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Abstract

In this note we present a new approach to solve Kolmogorov equa-
tions in infinitely many variables in weighted spaces of weakly continuous
functions, including the case of non-constant possibly degenerate diffusion
coefficients.

Résumé. Dans cette note nous présentons une nouvelle approche pour
résoudre des équations de Kolmogorov à une infinité de variables dans des
espaces à poids de fonctions faiblement continus. Le cas de coéfficients de
diffusion non-constants et éventuellement dégénérés est inclus.

1 Introduction and Main result

The purpose of this note is to present a new general approach to Kolmogorov
equations in infinite dimensions based on the methods first developed in [2].
We illustrate this approach through its application to the stochastic 2D Navier-
Stokes equations (NSE, see [1] and the references therein) with state dependent
(“multiplicative”) noise, which on an open set Ω ⊆ Rd or Ω = Td is given by

∂

∂t
u+u ∙∇u = ν4u−∇p+f, div u = 0, u �∂Ω= 0, u(x, 0) = u0(x). (1.1)

Here u(t, x) ∈ R2 is the velocity of a fluid in x ∈ Ω at time t ≥ 0, p(t, x) the
pressure, f(t, x) an external stochastic force and ν the viscosity constant. We
consider the Laplacian with Dirichlet and periodic boundary conditions.
As usual we project (1.1) onto the sub-space H ⊂ L2(Ω→ R2) of divergence

free vector fields by the Leray-Helmholtz projection P . Then the SPDE (1.1)
becomes an SDE in H.
To describe the stochastic force f precisely, let {`k}∞k=1 be the eigenbasis of

the part of Δ on H and let {wkt }
∞
k=1 be a sequence of iid Brownian motions

with Ft := σ{wkt |0 ≤ s ≤ t, k = 1, 2, 3, . . .} its associated filtration. If σ is
an (Ft)-adapted locally bounded separable process taking values in the space
L2(H) of Hilbert-Schmidt operators on H, the series

∑
k

∫ t
0
σ`kdw

k
t converges

in H almost surely. We denote the differential of the latter process by σdwt
and set f = σ(u)dwt

dt
, with a continuous map σ : H → L2(H), i.e. we allow σ to

depend on the solution. Thus, (1.1) turns into the following SDE in H:

dut = [νΔut − P (ut ∙ ∇ut)] dt+ σ(ut)dwt (1.2)
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The usual way to obtain the Kolmogorov equations corresponding to SDE
(1.2) is to reformulate the latter as a martingale problem, which is a standard
approach to construct weak solutions to an SDE of type

dut = μ(ut)dt+ σ(ut)dwt (1.3)

(cf. Stroock and Varadhan in [5] if H = Rd): Let D be the set of all cylindrical
functions of type

Φ(u) = φ (〈`1, u〉, 〈`2, u〉, . . . , 〈`n, u〉) , n ∈ N, φ ∈ C
2
b (R

n). (1.4)

Itô’s formula applied to Φ(ut), with ut solving (1.3), yields that

mΦ(t) := Φ(ut)− Φ(u0)−

t∫

0

(LΦ)(us)ds, (1.5)

is an (Ft)-martingale, with the Kolmogorov operator L defined as follows:

LΦ(u) =
1

2

∑

km

〈σ(u)`k, σ(u)`m〉
∂2Φ(u)

∂`k∂`m
+
∑

k

μk(u)
∂Φ(u)

∂`k
, Φ ∈ D, (1.6)

where in the special case of (1.2)

μk(u) := 〈`k, μ(u)〉 = 〈νΔ`k, u〉+ 〈u ∙ ∇`k, u〉, k ∈ N.

Then a solution to the martingale problem (L,D) is a family of measures
(Pu)u∈H on C([0,∞),H), i.e. the space of continuous trajectories in H such
that, for u ∈ H, first, Pu{u0 = u} = 1, and second, for Φ ∈ D, the process mΦ
is a Pu-martingale with respect to the standard filtration on C([0,∞),H).
We confine ourselves to Markov solutions, i.e. (Pu)u∈H form a Markov pro-

cess. Then it suffices to construct the transition probability semigroup (TPS),
i.e. a semi-group of Markov kernels pt(u, dv) on H such that

ptΦ(u)− Φ(u) =
∫ t

0

ps(LΦ)(u)ds, t > 0,Φ ∈ D, (1.7)

which is obtained from (1.5) by taking expectation. (1.7) as equations in the un-
known measures ps(u, dv) are called Kolmogorov equations and by construction
can be considered as a linearization of (1.3).
A purely analytic method of solving (1.7) was introduced in [2] and then

developed in [3] (see also [4]). Its main point is the construction of the TPS pt
as a semi-group Pt of Markov operators on

CV :=
{
f : {V <∞} → R

∣
∣

f �{V≤R} is weakly continuous ∀ R > 0 and lim
R→∞

sup
{V≥R}

V−1|f | = 0
}
, (1.8)

V : H → [0,∞] being a Lyapunov function for L, i.e. V is of compact level sets,
such that (λ− L)V > 0.
To state our result precisely, let us consider the SDE (1.3) on an abstract

separable Hilbert space H. Let Hn ⊂ Hn+1 ⊂ H, be an increasing sequence of
finite dimensional subspaces of H, H∞ := ∪Hn be dense in H, Pn : H → Hn
be the corresponding orthogonal projections.
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Hypothesis 1.1. The noise σ : H → L2(H) is Lipschitz continuous and has
block diagonal structure, that is, there exists a sequence Nn → ∞ such that
PNnσ(u) = PNnσ(PNnu) for all u ∈ H.

