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Abstract. We construct two counter-examples related to Fréchet differentiabil-
ity in infinite dimensions. The first one gives a convex Lipschitzian function on a
Banach space such that its convolution with a given measure is Fréchet differen-
tiable only on a measure zero set. The second one gives a Borel function on a space
with a Gaussian measure such that it is Lipschitzian along the Cameron–Martin
subspace, but is Fréchet differentiable along this subspace only on a measure zero
set. This answers a long standing open question.
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The problem of Fréchet differentiability of Lipschitzian functions has attracted
a considerable attention in the last decades. One of the major achievements in
this area is Preiss’s theorem [1] according to which every Lipschitzian function on
a Hilbert space is Fréchet differentiable on a dense set. However, this set may be
small in many respects, in particular, it may have measure zero with respect to
every nondegenerate Gaussian measure. The consideration of Gaussian measures
on infinite dimensional spaces in relation with Fréchet differentiability brings new
problems that are specifically infinite dimensional. Every Radon Gaussian measure
γ on a space X (which is a Banach space or, more generally, a locally convex
space) possesses the so called Cameron–Martin space H (called also the reproducing
kernel), which is a separable Hilbert space with some norm | · |H and is compactly
embedded into X. If X is infinite dimensional, then H is much smaller than X,
although it may be dense in X. For many reasons, it is natural to consider functions
on X that are Fréchet differentiable along H. A function f on X is called Fréchet
differentiable along H (or Fréchet H-differentiable) at a point x ∈ X if there is a
vector DHf(x) ∈ H such that

f(x + h)− f(x)− (DHf(x), h)H = o(h), h ∈ H,

where lim
|h|→0

|h|−1
H |o(h)|H = 0. It turns out that this weaker property is much more

flexible and that many natural functions are Fréchet differentiable along H not even
being continuous on X. For example, the convolution

f ∗ γ(x) =

∫
X

f(x + y) γ(dy)

is infinitely Fréchet differentiable along H for every function f ∈ L2(γ). If X is
a separable Banach space, then every Lipschitzian function f on X is γ-almost
everywhere Gâteaux differentiable along X, which yields that γ-almost everywhere
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f is Fréchet differentiable along H (see Theorem 5.11.1 in [2]). In addition, if H is
dense in X, then, for any function f that is Lipschitzian along the whole space X, the
convolution f ∗γ is everywhere Gâteaux differentiable along X (since a Lipschitzian
function differentiable along a dense subspace is Gâteaux differentiable; see, e.g.,
Lemma 1 in [3]).

Once we consider the differentiability along H, it is natural to introduce the
Lipschitz condition also along H, i.e., the property that

|f(x + h)− f(x)| ≤ C|h|H , h ∈ H. (1)

If f is a γ-measurable function and (1) holds for γ-almost every x, then f is called
H-Lipschitzian or Lipschitzian along H. In this case there is a version of f that
satisfies (1) for every x ∈ X; in addition, any H-Lipschitzian function is Gâteaux
differentiable along H at γ-almost every point in X (see Theorem 5.11.2 in [2]).
We recall that f is Gâteaux differentiable along H at a point x ∈ X if there is an
element DHf(x) ∈ H such that for each h ∈ H one has

f(x + th)− f(x)− t(DHf(x), h)H = r(h, t), lim
t→0

|t−1r(t, h)|H = 0.

These results lead to the following two natural questions:
(Q1) Can it happen that the convolution f ∗ γ, where f is a Lipschitzian function

on a separable Hilbert space X equipped with a nondegenerate Gaussian measure
γ, has no Fréchet derivative along X almost everywhere with respect to γ?

(Q2) Can it happen that a function f on X that is Lipschitzian along H has no
Fréchet derivative along H almost everywhere with respect to γ?

The first question arises in relation to smoothing by the Ornstein–Uhlenbeck
semigroup and other convolutions, which is a standard tool in stochastic analysis
(see, e.g., [2], [3], and [4] and the references therein).

It was conjectured in [5] that an answer to Question (Q2) is affirmative (this
question was mentioned also on p. 266 in [2]). Partial solutions have been obtained
since then. In particular, an example of an H-valued mapping (in place of a real
function) with the desired property is easy (see Example 5.11.4 in [2]), and an
example in the case of a real function and some product-measure in place of γ is
constructed in [6]. The purpose of this paper is to construct two examples that
confirm the expected positive answers to both questions. Thus, in spite of the fact
that the convolution with a Gaussian measure γ improves Gâteaux differentiability
of a Lipschitzian function along the whole space and ensures smoothness along the
densely embedded Cameron–Martin space of γ, it does not significantly improve
Fréchet differentiability along X. Similarly, the Lipschitz condition along H does
not guarantee Fréchet differentiability along H on a positive measure set.

