Then

1

2
E|Xε(t)|2−1 + E

∫ t

0

∫
O

j(Yε(s))dsdξ

+
1

ε
E
∫ t

0

|Xε(s)− Yε(s)|2−1ds ≤ C|x|2−1, ∀ ε > 0.

(3.4)

(Here we have used the equality

〈Aεx, x〉−1 = 〈AJεx, Jεx〉−1 +
1

ε
|x− Jε(x)|2−1,

and (1.3).) Taking into account estimate (1.2) we conclude that {Yε} is
bounded in CW ([0, T ]; L2(Ω; H)) and Lm+1(Ω× (0, T )×O). Then on a sub-
sequence, again denoted {ε} → 0, we have

Yε → X weakly in Lm+1(Ω× (0, T )×O). (3.5)

It is also clear that X(t) is adapted (because so are Yε). Moreover, since

lim
ε→0

E
∫ t

0

|Xε(s)− Yε(s)|2−1ds = 0,

we infer that
Xε → X weakly in L2

W (Ω; L2(0, T ; H)) (3.6)

and by the weak lower semicontinuity of the convex functional

Y → E
∫ t

0

∫
O

j(Y (s))dsdξ

we conclude by virtue of (3.4) and (3.5) that

E|X(t)|2−1 + E
∫ t

0

∫
O

j(X(s))dsdξ ≤ C|x|2−1, a.e. t ∈ [0, T ]. (3.7)
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Now we consider equation
dX̃ε(t) + AεX̃ε(t)dt = σ(X(t))dW (t), t ≥ 0,

X̃ε(0) = x.

(3.8)

Equivalently,
dX̃ε(t)−∆β(Ỹε(t))dt = σ(X(t))dW (t), t ≥ 0,

X̃ε(0) = x,

(3.9)

where
Ỹε = (1 + εA)−1X̃ε.

Comparing (3.1) and (3.8) we see that by virtue of (3.6) and monotonicity
of Aε we have

lim
ε→0

(Xε(t)− X̃ε(t)) = 0, P-a.s. ∀ t ∈ [0, T ], (3.10)

in the weak topology of H.
On the other hand, for equation (3.8) we have the same estimates as for

(3.1). In fact by Itô’s formula we get (see (3.7))

E|X̃ε(t)|2−1 + E
∫ t

0

∫
O

j(X̃ε(s))dsdξ ≤ C|x|2−1. (3.11)

which by virtue of assumption (1.2) implies that

E
∫ T

0

∫
O
|β(Ỹε(s))|

m+1
m dsdξ ≤ C|x|2−1, ε > 0

and so along a subsequence, we have

β(Ỹε) → η weakly in L
m+1

m ((0, T )× Ω×O). (3.12)

On the other hand, we have by (3.9) that for a.e. t ∈ [0, T ]

〈X̃ε(t), e〉−1 +

∫ t

0

∫
O

η(s)edξds = 〈x, e〉−1 +

∫ t

0

〈σ(X(s))dW (s), e〉−1ds,
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for all e ∈ Lm(O). Then letting ε tend to 0 we get for a.e. t ∈ [0, T ]

〈X(t), e〉−1 +

∫ t

0

∫
O

η(s)edξds = 〈x, e〉−1 +

∫ t

0

〈σ(X(s))dW (s), e〉−1ds.

(3.13)

We note that since by estimate (3.11) X̃ε → X weakly in CW ([0, T ]; L2(Ω; H))
we have by (3.10) that

X̃ε → X weakly in CW ([0, T ]; L2(Ω; H))

Ỹε → X weakly in CW ([0, T ]; L2(Ω; H)) ∩ Lm+1(Ω× (0, T )×O).
(3.14)

Taking into account (3.13), to conclude the proof of existence it suffices to
show that

η(t, ξ, ω) = β(X(t, ξ, ω)) a.e. (ω, t, ξ) ∈ Ω× (0, T )×O. (3.15)

Indeed, in such a case we may take in (3.13) e = ∆ej for j ∈ N.
To this end we consider the operator

F : Lm(Ω× (0, T )×O) → L
m

m+1 (Ω× (0, T )×O) = (Lm(Ω× (0, T )×O))′,

defined by

(Fx)(t, ξ, ω) = β(x(t, ξ, ω)) a.e. (ω, t, ξ) ∈ Ω× (0, T )×O.

