
Capacities and surface measures
in locally convex spaces

Pugachev O.V.

Abstract. We prove tightness of capacities generated by Sobolev classes of all orders in
a wide class of locally convex spaces. We employ these capacities in construction of surface
measures on level sets of Sobolev functions and local Sobolev functions.

AMS 1991 Subject classification:
Primary: 28C15
Secondary: 60B11
Keywords and phrases: tightness of capacity, Sobolev classes over infinite dimensional
spaces, surface measure, Gauss–Ostrogradskii formula, local Sobolev functions.

1 Sobolev classes and capacities

The problem of tightness of capacities generated by Sobolev classes of functions over
smooth measures arises in measure theory and stochastic analysis. The problem of tight-
ness of classical Sobolev capacities in infinite dimensional case has been considered in
many works, in particular, in [1], [3], [5], [11], [13]. Tightness of capacities generated by
the classes W r,p is important for construction of surface measures on infinite dimensional
spaces (see Section 2 and the references therein).

In the present work, we consider the Sobolev classes generated by Radon probability
measures on a certain class of locally convex spaces that is wider than the one in [8].
The related results concerned with surfaces measures (see Section 2) are also generalized.
Then, in Section 3, a new construction based on local Sobolev classes is developed.

1.1 Differentiability of measures

Let X be a locally convex space (l.c.s.); let a separable Hilbert space H be continuously
embedded into X. Denote by 〈·; ·〉 the scalar product in H, by | · | the norm in H. Then
the formula

jH : X∗ → H∗ = H, 〈jH(l);h〉 = l(h) ∀h ∈ H,

defines a continuous mapping with dense range. If a function f is differentiable at a point
x in some sense (Gâteaux or Sobolev), then the vector DHf(x) = jH(f ′(x)) (gradient
along H) corresponds to the linear functional f ′(x) ∈ X∗.

Let E be a separable Hilbert space. Denote by H1(H,E) the class of Hilbert–Schmidt
operators from H to E endowed with the Hilbert–Schmidt norm

‖T‖2
H1(H,E) =

∞∑
m=1

‖Tem‖2
E,
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where {em} is an orthonormal basis of H. The classes of Hilbert–Schmidt operators of
higher orders are defined inductively:

Hn(H,E) = H1(H,Hn−1(H,E)), n = 2, 3, ...,

equipped with the norms

‖T‖2
Hn(H,E) =

∞∑
m1=1

. . .
∞∑

mn=1

‖T (em1 , . . . emn)‖2
E.

For n = 0 it is natural to set H0(H,E) = E.
A function f : X → E is said to be smooth cylindrical if it has the form

f(x) =
n∑
k=1

uk(l1(x), . . . lm(x))yk

with n,m ∈ N, uk ∈ C∞
b (Rm), lj ∈ X∗, yk ∈ E. Denote the class of such functions by

FC∞b (X,E). It is easy to see that any smooth cylindrical function f is continuous and
infinitely Fréchet differentiable along H; its gradient of order r along H is defined by

Dr
Hf(x)(h1, . . . hr) = ∂h1 . . . ∂hrf(x), h1, . . . hr ∈ H,

which belongs to Hr(H,E) at any x ∈ X, and its Hilbert–Schmidt norm ‖Dr
Hf(x)‖Hr(H,E)

is bounded.
From now on, in the case E = R we will omit the index E in our notation of classes

of functions.
Let µ be a probability measure on X. If µ is Fomin differentiable along a vector h ∈ X,

we denote by βµh the logarithmic derivative of µ along h (see [6], [3], [5]). The function
βµh is determined from the integration by parts formula∫

X

∂hϕ(x)µ(dx) = −
∫
X

ϕ(x)βµh (x)µ(dx)

for every smooth cylindrical function ϕ on X.
For a non-Gaussian probability measure µ on a l.c.s. X we introduce the following

analog of the Cameron–Martin space:

H(µ) =
{
h ∈ X : βµh ∈ L

2(µ)
}
.

This space is Hilbert when endowed by the norm ‖h‖H(µ) = ‖βµh‖L2(µ); it is continuously
embedded in X; if L2(µ) is separable, then so is H(µ) (see [5, Ch. 5]).

From now on, we shall assume that the measure µ is such that, if a function FC∞b (X) 3
ϕ = 0 µ-a. e., then DHϕ = 0 µ-a. e. In particular, this is the case if supp µ = X.

We shall assume, in addition, that

jH(X∗) ⊂ H(µ). (1.1)

A measure µ is (Fomin) differentiable along a vector field v : X 7→ X if there exists a
signed measure of finite variation dvµ such that∫

∂vϕ(x)µ(dx) = −
∫
ϕ(x)dvµ(dx) ∀ϕ ∈ FC∞b (X),

where ∂vϕ(x) = ϕ′(x)(v(x)); and if one has dvµ� µ. The density of dvµ with respect to
µ is called divergence of v and denoted by δv.
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1.2 Sobolev classes

Definition 1.1. A function f ∈ Lp(µ,E) belongs to the Sobolev class W r,p(µ,E), p ≥ 1,
r ∈ N, if there exists a sequence of functions fn ∈ FC∞b (X,E) converging to f in Lp(µ,E)
and fundamental in the norm

‖f‖r,p,E = ‖f‖Lp(µ,E) +
r∑

k=1

‖Dk
Hf‖Lp(µ,Hk(H,E)) (1.2)

For m = 1, . . . r, the Lp(µ,Hm(H,E))-limit of functions Dm
Hfn is called the gradient of

order m of f and denoted by Dm
Hf .

Under condition (1.1), if p ≥ 2, Sobolev gradients do not depend on our choice of a
sequence {fn}. This implies that if two functions from W r,p(µ) coincide µ-a.e., then their
gradients of orders up to r coincide µ-a.e.

The following statement is derived from Hölder’s inequality and from the identity

Dk
H(fg) =

k∑
j=0

Cj
kD

j
Hf ⊗Dk−j

H g.

Lemma 1.1. (i) If f ∈ W r,p(µ), g ∈ W r,q(µ), 1 < p, q < ∞, 1/p + 1/q = 1/s ≤ 1, then
fg ∈ W r,s(µ) with ‖fg‖r,s ≤ 2r · ‖f‖r,p · ‖g‖r,q.
(ii) If f ∈ W r,p(µ,H), h ∈ W r,q(µ,H) with r ≥ 0, 1/p + 1/q = 1/s ≤ 1, then 〈f, h〉 ∈
W r,s(µ).

Lemma 1.2. Let f ∈ W r,p(µ); let ϕ ∈ Cr−1
b (R) be such that ϕ(r−1) is Lipschitzian. Then

ϕ ◦ f ∈ W r,p(µ), and its gradients of orders up to r are calculated by the chain rule.