Hypothesis 1.2. Let Nn → ∞ be as in Hypothesis 1.1, σn(u) := PNnσ(u) =
PNnσ(PNnu). For all n ∈ N, there exist μn ∈ C(H → HNn), and Vn ∈ C

2(H),
μn(u) = μn(PNnu), Vn(u) = Vn(PNnu) for all u ∈ H, such that

(a) Vn > 0;

(b) sup
u,w∈HNn ,u 6=w,|u|,|w|≤R

〈μn(u)− μn(w), u− w〉
|u− w|2

<∞;

(c) There exists λ ∈ R independent of n such that, for a.a. u ∈ HNn ,

lim sup
HNn3w→u

〈μn(u)− μn(w), u− w〉
|u− w|2

+ sup
ξ∈HNn ,|ξ|=1

|Dξσn|
2
L2
(u)

+ sup
ξ∈HNn ,|ξ|=1

〈

Dξσ
∗
n(x)ξ, σ

∗
n

DVn
Vn

〉

(u) +
LnVn
Vn
(u) ≤ λ, (1.9)

where Ln on C
2(HNn) is given by (1.6) with μn, σn replacing σ and μ,

respectively.

Hypothesis 1.3. Let Nn →∞ be as in Hypothesis 1.1, and μn,Vn, Ln be as in
Hypothesis 1.2. There are positive functions V,W of compact level sets, finite
on H∞, such that

(a) Vn,V ∈ CW (the latter is defined as in (1.8)) and Vn → V in CW as
n→∞;

(b) For all u ∈ {W < ∞}, μ(u) is defined, |μn − PNnμ|(u) ≤ c
W
V (u) and

|μn − PNnμ|(u)→ 0 as n→∞;

(c) lim sup
n→∞

inf
u∈HNn

(λ∗ − Ln)Vn
W

(u) ≥ 1 for some λ∗ ∈ R.

The following theorem is our main result in [3]. To the best of our knowledge
it is the first result on solving the Kolmogorov equations (1.7) purely analytically
for all points u in an explicitly specified subspace of H and with a non-constant
possibly degenerate diffusion matrix in the second order part of L.

Theorem 1.4. Let Hypotheses 1.1, 1.2, 1.3 hold. Then there exists a unique
solution to (1.7) on {V < ∞} and the TPS constitutes a C0-semi-group of
quasi-contractions on CV. Furthermore, there exists a unique Markov solution
(Pu)u∈{V<∞} of (1.5).

We now apply Theorem 1.4 to the 2D NSE (1.2). Let H be the sub-space
of L2(Ω→ R2) consisting of all divergence free vector fields, let H10 := H

1
0 (Ω→

R2) (note that H10 = H
1 if Ω = T2), H2 := H2(Ω → R2) and let μ(u) :=

νΔu− P (u ∙ ∇u) for u ∈ H10 ∩H
2.

Theorem 1.5. Let σ : H → L2(H,H10 ) be bounded, satisfying Hypothesis 1.1.

Moreover, let V(u) = Vκ(u) = eκ|∇u|
2

for κ <
ν

sup
u
|σ(u)|2H→H

.
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Then (1.7) for L with μ and σ as above has a unique solution on H10 ∩ H
and the respective TPS constitutes a C0-semi-group of quasi-contractions on
CV. Furthermore, there exists a unique Markov solution (Pu)u∈H10∩H of the
corresponding martingale problem.

Proof. Let W(u) := cV(u)|Δu|2 if u ∈ H10 ∩ H
2, and W ≡ +∞ else. Let

Hn be the linear hull of the first n eigenvectors of Δ, Vn(u) := V(Pnu) and
μn(u) := Pnμ(Pnu), n ∈ N. Then |Pnμ(u) − μn(u)| ≤ 2|u||∇u| ≤ c|Δu|2. So
Hypothesis 1.2(a)-(b) and Hypothesis 1.3(a)-(b) readily follow.
Note that for u, ξ, η ∈ H ∩H10 ∩H

2

DξV
V
(u) = −2κ〈Δu, ξ〉,

D2ξηV

V
(u) = 4κ2〈Δu, ξ〉〈Δu, η〉 − 2κ〈Δξ, η〉,

〈Δu, P (u ∙ ∇u)〉 =
∫

Ω

(curlu) curlP (u ∙ ∇u)ds =
∫

Ω

(curlu)(u ∙ ∇ curlu)ds = 0.

So
LnVn
Vn
(u) = −2κν|Δu|2 + 2κ2 |σ∗(u)Δu|2 + κ

∣
∣
∣σ∗(u)(−Δ)

1
2

∣
∣
∣
2

L2(H)

≤ −2κ

(

ν − κ sup
u
|σ(u)|2H→H

)

|Δu|2 + C
(1.10)

So Hypothesis 1.3(c) follows. Furthermore, for u,w ∈ H10 ∩H
2 ∩H,

〈u− w,P (u ∙ ∇u)− P (w ∙ ∇w)〉 =
∫

Ω

(u− w) ∙ (u ∙ ∇u− w ∙ ∇w) ds

=

∫

Ω

(u− w) ∙ ((u− w) ∙ ∇u) ds,

since
∫
Ω
(u− w) ∙ (w ∙ ∇(u− w)) ds = 1

2

∫
Ω
w ∙ ∇|u− w|2ds = 0.

So, |〈u−w,P (u ∙ ∇u)−P (w ∙ ∇w)〉| ≤ |Δu|
∣
∣
∣(−Δ)−

1
2 |u− w|2

∣
∣
∣ ≤ c|Δu||u−w|2.

Hence, for any κ, ε > 0,

lim sup
HNn3w→u

〈μn(u)− μn(w), u− w〉
|u− w|2

≤ 2κε|Δu|2 +
c

κε
.

Now, using (1.10) it is easy to verify (1.9) and thus Hypothesis 1.2(c) holds.
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