This operator is maximal monotone and more precisely, it is the subgradient
of the convex function Φ : Lm(Ω× (0, T )×O → R defined as,

Φ(x) = E
∫ T

0

∫
O

j(x(t, ξ, ω))dtdξ.

For each Z ∈ Lm(Ω× (0, T )O) we have

Φ(Ỹε)− ϕ(Z) ≤ E
∫ T

0

∫
O

β(Ỹε(t, ξ, ω))(Ỹε(t, ξ, ω)− Z(t, ξ, ω))dtdξ

Letting ε tend to 0 we have by (3.12), (3.14) and by the weak lower semi-
continuity of ϕ

Φ(X)−Φ(Z) ≤ lim inf
ε→0

E
∫ T

0

∫
O

β(Ỹε(t, ξ, ω))Ỹε(t, ξ, ω)dtdξ−E
∫ T

0

∫
O

ηZdtdξ.
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To prove (3.15) it suffices to show that

lim inf
ε→0

E
∫ T

0

∫
O

β(Ỹε(t, ξ, ω))Ỹε(t, ξ, ω)dtdξ ≤ E
∫ T

0

∫
O

ηXdtdξ. (3.16)

To this end we come back to equation (3.9) and notice that by Itô’s formula
we have

1

2
E|X̃ε(t)|2−1 + E

∫ t

0

∫
O

β(Ỹε(s))X̃ε(s)dsdξ

=
1

2
|x|2−1 +

1

2

∞∑
k=1

E
∫ t

0

µ2
k|X(s)ek|2−1ds.

Equivalently,

1

2
E|X̃ε(t)|2−1 + E

∫ t

0

∫
O

β(Ỹε(s))Ỹε(s)dsdξ

+E
∫ t

0

∫
O

β(Ỹε(s))(X̃ε(s)− Ỹε(s))dsdξ

=
1

2
|x|2−1 +

1

2

∞∑
k=1

E
∫ t

0

µ2
k|X(s)ek|2−1ds.

Taking into account (3.14) and that∫
O

β(Ỹε(s))(X̃ε(s)− Ỹε(s))dsdξ = 〈AεX̃ε, X̃ε − Jε(X̃ε)〉−1 = ε|AεX̃ε|2−1

we obtain that

lim inf
ε→0

E
∫ t

0

∫
O

β(Ỹε(s)Ỹε(s)dsdξ +
1

2
E|X(t)|2−1

≤ 1

2
|x|2−1 +

1

2

∞∑
k=1

E
∫ t

0

µ2
k|X(s)ek|2−1ds.

(3.17)

(Here we have also used (3.14) and the weak lower continuity of the H-norm.)
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On the other hand, by (3.13) we see via Itô’s formula that for all j ∈ N
and a.e. t ∈ [0, T ],

1

2
E|〈X(t), ej〉−1|2 + E

∫ t

0

〈ηs, ej〉〈X(s), ej〉−1ds

=
1

2
〈x, ej〉2−1 +

1

2
E

∞∑
k=1

µ2
k

∫ t

0

〈X(s)ek, ej〉2ds

and summing up on j we obtain

1

2
E|X(t)|2−1 + E

∫ t

0

∫
O

η(s)X(s)dsdξ

=
1

2
|x|2−1 +

1

2

∞∑
k=1

µ2
kE
∫ t

0

|X(s)ek|2−1ds.

(3.18)

We notice that the integral in the left hand side makes sense since by (3.4),

X ∈ Lm+1((0, T )× Ω×O) while η ∈ L
m+1

m ((0, T )× Ω×O).
Comparing (3.17) and (3.18) we infer that

lim inf
ε→0

E
∫ T

0

∫
O

β(Ỹε(t))Ỹε(t)dtdξ ≤ E
∫ T

0

∫
O

η(t)X(t)dtdξ,

as claimed. Hence X is a solution to equation (1.1). A little problem arises,
however, because X(t) as constructed before might not be H-continuous.
However, arguing as in [10], [11] we may replace it by an H-continuous version
defined by

X̃(t) = x +

∫ t

0

∆η(s)ds +

∫ t

0

σ(X(s))dW (s).

