
Stochastic evolution equations of jump type:
existence, uniqueness and large deviation

principles
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Abstract
This paper has two parts. In part I, existence and uniqueness

results are established for solutions of stochastic evolution equations
driven both by Brownain motion and by Poisson point processes. Ex-
ponential integrability of the solution are also proved. In part II, a
large deviation principle is obtained for stochastic evolution equations
driven by additive Lévy noise.
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1 Introduction

Stochastic evolution equations and stochastic partial differential equations
driven by Wiener processes have been studied by many people. There exists
a great amount of literature on the subject, see, for example the monograph
[DZ]. In contrast, there has not been very much study of stochastic partial
differential equations driven by jump processes. However, it begun to gain
attention recently. In [AWZ] we obtained existence and uniqueness for so-
lutions of stochastic reaction diffusion equations driven by Poisson random
mesasures. In [F], Malliavin calculus was applied to study the absolute con-
tinuity of the law of the solutions of stochastic reaction diffusion equations
driven by Poisson random measures. In [MC], a minimal solution was ob-
tained for the stochastic heat equation driven by non-negative Lévy noise
with coefficients of polynomial growth. In [ML], a weak solution is estab-
lished for the stochastic heat equation driven by stable noise with coefficients
of polynomial growth.

In this paper, we consider the following evolution equation:

dYt = −AYtdt + b(Yt)dt + σ(Yt)dBt +

∫
X

f(Yt−, x)Ñ(dt, dx), (1.1)

Y0 = h ∈ H, (1.2)
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in the framework of a Gelfand triple :

V ⊂ H ∼= H∗ ⊂ V ∗, (1.3)

where H, V are Hilbert spaces, A is the infinitesimal generator of a strongly
continuous semigroup, b, σ, f are measurable mappings from H into H. The
solutions are considered to be weak solutions (in the PDE sense) in the space
V and not as mild solutions in H as is more common in the literature. The
stochastic evolution equations of this type driven by Wiener processes were
first studied by E.Pardoux in [P] and subsequently in [KR]. For stochastic
equations with general Hilbert space valued semimartingales replacing the
Brownian motion we refer to [GK1], [GK2], and [G]. A large deviation prin-
ciple for this type of stochastic evolution equations driven by Wiener process
was obtained by P.Chow in [C].

The purpose of this paper is twofold. The first one is to establish the
existence and uniqueness for solutions of equation (1.1). Our approach is
similar to the one in [P], [GK1], [GK2], [G]. We, however, don’t use Galerkin
approximations. Instead, we get the solution via successive approximations.
Secondly we will study the large deviation principle and exponential inte-
grability of the solutions. We will prove that the solution is exponentially
integrable both as a random variable in D([0, 1] → H) and in L2([0, 1] → V ).
These estimates are of their own interest and also necessary for the study
of large deviations. For the large deviation principle, we confine ourselves
to the case of additive Lévy noise. The situation is quite different from the
Gaussian case. If Xt, t ≥ 0 is a Wiener process, the solution of the equation:

dY n
t = −AY n

t dt +
1

n
dXt

is still Gaussian. The large deviations of Y n follows from the well known
large deviations of Gaussian processes. However, if Xt, t ≥ 0, is a Lévy
process, the solution Y n is no longer a Lévy process. The additive noise case
is already quite involved. Large deviations for stochastic evolution equations
and stochastic partial differential equations have been investigated in many
papers, see e.g. [CM2],[CR], [CW], [Z]. To the best of our knowledge, this is
the first to study large deviations for stochastic evolution equations driven
by Lévy processes. Large deviations for Lévy processes on Banach spaces
and large deviations for solutions of stochastic differential equations driven
by Poisson measures were studied by de Acosta in [A1], [A2].

The rest of the paper is organized as follows. In Section 2 we present our
framework. Existence and uniqueness are proved in Section 3. In Section 4,
exponential integrability is established for the solutions. Section 5 is devoted
to the large deviation principle.
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2 Framework

Let V , H be two separable Hilbert spaces such that V is continuously, densely
imbedded in H. Identifying H with its dual we have

V ⊂ H ∼= H∗ ⊂ V ∗, (2.1)

where V ∗ stands for the topological dual of V . Let A be a bounded linear
operator from V to V ∗ satisfying the following coercivity hypothesis: There
exist constants α > 0 and λ0 ≥ 0 such that

2〈Au, u〉+ λ0|u|2H ≥ α||u||2V for all u ∈ V . (2.2)

〈Au, u〉 = Au(u) denotes the action of Au ∈ V ∗ on u ∈ V .
We remark that A is generally not bounded as an operator from H into H.
Let (Ω,F , P ) be a probability space equipped with a filtration {Ft} satis-
fying the usual conditions. Let {Bt, t ≥ 0} be a real-valued Ft- Brownian
motion. {Wt, t ≥ 0} will denote an H-valued Ft- Brownian motion with
covariance operator Q which could be degenerate. Let (X,B(X)) be a mea-
surable space and ν(dx) a σ-finite measure on it. Let p = (p(t)), t ∈ Dp be a
stationary Ft-Poisson point process on X with characteristic measure ν. See
[IW] for the details on Poisson point processes. Denote by N(dt, dx) the Pois-
son counting measure associated with p, i.e., N(t, A) =

∑
s∈Dp,s≤t IA(p(s)).

Let Ñ(dt, dx) := N(dt, dx)− dtν(dx) be the compensated Poisson mesasure.
Let b, σ be measurable mappings from H into H, and f(y, x) a measurable
mapping from H × X into H. For a separable Hilbert space L, we denote
by M2([0, T ], L) the Hilbert space of progressively measurable, square in-
tegrable, L-valued processes equipped with the inner product < a, b >M=
E[

∫ T

0
< at, bt >L dt]. Denote by M ν,2([0, T ] × X, L) the collection of pre-

dictable mappings:

g(s, x, ω) : [0, T ]×X × Ω → L

such that E[
∫ T

0

∫
X
|g(s, x, ω)|2Ldsν(dx)] < ∞. Denote by D([0, T ], L) the

space of all cadlag paths from [0, T ] into L. Consider the stochastic evolution
equation:

dYt = −AYtdt + b(Yt)dt + σ(Yt)dBt +

∫
X

f(Yt−, x)Ñ(dt, dx), (2.3)

Y0 = h ∈ H. (2.4)

We introduce
(H.1) There exists a constant C < ∞ such that

|b(y)|2H + |σ(y)|2H +

∫
X

|f(y, x)|2Hν(dx) ≤ C(1 + |y|2H), (2.5)

for all y ∈ H.
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(H.2) There exists a constant C < ∞ such that

|b(y1)− b(y2)|2H + |σ(y1)− σ(y2)|2H
+

∫
X
|f(y1, x)− f(y2, x)|2Hν(dx)

≤ C|y1 − y2|2H , (2.6)

for all y1, y2 ∈ H.