Concerning Radon measures on topological spaces we refer to [7]. We recall that a
Radon probability measure γ on a locally convex space X with the topological dual
space X∗ is called a centered Gaussian measure if every continuous linear functional
on X is a centered Gaussian random variable on (X, γ). If the distribution of any
nonzero functional is not concentrated at a point, then γ is called nondegenerate.
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The Cameron–Martin space H of γ is the set of all vectors h ∈ X such that

|h|H := sup{l(h) : l ∈ X∗, ‖l‖L2(γ) ≤ 1} < ∞.

It is known that there is an inner product ( · , · )H on H such that |h|2H = (h, h)H and
H is a separable Hilbert space with respect to this inner product. For more details on
Gaussian measures, see [2]. In fact, for our purposes it suffices to consider the space
R∞, i.e., the countable power of the real line, and the standard Gaussian product-
measure γ on R∞, i.e., the countable power of the standard Gaussian measure on
the real line. The Cameron–Martin space of this measure is the usual Hilbert space
l2 with its natural inner product. Similarly, one can consider the product µ of the
sequence of Gaussian measures on the real line with densities

pσn(x) = (2πσn)−1/2 exp(−t2/(2σn)), σn > 0.

The Cameron–Martin space of this measures is the space of all sequences h = (hn)
such that

∑∞
n=1 σ−1

n h2
n < ∞. If

∑∞
n=1 σn < ∞, then µ(l2) = 1 and µ can be restricted

to the Hilbert space l2.
Our examples are based on the consideration of distance functions as in [8]. We re-

call that any H-Lipschitzian function belongs to all Lp(γ) with p < ∞ (see Theorem
4.5.7 in [2]).

Note that the convolution f ∗ µ is defined by the formula

f ∗ µ(x) =

∫
X

f(x + y) µ(dy)

for any Radon measure µ and any function f such that the functions y 7→ f(x + y)
are integrable with respect to µ.

Theorem 1. Let X be an infinite dimensional separable Banach space and let µ be
a Borel probability measure on X such that the norm is µ-integrable. There exists
a convex Lipchitzian function f on X such that at µ-almost every point x ∈ X the
convolution f ∗ µ is not Fréchet differentiable along X.

Proof. We can find a balanced convex compact set K such that µ(K) > 0 and
µ(∪∞n=1nK) = 1 (see Theorem 7.12.4 in [7]). Set A := 2K. Let us take a sequence
of elements vn ∈ X such that ‖vn‖ → 0 and the distance between A and A + vn

is greater than ‖vn‖/8. This is possible since, for every n, there is a vector xn

with ‖xn‖ = 1/n which is separated from 2A by a closed hyperplane of the form
{x : ln(x) = cn}, ln ∈ X∗, i.e., ln(a) ≤ cn if a ∈ 2A and ln(xn) > cn. Set Zn := Ker ln
and take any element zn ∈ Zn with ‖xn − zn‖ ≤ 2dist (xn, Zn), where dist (x, M) :=
inf{‖x − m‖ : m ∈ M} for any set M . Then vn := 2(xn − zn) is a suitable vector.
Indeed, we have

dist (vn, 2A) ≥ dist (vn, xn + Zn) = dist (xn − 2zn, Zn)

= dist (xn, Zn) ≥ 1

2
‖xn − zn‖ =

1

4
‖vn‖.

Hence for any a1, a2 ∈ A we obtain ‖a1− a2− vn‖ ≥ ‖vn‖/4. Note that ‖vn‖ ≤ 4/n.
Let us consider the function

f(x) = dist(x, A) = inf{‖x− y‖ : y ∈ A},
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which is convex by the convexity of A and Lipschitzian with constant 1. Let us show
that the convolution f ∗ µ (which is defined since f is Lipschitzian and the norm
is µ-integrable) is not Fréchet differentiable at the points of K. Clearly, f ∗ µ is
convex and Lipschitzian with constant 1. Suppose that the function f ∗µ is Fréchet
differentiable at some point x ∈ K. Then, for any µ-measurable set E, the function

