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some kind of hyperboliity. This is usually stated in a more quantitative form asfollows. For any given ε > 0 there exists some δ > 0 suh that for any pseudo-trajetory, that allows jumps of size δ at suessive time instanes, there exists atrue trajetory within an ε-neighborhood of the pseudo-trajetory uniformly in time.Suh statements hold for both time ontinuous and time disrete dynamial systemswithin or in the neighborhood of (suitably de�ned) hyperboli sets. We refer to themonographs [23℄ and [24℄ for an exellent aount of various shadowing results.When numerial approximations are to be inluded into suh an approah onerealizes that the onept of a pseudo-trajetory needs a onsiderable extension for ashadowing priniple to be still valid. For example, disretizing an autonomous ODEby a one-step method leads to a mapping depending on step-size and shadowing nowmeans approximation of a disrete time orbit by a true ontinuous trajetory or vieversa. A result of this type was derived in [7℄ near stationary hyperboli points andfor more general hyperboli situations in [12℄.Shadowing results for numerial approximations of time-dependent partial di�er-ential equations usually involve both time and spae disretization, i.e. the ontinuoustrajetory in an in�nite dimensional spae should be shadowed by a disrete time tra-jetory in a �nite dimensional spae and vie versa.Suh a result was derived in [21℄ for a �nite element method ombined with thebakward Euler disretization in time when applied to a nonlinear reation di�usionsystem in the neighborhood of stationary hyperboli solution. These results extendedearlier work on semidisretizations with �nite elements by the same authos [20℄. Shad-owing results for semi-disretizations in time were shown earlier in [1℄ near hyperbolistationary states and, more reently, for a linear but nonautonomous setting in [22℄.The purpose of this paper is to study shadowing properties of rather general spatialdisretizations of a nonlinear evolution equation in some Banah spae
u′(t) = Au(t) + f(u(t)), t ≥ 0 u(0) = u0 ∈ E, (1.1)where A is a losed operator that generates an analyti semigroup exp(tA) on E.For the disretization in spae we use the theory of disrete approximations as de-veloped in [13℄,[28℄,[32℄,[33℄,[34℄. As is known for stationary problems this theoryprovides a uni�ed framework for handling suh diverse approximations as (onform-ing and nononforming) �nite elements methods, �nite di�erene methods (see [32℄)and perturbations of domains ([4℄,[29℄).We onsider a family of disretized problems indexed by n ∈ N

u′n(t) = Anun(t) + f(un(t)), t ≥ 0, un(0) = u0
n ∈ En, (1.2)where the spaes are related by disretization maps pn : E 7→ En and the losedoperators An satisfy ertain ompatibility requirements with respet to the ontinuousoperator A.Our main results (see Theorems 4.4 and 4.6 ) show that mild solutions near ahyperboli equilibrium of the system (1.1) an be shadowed on arbitrary large timeintervals by orresponding mild solutions of the system (1.2) and vie versa. Whileour approah still follows the general idea of onstruting shadowing trajetories fromboundary value problems as in [1℄,[7℄,[20℄,[21℄, we enounter several di�ulties thatmust be resolved when working in the general framework:2



(i) When using the standard interpolation spaes Eα, Eα
n (see e.g. [15℄) for theoperators f : Eα 7→ E, fn : Eα

n 7→ En, exp(tA) : E 7→ Eα, exp(tAn) : En 7→ Eα
nit beomes neessary to onstrut disretization maps pα

n : Eα 7→ Eα
n that inheritproperties of pn.

(ii) The disretization maps pn, p
α
n need to be adapted to the hyperboli splittingof the linear operators obtained by linearizing about the hyperboli equilibria.