Lemma 1.3. If jH(X∗) ⊂ H(µ), then the Sobolev classes W r,p(µ), p ≥ 2, possess the
localization property, i.e., if a function f belongs to one of such classes, A = {f = 0},
then all derivatives of f of orders k ≤ r vanish on A µ-almost everywhere (see [5, Lemma
7.3.1]).

Lemma 1.4. Let f ∈ W 1,p(µ). If the measure µ is differentiable along the vector field
v ∈ Lq(µ,H) with δv ∈ Lq(µ), 1/p+ 1/q = 1, then the measure fµ is differentiable along
v as well;

dv(fµ) =
(
f · δv + ∂vf

)
µ.

Proof. We begin with f ∈ FC∞b (X). For any ϕ ∈ FC∞b (X) we have∫
∂vϕ(x)f(x)µ(dx) =

∫
∂v(ϕ(x)f(x))µ(dx)−

∫
ϕ(x)∂vf(x)µ(dx) =

= −
∫
ϕ(x)f(x)dvµ(dx)−

∫
ϕ(x)∂vf(x)µ(dx) =

= −
∫
ϕ(x)

(
f(x)δv(x) + ∂vf(x)

)
µ(dx). (1.3)

The variation of the measure (f · δv + ∂vf)µ does not exceed ‖f‖Lp(µ) · ‖δv‖Lq(µ) +
‖DHf‖Lp(µ,H) · ‖v‖Lq(µ,H). For a fixed v it is estimated via ‖f‖1,p. Hence formula (1.3)
remains valid when passing to the limit as FC∞b 3 fn → f in W 1,p(µ).
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1.3 Capacities

Let F be some linear subspace of L1(µ) endowed with a norm ‖ · ‖0 such that, if f = 0
µ-a. e. then ‖f‖0 = 0. The capacity generated by F is defined as follows.

Definition 1.2. If a set U ⊂ X is open, then

CF(U) = inf{‖f‖0 : f ∈ F , f ≥ 0; f ≥ 1 on U µ-a. e.}.

For an arbitrary set A ⊂ X let

CF(A) = inf{CF(U) : A ⊂ U, U is open}.

In general, capacities are not additive. The triangle inequality for a norm implies the
subadditivity of CF , i.e., for any two sets A and B we have

CF(A ∪B) ≤ CF(A) + CF(B).

Definition 1.3. A function f is said to be CF -quasicontinuous if there exist closed sets
Qn such that f |Qn is continuous for each n, and CF(X\Qn) < 1/n.

It is known that for any function f ∈ W r,p(µ) there exists a CW r,p-quasicontinuous
µ-version (see [5, Theorem 7.4.6]).

It follows from Lemma 1.1 that for any set A ⊂ X one has CW r,p(A) ≤ CW r′,p′ (A)
when p ≤ p′, r ≤ r′.

1.4 Convolution of a function with a measure

Definition 1.4. Let H be a separable Hilbert space continuously embedded in X. We say
that H satisfies condition (T1) if there exists a centered Radon Gaussian measure γ on
X such that H ⊂ H(γ) (this embedding is automatically continuous).

Lemma 1.5. Let H ⊂ X be a separable Hilbert space satisfying (T1). Let f : X 7−→ R
be a universally measurable bounded function. Then the function

F (x) =

∫
X

f(x+ y)γ(dy) (1.4)

is infinitely Gâteaux differentiable along H, its derivatives Dn
HF (x) are Hilbert–Schmidt

operators, and

‖Dn
HF (x)‖Hn(H) ≤ cn · ‖f(x+ ·)‖L2(γ) ≤ cn · sup

y
|f(y)|,

where cn = cn
√
n!, c is the norm of embedding operator H ↪→ H(γ).

Proof. Let H0 be the closure of H in H(γ), endowed with the norm from H(γ). The
Hilbert space H0 is separable as well as H. Since the embedding H ↪→ H(γ) has finite
norm c, we have

‖T‖Hn(H,E) ≤ cn · ‖T‖Hn(H0,E)

for any Hilbert–Schmidt operator T : H0 7−→ E. Therefore, it is sufficient to prove
our statement in the case of equal norms of H and H0. The existence of the Gâteaux
derivatives follows from [5, Example 2.1.15]. Let {ej} be an orthonormal basis of H = H0.
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Let us fix orders of differentiation k1, k2, . . . along e1, e2, . . . respectively; k1+ . . .+km = n.
Denote Lm = l.h.{e1, . . . em} = {

∑m
j=1 tjej}; X = Xm ⊕ Lm. Then γ can be represented

as a product of Gaussian measures on Xm and on Lm:

γ = γm ⊗

(
1

(2π)m/2
exp

[
−1

2

m∑
j=1

t2j

]
dt1 . . . dtm

)
.

By decomposing y = z +
∑m

j=1 tjej we find ∂k1e1 . . . ∂
km
em
F (x) =

= ∂k1t1 . . . ∂
km
tm

∫
Xm

∫
Lm

f(x+ z +
m∑
j=1

tjej)
exp

[
−1

2

∑m
j=1 t

2
j

]
(2π)m/2

dt1 . . . dtmγm(dz) =

=

∫
Xm

∫
Lm

f(x+ z +
m∑
j=1

tjej)
m∏
j=1

(
∂
kj

tj

exp(−1
2
t2j)√

2π

)
dt1 . . . dtmγm(dz) =

= (−1)n
∫
X

f(x+ z +
m∑
j=1

tjej)
m∏
j=1

(√
kj! ·Hkj

(tj)
)
γ(dy),

where Hk(t), k = 0, 1, 2, . . . are the Hermite polynomials. It is known (see [3]) that the

functions
m∏
j=1

Hkj
(tj) are orthonormal in L2(γ). By Bessel’s inequality we obtain

∞∑
i1=1

· · ·
∞∑
in=1

(
∂ei1

. . . ∂ein
F (x)

)2
=

=
∞∑
m=1

∑
k1+...+km=n

∫
X

f(x+ y)
m∏
j=1

(√
kj! ·Hkj

(tj)
)
γ(dy)

2

≤

≤ n!

∫
X

f (x+ y)2 γ(dy) = n! · ‖f(x+ ·)‖2
L2(γ) ≤ n! · sup

y
|f(y)|2.

Corollary 1.1. The function F constructed in Lemma 1.5 is µ-measurable, and for p ≥ 2
one has

‖F‖Lp(µ) ≤ ‖f‖Lp(µ∗γ),

‖Dn
HF‖Lp(µ,Hn(H)) ≤ cn · ‖f‖Lp(µ∗γ).