It follows that X = X̃ a.e. and that X̃ is also an Ft-adapted process.
Moreover, the Itô formula from ([10, Theorem I-3-2]) holds. This completes
the proof of existence.

Uniqueness. Let X1, X2 be two solutions to equation (1.1). We have
(see (2.2))

d〈X1−X2, ej〉−1 +

∫
O
(β(X1)−β(X2))ejdξdt =

∞∑
k=1

µk〈(X1−X2)ek, ej〉−1dβk.
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By Itô’s formula we obtain

1

2
E|〈X1(t)−X2(t), ej〉−1|2

+E
∫ t

0

(β(X1)− β(X2), ej)〈X1(s)−X2(s), ej〉−1ds

=
1

2
E
∫ t

0

∞∑
k=1

µ2
k〈(X1(s)−X2(s))ek, ej〉2−1ds

Summing up on j we see that

1

2
E|X1(t)−X2(t)|2−1 + E

∫ t

0

(β(X1)− β(X2), X1(s)−X2(s) ds

=
1

2
E
∫ t

0

∞∑
j,k=1

µ2
k〈(X1(s)−X2(s))ek, ej〉2−1ds.

Then by Gronwall’s lemma we obtain that X1 −X2 = 0 as claimed.

Positivity. We shall assume now that x ∈ L4(O) and x(ξ) ≥ 0 a.e. in
O. We shall prove that

X ≥ 0 a.e. in (0, T )×O × Ω. (3.19)

We shall first assume in addition that β is strictly monotone, i.e.

(β(r)− β(r̄))(r − r̄) ≥ α(r − r̄)2, ∀ r, r̄ ∈ R, (3.20)

where α > 0. Below we shall use the following lemma.

Lemma 3.1 Let y ∈ D(A) and g : R → R Lipschitz and increasing. Then

〈∇β(y),∇g(y)〉Rn ≥ 0, a.e. on O.

Proof. First note that by definition of D(A) we have that y, β(y) ∈ H1
0 (O).

Using a Dirac sequence we can find mollifiers gk ∈ C1(R), g′k ≥ 0, k ∈ N,
such that

∇g(y) = lim
k→∞

g′k(y)∇y in L2(O).
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So, it suffices to prove that

〈∇β(y),∇g(y)〉Rn ≥ 0, a.e. on O.

But
〈∇β(y),∇y〉Rn = 〈∇β(y),∇β−1β(y)〉Rn .

Since β is strictly monotone, β−1 is Lipschitz, so applying the above mollifier
argument with β−1 replacing g, we prove the assertion. �

We shall use the approximating equation (3.1) whose solution Xε is weakly
conve1gent to X in L2

W (Ω; L2(0, T ; H)) (see (3.6)). Namely, we have for
Yε(t) := Jε(Xε(t)), t ≥ 0,

dXε(t)−∆β(Yε(t))dt = σ(Xε(t))dW (t), t ≥ 0. (3.21)

We note that equation (3.1) can be equivalently written as
dXε(t) +

1

ε
Xε(t)dt =

1

ε
Jε(Xε(t))dt + σ(Xε(t))dW (t), t ≥ 0,

Xε(0) = x,

(3.22)

Fix x ∈ H and set
y = Jε(x) = (1− ε∆β)−1x,

i.e.
y − ε∆β(y) = x (3.23)

Then y ∈ D(A). Since β is strictly monotone, β−1 is Lipschitz. Therefore,
since β(y) ∈ H1

0 (O), also y ∈ H1
0 (O) ⊂ L4(O). Now assume x ∈ L4(O). By

multiplying both sides of (3.23) by y3

1+λy2 and integrating over O we get by
Lemma 3.1 ∫

O

y4

1 + λy2
dξ ≤

∫
O

y3x

1 + λy2
dξ.