(iii) While the theory of disrete approximations allows to ontrol eigenvalues of�nite multipliity in a bounded domain it is neessary to assume resolvent es-timates for An in a setorial region of the omplex plane (ondition (B1) inTheorem 3.5).
(iv) When shadowing solutions of (1.2) by those of (1.1) one needs to approximateelements from En by those of E whih is not obvious sine we avoid the use ofinterpolation operators.Our main tool to solve these problems will be ompatness properties of resolventsas well as of initial values of trajetories to be shadowed. In setion 2 and 3 weollet the main tehnial tools for proving the shadowing theorems in setion 4.The appliation to �nite element and �nite di�erene approximations is disussed insetion 5. In partiular, it turns out that several of the issues raised above are resolvedin a natural way and that we retrieve some shadowing results from [20℄,[21℄.We have limited the urrent paper to the simplest ase where shadowing is possiblein the framework of disrete approximations. We expet that the approah an beextended substantially to over systems with more general hyperboli strutures (see[8℄ for the ase of attrators) to derive error bounds for stable and unstable manifoldsas well as shadowing estimates with weak singularities for nonompat initial values.2 PreliminariesLet B(E) denote the Banah algebra of all bounded linear operators on a omplexBanah spae E. The set of all linear losed densely de�ned operators in E will bedenoted by C(E). For B ∈ C(E) let σ(B) be its spetrum and ρ(B) be its resolventset. In a Banah spae E we onsider the following inhomogeneous Cauhy problem:

u′(t) = Au(t) + g(t), t ∈ [0, T ],

u(0) = u0,
(2.1)where A ∈ C(E) generates a C0-semigroup and g(·) is a funtion from [0, T ] into E.The problem (2.1) an be onsidered in various funtion spaes. The most popu-lar spaes for whih well-posedness an be shown are C([0, T ];E), Cα

0 ([0, T ];E), and
Lp([0, T ];E) spaes (see [5, 35℄).In general one onsiders a mild or so-alled generalized solution of (2.1), i.e. thefuntion

u(t) = exp(tA)u0 +

∫ t

0
exp((t− s)A)g(s)ds, t ≥ 0. (2.2)3



Now we proeed to the semilinear autonomous paraboli problem
u′(t) = Au(t) + f(u(t)), t ≥ 0,
u(0) = u0 ∈ E,

(2.3)where the funtion f(·) : E → E is loally Lipshitz, bounded and ontinuouslyFréhet di�erentiable. It is well known that under these assumptions the mild solutionof (2.3) exists on a maximal interval. Moreover, writing the solution as u(t) = T (t)u0,we obtain a nonlinear semigroup T (·) on E that satis�es the variation of onstantsformula
T (t)u0 = exp(tA)u0 +

∫ t

0
exp((t− s)A)f(T (s)u0)ds, t ≥ 0. (2.4)The equilibria of (2.3) are solutions u ∈ D(A) of the equation

Au+ f(u) = 0. (2.5)De�nition 2.1. A solution u∗ of (2.5) is alled hyperboli if σ(A+ f ′(u∗))∩ iR = ∅.In ase A has a ompat resolvent we an onlude that any hyperboli solutionis isolated. Moreover, if all solutions of (2.5) are hyperboli, then there is an oddnumber of them [8℄.One should note that even in ase of (2.2) and analytiity of the C0-semigroup
exp(·A) the funtion u(·) is not neessarly di�erentiable if g(·) ∈ C([0, T ];E), i.e. (2.1)is not lassially well-posed in C([0, T ];E) for a general Banah spae E. However, theproblem (2.1) is lassially well-posed in C([0, T ];Eα), (see [9, 10, 27℄), where Eα =
(E,D(A))α is a suitable interpolation spae. Moreover, if one has in mind appliationslike the spae E = Lp(Ω) and needs Fréhet di�erentiability of the funtion f(·) :
L2(Ω) → L2(Ω), then the funtion f(·) must be linear, f. [2℄. To over more generalnonlinearities one would like to work with the weaker assumption that f(·) maps
H1