We finish this section by two examples.

Example 2.1 Let H = L2(Rd), and set

V = H1
2 (Rd) = {u ∈ L2(Rd);∇u ∈ L2(Rd → Rd)}.

Denote by a(x) = (aij(x)) a matrix-valued function on Rd satisfying the
uniform ellipticity condition:

1

c
Id ≤ a(x) ≤ cId for some constant c ∈ (0,∞).

Let b(x) be a vector field on Rd with b ∈ Lp(Rd) for some p > d. Define

Au = −div(a(x)∇u(x)) + b(x) · ∇u(x).

Then (2.2) is fulfilled for (H, V, A).

Example 2.2 Stochastic evolution equations associated with fractional Lapla-
cian:

dYt = ∆αYtdt + dLt, (2.7)

Y0 = h ∈ H, (2.8)

where ∆α denotes the generator of the symmetric α-stable process in Rd,
0 < α ≤ 2. ∆α is called the fractional Laplace operator. Lt stands for a
Lévy process. It is well known that the Dirichlet form associated with ∆α is
given by

E(u, v) = K(d, α)

∫ ∫
Rd×Rd

(u(x)− u(y))(v(x)− v(y))

|x− y|d+α
dxdy,

D(E) = {u ∈ L2(Rd) :

∫ ∫
Rd×Rd

|u(x)− u(y)|2

|x− y|d+α
dxdy < ∞},

where K(d, α) = α2α−3π−
d+2
2 sin(απ

2
)Γ(d+α

2
)Γ(α

2
). To study equation (2.7),

we choose H = L2(Rd), and V = D(E) with the inner product < u, v >=
E(u, v) + (u, v)L2(Rd).
Define

Au = −∆α.

Then (2.2) is fulfilled for (H, V, A). See [FOT] for details about the fractional
Laplace operator.
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3 Existence and uniqueness

In [GK1], [GK2] and [G] it is explained how under certain conditions results
on existence and uniqueness of solutions for equations with random measures
as driving term can be derived from there results. In this section we prove
existence and uniqueness for solutions of our equation (1.1), however, directly
by a different method.

Proposition 3.1 Let b ∈ M2([0, T ], H), σ ∈ M2([0, T ], H) and f ∈ M ν,2([0, T ]×
X, H). There exists a unique solution Yt, t ≥ 0 to the following equation:

Y ∈ M2([0, T ], V ) ∩D([0, T ], H),

dYt = −AYtdt + b(t, ω)dt + σ(t, ω)dBt

+

∫
X

f(t, x, ω)Ñ(dt, dx), (3.1)

Y0 = h ∈ H. (3.2)

Proof. We prove the existence in two steps.

Step 1. Assume b ∈ M2([0, T ], V ), σ ∈ M2([0, T ], V ) and f ∈ M ν,2([0, T ] ×
X, V ). Set

Ut =

∫ t

0

b(s)ds +

∫ t

0

σ(s)dBs +

∫ t

0

∫
X

f(s, x)Ñ(ds, dx).

It is easy to see that U ∈ M2([0, T ], V ). Consider the random equation:

dvt = (−Avt − AUt)dt, (3.3)

v0 = h.

It is known from [L] that there exists a unique solution v to equation
(3.3) such that v ∈ M2([0, T ], V ) ∩ C([0, T ], H). Set Yt := vt + Ut. Then
Y ∈ M2([0, T ], V ) ∩D([0, T ], H). Moreover, it solves equation (3.1).

Step 2. General case.

Choose bn ∈ M2([0, T ], V ), σn ∈ M2([0, T ], V ) and fn ∈ M ν,2([0, T ] ×
X, V ) such that bn → b, σn → σ in M2([0, T ], H) and fn → f in M ν,2([0, T ]×
X, H) as n → ∞. Denote by Y n

t the unique solution to equation (3.1) with
b, σ, f replaced by bn, σn, fn. Such a Y n exists by step 1. By Ito’s formula,
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we have

|Y n
t − Y m

t |2H

= −2

∫ t

0

< Y n
s − Y m

s , A(Y n
s − Y m

s ) > ds

+ 2

∫ t

0

< Y n
s − Y m

s , bn(s)− bm(s) > ds + 2

∫ t

0

< Y n
s − Y m

s , σn(s)− σm(s) > dBs

+

∫ t

0

|σn(s)− σm(s)|2Hds

+

∫ t

0

∫
X

(
|fn(s, x)− fm(s, x)|2H + 2 < Y n

s− − Y m
s−, fn(s, x)− fm(s, x) >H

)
Ñ(ds, dx)

+

∫ t

0

∫
X

|fn(s, x)− fm(s, x)|2Hdsν(dx). (3.4)

In the following, C will denote a generic constant whose values might change
from line to line. Set

Mt =

∫ t

0

∫
X

(
|fn(s, x)−fm(s, x)|2H+2 < Y n

s−−Y m
s−, fn(s, x)−fm(s, x) >H

)
Ñ(ds, dx).

Then,

[M, M ]
1
2
t ={ ∑

s∈Dp,s≤t

(
|fn(s, p(s))−fm(s, p(s))|2H+2 < Y n

s−−Y m
s−, fn(s, p(s))−fm(s, p(s)) >H

)2} 1
2

≤ C

( ∑
s∈Dp,s≤t

|fn(s, p(s))− fm(s, p(s))|4H
) 1

2

+C

( ∑
s∈Dp,s≤t

|Y n
s− − Y m

s−|2H |fn(s, p(s))− fm(s, p(s))|2H
) 1

2

≤ C
∑

s∈Dp,s≤t

|fn(s, p(s))− fm(s, p(s))|2H

+C sup
0≤s≤t

(|Y n
s− − Y m

s−|H)

( ∑
s∈Dp,s≤t

|fn(s, p(s))− fm(s, p(s))|2H
) 1

2

≤ C
∑

s∈Dp,s≤t

|fn(s, p(s))− fm(s, p(s))|2H +
1

4
sup

0≤s≤t
(|Y n

s− − Y m
s−|2H).

