
Spectral analysis of a stochastic Ising model in
continuum ∗

Yu. Kondratiev
Dept. of Mathematics and BiBoS, Bielefeld University, Germany,

and NaUKMA, Kiev, Ukraine
kondrat@math.uni-bielefeld.de

E. Zhizhina
IITP, Russian Acad. Sci., Moscow, Russia

ejj@iitp.ru

Dedicated to our admired teacher and friend Robert Minlos on occasion of
his 75th birthday

Abstract

We consider an equilibrium stochastic dynamics of spatial spin systems in
Rd involving both a birth-and-death dynamics and a spin flip dynamics as well.
Using a general approach to the spectral analysis of corresponding Markov gener-
ator, we estimate the spectral gap and construct one-particle invariant subspaces
for the generator.
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1 Introduction

In this paper we study an equilibrium stochastic dynamics of continuous spin systems
involving a birth-and-death process as well as a spin flip dynamics. The dynamics is
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a natural generalization of the stochastic Ising model and a Glauber-type dynamics of
continuous gas which has been under consideration in [2], [6] and [4]. The generator of
this dynamics is a self-adjoint operator in L2-space w.r.t. an equilibrium measure. The
main goal of the present paper is to study the structure of the low-lying spectrum of the
infinite volume dynamics generator: to estimate the spectral gap, to construct leading
invariant subspaces of the generator and to find the location of the corresponding
isolated branches of the generator spectrum. We prove that involving in the dynamics
a new spin flip action does not change essentially the structure of the low-lying spectrum
of the generator if the intensity of spin flips is small enough. When the intensity of
spin flips is increasing, the first spectral gap (a gap between 0 and an one-particle
branch of the spectrum σ1) is still preserved while the second gap (a gap between an
one particle branch σ1 and the rest of the spectrum σ2) could vanish. That means that
we can estimate from above and from below the decay of auto-correlation functions
when the intensity of the spin flip is small enough, but for large values of the intensity
we have only the upper bound. We use here general approaches from [8, 3, 1, 9, 14]
to the spectral analysis of the generators of stochastic dynamics systems together with
modifications of methods developed in [5, 4] for the study of spatial dynamics.

Theorem 2 containes the main result of this paper on the existence of an one-particle
invariant subspace of the generator and the corresponding isolated one-particle branch
of the spectrum in a low activity - high temperature regime when the spin flip intensity
is small enough. We also show - it is a statement of Theorem 1 - that for any value
of the spin flip intensity an infinite volume dynamics generator has a spectral gap,
and we found a lower estimate on the spectral gap. We note that a lower estimate on
the spectral gap has been also found using other technique (for instance, coercitivity
identity), see [6, 13]. We exploit here an approach which is also applicable for the
separation of low-lying branches of the generator spectrum. One of the goal of the paper
is to show the universality of the general scheme of the spectral analysis of infinite-
particle operators developed in numerous papers of R. A. Minlos and his collaborators,
see for instance [1, 3, 4, 7, 8, 9].

2 Glauber dynamics for continuous multi-component

models

2.1 Glauber dynamics of continuous gas

In this section we shortly remind main constructions of a Glauber-type dynamics of
continuous gas. The configuration space Γ := Γ(Rd) is the set of all locally finite
subsets of Rd. We consider in the space Γ a topology with respect to which all maps
Γ 3 γ 7→ 〈f, γ〉 :=

∑
x∈γ f(x), f ∈ D, are continuous (here, D := C∞

0 (Rd) is the space

of all infinitely differentiable real-valued functions on Rd with compact support). We
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will denote by B(Γ) the Borel σ-algebra on Γ generated by this topology. Then the
Poisson measures πz with activity z, z > 0, are defined on (Γ, B(Γ)) by the following
properties:
1) For any family of mutually disjoint bounded measurable domains Λ1, . . . , Λk, Λj ⊂
Rd random variables

NΛj
(γ) = |γΛj

|, j = 1, ..., k

are independent. Here |A| denotes the cardinality of a set A, γΛ = γ ∩ Λ.
2) Each random variable NΛj

has the Poisson distribution

Pr(NΛj
(γ) = n) =

zn|Λj|n
n!

e−z|Λj |, j = 1, ..., k,

where |Λj| is the volume of Λj in Rd, [10].
In other words, πz is the Poisson white noise measure on Γ corresponding to the

intensity measure zdx on Rd.
The Gibbs reconstruction of the Poisson measure πz is defined by a formal Hamil-

tonian
U(γ) =

∑
x,y∈γ

φ(x− y)

and the inverse temperature β > 0. Here and later on the sum is taken over unordered
pairs of points x, y ∈ γ. The Gibbs measure µβ,z is constructed as a limit when Λ ↗ Rd

of finite volume Gibbs measures corresponding to empty boundary conditions:

µβ,z = lim
Λ↗Rd

µΛ
β,z. (2.1)

The measure µΛ
β,z is defined by the following density w.r.t. the Poisson measure:

dµΛ
β,z

dπz

=
1

ZΛ

exp{−βU(γΛ)}, Λ ⊂ Rd,

where ZΛ is the normalizing factor. We will use below general assumptions on the pair
potential φ(u) and on the parameters β, z guaranteeing the existence of the limit (2.1),
see for instance [11].

We will consider next a stationary Markov process on the state space Γ with the
invariant measure µβ,z. The generator of the corresponding stochastic semigroup in
the functional space L2(Γ, µβ,z) has following form:

(HF )(γ) =
∑
x∈γ

(F (γ \ x)− F (γ)) + z

∫

Rd

e−βE(x,γ) (F (γ ∪ x)− F (γ)) dx, (2.2)

where E(x, γ) is the relative energy of interaction between a particle located at x and
the configuration γ:

E(x, γ):=

{∑
y∈γ φ(x− y), if

∑
y∈γ |φ(x− y)| < ∞,

+∞, otherwise.
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This generator is associated with a Dirichlet form

(−HF, F ) = E(F, F ) =

∫

Γ

∑
x∈γ

|F (γ\x)− F (γ)|2dµβ,z(γ).

As it was shown in [6], under general conditions on the potential φ and the parameters
β, z, there exists a stationary Markov process {γ(t), t ∈ R} on Γ with the stationary
measure µβ,z, such that the generator (2.4) of the process can be extended to a self-
adjoint operator in L2(Γ, µβ,z), what is equivalent to the reversibility of the process
γ(t). This process is called the equilibrium Glauber dynamics which corresponds to
the Gibbs measure µβ,z.

2.2 Glauber dynamics of continuous Potts models

In this section we extend the above definition and constructions to the case of two-
component continuous systems. The configuration space is the product of two config-
uration spaces associated with each component of the system:

γ = (γ+, γ−) ∈ Γ+ × Γ−.

Both Γ+ and Γ− are defined as above in 2.1, and we can consider the product of

Poisson measures π
(+)
z × π

(−)
z . A Gibbs measure for considered two-component system

is formally defined as follows

dµβ,z(γ+, γ−) =
1

Z
exp{−βU(γ+, γ−)}dπ(+)

z (γ+)dπ(−)
z (γ−)

with a Hamiltonian

U(γ+, γ−) =
∑

x∈γ+,y∈γ+

φ+(x− y) +
∑

x∈γ−,y∈γ−

φ−(x− y) +
∑

x∈γ+,y∈γ−

φ±(x− y).

The generator of the birth-and-death dynamics of the stochastic Potts model has the
form

(HF )(γ+, γ−) =
∑
x∈γ+

(F (γ+\x, γ−)− F (γ+, γ−)) +
∑
x∈γ−

(F (γ+, γ−\x)− F (γ+, γ−)) +

(2.3)

+z

∫
e
−β

P
y∈γ+

φ+(x−y)−β
P

y∈γ−
φ±(x−y)

(F (γ+ ∪ x, γ−)− F (γ+, γ−)) dx +

+z

∫
e
−β

P
y∈γ−

φ−(x−y)−β
P

y∈γ+

φ±(x−y)

(F (γ+, γ− ∪ x)− F (γ+, γ−)) dx,
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and as above the existence of the corresponding stochastic process on Γ+ × Γ− follows
from the relation between H and associated Dirichlet form, see, e.g., [6]:

EPotts(F, F ) =

∫

Γ+×Γ−

(∑
x∈γ+

|F (γ+\x, γ−)− F (γ+, γ−)|2+

+
∑
x∈γ−

|F (γ+, γ−\x)− F (γ+, γ−)|2
)

dµβ,z(γ+, γ−).

The spectral analysis of the generator (2.3) (spectral gap in low density – high tem-
perature regime, construction of invariant subspaces) could be done in the same way
as in the paper [4].

Let us note, that the presence of many components in the model permits to consider
another action of the dynamics, namely, a change of the component type. However,
this action has no a natural description in the stochastic spatial Potts model setting.
In the next subsection we introduce a marked continuous system which gives a proper
framework for the consideration of mentioned stochastic dynamics.