0 (Ω) into L2(Ω) and is di�erentiable. The di�ulties aused by these fats an beresolved by onsidering the problem (2.3) in a Banah spae Eα, 0 ≤ α < 1, andassume that f(·) : Eα → E is Fréhet di�erentiable with derivative at the equilibrium
f ′(u∗) ∈ B(Eα, E). In ase of E = L2(Ω) and A = ∆ one normally has E1/2 = H1

0 (Ω)for the α = 1/2 ase.In the following let A : D(A) ⊆ E → E be a losed linear operator, suh that
‖(λI −A)−1‖B(E) ≤

M

1 + |λ|
for any Reλ ≥ 0. (2.6)In suh a situation we have θ(A) = sup{Reλ : λ ∈ σ(A)} < 0. Let (−A)α, α ∈

R
+, denote the frational power operators (see [15, 18℄) assoiated to A and let

Eα := D((−A)α) be the orresponding spaes endowed with the graph norm ‖x‖Eα =
‖(−A)αx‖E . Let UEα(0; ρ) denote the ball with enter 0 and radius ρ > 0 in Eα spae.For some 0 < α ≤ 1 onsider the semilinear equation (2.3) in the spae Eα

u′(t) = Au(t) + f(u(t)), t ≥ 0,
u(0) = u0 ∈ Eα,

(2.7)where f(·) : Eα ⊆ E → E satis�es the following ondition:4



(F1) For some ρ > 0 the funtion f : UEα(u∗; ρ) 7→ E is ontinuously Fréhet di�er-entiable and for any ǫ > 0 there is a δ > 0 suh that ‖f ′(w)− f ′(z)‖B(Eα ,E) ≤ ǫfor all w, z ∈ UEα(u∗; ρ) with ‖w − z‖Eα ≤ δ.Here and in what follows u∗ always denotes a hyperboli equilibrium of (2.3).By the hange of variables v(·) = u(·) − u∗ problem (2.7) may be written in theform
v′(t) = Au∗v(t) + Fu∗(v(t)), v(0) = v0, t ≥ 0, (2.8)where v0 = u0 − u∗ and

Au∗ = A+ f ′(u∗), Fu∗(w) = f(w + u∗) − f(u∗) − f ′(u∗)w for ‖w‖Eα ≤ ρ. (2.9)Note that Fu∗(w) = f(w + u∗) − f(u∗) − f ′(u∗)w is of order o(‖w‖Eα) and thatthe operator Au∗ = A + f ′(u∗) generates an analyti C0-semigroup sine f ′(u∗) ∈
B(Eα, E).We assume that the part σ+ of the spetrum of A+f ′(u∗) whih is loated stritlyto the right of the imaginary axis onsists of a �nite number of eigenvalues with �nitemultipliity. This assumption is satis�ed, for instane, if the resolvent of the operator
A is ompat. In ase of a hyperboli point u∗ there is no spetrum of Au∗ on iR. Let
U(σ+) ⊂ {λ ∈ C : Reλ > 0} be an open onneted neighborhood of σ+ with a losedreti�able urve ∂U(σ+) as boundary. We deompose Eα using the Riesz projetion

P (σ+) := P (σ+, Au∗) :=
1

2πi

∫

∂U(σ+)

(

ζI −Au∗

)−1
dζ (2.10)de�ned by σ+. Due to this de�nition and analytiity of the C0−semigroup exp(tAu∗)we have positive onstants M1, β > 0, suh that (f. [15℄)

‖ exp(tAu∗)v‖Eα ≤

{

M1e
−βt‖v‖Eα , t ≥ 0, v ∈ (I − P (σ+))Eα,

M1e
βt‖v‖Eα , t ≤ 0, v ∈ P (σ+)Eα.