By Burkholder’s inequality,

E[ sup
0≤s≤t

|Ms|] ≤ CE([M, M ]
1
2
t )
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≤ CE[
∑

s∈Dp,s≤t

|fn(s, p(s))− fm(s, p(s))|2H ] +
1

4
E[ sup

0≤s≤t
|Y n

s− − Y m
s−|2H ]

= CE[

∫ t

0

∫
X

|fn(s, x)− fm(s, x)|2Hdsν(dx)] +
1

4
E[ sup

0≤s≤t
|Y n

s − Y m
s |2H ]. (3.5)

It follows from (3.4) and (2.2) that

E[ sup
0≤s≤t

|Y n
s − Y m

s |2H ] ≤ −αE[

∫ t

0

||Y n
s − Y m

s ||2V ds]

+(λ0 + C)E[

∫ t

0

|Y n
s − Y m

s |2Hds] + CE[

∫ t

0

|bn(s)− bm(s)|2Hds]

+CE[

( ∫ t

0

< Y n
s −Y m

s , σn(s)−σm(s) >2
H ds

) 1
2

]+CE[

∫ t

0

|σn(s)−σm(s)|2Hds]

+CE([M, M ]
1
2
t ) + CE[

∫ t

0

∫
X

|fn(s, x)− fm(s, x)|2Hdsν(dx)].

Applying (3.5) we have

E[ sup
0≤s≤t

|Y n
s − Y m

s |2H ]

≤ −αE[

∫ t

0

||Y n
s − Y m

s ||2V ds] + CE[

∫ t

0

|Y n
s − Y m

s |2Hds]

+
1

2
E[ sup

0≤s≤t
(|Y n

s− − Y m
s−|2H ] + CE[

∫ t

0

|bn(s)− bm(s)|2Hds]

+CE[

∫ t

0

|σn(s)− σm(s)|2Hds] + CE[

∫ t

0

∫
X

|fn(s, x)− fm(s, x)|2Hdsν(dx)].

(3.6)
By Gronwall’s inequality, this implies that

E[ sup
0≤s≤t

|Y n
s − Y m

s |2H ] ≤ CeCt{E[

∫ t

0

|bn(s)− bm(s)|2Hds]

+CE[

∫ t

0

|σn(s)− σm(s)|2Hds] + CE[

∫ t

0

∫
X

|fn(s, x)− fm(s, x)|2Hdsν(dx)]}.

(3.7)
Therefore,

lim
n,m→∞

E[ sup
0≤s≤t

|Y n
s − Y m

s |2H ] = 0. (3.8)

This further implies by (3.6) that Y n, n ≥ 1 is also a Cauchy sequence in
M2([0, T ], V ). Let Yt, t ≥ 0 denote an element in M2([0, T ], V ) such that

lim
n→∞

E[ sup
0≤s≤t

|Y n
s − Ys|2H ] = 0,
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and

lim
n→∞

E[

∫ t

0

||Y n
s − Ys||2V ds] = 0.

Letting n →∞ , we see that Yt, t ≥ 0 is a solution to equation (3.1).

Uniqueness: If Xt, Yt are two solutions to equation (3.1), then{
d(Xt−Yt)

dt
= −A(Xt − Yt),

X0 − Y0 = 0.

By the chain rule, we have

|Xt − Yt|2H = −2

∫ t

0

< Xs − Ys, A(Xs − Ys) > ds

≤ −α

∫ t

0

||Xs − Ys||2V ds + λ0

∫ t

0

|Xs − Ys|2Hds

By Gronwall’s inequality, we obtain that Yt = Xt, which completes the proof.

Theorem 3.2 Assume (H.1) and (H.2). Then there exists a unique H-
valued progressively measurable process (Yt) such that

(i) Y ∈ M2(0, T ; V ) ∩D(0, T ; H) for any T > 0,
(ii) Yt = h−

∫ t

0
AYsds+

∫ t

0
b(Ys)ds+

∫ t

0
σ(Ys)dBs+

∫ t+

0

∫
X

f(Ys−, x)Ñ(ds, dx)
a.s.,

(iii) Y0 = h ∈ H.

Proof.
Existence of solution.
Let Y 0

t := h, t ≥ 0. For n ≥ 0, define Y n+1 ∈ M2(0, T ; V )∩D(0, T ; H) to be
the unique solution to the following equation:

dY n+1
t = −AY n+1

t dt + b(Y n
t )dt + σ(Y n

t )dBt

+f(Y n
t−, x)Ñ(dt, dx), (3.9)

Y n
0 = h. (3.10)

The solution Y n+1 of the above equation exists according to Proposition 3.1.
We are going to show that {Y n, n ≥ 1} forms a Cauchy sequence. Using Itô’s

8



formula, we find that

|Y n+1
t − Y n

t |2H

= −2

∫ t

0

〈Y n+1
s − Y n

s , A(Y n+1
s − Y n

s )〉ds

+ 2

∫ t

0

< Y n+1
s − Y n

s , b(Y n
s )− b(Y n−1

s ) > ds

+ 2

∫ t

0

< Y n+1
s − Y n

s , σ(Y n
s )− σ(Y n−1

s ) > dBs

+

∫ t

0

|σ(Y n
s )− σ(Y n−1

s )|2Hds

+

∫ t+

0

∫
X

[|f(Y n
s−, x)− f(Y n−1

s− , x)|2H + 2 < Y n+1
s − Y n

s , f(Y n
s−, x)− f(Y n−1

s− , x) >]Ñ(ds, dx)

+

∫ t

0

∫
X

|f(Y n
s , x)− f(Y n−1

s , x)|2Hdsν(dx). (3.11)

By a similar calculation as in Proposition 3.1, it follows from (3.11) that

E[ sup
0≤s≤t

|Y n+1
s − Y n

s |2H ]

≤ −αE[

∫ t

0

||Y n+1
s − Y n

s ||2V ds] + CE[

∫ t

0

|Y n+1
s − Y n

s |2Hds]

+
1

2
E[ sup

0≤s≤t
|Y n+1

s − Y n
s |2H ] + CE[

∫ t

0

|b(Y n
s )− b(Y n−1

s )|2Hds]

+CE[

∫ t

0

|σ(Y n
s )−σ(Y n−1

s )|2Hds]+CE[

∫ t

0

∫
X

|f(Y n
s , x)−f(Y n−1

s , x)|2Hdsν(dx)].

(3.12)
By virtue of (H.1), this implies that

E[ sup
0≤s≤t

|Y n+1
s − Y n

s |2H ] ≤CE[

∫ t

0

|Y n+1
s − Y n

s |2Hds]

+CE[

∫ t

0

|Y n
s − Y n−1

s |2Hds]. (3.13)

Define

gn
t = E[ sup

0≤s≤t
|Y n

s − Y n−1
s |2H ], Gn

t =

∫ t

0

gn
s ds.

We have
gn+1

t ≤ CGn+1
t + CGn

t . (3.14)

Multiplying above inequality by e−Ct, we get that

d(Gn+1
t e−Ct)

dt
≤ Ce−CtGn

t . (3.15)
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Therefore,

Gn+1
t ≤ CeCt

∫ t

0

e−CsGn
s ds ≤ CeCttGn

t . (3.16)

Combining (3.14) and (3.16) we see that for a fixed T > 0, and t ≤ T ,

gn+1
t ≤ C2eCttGn

t + CGn
t ≤ CT

∫ t

0

gn
s ds, (3.17)

for some constant CT . Iterating (3.17), we obtain that

E[ sup
0≤s≤T

|Y n+1
s − Y n

s |2H ] ≤ C
(CT T )n

n!
.