2.3 Glauber dynamics of a continuous Ising model)

We will consider here a Glauber type dynamics of continuous marked system, and will
study the case when the mark takes only two values. Then the mark has a meaning
similar to the spin in classical Ising system and we will name this model a continuous
Ising model.

The marked configuration space Γ̂ of the model is:

Γ̂ :=
{

γ̂ = (γ, σγ), γ ∈ Γ, σγ = {σx(γ)}x∈γ = {σx}x∈γ, σx = ±1
}
.

We consider a reference measure µ0,z on Γ̂ with the following decomposition:

dµ0,z(γ̂) = dνγ(σγ) dπ2z(γ).

Here we use the Poisson measure π2z on γ with activity 2z and the conditional Bernoulli
measure (under given configuration γ for positions of marks)

dνγ(σγ) =
∏
x∈γ

dν(σx)

that is the product of the Bernoulli measures with parameter p = 1/2 over all points
from the configuration γ. Another way to construct this measure is the following one.
We consider the extended underlying space {−1, +1} × Rd 3 x̂ = (σ, x) with the
measure dx̂ = dν(σ)dx. Then Γ̂ ⊂ Γ({−1, +1} × Rd) and it is easy to see that the
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measure dµ0,z(γ̂) is nothing but the Poisson measure with the intensity 2zdx̂. This

measure is defined at first on Γ({−1, +1} × Rd) and after may be considered on Γ̂ as
on a full measure set.

Let us consider a Gibbs measure on the marked configuration space Γ̂ (marked
Gibbs measure for short). To make our reasoning more clear we assume coupling only
between points with different marks, so that the formal Hamiltonian can be written as

U(γ̂) =
∑

x̂,ŷ∈γ̂

φ(x− y)(σx − σy)
2.

Using the reference measure and this Hamiltonian as above we construct the Gibbs
measure µβ,z on Γ̂.

A generator of a Markov stochastic process involving a spatial birth-and-death
process as well as a single-spin flip dynamics on the configurations of spins σγ has the

following form in the functional space L2(Γ̂, µβ,z)

(HF )(γ̂) =
∑

x̂∈γ̂

(F (γ̂ \ x̂)− F (γ̂)) + z

∫
e
−β

P̂
y∈γ̂

φ(x−y)(σx−σy)2

(F (γ̂ ∪ x̂)− F (γ̂)) dx̂+

(2.4)

+λ
∑

x̂∈γ̂

e
−β

P̂
y∈γ̂

φ(x−y)(σx+σy)2

(F (γ̂x)− F (γ̂)) ,

where

γ̂x = (γ, σx
γ) =

{
(y, σy), if y 6= x, y ∈ γ;
(x,−σx), if y = x, x ∈ γ

The choice of death and birth rates and spin flip rates depends on a general condition
of symmetry for the operator H in the space L2(Γ̂, µβ,z).

The corresponding Dirichlet form can be written as

(−HF,F ) = E(F, F ) = EBAD(F, F ) + λESF (F, F ) = (2.5)

∫

Γ̂

∑

x̂∈γ̂

|F (γ̂\x̂)−F (γ̂)|2dµβ,z(γ̂)+
λ

2

∫

Γ̂

∑

x̂∈γ̂

e
−β

P̂
y∈γ̂

φ(x−y)(σx+σy)2

|F (γ̂x)−F (γ̂)|2dµβ,z(γ̂).

We denote by H(0) the generator of the birth-and-death part of the dynamics (when
λ = 0 in the expression (2.4)):

(H(0)F )(γ̂) =
∑

x̂∈γ̂

(F (γ̂ \ x̂)− F (γ̂)) + z

∫
e
−β

P̂
y∈γ̂

φ(x−y)(σx−σy)2

(F (γ̂ ∪ x̂)− F (γ̂)) dx̂

so that
(−H(0)F, F ) = EBAD(F, F ).
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Let us note that the Gibbs measure is invariant with respect to the space transla-
tions on Γ̂:

τsγ̂ = γ̂ + s = {x̂i + s, x̂i ∈ γ̂}, xi, s ∈ Rd.

We denote by Us the corresponding unitary group of the operators of space translations
acting in L2(Γ̂, µβ,z):

(UsF )(γ̂) = F (τ−1
s γ̂). (2.6)

It easy to see that the operators Us commute with the generator H (2.4).

2.4 Conditions on the potential φ and parameters β, z

We formulate conditions on the pair potential φ and parameters β, z which guarantee
the existence of the Gibbs measure as well as the existence of the first leading invariant
subspace of the generator, see Theorem 2 below.

(I a) (Integrability):

C(β) :=

∫

Rd

∣∣1− e−4βφ(u)
∣∣ du < +∞.

(I b) (Positivity):
φ(u) ≥ 0 for all u ∈ Rd.

(I c) (Low activity-high temperature regime): We assume that the parameter of the
model

ε = z C(β) < ε0

is small enough.

2.5 Main results

We state now main results of our paper. Let us denote by G0 = {Ψ(γ) ≡ c} ⊂
L2(Γ̂, µβ,z) the subspace of constants. It is easy to see that G0 is an invariant subspace
of the operator H and the corresponding eigenvalue is equal to 0.

Theorem 1. Under assumptions (I a) - (I c) and for any λ > 0

(−HF, F ) ≥ g0 (F, F )

for any F ∈ L2(Γ̂, µβ,z)ª G0, where

g0 =

∥∥∥∥
(
H(0)|L2(Γ̂,µβ,z)ªG0

)−1
∥∥∥∥
−1

≥ 1− 4ε.

7



Theorem 2. Let conditions (I a)-(I c) hold, and λ > 0 is small enough. Then the
space L2(Γ̂, µβ,z) can be decomposed into a direct orthogonal sum of subspaces invariant
with respect to the operator H:

L2(Γ̂, µβ,z) = G0 ⊕ G1 ⊕ G2.

Let Hk = H|Gk
, k = 0, 1, 2, be restrictions of the operator H on the corresponding

invariant subspaces G0,G1,G2, and σk = σ(Hk) be their spectra. Then

σ0 = {0}, σ1 ⊂ [−1− γ1,−1 + γ1], σ2 ⊂ (−∞,−2 + γ2], (2.7)

where γ1 = 3ε + 4λ, γ2 = 30ε + 120λ are small under small enough ε and λ.

Remark. The subspace G1 has the following structure:
1) it is invariant with respect to the generator H and the unitary group of the space
translations {Us, s ∈ Rd} acting in L2(Γ̂, dµβ,z);

2) the operators H1 = H|G1 and U
(1)
s = Us|G1 are unitary equivalent to the operators

of multiplication by a function (or a matrix function).
Then we call a subspace G1 ⊂ L2(Γ̂, dµβ,z) one-particle invariant subspace of the gen-
erator H. In the physical literature the subspace G1 is usually associated with states
of ”quasi-particles”.

Corollary 1. Under small enough ε and λ the spectrum of H is decomposed into at
least three isolated parts. As follows from (2.7) at least two gaps exist in the spectrum
of H. The first spectral gap is a gap between 0 and σ1, which is estimated by 1 − γ1.
The latter one is a gap between σ1 and σ2.

Corollary 2. Let F ∈ L2(Γ̂, dµβ,z) ∩ L1(Γ̂, dµβ,z) be a function with a non-zero
projection on the one-particle invariant subspace G1. Then under conditions of Theorem
2 the correlation function meets the following sandwich estimate as t →∞:

C1e
−t(1+γ1) ≤ 〈F (γ̂(t)), F (γ̂(0))〉P ≡

〈F (γ̂(t)) · F (γ̂(0))〉P − 〈F (γ̂)〉2µβ,z
≤ C2e

−t(1−γ1).

Here P is the distribution of the process with generator H, constant γ1 is defined in
Theorem 2; C1, C2 are constants depending on the function F .

In particular, for any function FA(γ̂) of the form

FA(γ̂) =
∑

x̂∈γ̂

χA(x̂) σx,

where χA(x̂) = χA(x) is the characteristic function of a finite volume A ⊂ Rd the
following decay of the correlation function holds as t →∞:

C1e
−t(1+γ1) ≤ 〈FA(γ̂(t)), FA(γ̂(0))〉P =
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〈 ∑

x̂∈γ̂(t)

χA(x)σx ·
∑

ŷ∈γ̂(0)

χA(y)σy

〉

P

≤ C2e
−t(1−γ1)

Proof follows the standard reasoning using the spectral theorem, see for example [3, 4].

Remark. Theorem 1 implies that the estimate from below on the spectral gap
is uniform over λ, and the spectral gap of H is not less then the spectral gap of the
generator H(0) for the pure birth-and-death dynamics.