Proof. Let us verify that F is µ-measurable. Let A ⊂ X be a µ-measurable set. Set

µF (A) =

∫
A

∫
f(x+ y)γ(dy)µ(dx) ≡

∫
f(z)

(
(µ |A) ∗ γ

)
(dz).

This expression is well-defined since f is universally measurable. The countable additivity
of the function µF is easily verified. The measure µF is absolutely continuous with respect
to µ, and its Radon–Nikodym density coincides with F µ-a. e.
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Let p ≥ 2. Then ∫
|F (x)|pµ(dx) ≤

∫
‖f(x+ ·)‖pL1(γ)µ(dx) ≤

≤
∫
‖f(x+ ·)‖pLp(γ)µ(dx) = ‖f‖pLp(µ∗γ);∫

‖Dn
HF (x)‖pH(H)µ(dx) ≤ cpn ·

∫
‖f(x+ ·)‖pL2(γ)µ(dx) ≤

≤ cpn ·
∫
‖f(x+ ·)‖pLp(γ)µ(dx) =

(
cn · ‖f‖Lp(µ∗γ)

)p
,

which completes the proof.

1.5 Tightness of Sobolev capacities

Definition 1.5. A capacity CF is tight if for any ε > 0 there exists a compact set Kε ⊂ X
such that CF(X\Kε) < ε.

The first positive result on tightness of Sobolev capacities in the non-Gaussian case is
the following theorem [11, Proposition 3.1].

Theorem 1.1. Let X be a separable Banach space with a probability measure µ and let
H be a separable Hilbert space continuously embedded in X. Suppose that Sobolev class
W 1,p(µ) is well-defined. Then the capacity CW 1,p(µ) is tight.

A new result of this paper is this.

Theorem 1.2. Let X be a l.c.s. with a Radon probability measure µ. Suppose that for
any ε > 0 there exists a metrizable compact set Kε ⊂ X with µ(X\Kε) < ε. Let H ⊂ X
be a separable Hilbert space with (T1). Then the capacity Cr,p = CW r,p(µ) is tight for any
p ∈ [1; +∞), r ∈ N, provided that the Sobolev class W r,p(µ) is well-defined.

Proof. Choose a centered Radon Gaussian measure γ with H(γ) ⊃ H. Put ε = 10−j for
some j ∈ N; let Kε be a metrizable compact set with µ(X\Kε) < ε and let Kε

γ be an
absolutely convex metrizable compact set with γ(X\Kε

γ) < ε. Denote by Kj the convex
hull of Kε ∪ (−Kε) ∪Kε

γ.
Consider the function ϕj(x) = γ(X\(2Kj − x)). If x ∈ Kj, then 2Kj − x ⊃ Kj, hence

ϕj(x) ≤ γ(X\Kj) <
1
10

. On the other hand, if x /∈ 2Kj, then

1− ϕj(x) = γ(2Kj − x) = γ(−2Kj + x),

but the compact sets 2Kj − x and −2Kj + x are disjoint: if it were not so, there would
exist a point y with y + x ∈ 2Kj, −y + x ∈ 2Kj, hence x ∈ 2Kj. Therefore, ϕj(x) ≥ 1

2
.

The function ϕj has the form (1.4) with f(x) = IX\2Kj
(x). By Lemma 1.5 we obtain

the Gâteaux differentiability of any order of ϕj along all vectors h ∈ H, and the estimate

‖Dn
Hϕj(x)‖H ≤ cn · ‖IX\(2Kj−x)‖L2(γ),

where cn = cn
√
n!, c is the norm of the embedding H ↪→ H(γ).

Fix a non-decreasing function ψ ∈ C∞(R) such that ψ |[0; 1
10

]= 0, ψ |[ 1
2
;1]= 1. Denote

gj = ψ ◦ ϕj. Then 1 ≥ gj ≥ 0, gj |X\2Kj
= 1, gj |Kj

= 0, and we obtain

‖gj‖Lp(µ) ≤
(
µ(X\Kj)

)1/p −→ 0
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as j →∞. Moreover, by estimating the gradients of gj by the chain rule, we have∫
‖Dn

Hgj(x)‖
p
Hµ(dx) ≤ (cn · 2n sup

[0;1]

n∑
k=1

|ψ(k)|)p
∫
‖IX\(2Kj−x)‖

p
L2(γ)µ(dx) ≤

≤ Cn(p)

[ ∫
X\Kj

µ(dx) +

∫
Kj

(
γ(X\Kj)

)p/2
µ(dx)

]
≤

≤ Cn(p)
(
10−j + 10−jp/2

)
→ 0 as j →∞.

Therefore, we obtain Cr,p(X\2Kj) ≤ ‖gj‖r,p < ε for j sufficiently large.
But in order to prove that gj ∈ W r,p, we have to construct a sequence of smooth

cylindrical functions converging to gj in Lp(µ) and fundamental in the norm ‖ · ‖r,p.
Denote by Y the linear span of

∞⋃
j=1

Kj. The linear submanifold Y is a Souslin space,

therefore, there exists a continuous injective linear operator I that maps Y into the
separable Fréchet space Φ = R∞. The I-image of Kj is an absolutely convex compact
set Q ⊂ Φ. It is known that a convex compact set Q in a separable Fréchet space Φ can
be represented as the countable intersection of closed half-spaces of the form {ln ≤ 1},
ln ∈ Φ∗. Therefore, there exists a sequence of decreasing closed convex cylinders Cn =⋂n
i=1{li ≤ 1} with

⋂∞
n=1Cn = Q. The linear functionals li ◦ I : X 7→ R are continuous on

X. Let

Bn = {x ∈ X : li(I(x)) ≤ 1, i = 1, . . . , n} ; then
∞⋂
n=1

Bn ∩ Y = Kj.

Consider the functions
fn(x) = γ(X\(2Bn − x)).

It is easy to check that fn has the form

fn(x) = u(l1(x), . . . , ln(x)), u ∈ C∞
b (Rn).

Therefore, fn ∈ FC∞b (X). For all x ∈ Y , hence for µ-a. e. x ∈ X, one has fn(x) → ϕj(x),
whence due to the uniform boundedness of the functions fn it follows by the Lebesgue
dominated convergence theorem that ‖fn − ϕj‖Lp(µ) → 0. Let n > m. By Corollary 1.1
we obtain

‖Dn
Hfn −Dn

Hfm‖Lp(µ,H) ≤ Cn · ‖IBm\Bn‖Lmax{p;2}(µ∗γ) −→ 0

uniformly in n > m as m → ∞. So, {fn} is an approximating sequence for ϕj. Finally,
{ψ ◦ fn} ⊂ FC∞b (X) is an approximating sequence for gj = ψ ◦ ϕj.
Remark 1.1. The proofs in this paper remain valid if we replace condition (T1) on
the Hilbert subspace H by the following condition (T): there exists a centered Radon
probability measure λ on X with H ⊂ H(λ). This condition is slightly weaker than (T1),
but in many spaces both conditions are equivalent (e.g., if X is Hilbert or nuclear, or if
X = S or X = S ′). Only the proof of Lemma 1.5 becomes longer in this case, see [8].