FE(z) =

∫
E

f(z + y) µ(dy)

is Fréchet differentiable at x too. This follows from the fact that FE and FX\E are
convex and continuous, and the sum of two convex continuous functions is Fréchet
differentiable at x if and only if each of them is Fréchet differentiable at x (see [9],
p. 86). Now we take E = K and set F := FK . Since x ∈ K, one has x + y ∈ A for
all y ∈ K, hence F (x) = 0. Therefore, since x is a minimum point of F , we have
DF (x) = 0, where DF (x) is the Fréchet derivative of F at the point x. In order to
obtain a contradiction, it suffices to show that F (x + h) is not o(|h|), i.e., there is
a sequence of vectors hn with ‖hn‖ → 0 and F (x + hn) ≥ c‖hn‖ with some c > 0
independent of n. It would be enough to have an estimate

f(x + y + hn) ≥ c1‖hn‖

for each y ∈ K with some constant c1 > 0. Then we can take c = c1µ(K). Let hn =
vn be the vectors constructed above and let B(a, r) denote the closed ball of radius
r in X centered at a. Let y ∈ K. We observe that B(x + y + vn, ‖vn‖/8) ∩ A = ∅.
Indeed, if u ∈ A, then ‖x+y+vn−u‖ > ‖vn‖/8 since x+y ∈ A. Therefore, one has
the estimate f(x+y+vn) ≥ ‖vn‖/8. So we can take c1 = 1/8. Thus the set of points
of Fréchet differentiability of f ∗µ does not meet the set K. Finally, replacing K by
nK in the described construction, we obtain the corresponding function fn such that
fn is Lipschitzian with constant 1 and convex and the set of Fréchet differentiability
of the function fn ∗ µ does not meet nK. The function f :=

∑∞
n=1 2−nfn is also

convex and Lipschitzian with constant 1. As explained above, the function f ∗ µ
is not Fréchet differentiable at the union of the sets nK (which is a set of full µ-
measure) because both functions 2−nfn ∗µ and

∑
k 6=n 2−kfk ∗µ are Lipschitzian and

convex. �

We recall that in the case of a nondegenerate Gaussian measure µ on a Hilbert
space X, for any convex Lipschitzian function f , the convex and Lipschitzian con-
volution f ∗ µ is everywhere Gâteaux differentiable along X and infinitely Fréchet
differentiable along H(µ). In addition, this convolution is Fréchet differentiable
along X on a dense set.

Theorem 2. There is a Borel function f on R∞ that is Lipschitzian along H with
constant 1, but the set of points where f is Fréchet differentiable along H has γ-
measure zero.

Moreover, such a function exists for every Radon centered Gaussian measure µ
on a locally convex space X such that the Cameron–Martin space H = H(µ) of µ is
infinite dimensional.
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Proof. Let γn be the standard Gaussian measure with density %n in Rn and let
0 < ε < 1/2. We show that there is a set An ⊂ Rn with the following properties:
there exist a natural number Mn, points an,i and positive numbers rn,i such that

An =
Mn⋃
i=1

B(an,i, rn,i)\B(an,i, εrn,i),

where the closed balls B(an,i, rn,i) are pairwise disjoint, and γn(An) > 1− 9ε2−n.
Indeed, we take a cube Q with γn(Q) > 1− ε4−n. Then we find r ∈ (0, 2−n) such

that

sup
x∈B(a,r)

%n(x) ≤ 2 inf
x∈B(a,r)

%n(x) (2)

for every ball B(a, r) ⊂ Q. Next we find finitely many pairwise disjoint balls
B(an,i, rn,i) ⊂ Q, i = 1, . . . ,Mn, with 0 < rn,i < r such that the γn-measure of
their union is greater than 1− ε4−n. Let λn be Lebesgue measure on Rn. For every
ball B(a, δ) ⊂ Q with δ < r we have

γn(B(a, εδ)) ≤ 2εnγn(B(a, δ)),

which follows from (2) and the equality λn(B(a, εδ)) = εnλn(B(a, δ)). Therefore,

γn

(Mn⋃
i=1

B(an,i, rn,i)\B(an,i, εrn,i)
)
≥ (1− 4εn)γn

(Mn⋃
i=1

B(an,i, rn,i)
)

> (1− 4εn)(1− ε4−n) > 1− ε4−n − 4εn > 1− 9ε2−n.

We represent R∞ as R1 ×R2 ×R3 × · · · and the measure γ as the product of the
measures γn. Let ε be fixed. For every natural number n we take the set An ⊂ Rn

constructed above and define a Borel set in R∞ by

A :=
∞∏

n=1

An.

Then we have

γ(A) ≥
∞∏

n=1

(1− 9ε2−n) ≥ 1− 9ε.

