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Abstract

In this note we present a new approach to solve Kolmogorov equa-
tions in infinitely many variables in weighted spaces of weakly continuous
functions, including the case of non-constant possibly degenerate diffusion
coefficients.

Résumé. Dans cette note nous présentons une nouvelle approche pour
résoudre des équations de Kolmogorov & une infinité de variables dans des
espaces a poids de fonctions faiblement continus. Le cas de coéfficients de
diffusion non-constants et éventuellement dégénérés est inclus.

1 Introduction and Main result

The purpose of this note is to present a new general approach to Kolmogorov
equations in infinite dimensions based on the methods first developed in [2].
We illustrate this approach through its application to the stochastic 2D Navier-
Stokes equations (NSE, see [1] and the references therein) with state dependent
(“multiplicative”) noise, which on an open set 2 C R? or Q = T is given by

%zﬁ—qu =vAu—Vp+f, divu=0, ulpo=0, u(z,0)=ue(z). (1.1)
Here u(t,z) € R? is the velocity of a fluid in z € Q at time ¢ > 0, p(¢,z) the
pressure, f(t,x) an external stochastic force and v the viscosity constant. We
consider the Laplacian with Dirichlet and periodic boundary conditions.

As usual we project (1.1) onto the sub-space H C L?(Q — R?) of divergence
free vector fields by the Leray-Helmholtz projection P. Then the SPDE (1.1)
becomes an SDE in H.

To describe the stochastic force f precisely, let {¢;}72; be the eigenbasis of
the part of A on H and let {wf}$°, be a sequence of iid Brownian motions
with 7 = o{wk|0 < s < t,k = 1,2,3,...} its associated filtration. If o is
an (F;)-adapted locally bounded separable process taking values in the space
Ly(H) of Hilbert-Schmidt operators on H, the series ), fot olrdwl converges
in H almost surely. We denote the differential of the latter process by odw;
and set f = 209 with a continuous map o : H — Ly(H), i.e. we allow o to

dt
depend on the solution. Thus, (1.1) turns into the following SDE in H:

duy = [vAug — P (ug - V)| dt + o (ug)dwy (1.2)



The usual way to obtain the Kolmogorov equations corresponding to SDE
(1.2) is to reformulate the latter as a martingale problem, which is a standard
approach to construct weak solutions to an SDE of type

dus = p(us)dt + o(us)dwy (1.3)

(cf. Stroock and Varadhan in [5] if H = R9): Let D be the set of all cylindrical
functions of type

o(u) = ¢ ((t1,u), (b2, 0), ..., (bn, ), n €N, ¢ € CF(R"). (1.4)

Itd’s formula applied to ®(u;), with u; solving (1.3), yields that

t

mas(t) = B(ur) — B(ug) — / (L®)(us)ds, (15)

0

is an (F;)-martingale, with the Kolmogorov operator L defined as follows:

Lo(u) = %Z(a(u)ﬁk,a(u)£m>§€§;ﬁl + zk:uk(u) 8§é:>, ®eD, (1.6)

km

where in the special case of (1.2)
pg(u) ==, p(u)) = WAL, u) + (u- Vi, u), keN.

Then a solution to the martingale problem (L, D) is a family of measures
(Pw)uem on C([0,00), H), i.e. the space of continuous trajectories in H such
that, for u € H, first, P,{up = u} = 1, and second, for ® € D, the process mg
is a P,-martingale with respect to the standard filtration on C([0,c0), H).

We confine ourselves to Markov solutions, i.e. (P,)ucn form a Markov pro-
cess. Then it suffices to construct the transition probability semigroup (TPS),
i.e. a semi-group of Markov kernels p;(u,dv) on H such that

p:®(u) — P(u) = /tps(Lq))(u)ds, t>0,®eD, (1.7)

which is obtained from (1.5) by taking expectation. (1.7) as equations in the un-
known measures ps(u,dv) are called Kolmogorov equations and by construction
can be considered as a linearization of (1.3).

A purely analytic method of solving (1.7) was introduced in [2] and then
developed in [3] (see also [4]). Its main point is the construction of the TPS p;
as a semi-group P; of Markov operators on

Cy:={f:{V<oo}—=R|

[ Tyv<gy is weakly continuous V R > 0 and lim sup VS = 0}, (1.8)
- R— o0 {VZR}

V: H — [0,00] being a Lyapunov function for L, i.e. V is of compact level sets,
such that (A — L)V > 0.

To state our result precisely, let us consider the SDE (1.3) on an abstract
separable Hilbert space H. Let H,, C H,+1 C H, be an increasing sequence of
finite dimensional subspaces of H, H,, := UH,, be dense in H, P, : H — H,
be the corresponding orthogonal projections.