Then, letting λ → 0 we find the estimate

|y|44 ≤
∫
O

y3xdξ ≤ |y|34 |x|4. (3.24)

Hence
|Jε(x)|4 ≤ |x|4, ∀ x ∈ L4(O), (3.25)
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and therefore,

|Aε(x)|4 =
1

ε
|x− Jε(x)|4 ≤

2

ε
|x|4, ∀ x ∈ L4(O).

(3.23) and (3.25) imply that Jε is continuous from L4(O) into itself.

Lemma 3.2 For each x ∈ L2(O) equation (3.22) has a unique solution Xε ∈
CW ([0, T ]; L2(Ω; L2(O))).

Proof. Let us first prove that Jε = (1 − ε∆β)−1 is Lipschitz continuous in
L2(O). Indeed, by the equation

Jε(x)− ε∆β(Jε(x)) = x, in O,

(taking into account that β(Jε(x)) ∈ H1
0 (O)) we have for x, x̄ ∈ L2(O)∫

O
(Jε(x)− Jε(x̄))(β(Jε(x))− β(Jε(x̄)))dξ

+ε

∫
O
|∇(β(Jε(x))− β(Jε(x̄))|2dξ ≤

∫
O
(x− x̄)(β(Jε(x))− β(Jε(x̄)))dξ.

This yields, recalling (3.20)

α|Jε(x)−Jε(x̄)|22+ε|β(Jε(x))−β(Jε(x̄))|2H1
0 (O) ≤ |x−x̄|2 |β(Jε(x))−β(Jε(x̄))|2.

On the other hand, by the Poincaré inequality there exists C > 0 such that

|β(Jε(x))− β(Jε(x̄))|22 ≤ C|β(Jε(x))− β(Jε(x̄))|2H1
0 (O).

Therefore

α|Jε(x)− Jε(x̄))|22 +
ε

2
|β(Jε(x))− β(Jε(x̄))|2H1

0 (O) +
ε

2C
|β(Jε(x))− β(Jε(x̄))|22

≤ C

2ε
|x− x̄|22 +

ε

2C
|β(Jε(x))− β(Jε(x̄))|22,

and consequently

α|Jε(x)− Jε(x̄))|22 +
ε

2
|β(Jε(x))− β(Jε(x̄))|2H1

0 (O) ≤
C

2ε
|x− x̄|2.

14



So, Jε is Lipschitz continuous in L2(O) as claimed. Consequently Aε =
1
ε

(1− Jε) is Lipschitz continuous in L2(O) as well. Moreover, since

‖σ(x)‖L2(L2(O),L2(O)) ≤
∞∑

k=1

µ2
k|xek|22 ≤

∞∑
k=1

µ2
k|ek|2L∞(O) |x|22 ≤ C1

∞∑
k=1

µ2
kλ

2
k |x|22

we infer by standard existence theory for stochastic PDEs that for each x ∈
L2(O) equation (3.22) has a unique solution in Xε ∈ CW ([0, T ]; L2(Ω; L2(O)))
(see e.g. [9]). �

For R > 0 define

Kα
R := {X ∈ L∞W (0, T ; L4(Ω×O)) : e−4αtE|X(t)|44 ≤ R4 for a.e. t ∈ [0, T ]}

Lemma 3.3 Let T > 0 and x ∈ L4(O). Then for the solution Xε of (3.1)
(or equivalently (3.22)) we have Xε ∈ L∞W (0, T ; L2(Ω×O)).

Proof. Obviously, KR is a closed subset of L∞W (0, T ; L4(Ω × O)). Since by
(3.22) Xε is a fixed point of the map F

X 7→ e−
t
ε x +

1

ε

∫ t

0

e−
(t−s)

ε Jε(X(s))ds +

∫ t

0

e−
(t−s)

ε σ(X(s))dW (s), t ∈ [0, T ],

obtained by iteration in CW (0, T ; L2(Ω × O)), it suffices to prove that this
map leaves Kα

R invariant for R and α large enough. But for X ∈ Kα
R we have

by (3.25) for t ≥ 0(
e−4αtE

∣∣∣∣e− t
ε x +

1

ε

∫ t

0

e−
(t−s)

ε Jε(X(s))ds

∣∣∣∣4
4

)1/4

≤ e−( 1
ε
+α)t|x|4 +

R

1 + αε
.