On the other hand, we have to impose an additional assumption on the parameter
λ to prove the existence of the separated low-lying part of the spectrum σ1. We don’t
state the result on σ1 for any λ > 0 because the approach we used here is based on the
perturbation theory for the free generator of the birth-and-death part of the dynamics.
We admit that the analogous decomposition of the spectrum could be valid for any
λ, but the analysis of this conjecture requires some modifications of the developed
technique.

2.6 The space of quasi-observables

Here we formulate main constructions for our model. Let us consider the space of finite
configurations

Γ̂0 :=
∞⊔

n=0

Γ̂
(n)
0 ,

where
Γ̂

(n)
0 := {η̂ = (η, ση) ∈ Γ̂0 : |η̂| = |η| = n}

is the space associated with all n-point subsets in Rd for n ∈ N, and Γ̂
(0)
0 := {∅}.

Analogously, we can consider configurations in a finite domain Λ ⊂ Rd. For γ̂ ∈ Γ̂ put
γ̂Λ = {(x, σx)}x∈γΛ

. We will say that γ̂1 ⊂ γ̂2 if γ1 ⊂ γ2 and σx(γ1) = σx(γ2), x ∈ γ1.

Denote by Bbs(Γ̂0) the space of all complex-valued bounded B(Γ̂0)-measurable func-
tions with bounded support, i.e.,

G¹
Γ̂0\

�FN
n=0 Γ̂

(n)
Λ

�≡ 0 for some N ∈ N, and some bounded domain Λ ⊂ Rd.

For any G ∈ Bbs(Γ̂0) we define a function KG : Γ̂ → C on the space Γ̂ (so-called
K-transform) by the following way:

(KG)(γ̂) :=
∑
η̂⊂γ̂
|η|<∞

G(η̂). (2.8)

Note that for every G ∈ Bbs(Γ̂0) the sum in (2.8) has only a finite number of terms
different from zero and thus KG is a well-defined function on Γ̂. Moreover, if G ∈
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Bbs(Γ̂0), then KG is a local function:

(KG)(γ̂) = (KG)(γ̂Λ)

and the function KG is polynomially bounded:

|(KG)(γ̂)| ≤ L(1 + |γ̂Λ|)N , for all γ̂ ∈ Γ̂,

where the bounded domain Λ ⊂ Rd and N ∈ N are defined by the function G, and
L = supξ∈Γ̂0

|G(ξ)|. The inverse mapping of the K-transform is defined by

(
K−1F

)
(η̂) :=

∑

ξ̂⊂η̂

(−1)|η̂\ξ̂|F (ξ̂), η̂ ∈ Γ̂0.

The functions of the form (2.8) are known as additive type observables or summa-
tor functions. Summator functions form a commutative algebra, the product of two
summator functions is again a summator function. For every G1, G2 ∈ Bbs(Γ̂0) we have

(KG1) · (KG2) = K (G1 ? G2) (2.9)

where the ?-convolution is defined on B(Γ̂0)-measurable functions by

(G1 ? G2)(η̂) :=
∑

(η̂1, η̂2, η̂3):
η̂1∪η̂2∪η̂3=η̂

G1(η̂1 ∪ η̂2) G2(η̂2 ∪ η̂3), η̂ ∈ Γ̂0, (2.10)

and G1 ?G2 ∈ Bbs(Γ̂0), see [5]. Here the summation in (2.10) is over all three mutually
disjoint subsets (η̂1, η̂2, η̂3) of η̂ which may be empty, such that η̂1 ∪ η̂2 ∪ η̂3 = η̂.

2.7 Correlation functions

Let us consider a probability measure µ defined on (Γ̂,B(Γ̂)) with finite local moments
of all orders. The latter means that for any bounded domain Λ ⊂ Rd holds

∫

Γ̂

|γ̂Λ|n dµ(γ̂) < ∞ for all n ∈ N.

Then one can define a unique σ-finite measure % = %(µ) on (Γ̂0,B(Γ̂0)), such that
∫

Γ̂

(KG) (γ̂) dµ(γ̂) =

∫

Γ̂0

G(η̂) d%(η̂), (2.11)

for all G ∈ Bbs(Γ̂0). We call % the correlation measure corresponding to µ. Assume
that % is absolute continuous with respect to the Lebesgue-Poisson measure dλ(η̂) on
Γ̂0, where

dλ(η̂) =
1

n!
dx̂⊗n
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on Γ̂
(n)
0 . Then there exists the Radon-Nikodym derivative

%µ(η̂) =
d%

dλ
(η̂),

and the functions %µ(η̂), η̂ ∈ Γ̂0 are called the correlation function of the measure µ.
In our case of the Gibbs measure under above assumptions on the potential and the
parameters of the model, the correlation function exists, and moreover, it meets the
following Ruelle bound, see [11, 12]:

%µ(η̂) < z|η|.

2.8 Auxiliary Hilbert space and reduced generator

Using formulas (2.8)-(2.9) we have the following representation for the scalar product
in L2(Γ̂, µβ,z) of functions KG1, KG2 when G1, G2 ∈ Bbs(Γ̂0):

(KG1, KG2)L2(Γ̂,µβ,z) =

∫

Γ̂

(KG1) (γ̂) · (KG2) (γ̂)dµβ,z(γ̂) = (2.12)

=

∫

Γ̂

K
(
G1 ? G2

)
(γ̂)dµβ,z(γ̂) =

∫

Γ̂0

(G1 ? G2)(η̂)%µ(η̂)dλ(η̂).

Since equality (2.12) determines a positive quadratic form in the space Bbs(Γ̂0), we can
accept the relation

(G1, G2) =

∫

Γ̂0

(G1 ? G2)(η̂)%µ(η̂)dλ(η̂), G1, G2 ∈ Bbs(Γ̂0)

as a new scalar product. The closure of Bbs(Γ̂0) by this scalar product is denoted by
H.

It was shown in [5], that the K-transform can be extended as a unitary operator

K : H → L2(Γ̂, µβ,z). (2.13)

Direct calculations give the representation for the unitary image L := K−1HK of
the Glauber generator H acting in the Hilbert space H:

(LG)(η̂) = −|η|G(η̂) (2.14)

+z
∑

γ̂⊆η̂

∫
G(γ̂ ∪ x̂)

∏

ŷ∈η̂\γ̂

(
e−βφ(x−y)(σx−σy)2 − 1

) ∏

ŷ∈γ̂

e−βφ(x−y)(σx−σy)2 dx̂

+λ
∑

γ̂⊆η̂

∑

x̂∈γ̂

(F (γ̂x)− F (γ̂))
∏

ŷ∈γ̂\x̂
e−βφ(x−y)(σx+σy)2

∏

ŷ∈η̂\γ̂

(
e−βφ(x−y)(σx+σy)2 − 1

)
.
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We call the operator (2.14) the reduced generator, and in what follows we will study the
spectral properties of the operator L in the space H. We denote by L(0) the operator
L for λ = 0 (the generator of the pure birth-and-death part of the dynamics):

(L(0)G)(η̂) = (K−1H(0)KG)(η̂) = −|η|G(η̂) (2.15)

+z
∑

γ̂⊆η̂

∫
G(γ̂ ∪ x̂)

∏

ŷ∈η̂\γ̂

(
e−βφ(x−y)(σx−σy)2 − 1

) ∏

ŷ∈γ̂

e−βφ(x−y)(σx−σy)2 dx̂.

2.9 Main results in terms of the reduced generator L.

We formulate here the main results in terms of the auxiliary Hilbert space H and the
operator L. As follows from the unitary property (2.13) of the K-transform, statements
of Theorems 3 and 4 below are equivalent to Theorems 1 and 2.

Let H0 ⊂ H be an one-dimensional subspace, generated by the ”vacuum” vector
Φ0:

Φ0(η̂) =

{
1, η̂ = ∅;
0, η̂ 6= ∅. (2.16)

It is easy to see, that LΦ0 = 0.

Theorem 3. Under assumptions (I a) - (I c) and for any λ > 0

(−LG, G) ≥ g0 (G, G), G ∈ H⊥
0 = HªH0,

where g0 is the spectral gap of the operator L(0):

g0 =
∥∥∥
(
L(0)|HªH0

)−1
∥∥∥
−1

≥ 1− 4ε.

Theorem 4. Let assumptions (I a)-(I c) be valid and λ is small enough. Then
the space H can be decomposed into a direct orthogonal sum

H = Ĥ0 ⊕ Ĥ1 ⊕ Ĥ2 (2.17)

of the subspaces Ĥ0 = H0, Ĥ1, Ĥ2 invariant with respect to the operator L. Let Lk =
L|Ĥk

, k = 0, 1, 2, be restrictions of the operator L on the corresponding subspaces

Ĥ0, Ĥ1, Ĥ2, and σk = σ(Lk) be their spectra. Then

σ0 = {0}, σ1 ⊂ [−1− γ1,−1 + γ1], σ2 ⊂ (−∞,−2 + γ2], (2.18)

where γ1 = 3ε + 4λ, γ2 = 30ε + 120λ are small under small enough ε and λ.