In the case of a Fréchet space and r = 1 it is possible to drop condition (T1) on H.
Namely, the following theorem generalizes the result obtained by Röckner and Schmuland
[11, Proposition 3.1].

Theorem 1.3. Let X be a Fréchet space with a Radon probability measure µ and let H
be a separable Hilbert space continuously embedded in X. Suppose that the Sobolev class
W 1,p(µ) is well-defined. Then the capacity C1,p is tight.

See the proof in [8].
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2 Surface measures

Surface measures in infinite dimensional spaces are interesting for analytical and geomet-
rical measure theory itself, as well as for its applications in non-linear analysis, theory of
random processes, and the theory of differential equations with respect to functions and
measures on infinite dimensional spaces.

Two approaches to construction of surface measures in infinite dimensional spaces are
known. The first one originated in the monograph [12] by A.V.Skorohod and substantially
developed in papers [14], [15], [4], [7] is based on construction of a local surface measure
in quite small neighborhoods of points. A completely different approach was realized by
H.Airault and P.Malliavin [1] and further developped in [2], [9], [10]. By this method
a measure is constructed at once on the whole surface, whereas the surface-determining
function is smooth in Sobolev sense.

2.1 The absolute continuity of images of measures

Theorem 2.1. Suppose that X is a l.c.s. with a finite (possibly, signed) Radon measure
µ and let H be a separable Hilbert space continuously embedded in X. If a function
F : X → R possesses the following properties:

a) F ∈ W 2,p(µ), p > 4,
b) 1

|DHF |
∈ Lp(µ),

c) µ is differentiable along the vector field v = DHF with δv ∈ L2(µ),
then the image measure µ ◦F−1 is absolutely continuous with respect to Lebesgue measure
on R, and its density k has a continuous version of bounded variation.

Proof. In order to prove the existence of a desired density, we shall construct a measure
λ1 on X such that for any function ϕ ∈ C1

b (R), one has the equality∫
ϕ′(t)µ ◦ F−1(dt) ≡

∫
ϕ′(F (x))µ(dx) = −

∫
ϕ(F (x))λ1(dx), (2.1)

which by [5, Proposition 2.2.3(ii)] implies the Skorohod differentiability of the measure
µ ◦ F−1. We have ∫

ϕ′(F (x))µ(dx) =

∫
ϕ′(F (x))∂vF (x)

µ(dx)

∂vF (x)
=

=

∫
∂v
(
ϕ(F (x))

) µ(dx)

|DHF (x)|2
= −

∫
ϕ(F (x)) · dv

(
µ

|DHF |2

)
(dx). (2.2)

In order to justify the last identity, we observe that |DHF |2 ∈ W 1,p/2(µ) due to Lemma

1.1, therefore, the functions Gn =
(
|DHF |2 + 1

n

)−1
belong to the same class according to

Lemma 1.2. We have Gn ↗ |DHF |−2 ∈ Lp/2(µ), hence Gn → |DHF |−2 in the norm of
Lp/2(µ). Moreover,

DHGn =
−DH 〈DHF,DHF 〉

(|DHF |2 + 1
n
)2

=

(
|DHF |2

|DHF |2 + 1
n

)2

DH |DHF |−2,

where the first factor increases to 1 for µ-a. e. x, and the norm of the second factor
(independent of n) is estimated by

2|D2
HF (DHF )|
|DHF |4

≤
2‖D2

HF‖H2(H)

|DHF |3
∈ Lp/4(µ).
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Therefore, the function |DHF |−2 = lim
n→∞

Gn belongs to W 1,2(µ). By Lemma 1.4, the

measure |DHF |−2µ is differentiable along v, and its derivative is

λ1 = dv

(
µ

|DHF |2

)
=

(
−2D2

HF (DHF,DHF )

|DHF |4
+

δv

|DHF |2

)
µ.

The function ϕ ◦ F is bounded and belongs to the class W 1,p(µ) (see Lemma 1.2), hence
we can choose a sequence of uniformly bounded functions fn ∈ FC∞b converging to ϕ ◦ F
in the norm ‖ · ‖1,p and µ-a.e. as well. Then, in the integration by parts formula∫

∂vfn(x)
µ

|DHF |2
(dx) = −

∫
fn(x)λ1(dx),

we can pass to the limit as n→∞ (by using the Lebesgue theorem) and obtain the same
formula for the function ϕ ◦ F . Identity (2.2) is proved.

Thus, the measure µ◦F−1 is Skorohod differentiable on R and d1(µ◦F−1) = λ1 ◦F−1.
This implies (see [5, Example 2.2.1(ii)]) that some version of the density of µ ◦ F−1 with
respect to Lebesgue measure is of finite variation (not exceeding ‖λ1‖).

Since k(t) → 0 as t→ ±∞, one has sup
t
|k(t)| ≤ 1

2
V ar k ≤ 1

2
‖λ1‖.

But since λ1 � µ, we obtain d1(µ ◦ F−1) � (µ ◦ F−1), therefore, the measure µ ◦ F−1

on R is Fomin differentiable as well, and for the measure d1(µ◦F−1) there exists a density
k′ with respect to Lebesgue measure such that

k(t) =

t∫
−∞

k′(u)du ∀t ∈ R.

In particular, k(t) is continuous.

Corollary 2.1. Suppose the hypotheses of Theorem 2.1 are fulfilled. Let g ∈ W 1,r(µ) with
some r > 0 and let 2

p
+ 1

r
≤ 1

2
. Then the measure gµ is differentiable along v = DHF ,

and its image (gµ) ◦ F−1 has a continuous density kg whose variation does not exceed
const · ‖g‖1,r.

See the proof in [10, Corollary 1].

2.2 Construction and properties of surface measures

Theorem 2.2. Let X be a l.c.s., µ be a Radon probability measure concentrated on a
sequence of metrizable compact sets and let H ⊂ X be a separable Hilbert space satisfying
(T1). Let F ∈ W 2,8(µ), |DHF |−1 ∈ L8(µ). Suppose that µ is differentiable along the
vector field v = DHF with δv ∈ L2(µ). Then there is a unique Radon measure ν such
that ∫

ϕ(x)ν(dx) = kϕ(0), ∀ϕ ∈ FC∞b (X).