Now we set

Y (t) =

∫ t

0

e−
(t−s)

ε σ(X(s))dW (s), t ≥ 0.

Then 
dY (t) +

1

ε
Y (t)dt = X(t)dW (t), t ≥ 0,

Y (0) = 0.

Let λ > 0. Applying Itô’s formula to the function

Ψλ(y) :=
1

4
|(1 + λA0)

−1y|44, y ∈ L2(O),

15



(see the beginning of the proof of the next lemma for a detailed justification)
we obtain via Hölder’s inequality that

E[Ψλ(Y (t))] +
1

ε
E
∫ t

0

∫
O
|(1 + λA0)

−1Y (s)|44dξ ds

=
3

2

∞∑
k=1

µ2
k E
∫ t

0

∫
O
|(1 + λA0)

−1Y (s)|2

×|(1 + λA0)
−1(X(s)ek)|2dξ ds

≤ 3C

2
E
∫ t

0

|(1 + λA0)
−1Y (s)|24 |X(s)|24ds

≤ 1

2ε
E
∫ t

0

|(1 + λA0)
−1Y (s)|44ds +

9C2ε

8
E
∫ t

0

|X(s)|44ds

≤ 1

2ε
E
∫ t

0

|(1 + λA0)
−1Y (s)|44ds +

9C2ε(e4αt − 1)

32α
R4.

Then letting λ → ∞, we see by Fatou’s lemma that for a.e. t ∈ [0, T ] we
have for C1 independent of ε

e−4αtE|Y (t)|44 ≤
C1ε

α
R4, ∀ t ∈ [0, T ].

This means that for α large enough and R > 2|x|4 the map leaves Kα
R invari-

ant as claimed.

Consider now the function

ϕ(x) =
1

4
|x−|44.

For any x ∈ L4(O), ϕ is Gâteaux differentiable and its differential Dϕ : L4(O) →
L4/3(O) is given by

Dϕ(x) = −(x−)3,

while the second Gâteaux derivative D2ϕ(x) ∈ L(L4(O); L4/3(O)) is given
by

(D2ϕ(x)h, g) = 3

∫
O

h g |x−|2dξ, ∀ h, g, x ∈ L4(O).
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Lemma 3.4 Let n ≤ 3. For each x ∈ L4(O) we have

E[ϕ(Xε(t))] + E
∫ t

0

(AεXε(s), Dϕ(Xε(s))ds

= ϕ(x) +
3

2

∞∑
k=1

µ2
k E
∫ t

0

∫
O
|X−

ε (s)ek|2|X−
ε (s)|2dsdξ.

(3.26)

Proof. We note first that since Xε ∈ L∞W (0, T ; L4(Ω; L4(O))) the above
formula makes sense. Next we approximate ϕ by

ϕλ(x) = ϕ((1 + λA0)
−1x), A0 = −∆, D(A0) = H2(O) ∩H1

0 (O), λ > 0.

Since ϕ ∈ C2(C(O)) and (1 + λA0)
−1 is linear continuous from L2(O) to

C(O) (due to our assumption n ≤ 3) we infer that φλ ∈ C2(L2(O)) and its
first order and second order differentials are given, respectively, by

Dϕλ(x) = Dϕ((1 + λA0)
−1x))(1 + λA0)

−1,

(D2ϕλ(x)h, k) = (D2ϕ((1 + λA0)
−1x))((1 + λA0)

−1h, (1 + λA0)
−1k)

for h, k ∈ L2(O), x ∈ L2(O). Note that if x ∈ L4(O), then

Dϕλ(x) = −(1 + λA0)
−1(((1 + λA0)

−1x)−)3.

So, for λ → 0 we have ϕλ(x) → ϕ(x) and Dϕλ(x) → Dϕ(x) in L4/3(O).
Next we write Itô’s formula for ϕλ in the space L2(O) which makes sense by
Lemma 3.2.