This implies that there exists Y ∈ D([0, T ], H) such that

lim
n→∞

E[ sup
0≤s≤T

|Y n
s − Ys|2H ] = 0.

In view of (3.12) we see that Y n also converges to Y in M2(0, T ; V ). Letting
n →∞ in (3.9) it is seen that Y is a solution to equation (ii) in the statement
of the theorem.

Uniqueness.
Let X, Y be two solutions to (ii) in M2(0, T ; V ) ∩ D(0, T ; H). By Ito’s

formula, we have

|Yt −Xt|2H

= −2

∫ t

0

〈Ys −Xs, A(Ys −Xs)〉ds

+ 2

∫ t

0

< Ys −Xs, b(Ys)− b(Xs) > ds

+ 2

∫ t

0

< Ys −Xs, σ(Ys)− σ(Xs) > dBs

+

∫ t

0

|σ(Ys)− σ(Xs)|2Hds

+

∫ t

0

∫
X

[|f(Ys−, x)− f(Xs−, x)|2H + 2 < Ys −Xs, f(Ys−, x)− f(Xs−, x) >]Ñ(ds, dx)

+

∫ t

0

∫
X

|f(Ys, x)− f(Xs, x)|2Hdsν(dx). (3.18)

By virtue of (H.2), it follows that

E[|Yt −Xt|2H ]

≤ −αE[

∫ t

0

||Ys −Xs||2V ds] + CE[

∫ t

0

|Ys −Xs|2Hds]
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+
1

2
E[ sup

0≤s≤t
|Ys −Xs|2H ] + CE[

∫ t

0

|b(Ys)− b(Xs)|2Hds]

+CE[

∫ t

0

|σ(Ys)− σ(Xs)|2Hds] + CE[

∫ t

0

∫
X

|f(Ys, x)− f(Xs, x)|2Hdsν(dx)]

≤ CE[

∫ t

0

|Ys −Xs|2Hds]. (3.19)

Hence, Xt = Yt.

Next we move to a more general equation which includes terms involving
also Poisson measures. Let U be a set in B(X) such that ν(X \ U) < ∞.
Let g(y, x) be a measurable mapping from H × X into H. Introduce the
following conditions:

(H.3) There exists a constant C < ∞ such that

|b(y)|2H + |σ(y)|2H +

∫
U

|g(y, x)|2Hν(dx) ≤ C(1 + |y|2H) (3.20)

for all y ∈ H.

(H.4) There exists a constant C < ∞ such that

|b(y1)− b(y2)|2H + |σ(y1)− σ(y2)|2H
+

∫
U
|g(y1, x)− g(y2, x)|2Hν(dx) (3.21)

≤ C|y1 − y2|2H (3.22)

for all y1, y2 ∈ H.

Consider the stochastic evolution equation:

Yt = h−
∫ t

0

AYsds +

∫ t

0

b(Ys)ds +

∫ t

0

σ(Ys)dBs

+

∫ t

0

∫
U

g(Yt−, x)Ñ(dt, dx) +

∫ t

0

∫
X\U

g(Yt−, x)N(dt, dx). (3.23)

Theorem 3.3 Assume (H.3) and (H.4). Then there exists a unique H-
valued progressively measurable process (Yt) such that

(i) Y ∈ M2(0, T ; V ) ∩D(0, T ; H) for any T > 0,
(ii)

Yt = h−
∫ t

0

AYsds +

∫ t

0

b(Ys)ds +

∫ t

0

σ(Ys)dBs

+

∫ t

0

∫
U

g(Yt−, x)Ñ(dt, dx) +

∫ t

0

∫
X\U

g(Yt−, x)N(dt, dx), (3.24)

(iii) Y0 = h ∈ H.

11



Proof. Having Theorem 3.2 in hand, this theorem can be proved in the
same way as in the finite dimensional case (see [IW]). For completeness we
sketch the proof. Let τ1 < τ2 < · · · be the enumeration of all elements in
D = {s ∈ Dp; p(s) ∈ X \ U}. It is clear that τn is an (Ft)-stopping time
and limn→∞ τn = ∞. First we solve the equation on the time interval [0, τ1].
Consider the equation

Xt = h−
∫ t

0

AXsds +

∫ t

0

b(Xs)ds +

∫ t

0

σ(Xs)dBs

+

∫ t

0

∫
U

g(Xt−, x)Ñ(dt, dx). (3.25)

Following the same proof as that of Theorem 3.2, it is seen that there exists
a unique solution Xt, t ≥ 0 to equation (3.25). Set

Y 1
t = Xt, 0 ≤ t < τ1, = Yτ1− + g(Yτ1−, p(τ1)), t = τ1.

Clearly the process {Y 1
t }t∈[0,τ1] is the unique solution to equation (3.24). Now,

set B̂t = Bt+τ1 − Bτ1 , p̂(s) = p(s + τ1). We can construct the process Y 2
t

on [0, τ̂1] with respect to the initial value Y 2
0 = Y 1

τ1
, Brownian motion B̂ and

Poisson point process p̂ in the same way as Y 1
t . Note that τ̂1 defined with

respect to p̂ coincides with τ2 − τ1. Define

Yt = Y 1
t , t ∈ [0, τ1], = Yt−τ1 , t ∈ [τ1, τ2].

It is easy to see that {Yt}t∈[0,τ2] is the unique solution to equation (3.24) in
the interval [0, τ2]. Continuing this procedure successively, we get the unique
solution Y to equation (3.24).

4 Exponential integrability

(H.5) There exists a measurable function f̄ on X satisfying

sup
y∈H

|f(y, x)|H ≤ f̄(x), (4.1)

and ∫
X

(f̄(x))2exp(af̄(x))ν(dx) < ∞, for all a > 0. (4.2)

In this section, for simplicity we assume that b = 0, σ = 0 in equation (1.1).
Again we denote the solution of (1.1) by Yt.

Lemma 4.1 For g ∈ C2
b (H), M g

t = exp(g(Yt) − g(h) −
∫ t

0
h(Ys)ds) is an

Ft-local martingale, where

h(y) =< −Ay, g′(y) > +

∫
X

(exp[g(y+f(y, x))−g(y)]−1− < g′(y), f(y, x) >)ν(dx).

12



Proof. Applying Itô’s formula first to exp(g(Yt)) and then to exp(g(Yt) −
g(h))exp(−

∫ t

0
h(Ys)ds) proves the lemma.