12



3 Proof of Theorems 3,4. A general scheme of the

spectral analysis of the generator.

We denote by Cbs(Γ̂0) the set of all continuous functions on Γ̂0 with bounded support,
and let us consider the following norm in the space Cbs(Γ̂0):

‖G‖M = sup
η̂

((
1

3

)|η| ∫

Γ0

(|η|+ |ξ|) sup
σξ

|G(η̂ ∪ ξ̂)|M |ξ|dξ

)
+ |G(∅)|, (3.1)

where G ∈ Cbs(Γ̂0) and dξ is the Lebesgue-Poisson measure on the space of finite
configurations Γ0. We take a constant M , such that M > 4z.

We denote by L a closure of Cbs(Γ̂0) with respect to the norm (3.1). Let us note
that the Banach space L and the norm (3.1) are invariant with respect to the operators
Ut of the space translations:

UtG ∈ L, ‖UtG‖M = ‖G‖M (3.2)

for any G ∈ L and any t ∈ Rν .

Lemma 3.1. Let
M > 4z, (3.3)

then L ⊂ H, the space L is dense in H, and

‖G‖H ≤ ‖G‖M , G ∈ L. (3.4)

Proof of Lemma 3.1: see Section 4.

We denote the domain of the operator L in H by DL ⊂ H. Let us consider the
following set of functions

D̃L = {G ∈ L ∩DL : LG ∈ L}

Then D̃L is the domain of L as an operator acting in L. Since Cbs(Γ0) ⊂ DL and

Cbs(Γ0) ⊂ D̃L, then D̃L is dense in L.
For any k = 0, 1, 2, . . . , we define the following spaces of functions:

Lk = {G ∈ L : G(η̂) = 0, when |η| 6= k},

L≥k =
⊕

j≥k

Lj = {G ∈ L : G(η̂) = 0, |η| < k},

13



L≤k =
⊕

j≤k

Lj = {G ∈ L : G(η̂) = 0, |η| > k}.

All these subspaces are closed in L. By analogy we can define subspacesHk,H≥k,H≤k ⊂
H, which are also closed in the space H.

We describe now a general scheme of the spectral analysis of the generator. Let us
consider a decomposition of L in a direct sum of two subspaces

L = R1 ⊕R2. (3.5)

This decomposition implies the following matrix representation for the operator L:

L =

(
L11 L12

L21 L22

)
. (3.6)

where L11 : R1 →R1, L12 : R2 →R1 etc.
We will construct an invariant to the operators L subspace R̂1 as the graph of a

bounded operator S : R1 →R2:

R̂1 = {G + SG; G ∈ R1}, SG ∈ R2, (3.7)

(see the general description of this approach in [3, 7, 8]). The condition of the invariance
of the subspace R̂1 with respect to L could be rewritten as the following equation on
the operator S:

S = −L−1
22 L21 + L−1

22 SL11 + L−1
22 SL12S. (3.8)

The next step of the scheme is to write the representation for L restricted to the
invariant subspace R̂1. We consider the projection operator

P1 : R̂1 →R1, P1(G + SG) = G ∈ R1,

and the inverse operator

P−1
1 : R1 → R̂1, P−1

1 G = G + SG.

According to the construction of the invariant subspace (3.7) the operator L|R̂1
can be

written as
L|R̂1

= P−1
1 (L11 + L12S) P1, (3.9)

and analogously, for the inverse operator
(
L|R̂1

)−1
we have

(
L|R̂1

)−1
= P−1

1 (L11 + L12S)−1 P1. (3.10)

It is clear from equations (3.9) - (3.10) that the norm of the operator L|R̂1
can be

estimated in terms of the norms of the operators S, P1, P−1
1 , L11, L12. In many

situations it will be more easy done in the norm of the Banach space L.

14



The last step is to obtain estimates in the Hilbert space H. Here we used the
following result.

Proposition. Let L be a Banach space with a norm || · ||L, such that L ⊂ H is a
dense subset of a Hilbert space H, and for any f ∈ L

||f ||H ≤ ||f ||L.

Let L be a self-adjoint operator in H such that LL ⊂ L and the restriction L|L is a
bounded operator in L. Then L is a bounded operator in H, and

||L||H ≤ ||L||L. (3.11)

Proof of Proposition: see [3, 8]).

We will apply now this scheme to the proofs of Theorems 3-4. To find the bound
on the spectral gap in Theorem 3 we will estimate the norm of the inverse operator
L−1 on the subspace orthogonal to the constant subspace. To do this we consider the
decomposition of L in a direct sum

L = L0 ⊕ L≥1, (3.12)

then the operator L(0) has a matrix representation:

L(0) =

(
0 L01

0 L11

)
. (3.13)

with L01 : L≥1 → L0, L11 : L≥1 → L≥1. The subspace L0 is invariant for L(0), and we

construct an invariant subspace L̂≥1 complementary to L0 as a graph of an operator
T : L≥1 → L0:

L̂≥1 = L≥1 + TL≥1. (3.14)

The condition of the invariance implies that

T = L01 L−1
11 . (3.15)

Lemma 3.2. For all small enough ε

|||L01|||M ≤ ε.

where ||| · |||M means the operator norm, generated by the norm ‖ · ‖M in the Banach
space L.
Proof of Lemma 3.2: see Section 4.
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Lemma 3.3. For all small enough ε

|||L−1
11 |||M ≤ 1

1− eε
. (3.16)

Proof of Lemma 3.3: see Section 4.
Thus, lemmas 3.2-3.3 and representations (3.14)-(3.15) imply the following esti-

mates
|||T |||M ≤ ε

1− eε
, |||P−1

≥1 |||M ≤ 1 +
ε

1− eε
, |||P≥1|||M ≤ 1,

with
P≥1 : L̂≥1 → L≥1, P−1

≥1 : L≥1 → L̂≥1,

and using these estimates together with (3.10) and (3.13) we have

∣∣∣∣
∣∣∣∣
∣∣∣∣
(
L(0)|L̂≥1

)−1
∣∣∣∣
∣∣∣∣
∣∣∣∣
M

≤ 1− (e− 1) ε

(1− e ε)2
. (3.17)

Then from (3.11) and (3.17) it follows that for any G ∈ H ªH0

(−L(0)G,G) ≥ g0 (G,G)

where

g0 =
∥∥∥
(
L(0)|HªH0

)−1
∥∥∥
−1

H
≥

∣∣∣∣
∣∣∣∣
∣∣∣∣
(
L(0)|L̂≥1

)−1
∣∣∣∣
∣∣∣∣
∣∣∣∣
−1

M

≥ 1− 4ε,

and the last bound is valid under small enough ε. Finally, using that the operator (2.4)
is associated with the sum (2.5) of two Dirichlet forms EBAD(F, F ) and ESF (F, F ), we
have for any F ∈ L2(Γ̂, µβ,z) with < F >µβ,z

= 0

(−LG,G) = (−HF,F )L2 = EBAD(F, F ) + λ ESF (F, F ) ≥ EBAD(F, F ) =

(−H(0)F, F )L2 = (−L(0)G,G) ≥ g0 (G, G).

Theorem 3 is proved completely.

To separate a low-lying part of the spectrum of the operator L (the so-called one-
particle branch of the spectrum) we should consider another decomposition of L into
a direct sum

L = L≤1 ⊕ L≥2. (3.18)

That implies the following matrix representation for the operator L:

L =

(
L11 L12

L21 L22

)
. (3.19)

where L11 : L≤1 → L≤1, L12 : L≥2 → L≤1 etc.
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Following the above scheme we construct the invariant subspace

L̂≤1 = {G + S G, G ∈ L≤1} (3.20)

as the graph (3.7) of a bounded operator S : L≤1 → L≥2 that is a solution of the
equation (3.8). To prove the existence of S with a small norm we have to estimate the
norms of the operators from equation (3.8).

Lemma 3.4. For all small enough ε and λ the operator L22 is reversible in L≥2,
and the norm of the operator L−1

22 has the upper bound

|||L−1
22 |||M <

1

2
(1 + 3ε + 6λ). (3.21)

Proof of Lemma 3.4: see Section 4.

Lemma 3.5. For small enough ε and λ we have

|||L11|||M < 1 + 2ε + 2λ, (3.22)

|||L12|||M < ε, (3.23)

|||L21|||M < 4ε + 36λ, (3.24)

Proof of Lemma 3.5: see Section 4.