We get

E[ϕλ(Xε(t))] + E
∫ t

0

(Aε(Xε(s)), Dϕλ(Xε(s)))ds = ϕλ(x)

+
3

2

∞∑
k=1

µ2
k E
∫ t

0

∫
O
|((1 + λA0)

−1(Xε(s)ek)|2 |((1 + λA0)
−1Xε(s))

−|2dξ ds.
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This yields

E[ϕλ(Xε(t))]− E
∫ t

0

∫
O
(1 + λA0)

−1(Aε(Xε(s)))(((1 + λA0)
−1Xε(s))

−)3dξds

= ϕλ(x)

+
3

2

∞∑
k=1

µ2
k E
∫ t

0

∫
O
|((1 + λA0)

−1Xε(s))
−|2|(1 + λA0)

−1(Xε(s)ek)|2dξ ds.

(3.27)
We know that for λ → 0, (1 + λA0)

−1Xε(s) → Xε(s) strongly in L4(O)
a.e. in Ω× (0, T ) and

|(1 + λA0)
−1Xε|4 ≤ |Xε|4, a.e. in Ω× (0, T ).

Then by the Lebesgue dominated convergence theorem we have

lim
λ→0

(1 + λA0)
−1Xε = Xε strongly in L4(Ω× (0, T )×O). (3.28)

Similarly, since Aε(Xε) ∈ L4(Ω× (0, T )×O) we have for λ → 0

(1 + λA0)
−1(Aε(Xε)) → Aε(Xε), strongly in L4(Ω× (0, T )×O).

and

((1 + λA0)
−1Xε)

− → X−
ε , strongly in L4(Ω× (0, T )×O).

This yields

lim
λ→0

E
∫ t

0

∫
O
(1 + λA0)

−1(Aε(Xε(s)))(((1 + λA0)
−1Xε(s))

−)3dξds

=

∫ t

0

∫
O

Aε(Xε(s))(X
−
ε (s))3dξds.

(3.29)

Then, if x ∈ L4(O) letting λ → 0 in (3.27) we get (since by Fatou’s lemma
Eϕ(Xε(t)) ≤ lim infλ→0 Eϕλ(Xε(t)), ∀ t ≥ 0)

E[ϕ(Xε(t))]− E
∫ t

0

∫
O

Aε(Xε(s))(X
−
ε (s))3dξds

= ϕ(x) +
3

2

∞∑
k=1

µ2
k E
∫ t

0

∫
O
|Xε(s)ek|2 |X−

ε (s)|2dξds,
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and so (3.26) follows. �

We have by (3.26) and the definition of Yε that for x ∈ L4(O), x ≥ 0,

E[ϕ(Xε(t))] + E
∫ t

0

∫
O

∆β(Yε(s))(X
−
ε (s))3dsdξ

=
3

2

∞∑
k=1

µ2
k E
∫ t

0

∫
O
|X−

ε (s)ek|2 |X−
ε (s)|2dξds

≤ 3C

2
E
∫ t

0

|X−
ε (s)|44ds.

(Recall thatAε(Xε) = −∆β(Yε).)
We therefore have, taking into account that ∆β(Yε) = 1

ε
(Yε −Xε),

1

4
E|X−

ε (t)|44 +
1

ε
E
∫ t

0

∫
O
(Yε(s)−Xε(s))(X

−
ε (s))3dξds

≤ 3C

2
E
∫ t

0

|X−
ε (s)|44ds.

(3.30)

We have

|Y −
ε (t)|44 ≤

∫
O

Xε(t)(−Y −
ε (t))3dξ, P-a.s.. (3.31)

To see this, analogously to deriving (3.24) for x ∈ L4(O), we multiply (3.23)
by g(y) where

g(y) : =
−(y−)3

1 + λ(y−)2
,

to get (after integration by parts) that∫
O

(y−)4

1 + λ(y−)2
dξ + ε

∫
O
〈∇β(y),∇g(y)〉Rn dξ =

∫
O

x(−y−)3

1 + λ(y−)2
dξ.