Proposition 4.2 Assume (2.2) with λ0 = 0 and also (H.5). Then for r > 0
and any λ > 0, there exists a constant Cλ such that

P ( sup
0≤t≤1

|Yt|H > r) ≤ Cλe
−(1+λr2)

1
2 .

Proof. For λ > 0, set g(y) = (1 + λ|y|2H)
1
2 . Then

g′(y) = λ(1 + λ|y|2H)−
1
2 y,

g′′(y) = −λ2(1 + λ|y|2H)−
3
2 y × y + λ(1 + λ|y|2H)−

1
2 IH .

where IH stands for the identity operator. It is easy to see that

sup
y
|g′′(y)| ≤ λ, sup

y
|g′(y)| ≤ λ

1
2 .

Moreover,

< −Ay, g′(y) >= λ(1 + λ|y|2H)−
1
2 < −Ay, y >≤ 0 (4.3)

for y ∈ V . Write G(y) = eg(y). By Taylor’s expansion, there exists θ between
0 and 1 such that

exp[g(y + f(y, x))− g(y)]− 1− < g′(y), f(y, x) >

= e−g(y)[G(y + f(y, x))−G(y)−G(y) < g′(y), f(y, x) >]

=
1

2
e−g(y) < G′′(y + θf(y, x)), f(y, x)× f(y, x) > . (4.4)

Note that
G′′(y) = G(y)g′(y)× g′(y) + G(y)g′′(y).

It follows that

|G′′(y)|L(H) ≤ λG(y), for all y ∈ H. (4.5)

By (4.4),

|exp[g(y + f(y, x))− g(y)]− 1− < g′(y), f(y, x) > |

≤ λexp(g(y + θf(y, x))− g(y))|f(y, x)|2H
= λexp(< g′(y + θ1f(y, x)), θf(y, x) >)|f(y, x)|2H

≤ λexp(λ
1
2 |f(y, x)|H)|f(y, x)|2H . (4.6)

13



Applying Lemma 4.1, with the above choice of g, M g
t = exp(g(Yt) − g(y) −∫ t

0
h(Ys)ds) is an Ft-local martingale, where

h(y) =< −Ay, g′(y) > +

∫
X

(exp[g(y+f(y, x))−g(y)]−1− < g′(y), f(y, x) >)ν(dx)

≤
∫

X

λexp(λ
1
2 |f(y, x)|H)|f(y, x)|2Hν(dx)

≤
∫

X

λexp(λ
1
2 |f̄(x)|H)|f̄(x)|2Hν(dx) = Mλ < ∞. (4.7)

We have
P ( sup

0≤t≤1
|Yt|H > r) = P ( sup

0≤t≤1
g(Yt) ≥ (1 + λr2)

1
2 )

= P ( sup
0≤t≤1

(g(Yt)− g(h)−
∫ t

0

h(Ys)ds + g(h) +

∫ t

0

h(Ys)ds) ≥ (1 + λr2)
1
2 )

≤ P ( sup
0≤t≤1

(g(Yt)− g(h)−
∫ t

0

h(Ys)ds) + g(h) + Mλ ≥ (1 + λr2)
1
2 )

= P ( sup
0≤t≤1

(g(Yt)− g(h)−
∫ t

0

h(Ys)ds) ≥ (1 + λr2)
1
2 − g(h)−Mλ)

≤ E[ sup
0≤t≤1

M g
t ]exp(−(1 + λr2)

1
2 + g(h) + Mλ). (4.8)

Since M g
t is a non-negative local martingale (hence, a supermartingale),

E[sup0≤t≤1 M g
t ] ≤ 1. Therefore the assertion follows with Cλ = exp(g(h) +

Mλ).

Corollary 4.3 Assume (2.2) with λ0 = 0 and also (H.5). Then for any
l > 0,

E[exp(l sup
0≤t≤1

|Yt|H)] < ∞.

Proposition 4.4 Assume (2.2) with λ0 = 0 and also (H.5). Then for any
l > 0,

E[exp(l||Y ||L2([0,1]→V ))] < ∞.

Proof. Let Zλ =
∫ 1

0
(1 + λ|Ys|2H)−

1
2 ||Ys||2V ds. We first prove that

P (Zλ > r) ≤ exp(−αλr + Mλ + (1 + λ|h|2H)
1
2 ), (4.9)

where Mλ is the same constant as in (4.7). For λ > 0, define g(y) = (1 +

λ|y|2H)
1
2 . In view of (2.2) we have

< −Ay, g′(y) >= λ(1 + λ|y|2H)−
1
2 < −Ay, y >

14



≤ −αλ(1 + λ|y|2H)−
1
2 ||y||2V . (4.10)

So the estimate in (4.7) can be strengthened as follows:

h(y) ≤ −αλ(1 + λ|y|2H)−
1
2 ||y||2V + Mλ. (4.11)

Let M g
t , t ≥ 0 be defined as in the proof of Proposition 4.2. By (4.11), we

have

P (Zλ > r) = P (αλ

∫ 1

0

(1 + λ|Ys|2H)−
1
2 ||Ys||2V ds > αλr)

≤ P (g(Y1) + αλ

∫ 1

0

(1 + λ|Ys|2H)−
1
2 ||Ys||2V ds > αλr)

= P (g(Y1)− g(h)−
∫ 1

0

h(Ys)ds + g(h) +

∫ 1

0

h(Ys)ds

+αλ

∫ 1

0

(1 + λ|Ys|2H)−
1
2 ||Ys||2V ds > αλr)

≤ P (g(Y1)− g(h)−
∫ 1

0

h(Ys)ds) + g(h) + Mλ > αλr)

= P (g(Y1)− g(h)−
∫ 1

0

h(Ys)ds) > αλr − g(h)−Mλ)

≤ E[M g
1 ]exp(−αλr + g(h) + Mλ)

≤ exp(−αλr + g(h) + Mλ) (4.12)

which proves (4.9). It is easy to see from (4.9) that for any l > 0, one can
choose λl > 0 large enough so that E[exp(lZλl

)] < ∞. Now for every λ > 0,

||Y ||L2([0,1]→V ) =

( ∫ 1

0

||Ys||2V ds

) 1
2

≤
( ∫ 1

0

(1 + λ|Ys|2H)−
1
2 ||Ys||2V ds

) 1
2
(

1 + λ sup
0≤s≤1

|Ys|2H
) 1

4

≤ 1

2
Zλ +

1

2

(
1 + λ sup

0≤s≤1
|Ys|2H

) 1
2

. (4.13)

By Hölder’s inequality, for l > 0,

E[exp(l||Y ||L2([0,1]→V ))]

≤ E[exp(
1

2
lZλ)exp(

1

2
l

(
1 + λ sup

0≤s≤1
|Ys|2H

) 1
2

)]

≤
(

E[exp(lZλ)]

) 1
2

×
(

E[exp(l

(
1 + λ sup

0≤s≤1
|Ys|2H

) 1
2

)]

) 1
2

. (4.14)
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According to (4.9), we can choose λ such that E[exp(lZλ)] < ∞. On the

other hand E[exp(l

(
1+λ sup0≤s≤1 |Ys|2H

) 1
2

)] < ∞ for all λ > 0 according to

Corollary 4.3. So we conclude that E[exp(l||Y ||L2([0,1]→V ))] < ∞ proving the
assertion.