We denote by F(S) the right-hand side of (3.8) and consider the mapping S → F(S)
in the space of bounded linear operators O1,2, acting from L≤1 to L≥2. Let Bδ ⊂ O1,2

be a ball in the space O1,2 of the radius δ:

Bδ = {S ∈ O1,2 : |||S|||M < δ}.
Then estimates (3.21) - (3.24) imply the following result.

Lemma 3.6. Under small enough ε and λ the ball Bδ with δ = 8ε + 48λ is
invariant with respect to F :

FBδ ⊆ Bδ, (3.25)

and the mapping F(S) is a contraction on Bδ:

|||F(S1)−F(S2)|||M ≤ c|||S1 − S2|||M , S1, S2 ∈ Bδ, (3.26)

with 0 < c < 1.
Proof of Lemma 3.6: see Section 4.
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Lemma 3.6 implies the existence and the uniqueness of the solution S of the equation
(3.8) with a small norm

|||S|||M < δ = 8ε + 48λ. (3.27)

Therefore, we constructed the subspace L̂≤1 of the form (3.20), which is invariant with
respect to the operator L. We denote by L≤1 = L|L̂≤1

the restriction of L to this
invariant subspace.

The second ”supplementary” invariant subspace L̂≥2 of the form

L̂≥2 = {G + T G; G ∈ L≥2}, T : L≥2 → L≤1 (3.28)

can be constructed using the same reasoning as above, see also constructions from [4],
and in addition the norm of the operator T can be estimated as

|||T |||M < 8ε + 48λ. (3.29)

Lemma 3.7. The following decomposition into a direct sum of invariant subspaces
holds for any small enough ε and λ:

L = L̂≤1 + L̂≥2. (3.30)

Proof of Lemma 3.7: see Section 4.

We denote by L2 = L|L̂≥2
.

Lemma 3.8. Let ε and λ be small enough, then the operator L2 is reversible in
L̂≥2 and

|||L−1
2 |||M ≤ 1

2
(1 + 14ε + 58λ). (3.31)

Proof of Lemma 3.8: see Section 4.

Estimate (3.31) implies inclusion (2.18) for the location of the spectrum σ2. The
next step of the proof of Theorem 4 is to find the location of the first isolated part
of the spectrum. As follows from our constructions, the space L̂≤1 contains the one-
dimensional invariant subspace of constants L0 = {Φ0}, such that LL0 = 0. We denote
by L̂1 the following subspace of L̂≤1:

L̂1 = H⊥
0 ∩ L̂≤1, (3.32)

where H⊥
0 is the orthogonal complement in H to H0, and L̂1 is invariant with respect

to the operator L as an intersection of two invariant subspaces. Then σ1 is defined as
a spectrum of the operator L|L̂1

restricted to the invariant subspace L̂1.
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The representations (3.20) and (3.32) implies that the subspace L̂1 can be deter-
mined again as a graph

L̂1 = {G1 + S ′G1; G1 ∈ L1} (3.33)

of an operator S ′ : L1 → L≥2 ⊕ L0, where

S ′G1 = S|L1G1 + C0(G1)Φ0 ∈ L≥2 ⊕ L0, G1 ∈ L1, S : L≤1 → L≥2,

and C0(G1) is a projection of G1 + S|L1G1 to the space H0:

C0(G1) = − (G1 + S|L1G1, Φ0)H = −%1

∫
G1(x̂)dx̂−

∫

|η|≥2

(S|L1G1) (η̂)%(η̂)dη̂.

That implies the following upper bound:

|C0(G1)| < (ε + |||S|||M) ||G1||M , (3.34)

and (3.27), (3.34) come to the estimate

|||S ′|||M ≤ 17ε + 96λ. (3.35)

Thus we established the decomposition:

L = L0 + L̂1 + L̂≥2. (3.36)

Using the same reasoning as above we obtain the following representation for the
operator L1:

L1 = L|L̂1
= P−1

1 (L′11 + L12 (S|L1)) P1,

where L′11 : L1 → L1,

P1 : L̂1 → L1, P1G = G1 ∈ L1,

and the inverse operator

P−1
1 : L1 → L̂1, P−1

1 G1 = G1 + SG1 + C0(G1)Φ0 = G1 + S ′G1.

Then using (3.35) we can estimate the norms of the operators P1, P−1
1 and L1 in the

space L, and eventually to find the location of the spectra from Theorem 4, for details,
see the proof of Lemma 3.9. We introduce the subspaces Ĥ1, Ĥ≥2 as the closure in H
of the subspaces L̂1, L̂≥2 respectively.

Lemma 3.9. The subspaces Ĥ1 and Ĥ≥2 are invariant with respect to the opera-
tor L. Together with the invariant subspace H0 they give the orthogonal decomposition
(2.17) of the space H. In addition, the spectra of L on the corresponding subspaces
meet the condition (2.18).
Proof of Lemma 3.9: see Section 4.
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4 Proofs of Lemmas.

4.1 Proof of Lemma 3.1.

To prove estimate (3.4) we follow the similar reasoning as in our paper [4]. We prove
(3.4) first for the functions G ∈ L, such that G(∅) = 0. Using the estimate on the
correlation function ρ(η̂1 ∪ η̂2 ∪ η̂3) < z|η1|+|η2|+|η3|, we have:

||G||2H =

∫ ∫ ∫
G(η̂1 ∪ η̂2)G(η̂2 ∪ η̂3)ρ(η̂1 ∪ η̂2 ∪ η̂3)dη̂1dη̂2dη̂3 ≤

≤
∫ ∫ ∫

|G(η̂2 ∪ η̂3)|z|η3|
(

1

3

)|η2|
|G(η̂1 ∪ η̂2)| (3z)|η2| z|η1|dη̂1dη̂2dη̂3 ≤

≤ sup
η̂2

((
1

3

)|η2| ∫
sup
ση3

|G(η̂2 ∪ η̂3)|(|η2|+ |η3|)
( z

M

)|η3|
M |η3|dη3

)
(4.1)

∫ ∫
sup

ση1∪η2

|G(η̂1 ∪ η̂2)|
(

3z

M

)|η2| ( z

M

)|η1|
M |η1|+|η2|dη1dη2 ≤

||G||M ·
∫

sup
σε

|G(ε̂)|




∑
η1⊆ε

ε=η1∪η2

(
3z

M

)|η2| ( z

M

)|η1|


 M |ε|dε.

In the last inequality we applied the well-known formula, see [10]
∫

F (ξ1 ∪ ξ2)ϕ1(ξ1)ϕ2(ξ2)dξ1dξ2 =

∫
F (ξ)

∑

ξ1⊆ξ

ϕ1(ξ1)ϕ2(ξ \ ξ1)dξ. (4.2)

Using the equality

∑
η1∪η2=ε
η1∩η2=∅

(
3z

M

)|η1| ( z

M

)|η2|
=

(
3z

M
+

z

M

)|ε|
=

(
4z

M

)|ε|
,

and the condition M ≥ 4z (together with the apparent inequality z
M
≤ (

1
3

)
) we have,

that the expression (4.1) can be estimated from above by

||G||M ·
∫

sup
σε

|G(ε̂)|M |ε|dε ≤ ||G||2M .

The estimate in the general case, when the function G ∈ L can be represented as a sum
G = gΦ0 +G1 of the ”vacuum” vector Φ0 and a function G1 such that G1(∅) = 0, easily
follows from the above reasoning and the Cauchy-Schwarz-Bunyakovskii inequality.
Thus, estimate (3.4) holds together with inclusion L ⊂ H. Since the space Cbs(Γ̂0) of
continuous functions on Γ̂0 with bounded support is contained in L, and Cbs is dense
in H, then L is dense in H. Lemma is completely proved.
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4.2 Proof of Lemma 3.2.

Representations (2.15), (3.13) and (3.1) imply that

(L01G)0 = z

∫
G1(x̂)dx̂,

and

‖G1‖M = sup

{
1

3
sup

x̂
|G1(x̂)|;

∫
sup
σx

|G1(x̂)|Mdx

}
.

Consequently, taking M = 1
C(β)

we have

|||L01|||M ≤ z

M
= ε.

4.3 Proof of Lemma 3.3.

We refer for the proof to the next section (proof of Lemma 3.4) where the general case
is under consideration. The upper bound on the norm of the operator L−1

11 could be
found using the same reasoning as in Lemma 3.4 for bound (3.21) on the norm of L−1

22 .
The operator L−1

11 can be written in the notations of Lemma 3.4. as

L−1
11 = (L0

11 + L1
11)

−1 = (E≥1 + (L0
11)

−1L1
11)

−1(L0
11)

−1,

and (3.16) immediately follows from the estimate on |||(L0
11)

−1L1
11|||M , which is the

same as (4.14).