(2.11)Without loss of generality we an adapt the norm in Eα suh that
‖v‖Eα = max(‖P (σ+)v‖Eα , ‖(I − P (σ+))v‖Eα). (2.12)If v0 is lose to 0, i.e. say v0 ∈ UEα(0; ρ), then the mild solution v(t; v0) of (2.8) anstay in the ball UEα(0; ρ) for some time. We will reognize suh a solution as a solutionof a boundary value problem where the stable part is presribed at the beginning andthe unstable part at the end. More preisely, for any two v−, v+ ∈ UEα(0; ρ) and forany 0 < T ≤ ∞ we onsider the boundary value problem

{

v′(t) = Au∗v(t) + Fu∗(v(t)), 0 ≤ t ≤ T,
(I − P (σ+))v(0) = (I − P (σ+))v−, P (σ+)v(T ) = P (σ+)v+.

(2.13)In ase T = ∞ the seond boundary ondition is empty and the di�erential equationholds on [0,∞). A mild solution of problem (2.13) satis�es the integral equation
v(t) = exp((t− T )Au∗)P (σ+)v+ + exp(tAu∗)(I − P (σ+))v− + (2.14)5



+

∫ T

0
ΓT (t, s)Fu∗(v(s))ds, 0 ≤ t ≤ T,where we de�ne the Green's funtion ΓT by

ΓT (t, s) =

{

exp((t− s)Au∗)(I − P (σ+)), 0 ≤ s ≤ t ≤ T,
exp((t− s)Au∗)P (σ+), 0 ≤ t < s ≤ T.

(2.15)Note that (2.11) implies
‖ΓT (t, s)z‖Eα ≤M1

e−β|t−s|

|t− s|α
‖z‖E . (2.16)Again, in ase T = ∞ we set the term involving v+ in (2.14) equal to zero. Existeneand uniqueness of solutions to (2.14) is established by the following Proposition.Proposition 2.2. Let A and f satisfy the onditions above, in partiular, let (F1) besatis�ed. Then there exists ρ̂ > 0 suh that for any 0 < ρ̂2 ≤ ρ̂ we �nd a 0 < ρ̂1 ≤ ρ̂2with the property that equation (2.14) has a unique solution v(·) = v(u+, u−, ·) ∈

C([0, T ];UEα(0; ρ̂2)) for all v± ∈ UEα(0, ρ̂1) and all 0 < T ≤ ∞. If T = ∞, then
‖v(t)‖Eα → 0 as t→ ∞.Proof. We apply Lemma 6.1 with the setting Y = Z = C([0, T ];Eα) whih is to beunderstood as the spae of ontinuous and bounded funtions in ase T = ∞. Wefurther set y0 = 0, F (v) = v−G(u−, u+; v), where the operator G(v−, v+; v) is de�nedby the right hand side of (2.14). First note that F ′(0) = I − G′

v(u
−, u+; 0) = I, sothat we an take σ = 1 in Lemma 6.1. For any two v,w ∈ UY (0, ρ̂2) we have by (2.16)and (F1)

‖
(

G′
v(v

−, v+; v) −G′
v(v

−, v+;w)
)

u‖Z ≤

≤ sup
0≤t≤T

‖

∫ T

0
ΓT (t, s)

(

F ′
u∗,v(v(s)) − F ′

u∗,v(w(s))
)

u(s)ds‖Eα ≤

≤M1 sup
0≤t≤T

∫ T

0

e−β|t−s|

|t− s|α
‖
(

f ′(v(s) + u∗) − f ′(w(s) + u∗)
)

u(s)‖Eds ≤

≤M1
1

β
‖u‖Y sup

v1,v2∈UEα(0,ρ̂2)

‖f ′(v1) − f ′(v2)‖B(Eα;E) ≤
1

2
‖u‖Y (2.17)for ρ̂2 su�iently small. Finally hoose ρ̂1 = ρ̂2

4M1
and obtain

‖F (0)‖Eα ≤ sup
0≤t≤T

(

M1e
−βt‖(I − P (σ+))u−‖Eα +M1e

β(t−T )‖P (σ+)u+‖Eα

)