5 Large deviations

In this section we consider the following Lévy process:

Lt = bt + Wt +

∫ t

0

∫
X

f(x)Ñ(ds, dx),

where W is the H-valued Brownian motion introduced in Section 2, b is a
constant vector in H and f is a measurable mapping from X into H. The
following Ornstein-Uhlenbeck type stochastic evolution equation was first
studied in [CM1] and subsequently by many other authors (cf. e.g. [FR]).

dYt = −AYtdt + dLt, (5.1)

Y0 = h ∈ H (5.2)

The following Theorem can be proved similarly as in Section 3. See also
[CM1].

Theorem 5.1 There exists a unique H-valued progressively measurable pro-
cess (Yt) such that

(i) Y ∈ M2(0, T ; V ) ∩D(0, T ; H) for any T > 0,
(ii) Yt = h−

∫ t

0
AYsds + Lt a.s.,

(iii) Y0 = h ∈ H.

To get large deviations estimates, it is natural to impose the following
exponential integrability. Assume throughout this section that∫

X

|f(x)|2Hexp(a|f(x)|H)ν(dx) < ∞, for all a > 0. (5.3)

Consider the stochastic evolution equation:

Y n
t = x−

∫ t

0

AY n
s ds + bt +

1

n
1
2

Wt +
1

n

∫ t

0

∫
X

f(x)Ñn(ds, dx), (5.4)

where Ñn(ds, dx) denotes the compensated Poisson measure with intensity
measure nν. The purpose is to establish a large deviation principle for the law
µn of Y n

t , t ≥ 0 on D([0, 1] → H). To this end, we first do some preparations.

For g ∈ D([0, 1] → V ), define φ(g) ∈ D([0, 1] → H) ∩ L2([0, 1] → V ) as
the solution to the following equation:

φt(g) = x−
∫ t

0

Aφs(g)ds + g(t). (5.5)
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Lemma 5.2 The mapping φ from D([0, 1] → V ) into φ(g) ∈ D([0, 1] →
H) ∩ L2([0, 1] → V ) is continuous in the topology of uniform convergence.

Proof. Let vt(g) = φt(g) − g(t). it is easy to see that v(g) satisfies the
equation:

vt(g) = x−
∫ t

0

Avs(g)ds−
∫ t

0

Ag(s)ds.

It suffices to show that the mapping

v(·) : D([0, 1] → V ) → D([0, 1] → H) ∩ L2([0, 1] → V )

is continuous. Taking β < α, where α is the constant in (2.2), by the chain
rule and (2.2),

|vt(gn)− vt(g)|2H = −2

∫ t

0

< A(vs(gn)− vs(g)), vs(gn)− vs(g) > ds

−2

∫ t

0

< A(gn − g)(s), vs(gn)− vs(g) > ds

≤ −α

∫ t

0

||vs(gn)− vs(g)||2V ds + λ0

∫ t

0

|vs(gn)− vs(g)|2Hds

+2

∫ t

0

||vs(gn)− vs(g)||V ||A(gn − g)(s)||V ∗ds

≤ −α

∫ t

0

||vs(gn)− vs(g)||2V ds + λ0

∫ t

0

|vs(gn)− vs(g)|2Hds

+β

∫ t

0

||vs(gn)− vs(g)||2V ds + Cβ

∫ t

0

||A(gn − g)(s)||2V ∗ds.

This gives that

|vt(gn)− vt(g)|2H + (α− β)

∫ t

0

||vs(gn)− vs(g)||2V ds

≤ λ0

∫ t

0

|vs(gn)− vs(g)|2Hds + Cβ||A||
∫ t

0

||gn − g(s)||2V ds

Applying Gronwall’s inequality it is easily seen that the mapping v(·) is
continuous, which completes the proof.

For l ∈ H, define

F (l) =

∫
X

[exp(< f(x), l >)− 1− < f(x), l >]ν(dx)+ < Ql, l > + < b, l > .

Set, for z ∈ H,
F ∗(z) = sup

l∈H
[< z, l > −F (l)]. (5.6)

Define a functional I0(·) on D([0, 1] → H) as follows: if g ∈ D([0, 1] → H)

and g′ ∈ L1([0, 1] → H), I0(g) =
∫ 1

0
F ∗(g′(s))ds; otherwise I(g) = ∞.
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Lemma 5.3 Let a > 0.Then G = {|g′|; I0(g) ≤ a} is uniformly integrable on
the probability space ([0, 1],B, m), where m denotes the Lebesgue measure.

Proof. Recall that G is uniformly integrable if and only if
(i) G is equi-absolutely continuous, i.e., for any given ε > 0, there exists

δ > 0 such that m(A) < δ implies
∫

A
|g′|Hm(ds) < ε for all g ∈ G.

(ii) supg∈G
∫ 1

0
|g′|Hm(ds) < ∞.

We will modify the proof of Theorem 3.1 in [A2] to get (i) and (ii). Let
ai, bi, i = 1, ...n be any given numbers such that 0 ≤ a1 < b1 ≤ a2 < b2 ≤
· · · ≤ an < bn ≤ 1. For any partition τ i = {ti0 = ai < ti1 < · · · < tiim = bi} of
[ai, bi] and any ηi

k ∈ H with |ηi
k|H ≤ 1, define β ∈ M([0, 1], H) by

β =
n∑

i=1

im∑
k=0

ηi
k(δtik

− δtik−1
),

where M([0, 1], H) denotes the space of H− valued vector measures on

([0, 1],B). Let µ be the law of
∫ 1

0

∫
X

f(x)Ñ(ds, dx) on H. Denote the char-
acteristic functional of µ by µ̂. Then,∫ 1

0

logµ̂(β(s, 1])ds =
n∑

i=1

im∑
k=0

logµ̂(ηi
k)(t

i
k − tik−1).