See the proof in [10, Theorem 2]. In that paper X was supposed to be a separable
Fréchet space, but now we can repeat the reasoning from [10] in our more general setting,
due to the results in Section 1.

Now let the measure µ be nonnegative. Let us introduce some additional notation.
Let ν(0) ≡ ν and ν(a) be the measures constructed in Theorem 2.2 for the mapping F − a
in place of F ; for all those a with k(a) 6= 0 we put µ

(a)
σ = ν(a)/k(a); if k(a) = 0, we put

µ
(a)
σ ≡ 0.

9



Theorem 2.3. Let the hypotheses of Theorem 2.2 be fulfilled. Let F be C1,4-quasiconti-

nuous. Then the measures µ
(a)
σ are conditional measures for µ with respect to the mapping

F , i.e.
1) for µ ◦ F−1-a.e. a ∈ R, the measure µ

(a)
σ is a probability measure concentrated on

by the set F−1(a);
2) for any Borel set B ⊂ X one has

µ(B) =

+∞∫
−∞

µ(a)
σ (B)µ ◦ F−1(da).

See the proof in [10, Theorem 3].

Remark 2.1. Theorems 2.2 and 2.3 can be easily generalized to signed measures. Of
course, in the definitions of Sobolev classes and capacities, the measure µ should be
replaced by the measure |µ|. Moreover, in that case k(t) will denote the density of the
measure |µ| ◦ F−1 with respect to Lebesgue measure.

2.3 Gauss–Ostrogradskii formula

Let µ be a Radon probability measure on a l.c.s. X with a sequence of metrizable
compacts Kn with µ(Kn) → 1 and let a separable Hilbert space H ⊂ X satisfy condition
(T1). Suppose that the Sobolev classes W r,p(µ) are well-defined for p sufficiently large
and r = 1, 2.

Let U ⊂ X be a µ-measurable set such that there exists a C1,4-quasicontinuous function
F ∈ W 2,12(µ) with U = F−1

(
(−∞; 0)

)
and |DHF |−1 ∈ L12(µ). Let µ be differentiable

along the vector field DHF and let δ(DHF ) belong to L2(µ).
We shall call the set Σ = F−1(0) the surface of U .
The function F and the measure µ satisfy the hypotheses of Theorems 2.2 and 2.3.

On Σ, we have the conditional measure µ
(0)
σ . We define the measure

µ0
σ(dx) = |DHF (x)|ν(0)(dx) = k(0)|DHF (x)| · µ(0)

σ (dx),

where a version of |DHF |2 ∈ W 1,6(µ) is chosen to be CW 1,6-quasicontinuous. This measure
has bounded variation.

We shall call the vector field {n(x) = |DHF (x)|−1DHF (x) : x ∈ Σ} the (outward)
normal vector of Σ.

Theorem 2.4. Let u ∈ W 1,12(µ,H) be a vector field having the divergence δu with respect
to µ. Then the function 〈n(x);u(x)〉 has a CW 1,6-quasicontinuous version that is integrable
against the measure µ0

σ, and the following Gauss–Ostrogradskii formula holds true:∫
U

δu(x)µ(dx) =

∫
Σ

〈n(x);u(x)〉µ0
σ(dx). (2.3)

In particular, the right-hand side of (2.3) does not depend on our choice of such a version.

See the proof in [9, Theorem 4.1].

Corollary 2.2. Consider the vector field

u(x) = ϕ(x)h, ϕ ∈ W 1,12(µ), h ∈ H ∩H(µ).

10



Then δu exists, and the formula (2.3) takes the form∫
U

(
∂hϕ(x) + ϕ(x)βµh (x)

)
µ(dx) =

∫
Σ

ϕ(x) 〈n(x);h〉µ0
σ(dx),

where the expression on the right-hand side is CW 1,6-quasicontinuous.

Corollary 2.3. Let H be embedded into H(µ) by a Hilbert–Schmidt operator. Let f ∈
W 2,12(µ). Then we have the first Green’s formula:∫

U

∆f(x)µ(dx) +

∫
U

∞∑
j=1

∂ej
f(x)βµej

(x)µ(dx) =

∫
Σ

∂n(x)f(x)µ0
σ(dx),

where ∆f =
∑

j ∂
2
ej
f ∈ L1(µ), and the version of ∂nf is chosen to be CW 1,6-quasicontinu-

ous.

See the proof in [9].

Corollary 2.4. Let µ be a Radon probability measure on a l.c.s. X. Suppose that
jH(X∗) ⊂ H(µ). Let F and G be two C1,4-quasicontinuous functions satisfying the con-
ditions specified at the beginning of this subsection, corresponding to one and the same U
as well as Σ (up to sets of zero C1,4 capacity). Let {ej}∞j=1 be an orthonormal basis of H
such that ej ∈ jH(X∗). Then for all vector fields of the form u = ϕej, ϕ ∈ FC∞b (X), the
formula (2.3) yields∫

F−1(0)

〈nF (x);u(x)〉µ0(F )
σ (dx) =

∫
G−1(0)

〈nG(x);u(x)〉µ0(G)
σ (dx),

therefore, for any j = 1, 2, . . . the following measures coincide:

〈nF (x), ej〉µ0(F )
σ (dx) = 〈nG(x), ej〉µ0(G)

σ (dx)

(on the set F−1(0)4G−1(0) they vanish). Denote these measures by ξj. Consider the

measure λ = µ
0(F )
σ + µ

0(G)
σ . Then ξj = fjλ. Define the measure µ0

σ by the formula

µ0
σ(dx) =

( ∞∑
j=1

f 2
j (x)

)1/2

λ(dx).

It is easy to see that µ0
σ(dx) = |nF (x)|µ0(F )

σ (dx) = |nG(x)|µ0(G)
σ (dx), and, since |nF | =

1 µ
0(F )
σ -a.e., |nG| = 1 µ

0(G)
σ -a.e., this implies that µ

0(F )
σ = µ

0(G)
σ = µ0

σ. The normalizing
factor |DHF | was introduced just for this purpose.

3 Surface measures generated

by local Sobolev functions

In applications we often deal with functions that possess Sobolev properties locally. The
purpose of this section is to generalize the results obtained in [9], [10] to locally Sobolev
functions and surfaces determined by them.
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3.1 Localizing sequences

Let µ be a probability measure on a l.c.s. X.

Definition 3.1. Let K be a sequence of compact sets in a l.c.s. X. We shall call K a
localizing sequence of order r if:

1) ∀K1, K2 ∈ K ∃K3 ∈ K: K1 ∪K2 ⊂ K3,
2) µ(X\

⋃
K∈K

K) = 0,

3) for any K ∈ K there exists a function ζK ∈ W r,∞(µ) =
⋂
p≥1

W r,p(µ) that is CW r,p-

quasicontinuous for all p, and 0 ≤ ζK ≤ 1, ζK |K= 1, and there exists a compact set
K ′ ∈ K such that ζK |X\K′= 0.