≤

≤M12ρ̂1 ≤
1

2
ρ̂2.Consider now the ase T = ∞. where we write (2.14) as

v(t) = exp(tAu∗)(I − P (σ∗))v(0)+ (2.18)6



+

∫ t

0
exp((t−s)Au∗)(I−P (σ+))Fu∗(v(s))ds+

∫ ∞

t
exp((t−s)Au∗)P (σ+)Fu∗(v(s))ds,Now, we argue as above with the spae C([0,∞);Eα) replaed by

C0([0,∞);Eα) = {u ∈ C([0,∞);Eα) : ‖u(t)‖Eα → 0 as t → ∞}. Note that
G(u−, u+, ·) maps this spae into itself sine ‖v(t)‖Eα → 0 as t→ ∞ implies

‖Fu∗(v(t))‖E → 0 as t→ ∞. (2.19)The operator G(v−; v) de�ned on the right of (2.18) is ontinuous in both argu-ments and maps the spae C0([0;∞);Eα)) into itself. Indeed, for t ≥ T we have
‖(−A)αG(v−; v)(t)‖E ≤M1e

−tβ‖(I − P (σ+))v−‖Eα+ (2.20)
+M1e

−β(t−T )

∫ T

0

e−β(T−s)

|t− s|α
‖Fu∗(v(s))‖E ds+

∫ ∞

T
M1

e−β|t−s|

|s− t|α
‖Fu∗(v(s))‖E ds.Given ǫ > 0 we �rst take T so large that the �rst term and the seond integral arebelow ǫ/3 for all t ≥ T then we hoose t large so that the �rst integral is below ǫ/3.So there is a unique solution of the equation v(·) = G(v−; v) in C0([0;∞);Eα)and the result follows by uniqueness. �3 Disretization of operators and semigroupsIn the papers [13, 28, 31, 32, 33, 36℄ a general framework was developed that al-lows to analyze onvergene properties of numerial disretizations in a unifying way.This approah is able to over suh diverse approximations as (onforming and non-onforming) �nite elements, �nite di�erenes, olloation methods and perturbationof domains. Our paper aims at showing that one an derive shadowing propertieswithin this framework.3.1 General approximation shemeWe �rst desribe the general approximation sheme as developed in [13, 28, 32, 33, 34℄.Let En and E be Banah spaes and {pn} be a sequene of bounded linear operators

pn : E → En, pn ∈ B(E,En), n ∈ N = {1, 2, · · · }, with the property:
‖pnx‖En → ‖x‖E as n→ ∞ for any x ∈ E. (3.1)De�nition 3.1. The sequene of elements {xn}, xn ∈ En, n ∈ N, is said to be P-onvergent to x ∈ E i� ‖xn − pnx‖En → 0 as n→ ∞. We write this as xn

P
−→x.De�nition 3.2. The sequene of bounded linear operators Bn ∈ B(En), n ∈ N, isalled PP-onvergent to the bounded linear operator B ∈ B(E) if for every x ∈ E andfor every sequene {xn}, xn ∈ En, n ∈ N, suh that xn

P
−→x one has Bnxn

P
−→Bx. Wethen write Bn

PP
−→B. 7



The simplest ase is En = E and pn = I for eah n ∈ N, where I is the iden-tity on E. Then De�nition 3.1 leads to the traditional pointwise onvergene ofbounded linear operators whih we denote by Bn → B. For various notions related to
P−onvergene and for several appliations we refer to [28℄,[32℄,[33℄. An elementaryonsequene of De�nition 3.2 is the following (see [28℄, [32℄)Lemma 3.3. Let Bn, B be as above. Then Bn