Let ρ > 0. By the characterization of I0 in [A2], for g ∈ G, we have

ρ

∫ 1

0

< g, dβ >= ρ
n∑

i=1

im∑
k=0

< g(tik)− g(tik−1), η
i
k >

≤
∫ 1

0

logµ̂(ρβ(s, 1])ds + I0(g)

≤ sup
i,k

|logµ̂(ρηi
k)|

n∑
i=1

im∑
k=0

(tik − tik−1) + I0(g)

≤ log(

∫
H

exp(ρ|x|H)µ(dx))
n∑

i=1

(bi − ai) + a. (5.7)

Taking sup in (5.7) over all possible ηi
k ∈ H with |ηi

k|H ≤ 1 we get

n∑
i=1

im∑
k=0

|g(tik)− g(tik−1)|H ≤ ρ−1log(

∫
H

exp(ρ|x|H)µ(dx))
n∑

i=1

(bi − ai) + ρ−1a.

(5.8)
Let V (g)[a, b] denote the total variation of g over the interval [a, b]. Taking
sup in (5.8) over all possible partitions we obtain

n∑
i=1

V (g)[ai, bi] =
n∑

i=1

∫ bi

ai

|g′(s)|Hds =

∫
∪n

i=1(ai,bi)

|g′(s)|Hds
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≤ ρ−1log(

∫
H

exp(ρ|x|H)µ(dx))
n∑

i=1

(bi − ai) + ρ−1a (5.9)

For every ε > 0, choose first ρ0 large enough such that ρ−1
0 a ≤ ε

2
. Set δ =

1
3
[ρ−1

0 log(
∫

H
exp(ρ|x|H)µ(dx))]−1ε. If ∪n

i=1(ai, bi) ⊂ [0, 1] with m(∪n
i=1(ai, bi)) <

δ, by (5.9 ) we have
∫
∪n

i=1(ai,bi)
|g′(s)|Hds < ε. for all g ∈ G. This implies (i).

Take particularly a1 = 0, b1 = 1 in the above proof to see that (ii) also holds.

Let Tt, t ≥ 0 denote the semigroup generated by −A. For g ∈ L1([0, 1] →
H), define the operator

Rg(t) =

∫ t

0

Tt−sg(s)ds, t ≥ 0,

which is the mild solution of the equation:

φ(t) = −
∫ t

0

Aφ(s)ds +

∫ t

0

g(s)ds.

Proposition 5.4 Assume that Tt, t > 0 are compact operators. If G ⊂
L1([0, 1] → H) is uniformly integrable, then S = R(G) is relatively compact
in C([0, 1] → H).

Proof. The proof is a modification of the proof of Proposition 8.4 in [DZ].
According to the Ascoli-Arzela theorem we need to show

(i) for every t ∈ [0, 1] the set {Rg(t); g ∈ G} is relatively compact in H;
(ii) for every ε > 0 there exists δ > 0 such that if 0 ≤ s ≤ t ≤ 1,t− s ≤ δ,

|Rg(t)−Rg(s)|H ≤ ε for all g ∈ G. (5.10)

To prove (i), fix t ∈ (0, 1] and define for ε > 0 Rεg(t) =
∫ t−ε

0
Tt−sg(s)ds.

Since

Rεg(t) = Tε

∫ t−ε

0

Tt−ε−sg(s)ds

and Tε, ε > 0 is compact, {Rεg(t), g ∈ G} is relatively compact in H for every
ε > 0. On the other hand,

|Rεg(t)−Rg(t)|H ≤ M

∫ t

t−ε

|g(s)|Hds, (5.11)

where M = supt∈[0,1]||Tt||. Since G is uniformly integrable, (4.52) implies
that

limε→0 sup
g∈G

|Rεg(t)−Rg(t)|H = 0

which furthermore implies that {Rg(t); g ∈ G} is also relatively compact.
Let us now prove (ii). For 0 ≤ t ≤ t + u ≤ 1, we have

|Rg(t + u)−Rg(t)|H
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≤
∫ t

0

||Tt+u−s − Tt−s|||g(s)|Hds +

∫ t+u

t

||Tt+u−s|||g(s)|Hds

:= Iu
g + IIu

g .

By the uniform integrability of G, it is clear that

lim
u→0

sup
g∈G

IIu
g ≤ M lim

u→0
sup
g∈G

∫ t+u

t

|g(s)|Hds = 0.

Since the semigroup T· is compact, ||Tt+u−s − Tt−s|| → 0 for any t− s > 0 as
u → 0. By the dominated convergence theorem, we have that

lim
u→0

∫ t

0

||Tt+u−s − Tt−s||ds = 0. (5.12)

Now we prove
lim
u→0

sup
g∈G

Iu
g = 0. (5.13)

For given ε > 0, sine G is uniformly integrable, one can choose ρ > 0 such
that 2M

∫
|g|>ρ

|g(s)|Hds < ε
2

for all g ∈ G. For the fixed ρ > 0 above, there

exists δ > 0 such that u ≤ δ implies that

ρ

∫ t

0

||Tt+u−s − Tt−s||ds ≤ ε

2

for all t ∈ [0, 1]. Therefore if u ≤ δ, for all g ∈ G, t ∈ [0, 1],

Iu
g =

∫
|g|>ρ

||Tt+u−s − Tt−s|||g(s)|Hds +

∫
|g|≤ρ

||Tt+u−s − Tt−s|||g(s)|Hds

≤ 2M

∫
|g|>ρ

|g(s)|Hds + ρ

∫ t

0

||Tt+u−s − Tt−s||ds

≤ ε. (5.14)

This proves (ii), hence the assertion.

Theorem 5.5 Assume that A has discrete spectrum with eigenvalues

0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ · · · → +∞

and H-normalized eigenfunctions {ei}. Suppose that the Brownian motion
Wt admits the following representation:

Wt =
∞∑
i=1

qiβi(t)ei, (5.15)

where βi(t), i ≥ 1 are independent standard Brownian motions, and qi, i ≥ 1
are non-negative real numbers satisfying

∑∞
i=1 q2

i < ∞. Then {µn, n ≥ 1}
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satisfies a large deviation principle on D([0, 1] → H) ( equipped with the
topology of uniform convergence ) with a rate functional I given for k ∈
D([0, 1] → H) by

I(k) = inf{I0(g); g ∈ D([0, 1] → H) satisfying

k(t) = Ttx +

∫ t

0

Tt−sg
′(s)ds}. (5.16)

Proof.

Denote by Pm : H → H the projection operator defined by

Pmx =
m∑

i=1

< x, ei > ei.

As {ei} ⊂ V , we have Rang(Pm) ⊂ V . For any integer m ≥ 1, introduce
a mapping φm(·) from D([0, 1] → H) into D([0, 1] → H) as follows: for
g ∈ D([0, 1] → H) define φm

t (g) as the soltuion of the following equation:

φm
t (g) = x−

∫ t

0

Aφm
s (g)ds + Pmg(t). (5.17)

By Lemma 5.2 the mapping φm(·) is continuous. Let

Ln
t = bt +

1

n
1
2

Wt +
1

n

∫ t

0

∫
X

f(x)Ñn(ds, dx).