We shall call the sequence of functions {ζK | K ∈ K} localizing of order r as well.

Lemma 3.1. Let K be a sequence of increasing symmetric convex metrizable compact sets,
such that µ(X\

⋃
K∈K

K) = 0, and for any K ∈ K there exists K ′ ∈ K such that 2K ⊂ K ′.

Then the sequence K of compact sets is localizing of any order r ∈ N if H ⊂ H(γ) for
some centered Radon Gaussian measure γ, and γ(X\

⋃
K∈K

K) = 0.

Proof. It follows from our hypotheses that the capacities Cr,p are tight for all r ∈ N,
p ≥ 1. Take the function g = 1 − gj, where gj is the function constructed in the proof
of Theorem 1.2 with g(x) = 1 for x /∈ 2K, g(x) = 0 for x ∈ K, g ∈ W r,p for any r, p.
We can choose a µ-version of the function g to be Cr,p-quasicontinuous for all p (see [8,
Corollary 5.2]). Then we can take K ′ ⊃ 2K.

Definition 3.2. A function f is said to belong to the class W r,p
Loc(µ), p > 2, if there exists

a localizing sequence of functions {ζK} of order r such that

ζf ∈
⋂
q<p

W r,q(µ) ∀ζ ∈ {ζK}.

The derivatives of f at a point x ∈ K ∈ K are defined by the formula

Dk
Hf(x) = Dk

H(ζKf)(x), k = 1, . . . r.

By Lemma 1.3, if we choose another localizing sequence, this value is µ-almost everywhere
unchanged.

It follows from Lemma 1.1 that for any r and p one has W r,p(µ) ⊂ W r,p
Loc(µ).

Lemma 3.2. If f ∈ W k,p
Loc(µ), g ∈ W k,q

Loc(µ), 1/p+ 1/q = 1/s < 1/2, then
1) fg ∈ W k,s

Loc(µ),
2) if k > 0, then 〈DHf ;DHg〉 ∈W k−1,s

Loc (µ).

Proof. Let {ζfn} be a localizing sequence of functions of order k for f and let {ζgn} be an
analogous sequence for g. Then the functions ζn := ζfnζ

g
n provide a localizing sequence

for both functions f and g. Fix ζ = ζn. Take s′ ∈ (2; s). There exists a function ξ = ζN
taking the value 1 on suppζ. Then ζ ≡ ζξ.

1) Since ζfg ≡ ζf · ξg, ζf ∈ W k,ps′/s(µ) and ξg ∈ W k,qs′/s(µ), it follows from by
Lemma 1.1(i) that ζfg ∈ W k,s′(µ).

2) The function ζ 〈DHf ;DHg〉, which coincides µ-almost everywhere with the func-
tion ζ 〈DH(ξf);DH(ξg)〉 by the localization property, belongs to the class W k−1,s′(µ) by
Lemma 1.1(ii), since

DH(ξf) ∈ W k−1,ps′/s(µ,H), DH(ξg) ∈ W k−1,qs′/s(µ,H).

The lemma is proved.
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3.2 One-dimensional images of measures

Now we can generalize Theorem 2.1 to the case of local Sobolev classes.

Theorem 3.1. Let µ be a Radon probability measure on a locally convex space X; let H be
a separable Hilbert space, H ⊂ H(µ). Let F ∈ W 2,p

Loc(µ), |DHF |−1 ∈ LpLoc(µ) ≡ W 0,p
Loc(µ),

where p > 4. Suppose there exists a localizing sequence L of functions of order 2 for F
and |DHF |−1. If for any ζ ∈ L the measure ζµ is differentiable along the vector field
DHF , and the density ρζ of the measure dDHF (ζµ) with respect to the measure µ belongs
to L2(µ), then the measure (ζµ)◦F−1 on R possesses a continuous density kζ (with respect
to Lebesgue measure) of bounded variation.

Proof. Let ζ, ξ ∈ L be such that ξ = 1 on the support of the function ζ. Then ξ|DHF |2 ∈
W 1,2+ε(µ). Therefore, the functions Gn = ξ2/(ξ|DHF |2 + 1

n
) belong to W 1,2(µ) by Lemma

1.1 and [5, Lemma 7.1.13]. Applying the same reasoning as in Theorem 2.1, we obtain
that the function ξ|DHF |−2 = lim

n→∞
Gn belongs to the class W 1,2(µ). Therefore, by Lemma

1.4 we obtain the measure

λζ = dDHF

(
ξζµ

|DHF |2

)
=

(
−
∂2
DHF

F

|DHF |4
ζ +

ρζ
|DHF |2

)
µ.

Its image λζ ◦ F−1 on R is the Fomin derivative of the measure (ζµ) ◦ F−1, whence the
existence of a desired density follows.

Similarly to Corollary 2.1 we obtain the following result.

Corollary 3.1. Let the hypotheses of Theorem 3.1 be fulfilled and let a constant r > 1
satisfy the inequality

2

p
+

1

r
<

1

2
. (3.1)

Then for any g ∈ W 1,r
Loc(µ), the measure (ζgµ) ◦ F−1 possesses a density kζg of bounded

variation if ζ ∈ L, where L is a localizing sequence of functions for F and g.

Lemma 3.3. If f ∈ W r,p
Loc(µ), then for any p′ < p the function f has a CW r,p′ -quasiconti-

nuous version, provided that inf
K∈K

CW r,p′ (X\K) = 0.

Proof. Fix p′ < p. Choose a sequence of compact sets Kn ∈ K and functions ζn = ζKn

with the following properties: suppζn ⊂ Kn+1, CW r,p′ (X\Kn) < 2−n. Put ξ1 = ζ1; ξn =
ζn−ζn−1 for n > 1. For the function ζn+1f ∈ W r,p′(µ) we choose a CW r,p′ -quasicontinuous
version gn. Then fn := ξngn = ξnf µ-almost everywhere; fn vanishes on Kn−1 and is
CW r,p′ -quasicontinuous, i.e., one can choose closed sets Qm

n , m ∈ N, such that Qm
n ⊂ Qm+1

n ,
CW r,p′ (X\Qm

n ) < 2−n−m, and fn is continuous on each Qm
n . Put fo(x) =

∑∞
n=1 fn(x). On

Kn this sum has only n nonzero summands, and µ-almost everywhere fo = lim
n→∞

ζnf = f .

Moreover, for each m ∈ N, the function fo is continuous on the closed set

Fm =
∞⋂
n=1

Qm
n ∩Km; Fm ⊂ Fm+1; CW r,p′ (X\Fm) < 21−m.