4.4 Proof of Lemma 3.4.

We consider the following decomposition for the operator L in the sum of operators:

L = L0 + L1 + L2, (4.3)

where (
L0G

)
(η̂) = −|η|G(η̂) (4.4)

is a ”free” generator, and the ”perturbations” L1 and L2 are given as

(L1G)(η̂) = z
∑

γ̂⊆η̂

∫
G(γ̂∪x̂)

∏

ŷ∈η̂\γ̂
(e−βϕ(x−y)(σx−σy)2−1)

∏

ŷ′∈γ̂

e−βϕ(x−y′)(σx−σy′ )
2

dx̂, (4.5)

and

(L2G)(η̂) = λ
∑

γ̂⊆η̂

∑

x̂∈γ̂

(G(γ̂x)−G(γ̂))
∏

ŷ∈γ̂\x̂
e−βϕ(x−y)(σx+σy)2

∏

ŷ∈η̂\γ̂
(e−βϕ(x−y)(σx+σy)2 − 1).

(4.6)
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Here we assume that
∏
ŷ∈∅

f(y) = 1. By analogy with the matrix representation (3.19)

associated with the decomposition (3.18) for the operator L we get matrix representa-
tions

Lj =

(
Lj

11 Lj
12

Lj
21 Lj

22

)
, j = 0, 1, 2,

for each operators Lj, j = 0, 1, 2. Consequently, we can write L−1
22 as

L−1
22 = (L0

22 + L1
22 + L2

22)
−1 =

(
E≥2 + (L0

22)
−1L1

22 + (L0
22)

−1L2
22

)−1
(L0

22)
−1 (4.7)

with the identity operator E≥2 acting in L≥2. Let us estimate now norms of the
operators (L0

22)
−1L1

22 and (L0
22)

−1L2
22.

The estimation of |||(L0
22)

−1L1
22|||. Here we will follow the same lines as in [4]. It

follows from (3.1), (4.4)-(4.5) that

||(L0
22)

−1L1
22G||M =

= z sup
η̂1




(
1

3

)|η1| ∑

γ̂1⊆η̂1

∫

Γ0

(|η1|+ |η2|)
(|η1|+ |η2|) sup

ση2

( ∑

γ̂2⊆η̂2

∫
|G(γ̂1 ∪ γ̂2 ∪ x̂)|

∏

ŷ∈(η̂1\γ̂1)∪(η̂2\γ̂2)

|(e−βϕ(x−y)(σx−σy)2 − 1)|
∏

ŷ∈γ̂1∪γ̂2

e−βϕ(x−y)(σx−σy)2dx̂


 M |η2|dη2


 ≤

≤ z sup
η̂1




(
1

3

)|η1|
sup

x̂





∑

γ̂1⊆η̂1

∏

ŷ∈η̂1\γ̂1

|(e−βϕ(x−y)(σx−σy)2 − 1)|
∏

ŷ∈γ̂1

e−βϕ(x−y)(σx−σy)2





sup
γ̂1⊆η̂1

∫
sup
ση2

( ∑

γ̂2⊆η̂2

∫
|G(γ̂1 ∪ γ̂2 ∪ x̂)|

∏

ŷ∈η̂2\γ̂2

|(e−βϕ(x−y)(σx−σy)2 − 1)|
∏

ŷ∈γ̂2

e−βϕ(x−y)(σx−σy)2dx̂


 M |η2|dη2


 . (4.8)

The inner sum in (4.8) for any η̂1 and any x̂ equals to 1:

∑

γ̂1⊆η̂1

∏

ŷ∈η̂1\γ̂1

|(e−βϕ(x−y)(σx−σy)2 − 1)|
∏

ŷ∈γ̂1

e−βϕ(x−y)(σx−σy)2 =

=
∏

ŷ∈η̂1

(
1− e−βϕ(x−y)(σx−σy)2 + e−βϕ(x−y)(σx−σy)2

)
= 1. (4.9)
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We use here the positivity of the potential ϕ ≥ 0, so that

∏

ŷ∈γ̂2

e−βϕ(x−y)(σx−σy)2 ≤ 1, (4.10)

and
sup
σx,σy

|(e−βϕ(x−y)(σx−σy)2 − 1)| = 1− e−4βϕ(x−y) ≡ κβ(x− y). (4.11)

We will also use below the following inequality that holds for any non-negative f(γ):

sup
η̂

((
1

3

)|η| {
sup
γ̂⊆η̂

f(γ̂)

})
≤ sup

η̂

((
1

3

)|η|
f(η̂)

)
.

Then we can continue (4.8) as follows:

≤ z sup
η̂1




(
1

3

)|η1|
sup

γ̂1⊆η̂1

∫ ∫
sup

ση2 ,σx

( ∑

γ̂2⊆η̂2

|G(γ̂1 ∪ γ̂2 ∪ x̂)|
) ∏

y∈η2\γ2

κβ(x− y)dx M |η2|dη2




≤ z sup
η̂1




(
1

3

)|η1| ∫ ∫ ∑
γ2⊆η2

sup
σγ2 ,σx

|G(η̂1 ∪ γ̂2 ∪ x̂)|
∏

y∈η2\γ2

κβ(x− y)M |η2|dxdη2




= z sup
η̂1

((
1

3

)|η1| ∫

Γ0

∫

Γ0

∫

Rν

sup
σγ2 ;σx

|G(η̂1 ∪ γ̂2 ∪ x̂)|
∏
y∈γ1

κβ(x− y)M |γ1|M |γ2|dγ1dγ2dx

)

=
z

M
eMC(β) sup

η̂1

((
1

3

)|η1| ∫

Γ0

(
sup
σγ̃

|G(η̂1 ∪ ˆ̃γ)|
)
|γ̃| M |γ̃|dγ̃

)
≤ z

M
eMC(β)‖G‖M ,

(4.12)
where ˆ̃γ = γ̂2 ∪ x̂. In the last step we use that for any x:

∫

Γ0

∏
y∈γ1

κβ(x− y)M |γ1|dγ1 = (4.13)

= 1 +
∞∑

n=1

Mn 1

n!

∫

Rν

. . .

∫

Rν

n∏
i=1

κβ(yi)dy1 . . . dyn = eMC(β),

with C(β) =
∫

κβ(y)dy. Taking M = 1
C(β)

we have

|||(L0
22)

−1L1
22|||M ≤ z

M
eMC(β) = ε · e. (4.14)
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The estimation of |||(L0
22)

−1L2
22|||M . Here we will use again relations (4.9), (4.10),

(4.11) and (4.13).
||(L0

22)
−1L2

22F ||M

= λ sup
η̂1




(
1

3

)|η1| ∑

γ̂1⊆η̂1

∫

Γ0

(|η1|+ |η2|)
(|η1|+ |η2|) sup

ση2

∣∣∣∣∣
∑

γ̂2⊆η̂2

∑

x̂∈γ̂1∪γ̂2

(F ((γ̂1 ∪ γ̂2)
x)− F (γ̂1 ∪ γ̂2))

∏

ŷ∈(η̂1\γ̂1)∪(η̂2\γ̂2)