Finally, we define a Borel function f on R∞ by the formula

f(x) := distH(x, A) := inf{|x− y|H : y ∈ A}

if there is at least one element y ∈ A with x − y ∈ H. Otherwise we set f(x) = 0.
The fact that f is Borel measurable follows from the equality

{x : f(x) < c} = (A + cU) ∪ (X\(A + H)), c > 0,

where U is the open unit ball of H. The sets A + cU and A + H are Borel because
A+ cU is the union of the sets A+ cVn, where Vn is the closed ball of radius 1− 1/n
in H, and these sets are compact in X. One has

|f(x + h)− f(x)| ≤ |h|H , h ∈ H,
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i.e., this function is Lipschitzian along H. Let us show that f is not Fréchet differ-
entiable along H at the points of the set A. Indeed, suppose that a ∈ A is such that
f is Fréchet differentiable along H at a. Since f(a) = 0 and f ≥ 0, we conclude that
DHf(a) = 0. This will yield a contradiction if we show that, for any δ > 0, there is
a vector h ∈ H with |h|H < δ such that

{x : |a + h− x|H ≤ ε|h|H} ∩ A = ∅.
Indeed, this relationship gives the inequality f(a + h) ≥ ε|h|H , which contradicts
the fact that the Fréchet derivative of f along H vanishes at the point a. We have
a = (an), where an ∈ Rn for every n. Let us pick n such that 2−n < δ. Then
an ∈ B(an,i, rn,i)\B(an,i, εrn,i) for some i ≤ Mn. It remains to take the vector
h whose nth component in our representation of R∞ is an,i − an and all other
components are zero. Then we obtain |h|H ≤ rn,i < 2−n < δ. In addition, the ball of
radius ε|h|H in the metric of H centered at a+h does not meet A since otherwise the
ball in Rn of radius εrn,i centered at an,i would meet the set An, which is impossible
by our construction.

The previous step gives a function f that is Lipschitzian with constant 1, but
is not Fréchet differentiable at the points of the set A with γ(A) ≥ 1 − 8ε. Now
we construct such a set for every ε = 1/k, k ∈ N, and denote the corresponding
function by fk. Let us represent X = R∞ as the product of countably many copies
Xk of the space R∞, equip it with the standard Gaussian product-measure γ (which
coincides with the countable product of the standard Gaussian product-measures
γ(k) on the factors Xk), and denote by πk the projection operator to the kth factor.
The Cameron–Martin space H of γ coincides with l2 and equals the Hilbert sum of
the Cameron–Martin spaces Hk of the measures γ(k). The function

f(x) :=
∞∑

k=1

2−kfk(πk(x))

is Lipschitzian along H with constant 1. This function is not Fréchet differentiable
along H almost everywhere with respect to the measure γ. Indeed, for every k, let
us set Ek := Ak ×

∏
n6=k Xn. We can write f = 2−kfk + gk, where gk :=

∑
n6=k 2−nfn.

The function gk does not depend on πk(x). Since fk is not Fréchet differentiable
along Hk at the points of the set Ak, the function f is not Fréchet differentiable
along Hk (hence also along H) at the points of the set Ek. It remains to observe
that γ(Ek) = γ(k)(Ak) ≥ 1− 9k−1.

The case of a general locally convex space X equipped with a centered Radon
Gaussian measure µ whose Cameron–Martin space H(µ) is infinite dimensional re-
duces to the considered case. Indeed, according to Theorem 3.4.4 in [2], there exists
an injective Borel measurable linear mapping T defined on a Borel linear subspace
E ⊂ R∞ with γ(E) = 1 such that E0 := T (E) is a Borel Souslin subspace in X
with µ(E0) = 1, µ coincides with the image of γ under T , and T is an isometry
between l2 and H(µ). The mapping S := T−1 : E0 → E is Borel measurable (see
Theorem 6.8.6 in [7]). Having constructed our function f on R∞, we obtain a Borel
measurable function f0 = f ◦ S on E0 with the required properties. Outside E0 we
set f0(x) = 0. �
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This theorem gives a partial answer to Question (iii) on p. 266 in [2] concerning
the set of points of Fréchet H-differentiability of the function distH(x, B).

We do not know whether there is a Lipschitzian function f on a separable Hilbert
space X such that its convolution f ∗µ with some nondegenerate Gaussian measure
µ on X is Fréchet differentiable only on a set that has measure zero with respect
to all nondegenerate Gaussian measures on X, i.e., is a so called Gaussian null
set. One might also wonder whether a Lipschitzian function f may have such a
property for every Gaussian measure µ (i.e., not just for some µ). It is known (see
[10] and [9, p. 157]) that on X = l2 there is a convex function which is Lipschitzian
along the whole space X and whose Fréchet differentiability set (along the whole
space X) is a Gaussian null set. A similar question can be posed in relation to
Question (Q2) above. Namely, let f be a continuous function on a separable Hilbert
space (or on R∞) such that it is Lipschitzian along the Cameron–Martin space H
of some nondegenerate Gaussian measure γ. Can it happen that the set of points
where f is Fréchet differentiable along H is a Gaussian null set? Finally, it would
be interesting to know whether in Theorem 2 one can find a function f with the
additional property that it is convex along H. In particular, it is not clear whether
f can be found in the form distH(x, A) for some Borel set A that is convex along H.
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