Hypothesis 1.1. The noise 0 : H — Lo(H) is Lipschitz continuous and has
block diagonal structure, that is, there exists a sequence N, — oo such that
Py, o(u) = Py, o(Py,u) for all u € H.

Hypothesis 1.2. Let N,, — oo be as in Hypothesis 1.1, o,,(u) := Py, o(u) =
Py, 0(Pn,u). For all n € N, there exist u,, € C(H — Hy, ), and V,, € C?(H),
tn(u) = pn(Pn,u), Vi(u) =V, (Py,u) for all w € H, such that

(a) V,, > 0;

(b) (pn () — pin(w), u — w)

sup B < 005
wwe Hy, suw, ul,[w| <R |u —wl

(¢) There exists A € R independent of n such that, for a.a. u € Hy

n?

lim sup {pan (1) — Mn(wl’ u—w + sup |D§0n|%2 (u)
Hpy,, Sw—u lu — wl §€HN,, |¢|=1
. DV, L,V,
(u) +

+ _sw (Dot
¢€Hy, [¢[=1 Vi Vi

(w) <A, (1.9)

where L, on C?(Hy,) is given by (1.6) with u,, o, replacing o and p,
respectively.

Hypothesis 1.3. Let N,, — oo be as in Hypothesis 1.1, and p,,V,, L, be as in
Hypothesis 1.2. There are positive functions V, W of compact level sets, finite
on H,, such that

(a) V,,,V € Cw (the latter is defined as in (1.8)) and V,, — V in Cy as

n — oo;
(b) For all u € {W < oo}, p(u) is defined, |u, — P, pl(v) < c¥f(u) and
|, — P, pl(u) — 0 as n — oo;
A — Lp)V,
(c) liTrLILsolip uelgfvn %(u) >1 for some A, € R.

The following theorem is our main result in [3]. To the best of our knowledge
it is the first result on solving the Kolmogorov equations (1.7) purely analytically
for all points u in an explicitly specified subspace of H and with a non-constant
possibly degenerate diffusion matrix in the second order part of L.

Theorem 1.4. Let Hypotheses 1.1, 1.2, 1.3 hold. Then there ezists a unique
solution to (1.7) on {V < oo} and the TPS constitutes a Co-semi-group of
quasi-contractions on Cy. Furthermore, there exists a unique Markov solution

(Pu)ueqv<oo} of (L.5).

We now apply Theorem 1.4 to the 2D NSE (1.2). Let H be the sub-space
of L?(f) — R?) consisting of all divergence free vector fields, let H} := H}(Q —
R?) (note that H} = H! if Q = T?), H? := H*(Q — R?) and let p(u) :=
vAu — P (u-Vu) for u € H} N H?.

Theorem 1.5. Let o : H — Lo(H, H}) be bounded, satisfying Hypothesis 1.1.
v

Moreover, let V(u) =V, (u) = AL 7 G c—
sup |o(w) |3, i
u



Then (1.7) for L with u and o as above has a unique solution on H} N H
and the respective TPS constitutes a Cy-semi-group of quasi-contractions on
Cy. PFurthermore, there exists a unique Markov solution (Pu)ueHgnH of the
corresponding martingale problem.

Proof. Let W(u) := ¢V(u)|Aul? if w € H} N H?, and W = +co else. Let
H,, be the linear hull of the first n eigenvectors of A, V,,(u) := V(P,u) and
pn(u) == Pyu(Pyu), n € N. Then |P,u(u) — pn(u)| < 2[u||Vu| < c|Aul?. So
Hypothesis 1.2(a)-(b) and Hypothesis 1.3(a)-(b) readily follow.

Note that for u,&,n € HNHE N H?

2
DV () = 2e(du, ), 0 () = 2 (Aus, €) (B, ) — 256(AE ),
(Au, P(u-Vu)) = /(curl u) curl P(u - Vu)ds = / (curlw)(u - Vcurlu)ds = 0.
Q Q
So ﬁ(u) = — | Aul? + 252 |0* (u) Aul? + 3 ‘o*(u)(—A)% ’

\a L2(H)

(1.10)
< -2 (V — »sup |0(u)|§{HH> |Aul® + C
So Hypothesis 1.3(c) follows. Furthermore, for u,w € H} N H> N H,

(u—w,P(u~Vu)—P(w-Vw)):/Q(u—w)~(u~Vu—w~Vw)ds

= [w=w)- (=) uy s,
since [o,(u—w) - (w-V(u—w))ds =3 [,w- V]u—w*ds = 0.
So, [(u ~ w, P(u- V) ~ Pl V)| < |Aul|[(~A)Hu— w] < ol Aulju— wf?.
Hence, for any s, > 0,

lim sup {ptn () = un(wg,u —w) < 23| Aul? + -
Hy, sw—su |lu — w| P

Now, using (1.10) it is easy to verify (1.9) and thus Hypothesis 1.2(c) holds. O
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