Hence fo is the desired version of f .
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3.3 Surface measures

The next theorem generalizes Theorems 2.2 and 2.3:

Theorem 3.2. Let X be a l.c.s. and let the hypotheses of Theorem 3.1 be fulfilled. Then
there is a unique family of Radon measures {ν(a)

ζ | ζ ∈ L, a ∈ R} such that∫
ϕ(x)ν

(a)
ζ (dx) = kζϕ(a) ∀ϕ ∈ FC∞b (X).

These measures vanish on the sets of zero C1,r capacity with r satisfying condition (3.1).
Moreover, if inf

K∈K
CW 1,2r(X\K) = 0, and if a version of the function g ∈ W 1,2r+ε

Loc (µ) is

chosen to be CW 1,2r-quasicontinuous, then∫
g(x)ν

(a)
ζ (dx) = kζg(a). (3.2)

The proof of this theorem is analogous to the reasoning in the proofs of Theorems 2.2
and 2.3.

Definition 3.3. Let the hypotheses of Theorem 3.2 be fulfilled. Let A ∈ B(X). If A ⊂ K
for some K ∈ K (K is a localizing sequence of compact sets of order 2 for the functions
F and |DHF |−1), and suppζK ⊂ K ′ ∈ K, then we set

ν(a)(A) = ν
(a)
ζK′ (A);

for p > 12 we also set

µ(a)
σ (A) =

∫
A

|DHF (x)|ν(a)
ζK′ (dx),

where for the function |DHF |2 a CW 1,6-quasicontinuous version is chosen. If A is arbi-
trary, put

ν(a)(A) = sup

{
ν(a)(A ∩K) : K ∈ K

}
;

and similarly for µ
(a)
σ .

Statement 3.1. The functions ν(a), µ
(a)
σ : B(X) → [0; +∞] are well-defined Radon σ-

finite positive measures that are finite on compact sets from K.

Proof. 1) Let A ⊂ K1, A ⊂ K2; suppζKj
⊂ K ′

j, ξj = ζK′
j
, j = 1, 2. Then ξ1 = ξ2 = 1 on

K ′
1 ∩K ′

2. Put ψ = ξ1ξ2. Let g denote the function ζK1ζK2 (taking the value 1 on K1 ∩K2

and 0 outside K ′
1∩K ′

2). Since for j = 1, 2 ξj ≥ ψ, we have for any B ∈ B(X) the estimate

ν
(a)
ξj

(B) ≥ ν
(a)
ψ (B), hence∫

g(x)ν
(a)
ξj

(dx) ≥
∫
g(x)ν

(a)
ψ (dx), j = 1, 2,

and an equality is possible only if these measures coincide on the set {g > 0} that contains

A. But gξj ≡ gψ, and by Corollary 1, k
ξj
g (t) = kψg (t) for almost all, hence, by continuity,

for all t ∈ R, whence by Theorem 3.2 we have∫
g(x)ν

(a)
ξj

(dx) = kξjg (a) = kψg (a) =

∫
g(x)ν

(a)
ψ (dx).
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Therefore, ν
(a)
ξ1

(A) = ν
(a)
ξ2

(A), so the measure ν(a) is well-defined at the set A ⊂ K ∈ K,
hence at an arbitrary set as well.

2) For any K ∈ K, the Radon measures ν(a) |K= ν
(a)
ζK′ |K are finite. The measures µ

(a)
σ

are finite on compact sets from K as well if p > 12, since for any ζ = ζK , the function
|DHF |2 ∈ W 6+ε

Loc (µ) is integrable with respect to the measure ν
(a)
ζ by Theorem 3.2. It

follows automatically that the measures ν(a) and µ
(a)
σ are σ-finite and nonnegative.

3) The finite additivity of the measure ν(a) is obvious, and so is its σ-additivity in the
case of A =

⋃∞
n=1An ⊂ K, K ∈ K. Let us verify the σ-additivity in the general case.

Let A1, A2, . . . be disjoint Borel sets, ν(a)(An) < ∞, A =
⋃∞
n=1An; let An,1 ⊂ An,2 ⊂

. . . ⊂ An, An,m be subsets of compact sets from K; ν(a)(An,m) ≥ ν(a)(An)− 2−n−m. Then

BN =
⋃N
n=1An,N is a subset of a compact set from K, BN ⊂ A, and

ν(a)(BN) ↗
∞∑
n=1

ν(a)(An) ≤ +∞

as N → ∞. Therefore, ν(a)(A) ≥
∞∑
n=1

ν(a)(An). In the other hand, if B ⊂ A, B ⊂ K,

K ∈ K, then

ν(a)(B) =
∞∑
n=1

ν(a)(B ∩ An) ≤
∞∑
n=1

ν(a)(An),

which implies the inverse assertion for ν(a)(A). The proof for the measure µ
(a)
σ is just the

same.

Now we can obtain several corollaries from Theorem 3.2.

Corollary 3.2. Let the hypotheses of Theorem 2.2 be fulfilled. Then the measures ν(a) and
µ

(a)
σ constructed in this paragraph coincide with the corresponding measures from Theorem

2.2.

Corollary 3.3. If K1 and K2 are two localizing sequences of compact sets of order 2 that
satisfy the hypotheses of Theorem 3.2, then the measures ν

(a)
1 and ν

(a)
2 associated with

them are identical. The same is true for the measures µ
(a)
σ .

In order to prove this statement, we construct a family of compact sets

K3 = K1

⋃
K2

⋃{
K1 ∪K2 | K1 ∈ K1, K2 ∈ K2

}
with localizing functions of the form ζK1 , ζK2 , and φ(ζK1 + ζK2), where φ ∈ C∞

b (R) is

monotonic, φ(0) = 0, φ(t) = 1 for t ≥ 1. Then the identities ν
(a)
1 = ν

(a)
3 , ν

(a)
2 = ν

(a)
3 follow

from Statement 3.1 (step 1 of the proof), and from the estimates of the localized surface
measures via capacities.

Corollary 3.4. Let the hypotheses of Theorem 3.2 be fulfilled. Then for almost every
a ∈ R, the measure ν(a) is finite, and for any ϕ ∈ FC∞b (X) one has

(ϕµ) ◦ F−1(da) =

∫
ϕ(x)ν(a)(dx)da.

15



Indeed, choose an arbitrary subsequence {ζn} ⊂ L such that ζn ↗ 1 in L1(µ). Then
for a nonnegative ϕ ∈ FC∞b (X) we have

‖(ζnϕµ) ◦ F−1 − (ϕµ) ◦ F−1‖ ≤ ‖ζnϕµ− ϕµ‖ → 0 as n→∞.