Note that g as a composition of two decreasing Lipschitz functions is Lipschitz
and increasing. So, we can apply Lemma 3.1 to obtain∫

O

(y−)4

1 + λ(y−)2
dξ ≤

∫
O

x(−y−)3

1 + λ(y−)2
dξ
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and (3.31) follows by taking λ →∞. By (3.31) we have

−|Y −
ε (t)|44 ≥

∫
O
(X+

ε (t)−X−
ε (t))(Y −

ε (t))3dξ ≥ −
∫
O

X−
ε (t)(Y −

ε (t))3dξ

and therefore |Y −
ε (t)|44 ≤ |X−

ε (t)|4 |Y −
ε (t)|34. Hence |Y −

ε (t)|4 ≤ |X−
ε (t)|4 and

so ∫
O

Y −
ε (t)(X−

ε (t))3dξ ≤ |X−
ε (t)|34 |Y −

ε (t)|4 ≤ |X−
ε (t)|44.

Inserting the latter into(3.30) and taking into account that YεX
−
ε ≥ −Y −

ε X−
ε

we see that E|X−
ε (t)|44 = 0, a.e. t ≥ 0 i.e, X−

ε (t) = 0 a.e. and therefore
Xε(t) ≥ 0 a.e.. Taking into account (3.6) we infer that X ≥ 0. This completes
the proof in the case when β is strictly monotone. �

To treat the general case of β satisfying (1.2) we shall associate to (1.4)
the equation

dXλ(t) + AλXλ(t) = σ(Xλ(t))dW (t), t ≥ 0,

Xλ(0) = x,
(3.32)

where
Aλ(x) = −∆(β(x) + λx), λ > 0

and
D(Aλ) = {x ∈ H−1(O) ∩ L1(O) : β(x) + λx ∈ H1

0 (O)}
According to the first part of the proof, for each x ∈ L4(O), x ≥ 0 and λ > 0,
equation (3.32) has a unique strong solution Xλ which is nonnegative a.e.
on Ω× (0, T )×O.

On the other hand, applying the Itô formula from [10, Theorem I 3.2] to
the equation

d(Xλ(t)−X(t)) + (AλXλ(t)− AX(t))dt = (Xλ(t)−X(t))dW (t)

where X is the solution to (1.1), we get after some calculations that

1

2
E|Xλ(t)−X(t)|2−1 + λE

∫ t

0

〈Xλ(s), Xλ(s)−X(s)〉−1ds

≤ 1

2

∞∑
k=1

µ2
k E
∫ t

0

|(Xλ(s)−X(s))ek|2−1ds.

20



This yields (see (1.9)), since

〈Xλ(s), Xλ(s)−X(s)〉−1 ≥ 〈X(s), Xλ(s)−X(s)〉−1,

E|Xλ(t)−X(t)|2−1 ≤ CE
∫ t

0

|Xλ(s)−X(s)|2−1ds + λ2E
∫ t

0

|X(s)|2−1ds.

Since X ∈ CW ([0, T ]; L2(Ω, L2(O)), we infer via Gronwall’s lemma that

lim
Xλ→0

Xλ = X in CW ([0, T ]; L2(Ω, L2(O))

and so X ≥ 0 a.e. in Ω× (0, T )×O as claimed.
The final part of the assertion in Theorem 2.2 follows by the continuity of

sample paths, since L4(O) is dense in H−1(O) and the continuity of solutions
X = X(t, x) with respect to the initial data x (which follows via Itô’s formula
in the proof of uniqueness). �

4 Concluding remarks

1) Assumption 1 ≤ n ≤ 3 is unnecessarily strong and was taken for conve-
nience only. As a matter of fact, under suitable conditions of the form
(1.8) we expect that Theorem 2.2 can be established for any dimension
n. This will be the subject of a forthcoming paper.

2) Theorem 2.2 and its proof remain valid for time–dependent nonlinear
functions β = β(t, x) where β is monotonically increasing in x, satisfies
(1.2) uniformly with respect to t and is continuous in t.

3) One might speculate however that nonnegativity of X(t, x) for x ≥ 0
follows directly in H−1(O) by taking instead of ϕ(x) = 1

4
|x|44 a suit-

able C2-function on H−1(O) which is zero on the cone of positive
x ∈ H−1(O) but so far we failed to find such a function.
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