(
e−βϕ(x−y)(σx+σy)2 − 1

) ∏

ŷ∈(γ̂1∪γ̂2)\x̂
e−βϕ(x−y)(σx+σy)2

∣∣∣∣∣∣
M |η2|dη2




≤ λ sup
η̂1




(
1

3

)|η1|
sup
x̂∈η̂1





∑

γ̂1⊆η̂1\x̂

∏

ŷ∈(η̂1\x̂)\γ̂1

|(e−βϕ(x−y)(σx−σy)2 − 1)|
∏

ŷ∈γ̂1

e−βϕ(x−y)(σx−σy)2





∑

x̂∈η̂1

sup
γ̂1⊆η̂1
γ̂13x̂

∫

Γ0

sup
ση2

( ∑

γ̂2⊆η̂2

|F ((γ̂1 ∪ γ̂2)
x)− F (γ̂1 ∪ γ̂2)|

∏

ŷ∈γ̂2

e−βϕ(x−y)(σx+σy)2
∏

ŷ∈η̂2\γ̂2

|(e−βϕ(x−y)(σx+σy)2 − 1)|

 M |η2|dη2


 +

λ sup
η̂1




(
1

3

)|η1|
sup
x̂∈η̂2





∑

γ̂1⊆η̂1

∏

ŷ∈(η̂1)\γ̂1

|(e−βϕ(x−y)(σx−σy)2 − 1)|
∏

ŷ∈γ̂1

e−βϕ(x−y)(σx−σy)2





sup
γ̂1⊆η̂1

∫

Γ0

sup
ση2

( ∑

γ̂2⊆η̂2

∑

x̂∈γ̂2

|F ((γ̂1 ∪ γ̂2)
x)− F (γ̂1 ∪ γ̂2)|

∏

ŷ∈γ̂2\x̂
e−βϕ(x−y)(σx+σy)2

∏

ŷ∈η̂2\γ̂2

|(e−βϕ(x−y)(σx+σy)2 − 1)|

 M |η2|dη2




≤ λ sup
η̂1




(
1

3

)|η1|
|η1| sup

γ̂1⊆η̂1
x̂∈γ̂1

∫

Γ0

∑
γ2⊆η2

sup
σγ2

|(F ((γ̂1 ∪ γ̂2)
x)− F (γ̂1 ∪ γ̂2)|

∏

y∈η2\γ2

κβ(x− y)M |η2|dη2




+λ sup
η̂1




(
1

3

)|η1|
sup

γ̂1⊆η̂1

∫

Γ0

∑
γ2⊆η2

sup
σγ2

∑

x̂∈γ̂2

|F ((γ̂1 ∪ γ̂2)
x)− F (γ̂1 ∪ γ̂2)|

∏

y∈η2\γ2

κβ(x− y)M |η2|dη2




≤ 2λ sup
η̂1




(
1

3

)|η1|
|η1|

∫

Γ0

sup
σγ2

|F (η̂1 ∪ γ̂2)|M |γ2|dγ2




∫

Γ0

∏

u∈ξ

κβ(u)M |ξ|dξ +
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+λ e sup
η̂1




(
1

3

)|η1| ∫

Γ0

sup
σγ2

(∑

x̂∈γ̂2

|(F ((η̂1 ∪ γ̂2)
x)− F (η̂1 ∪ γ̂2))|

)
M |γ2|dγ2




≤ 2λ e sup
η̂1




(
1

3

)|η1| ∫

Γ0

(|η1|+ |γ2|) sup
σγ2

|F (η̂1 ∪ γ̂2)|M |γ2|dγ2


 = 2λe||F ||M . (4.15)

It follows from (4.4) that

|||(L0
22)

−1|||M ≤ 1

2
,

then from (4.7) and (4.14), (4.15) we finally have

|||(L22)
−1|||M ≤ 1

2(1− (eε + 2eλ))
<

1

2
(1 + 3ε + 6λ)

for all small enough ε and λ. Lemma 3.4. is proved.

4.5 Proof of Lemma 3.5.

4.5.1 Operator L11

Functions G ∈ L≤1 have the form:

G(η̂) =





G0, η = ∅,
G1(x̂), |η| = 1,

0, |η| ≥ 2,
(4.16)

and

||G||M = sup

{
1

3
sup

x̂
|G1(x̂)|; M

∫
sup
σx

|G1(x̂)|dx

}
+ |G0|.

The function L11G by (2.14) has the following components:

(L11G)0 = z

∫
G1(ŷ)dŷ,

(L11G)1(x̂) = −G1(x̂) + z

(∫
G1(ŷ)(e−βϕ(x−y)(σx−σy)2 − 1)dŷ

)
(x̂)

+ λ(G1(x̂
?)−G1(x̂)), (4.17)

with x̂? = (x,−σx). Then using the estimates κβ(x− y) = 1− e−4βϕ(x−y) ≤ 1, we have:

||L11G||M = sup
η̂




(
1

3

)|η| ∫

Γ0

sup
σξ :

η̂∪ξ̂=x̂

|(L11G)1(η̂ ∪ ξ̂)|M |ξ|dξ


 + |(L11G)0|
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≤ sup

{
1

3
sup

x̂

(
(1 + λ)|G1(x̂)|+ λ|G1(x̂

?)|+ z

∫
|G1(ŷ)| · |(e−βϕ(x−y)(σx−σy)2 − 1)|dŷ

)
;

∫
sup
σx

(
(1 + λ)|G1(x̂)|+ λ|G1(x̂

?)|+ z

∫
|G1(ŷ)| · |(e−βϕ(x−y)(σx−σy)2 − 1)|dŷ

)
Mdx

}

+
z

M

∫
|G1(ŷ)|Mdŷ

≤ sup

{
1 + 2λ + ε

3
sup

x̂
|G1(x̂)|; (1 + 2λ + 2ε)

∫
sup
σx

|G1(x̂)|Mdx

}

≤ (1 + 2λ + 2ε) ||G||M .

Thus,
|||L11|||M ≤ 1 + 2λ + 2ε.

4.5.2 Operator L12

The operator L12 : L≥2 → L≤1 has the following components:

(L12G)0 = 0, (L12G)1(x̂) = z

∫
G2(x̂ ∪ ŷ)e−βϕ(x−y)(σx−σy)2dŷ,

where G2 ∈ L2 is a two-spin configuration component of G ∈ L≥2. Then

||G2||M = sup

{
2

9
sup
x̂∪ŷ

|G2(x̂ ∪ ŷ)|; 2

3
sup

x̂

∫
sup
σy

|G2(x̂ ∪ ŷ)|Mdy;

∫ ∫
sup
σx;σy

|G2(x̂ ∪ ŷ)|M2dxdy

}
≤ ||G||M ,

and hence,

||L12G||M = ||(L12G)1||M = sup

{
z

3
sup

x̂

∣∣∣∣
∫

G2(x̂ ∪ ŷ)e−βϕ(x−y)(σx−σy)2dŷ

∣∣∣∣ ;

z

∫
sup
σx

∣∣∣∣
∫

G2(x̂ ∪ ŷ)e−βϕ(x−y)(σx−σy)2dŷ

∣∣∣∣ Mdx

}
≤ (4.18)

z

M
sup

{
1

3
sup

x̂

∫
sup
σy

|G2(x̂ ∪ ŷ)|Mdy;

∫ ∫
sup
σx;σy

|G2(x̂ ∪ ŷ)|M2dxdy

}
≤ ε||G2||M .

Thus (4.18) implies
|||L12|||M ≤ ε.
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4.5.3 Operator L21

Using again representation (4.16) for the function G = (G0, G1) ∈ L≤1, we get

(L21G)(η̂) = (L21G1)(η̂) = z

∫
G1(x̂)

∏

ŷ∈η̂

(e−βϕ(x−y)(σx−σy)2 − 1)dx̂

+ λ
∑

x̂∈η̂

(G1(x̂
?)−G1(x̂))

∏

ŷ∈η̂\x̂
(e−βϕ(x−y)(σx+σy)2 − 1), |η| ≥ 2. (4.19)

We denote the first term in (4.19) by Φ1(η̂) and the second one by Φ2(η̂), |η| ≥ 2.
The first term Φ1(η̂) can be estimated in a similar way as in [4]. Using the equality
MC(β) = 1 and estimates (4.10) - (4.11) we have:

||Φ1||M =

= z sup
η̂




(
1

3

)|η| ∫

Γ0

(|η|+ |ξ|) sup
σξ

∣∣∣∣∣∣

∫
G1(x̂)

∏

ŷ∈η̂∪ξ̂

(e−βϕ(x−y)(σx−σy)2 − 1)dx̂

∣∣∣∣∣∣
M |ξ|dξ




≤ z

∫
|G1(x̂)|dx̂ · sup

η̂, x̂




(
1

3

)|η| ∫

Γ0

(|η|+ |ξ|) sup
σξ

∏

ŷ∈η̂∪ξ̂

|(e−βϕ(x−y)(σx−σy)2 − 1)|M |ξ|dξ




≤ z

M

∫
sup
σx

|G1(x̂)|Mdx · sup
n:n+|ξ|≥2

((
1

3

)n ∫
(n + |ξ|)

∏

u∈ξ

κβ(u)M |ξ|dξ

)

≤ ε ||G1||M
∫

sup
n:n+|ξ|≥2

((
1

3

)n

(n + |ξ|)
∏

u∈ξ

κβ(u)M |ξ|dξ

)

≤ ε ||G1||M
(

sup
n≥2

{(
1

3

)n

n

}
+ C(β) M sup

n≥1

{(
1

3

)n

(n + 1)

}

+
∑

k≥2

sup
n≥0

{(
1

3

)n

(n + k)

}
(C(β)M)k

k!

)

≤ ε||G1||M
(

2

9
+

2

3
C(β)M +

∞∑

k=2

k
(C(β)M)k

k!

)
≤ 4ε||G1||M .