The function %(t) = lim
n→∞

kζnϕ (t) ≤ +∞ is the L1(R)-limit of the functions kζnϕ , since by

the monotone convergence theorem one has∫
R

%(t)dt = lim
n→∞

∫
R

kζnϕ (t)dt = lim
n→∞

∫
X

ϕζndµ <∞.

Therefore, (ϕµ) ◦ F−1(dt) = %(t)dt. On the other hand, we have∫
ϕ(x)ν(a)(dx) = sup

{∫
ϕ(x)ν

(a)
ζ (dx) : ζ ∈ L

}
=

= sup

{
kζϕ(a) : ζ ∈ L

}
= %(a)

for almost all a ∈ R.
Now we give an example of how the localization method of constructing surface mea-

sures works.

Example 3.1. LetX = R∞ be endowed with the topology of coordinate-wise convergence
and let H = `2. Consider the probability measure

µ(dx) =
∞⊗
n=1

dxn
π(1 + x2

n)
.

The measure µ is Radon since X is a separable Fréchet space. One has H(µ) = `2 (see [5,
Corollary 3.1.2] or [6, §4.1]). Consider the function F (x) =

∑∞
n=1 n

−4x2
n. The functions

F and |DHF | are not integrable, though finite µ-almost everywhere. Let us take the
sequence of compact sets

K =

{
Kt = {x ∈ X : |xn| ≤ n5/4t}, t ∈ N

}
.

We have

µ(Kt) =
∞∏
n=1

2

π
arctan(n5/4t) ≥ 1−

∞∑
n=1

2

πn5/4t
→ 1 as t→∞.

The sequence of compact sets K is localizing of any order. This follows from Lemma 3.1,
since H = H(γ), where γ is a countable product of standard Gaussian measures on the
real line. Let L = {ζKt , t ∈ N}, be localizing functions of order 2, suppζKt ⊂ K2t. We
have

µ{x : |DHF (x)| < ε} ≤ µ

{ ∞∏
n=1

(
−n

4ε

2
;
n4ε

2

)}
≤

p∏
n=1

n4ε

π
= const(p) · εp

for any p ∈ N, therefore, |DHF |−1 ∈
⋂
p≥1

Lp(µ).

For any t ∈ N, the functions F , |DHF |, and ‖D2
HF‖H(H) are bounded on K2t, and

for any p ≥ 2, the function F is approximated with respect to the norm ‖ · ‖2,p(µ |K2t)

by the cylindrical functions fN(x) =
∑N

n=1 n
−4x2

n. Therefore, for all ζ ∈ L one has
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ζF ∈ W 2,∞(µ). The measure ζµ is differentiable along the vector field DHF , since by the
uniform boundedness of βµej

, the series

∞∑
j=1

(
∂2
ej
F + ∂ej

F
∂ej
ζ

ζ
+ ∂ej

F · βµej

)
ζµ

converges in variation, and its sum is the measure dDHF (ζµ). We have ρζ = dDHF (ζµ)/µ ∈
L2(µ). Therefore, the function F , the localizing sequence of functions L and the measure
µ satisfy the hypotheses of Theorem 3.2, and for all a > 0, there exist σ-finite surface
measures ν(a) and µ

(a)
σ ; obviously, they are zero for a ≤ 0.

Since CW 1,p(X\Kt) → 0 for any p ≥ 1, formula (3.2) is true for any CW 1,4-quasiconti-
nuous functions g ∈ W 1,r

Loc(µ) with r > 4.

The Gauss–Ostrogradskii formula can be extended to locally Sobolev surfaces and
vector fields, too.

Theorem 3.3. Let X be a Fréchet space with a Radon probability measure µ and let
H ⊂ H(µ) be a separable Hilbert space. Suppose that F ∈ W 2,p

Loc(µ), |DHF |−1 ∈ LpLoc(µ),
p > 12, and let L be their common localizing sequence of functions of order 2, where for any
function ζ ∈ L, the measure ζµ is differentiable along the vector field DHF and dDHF (ζµ)
possesses a square-integrable density with respect to µ. Suppose that for the functions
F and |DHF |2 some CW 1,6-quasicontinuous versions are chosen. Set U = F−1((−∞; 0)),
Σ = F−1(0). Then for any vector field u ∈ W 1,12

Loc (µ,H) and ζ ∈ L such that the divergence
δ(ζu) with respect to µ exists, the following formula holds true:∫

U

δ(ζu)(x)µ(dx) =

∫
Σ

ζ 〈u(x), n(x)〉µ(0)
σ (dx), (3.3)

where for the function 〈u, n〉 a CW 1,6-quasicontinuous version is chosen.

The proof is analogous to that of Theorem 2.4, with the measure µ replaced by the
measure ξµ, ξ ∈ L, ξ |suppζ= 1.

Corollary 3.5. If u ∈ W 1,12(µ,H), the measure µ is differentiable along u,

sup{|DHζ(x)| : ζ ∈ L, x ∈ X} = L <∞,

and inf
K∈K

CW 1,4(X\K) = 0, then formula (3.3) implies that∫
U

δu(x)µ(dx) =

∫
Σ

〈u(x), n(x)〉µ(0)
σ (dx), (3.4)

provided that some version of 〈u(x), n(x)〉 is µ
(0)
σ -integrable.

Proof. Let ζn ∈ L be such that ζn = 1 on Kn, suppζn = Kn+1, and C1,4(X\Kn) < 2−n.
For any x ∈ Kn we have δ(ζnu)(x) = δu(x), therefore, δ(ζnu)(x) → δu(x) as n → ∞
µ-a.e. Since

|δ(ζnu)(x)| = |ζnδu(x) + 〈u(x), DHζn(x)〉 | ≤ |δu(x)|+ L · |u(x)| ∈ L1(µ),

we obtain by the Lebesgue dominated convergence theorem that the left-hand side of (3.3)
converges to the left-hand side of (3.4) as n→∞.
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The difference of the right-hand sides is estimated as follows:∣∣∣∣∫
Σ

(ζn(x)− 1) 〈u(x), n(x)〉µ(0)
σ (dx)

∣∣∣∣ ≤ ∫
Σ∩Kn

| 〈u(x), n(x)〉 |µ(0)
σ (dx) −→ 0

as n→∞ since µ
(0)
σ (X\Kn) ≤ const · C1,4(X\Kn) → 0.

Applying formulas (3.3) or (3.4) to constant vector fields u = e1, u = e2,. . . from some
basis of H, we obtain the following result.

Corollary 3.6. The measure µ
(0)
σ does not depend on our choice of the function F that

satisfies the conditions specified and determines the given U and Σ up to a set of zero
CW 1,4 capacity.
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