Then it is easy to see that Y n,m
t := φm

t (Ln
t ) is the solution to the following

equation:

Y n,m
t = x−

∫ t

0

AY n,m
s ds+ bmt+

1

n
1
2

Wm
t +

1

n

∫ t

0

∫
X

fm(x)Ñn(ds, dx), (5.18)

where fm(x) = Pmf(x) =
∑m

i=1 < f(x), ei > ei, Wm
t = PmWt and bm = Pmb.

Let νn be the law of Ln
. . It was proved in [A2] that {νn, n ≥ 1} satisfies a large

deviation principle with rate function I0. Applying the contraction principle,
we see that {Y n,m

. } satisfies a large deviation principle on D([0, 1] → H) with
a rate functional Im given by, for k ∈ D([0, 1] → H),

Im(k) = inf{I0(g); g ∈ D([0, 1] → H) satisfying

k(t) = Ttx +

∫ t

0

Tt−sPmg′(s)ds}. (5.19)

According to the generalized contraction principle Theorem 4.2 in [DZ], the
theorem now follows from the following two lemmas.

Lemma 5.6 For any δ > 0,

lim
m→∞

lim sup
n→∞

1

n
logP ( sup

0≤t≤1
|Y n,m

t − Y n
t |H > δ) = −∞. (5.20)
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Proof. Set Xn,m
t = n(Y n,m

t − Yt). Then it can be seen that

Xn,m
t = −

∫ t

0

AXn,m
s ds +

∫ t

0

∫
X

(fm(x)− f(x))Ñn(ds, dx)

+n(bm − b)t + n
1
2 (Wm

t −Wt) (5.21)

For λ > 0, set g(y) = (1 + λ|y|2H)
1
2 . As in Section 4, we know that M g

t =
exp(g(Xn,m

t )− g(0)−
∫ t

0
h(Xn,m

s )ds) is an Ft-local martingale, where

h(y) = n

∫
X

(exp[g(y + fm(x)− f(x))− g(y)]− 1− < g′(y), fm(x)− f(x) >)ν(dx)

− < Ay, g′(y) > +n < bm − b, g′(y) >

+n

∞∑
i=m+1

q2
i < (g′(y)⊗ g′(y) + g′′(y))ei, ei > . (5.22)

Furthermore (See Section 4), we have

h(y) ≤ cλ,mn, (5.23)

where

cλ,m = λ

∫
X

exp(λ
1
2 |fm(x)− f(x)|H)(|fm(x)− f(x)|H)2ν(dx)

+λ
1
2 |bm − b|H + 2λ

∞∑
i=m+1

q2
i . (5.24)

We have

P ( sup
0≤t≤1

|Xn,m
t |H > r) = P ( sup

0≤t≤1
g(Xn,m

t ) ≥ (1 + λr2)
1
2 )

= P ( sup
0≤t≤1

(g(Xn,m
t )−g(0)−

∫ t

0

h(Xn,m
s )ds+1+

∫ t

0

h(Xn,m
s )ds) ≥ (1+λr2)

1
2 )

≤ P ( sup
0≤t≤1

(g(Xn,m
t )− g(0)−

∫ t

0

h(Xn,m
s )ds) + 1 + cλ,mn ≥ (1 + λr2)

1
2 )

= P ( sup
0≤t≤1

(g(Xn,m
t )− g(0)−

∫ t

0

h(Xn,m
t )ds) ≥ (1 + λr2)

1
2 − 1− cλ,mn)

≤ E[ sup
0≤t≤1

M g
t ]exp(−(1 + λr2)

1
2 + 1 + cλ,mn). (5.25)

This gives that

P ( sup
0≤t≤1

|Y n,m
t − Y n

t |H > δ) = P ( sup
0≤t≤1

|Xn,m
t |H > nδ)

≤ exp(−(1 + λ(nδ)2)
1
2 + 1 + cλ,mn).
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Therefore,

lim sup
n→∞

1

n
logP ( sup

0≤t≤1
|Y n,m

t − Y n
t |H > δ)

≤ lim sup
n→∞

1

n
[−(1 + λ(nδ)2)

1
2 + 1 + cλ,mn]

≤ −λδ + cλ,m. (5.26)

Note that by the dominated convergence theorem, for fixed λ, limm→∞ cλ,m =
0. Taking m →∞ in (5.26) we get that

lim
m→∞

lim sup
n→∞

1

n
logP ( sup

0≤t≤1
|Y n,m

t − Y n
t |H > δ) ≤ −λδ.

Let λ →∞ to get (5.20).

For g ∈ D([0, 1] → H), let φt(g), t ≥ 0, be defined as in (5.5).

Lemma 5.7 For any r > 0,

lim
m→∞

sup
{f ;I0(f)≤r}

sup
0≤t≤1

|φm
t (f)− φt(f)| = 0. (5.27)

Proof. For f ∈ D([0, 1] → H) with I0(f) < ∞, we note that

φm
t (f) =

∫ t

0

Tt−sPmf ′(s)ds = Pm

∫ t

0

Tt−sf
′(s)ds = Pmφt(f), (5.28)

where we have used the fact that A has a discrete spectrum to exchange Pm

and Ts. Since by Lemma 5.3 Lr := {f ′; I0(f) ≤ r} is uniformly integrable
on the probability space ([0, 1],B, m), it follows from Proposition 5.4 that
S = {φ(f); I0(f) ≤ r} is relatively compact in C([0, 1] → H). Therefore,
for any ε > 0, there exist f1, f2, ..., fN ∈ {f ; I0(f) ≤ r} such that S ⊂
∪N

k=1B(φ(fk),
ε
3
), where B(φ(fk),

ε
3
) stands for the ball centered at φ(fk) with

radius ε
3

in C([0, 1] → H). Since limm→∞ sup0≤t≤1 |φm
t (fk) − φt(fk)| = 0 for

every k, there exists m0 ≥ 1 such that

sup
0≤t≤1

|φm
t (fk)− φt(fk)| ≤

ε

3
for all k ≤ N, m ≥ m0. (5.29)

Fix any f with I0(f) ≤ r. Then there is k ≤ N such that φ(f) ∈ B(φ(fk),
ε
3
).

Hence, if m ≥ m0,

sup
0≤t≤1

|φm
t (f)− φt(f)|

≤ sup
0≤t≤1

|φm
t (f)− Pmφt(fk)|+ sup

0≤t≤1
|φm

t (fk)− φt(fk)|

+ sup
0≤t≤1

|φt(fk)− φt(f)|

≤ 2 sup
0≤t≤1

|φt(fk)− φt(f)|+ sup
0≤t≤1

|φm
t (fk)− φt(fk)|

≤ 2ε

3
+

ε

3
= ε, (5.30)

which proves (5.27).
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