For the second term we have the following estimate:

||Φ2||M ≤ λ sup
η̂




(
1

3

)|η| ∫

Γ0

(|η|+ |ξ|) sup
σξ :

|η|+|ξ|≥2


 ∑

x̂∈η̂∪ξ̂

|G1(x̂
?)−G1(x̂)|
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∏

ŷ∈η̂\x̂
|(e−βϕ(x−y)(σx+σy)2 − 1)|

∏

ŷ∈ξ̂\x̂
|(e−βϕ(x−y)(σx+σy)2 − 1)|


 M |ξ|dξ




≤ 2λ sup
x̂
|G1(x̂)| sup

η̂, x̂∈η̂




(
1

3

)|η|
|η|

∫

Γ0

(|η|+ |ξ|) sup
σξ

∏

ŷ∈ξ̂

|(e−βϕ(x−y)(σx+σy)2 − 1)|M |ξ|dξ


 +

+ λ sup
η̂

((
1

3

)|η| ∫

Γ0

(|η|+ |ξ|)

sup
σξ


∑

x̂∈ξ̂

|G1(x̂
?)−G1(x̂)|

∏

ŷ∈ξ̂\x̂
|(e−βϕ(x−y)(σx+σy)2 − 1)|


 M |ξ|dξ




≤ 2λ sup
x̂
|G1(x̂)|

∫

Γ0

sup
n:n+|ξ|≥2

((
1

3

)n

n (n + |ξ|)
) ∏

y∈ξ

κβ(y)M |ξ|dξ +

+ 2λ

∫
sup
σx

|G1(x̂)|Mdx

∫

Γ0

sup
n:n+|ξ̃|≥1

((
1

3

)n

(n + 1 + |ξ̃|)
) ∏

u∈ξ̃

κβ(u)M |ξ̃|dξ̃

≤ 24 λ

(
1

3
sup

x̂
|G1(x̂)|

)
+ 12 λ

∫
sup
σx

|G1(x̂)|Mdx ≤ 36 λ ||G1||M .

Here we use that

sup
n≥2

((
1

3

)n

n2

)
+ C(β)M sup

n≥1

((
1

3

)n

n(n + 1)

)

+
∑

k≥2

(C(β)M)k

k!
sup
n≥0

((
1

3

)n

n(n + k)

)
≤ 4,

sup
n≥1

((
1

3

)n

(n + 1)

)
+

∑

k≥1

(C(β)M)k

(k)!
sup
n≥0

((
1

3

)n

(n + k + 1)

)
≤ 6.

Finally,
|||L21|||M ≤ 4ε + 36λ. (4.20)

Lemma 3.5. is proved completely.
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4.6 Proof of Lemma 3.6.

Using (3.8) with (3.21)-(3.24) we have for all small enough ε and λ:

|||F(S)|||M ≤ |||L−1
22 |||M |||L21|||M+

+|||L−1
22 |||M |||L11|||M |||S|||M + |||L−1

22 |||M |||L12|||M |||S|||2M ≤

≤ 1

2
(1 + 3ε + 6λ)(4ε + 36λ) +

1

2
(1 + 3ε + 6λ)(1 + 2ε + 2λ)(8ε + 48λ)

+
1

2
(1 + 3ε + 6λ)ε(8ε + 48λ)2 < 8ε + 48λ,

what proves the inclusion (3.25).
Further,

F(S1)−F(S2) = L−1
22 (S1 − S2)L11 + L−1

22 (S1 − S2)L12S1+

+L−1
22 S2L12(S1 − S2)

consequently, using again (3.21)-(3.24) we have for any S1, S2 ∈ B8ε

|||F(S1)−F(S2)|||M ≤

≤
(

1

2
(1 + 3ε + 6λ)(1 + 2ε + 2λ) + (1 + 3ε + 6λ)(8ε + 48λ)ε

)
· |||S1 − S2|||M .

Since for small enough ε and λ:

c =
1

2
(1 + 3ε + 6λ)(1 + 2ε + 2λ) + (1 + 3ε + 6λ)(8ε + 48λ)ε =

1

2
+ O(ε) + O(λ) < 1,

the inequality (3.26) is proved.

4.7 Proof of Lemma 3.7.

To prove (3.30) we have to find for any G ∈ L functions g≤1 ∈ L≤1 and g≥2 ∈ L≥2,
such that

G = (g≤1 + Sg≤1) + (g≥2 + Tg≥2), (4.21)

and to prove that the decomposition (4.21) is unique. The decomposition (4.21) is
equivalent to the following relations

g≤1 + Tg≥2 = G≤1, g≥2 + Sg≤1 = G≥2, (4.22)

where G≤1 ∈ L≤1 and G≥2 ∈ L≥2 are the components of the function G = (G≤1, G≥2) ∈
L. Then (4.22) implies that

G≤1 − TG≥2 = g≤1 − TSg≤1,
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consequently,
g≤1 = (E≤1 − TS)−1(G≤1 − TG≥2),

and analogously,
g≥2 = (E≥2 − ST )−1(G≥2 − SG≤1).

By (3.27), ( 3.29) for small enough ε and λ the operators TS in L≤1 and ST in L≥2

have small norms, consequently the functions g≤1, g≥2 are unique defined. Lemma is
proved.

4.8 Proof of Lemma 3.8.

According to the general scheme, see (3.9) and (3.10), the operator L2 can be repre-
sented in the following form

L2 = P−1
≥2 (L22 + L21T )P≥2, P≥2 : L̂≥2 → L≥2, P−1

≥2 : L≥2 → L̂≥2, (4.23)

and an analogous representation holds for the inverse operator L−1
2 :

L−1
2 = P−1

≥2 (L22 + L21T )−1P≥2. (4.24)

Since
(L22 + L21T )−1 = (E≥2 + L−1

22 L21T )−1L−1
22 ,

then using estimates (3.21), (3.24), (3.29) we have for small ε and λ

|||L−1
22 L21T |||M < (4ε + 36λ)2(1 + O(ε) + O(λ)),

and consequently,

|||(L22 + L21T )−1|||M <
1

2
(1 + 5ε + 8λ) (4.25)

for small enough ε and λ. Estimate (3.29) on the norm of T imply that

|||P≥2|||M ≤ 1, |||P−1
≥2 |||M ≤ 1 + 8ε + 48λ. (4.26)

Finally the estimate (3.31) follows from (4.24), (4.25) and (4.26). Lemma is proved.

4.9 Proof of Lemma 3.9.

Using our constructions above we obtain that the subspace Ĥ1 = L̂1 is invariant for
the operator L, so that the restriction L|H1 is a bounded self-adjoint operator in H1.

Analysis of the operator L11, see (4.17), shows that the operator L′11, acting in L1

has a form

(L′11G1)(x̂) = −G1(x̂) + z

∫
G1(ŷ)(e−βϕ(x−y)(σx−σy)2 − 1)dŷ
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+λ(G1(x̂
?)−G1(x̂)), G1 ∈ L1.

Now (3.23), (3.27) imply that the operator L12S|L1 has a small norm:

|||L12 (S|L1) |||M ≤ (8ε + 48λ)ε,

hence, the operator L′11 + L12 (S|L1) can be rewritten as

L′11 + L12 (S|L1) = −E + R,

where

(RG1)(x̂) = z

∫
G1(ŷ)(e−βϕ(x−y)(σx−σy)2 − 1)dŷ +λ(G1(x̂

?)−G1(x̂))+L12 (S|L1) G1(x̂),

and
|||R|||M ≤ ε + 2λ + (8ε + 48λ)ε < 2ε + 3λ

for small enough ε and λ. Using the estimates on the norms of the operators P1 and
P−1

1 , see (3.33) - (3.35):

|||P1|||M ≤ 1, |||P−1
1 |||M ≤ 1 + 17ε + 96λ,

we have for small enough ε and λ

|||L1 + EL̂1
|||M = |||P−1

1 RP1|||M ≤ |||R|||M · |||P−1
1 |||M

≤ (2ε + 3λ)(1 + 17ε + 96λ) < 3ε + 4λ.

Finally, the proposition (3.11) implies that

||L1 + EĤ1
||H ≤ |||L1 + EL̂1

|||M ≤ 3ε + 4λ,

that gives the position for the spectrum σ1 in (2.18) with γ1 = 3ε + 4λ.

Applying the similar reasoning to the operator
(
L|Ĥ≥2

)−1

in the invariant subspace

Ĥ≥2 together with the estimate (3.31) we obtain that under small enough ε and λ the
spectrum σ2 of the operator L2 is bounded from above by the value −2 + γ2 with
γ2 = 30ε + 120λ. Thus, we proved the inclusions (2.18).

The last step is to prove the decomposition (2.17). Since for small enough ε and
λ the spectra σ0, σ1, σ2 are not overlapping the subspaces H0,H1,H≥2 are mutually
orthogonal. Let us prove that the sum (2.17) gives a complete decomposition of the
space H. We know that according to the decomposition (3.36) any function G ∈ L has
a representation of the form

G = G0 + G1 + G≥2, G0 ∈ L0, G1 ∈ L̂1, G≥2 ∈ L̂≥2. (4.27)
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Moreover, any component of the decomposition (4.27) equals to the orthogonal projec-
tion of G to the corresponding invariant subspace

G0 = PH0G, G1 = PH1G, G≥2 = PH≥2
G,

so that all vectors G0, G1, G≥2 are mutually orthogonal and

||G||2H = ||PH0G||2H + ||PH1G||2H + ||PH≥2
G||2H.

This equality holds for a dense set L in H, consequently it is true for any element from
H, what is equivalent to the decomposition (2.17). Lemma 3.9 is completely proved.
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