PP
−→B is equivalent to boundedness of

‖Bn‖ and the ondition Bnpnx
P

−→Bx ∀x ∈ E. If this holds then for any ompat set
K ⊂ E we have

sup
x∈K

‖Bnpnx− pnBx‖ → 0 as n→ ∞. (3.2)Proof. For the �rst statement we refer to [28℄, [32℄. The proof of (3.2) is by ontra-dition. Assume ‖Bnpnx
n − pnBx

n‖ ≥ ε > 0 for some sequene xn ∈ K,n ∈ N, andsome ε > 0. Then take a subsequene xn, n ∈ N
′ ⊂ N, with xn → x for some x ∈ Kand �nd a ontradition from

‖Bnpnx
n − pnBx

n‖ ≤ ‖Bn‖‖pn(xn − x)‖ + ‖Bnpnx− pnBx‖ + ‖pnB(x− xn)‖ → 0as n ∈ N
′. �For unbounded operators that our as in�nitesimal generators of PDE's the no-tion of ompatibility turns out to be useful.De�nition 3.4. The sequene of losed linear operators An ∈ C(En), n ∈ N, is alledompatible with a losed linear operator A ∈ C(E) i� for eah x ∈ D(A) there is asequene {xn}, xn ∈ D(An) ⊆ En, n ∈ N, suh that xn

P
−→x and Anxn

P
−→Ax. Wewrite (An, A) are ompatible.For analyti C0-semigroups the following ABC Theorem holds, see [25℄.Theorem 3.5. Let the operators A and An generate analyti C0-semigroups. Thefollowing onditions (A) and (B1) are equivalent to ondition (C1).

(A) Compatibility. There exists a λ ∈ ρ(A) ∩
⋂

n∈N
ρ(An) suh that the resolventsonverge (λI −An)−1 PP

−→(λI −A)−1;

(B1) Stability. There are onstants M2 ≥ 1 and ω2 ∈ R suh that
‖(λIn −An)−1‖ ≤

M2

|λ− ω2|
, Reλ > ω2, n ∈ N;

(C1) Convergene. For any �nite µ > 0 and some 0 < θ < π
2 we have

max
η∈Σ(θ,µ)

‖ exp(ηAn)u0
n − pn exp(ηA)u0‖ → 0 as n→ ∞ whenever u0

n
P

−→u0.In (C1) we denote by Σ(θ, µ) = {z ∈ C : |z| ≤ µ, |arg(z)| ≤ θ} the setor of angle 2θand radius µ.As a simple orollary we obtain uniform onvergene on ompat sets (the prooffollows in the same way as (3.2)) 8



Corollary 3.6. Under the assumptions (A) and (B1) of Theorem 3.5 we have forany ompat set K ⊂ E

max
u0∈K

max
η∈Σ(θ,µ)

‖(exp(ηAn)pn − pn exp(ηA))u0‖ → 0 as n→ ∞. (3.3)The semidisrete approximation of (2.1) are the following Cauhy problems inBanah spaes En:
u′n(t) = Anun(t) + gn(t), t ∈ [0, T ],

un(0) = u0
n,

(3.4)with operators An whih generate C0-semigroups, An and A are ompatible, u0
n

P
−→u0and gn(·)

P
−→g(·) in an appropriate sense. It is natural to assume for a typial semidis-retization that onditions like (A) and (B1) are satis�ed.De�nition 3.7. The region of stability ∆s = ∆s({An}), An ∈ C(Bn), is de�nedas the set of all λ ∈ C suh that λ ∈ ρ(An) for almost all n and suh that thesequene {‖(λIn−An)−1‖}n∈N is bounded. The region of onvergene ∆c = ∆c({An}),

An ∈ C(En), is de�ned as the set of all λ ∈ C suh that λ ∈ ∆s({An}) and suhthat the sequene of operators {(λIn −An)−1}n∈N is PP-onvergent to some operator
S(λ) ∈ B(E).De�nition 3.8. A sequene of operators {Ln}, Ln ∈ C(En), is alled regularly om-patible with an operator L ∈ C(E) if the following onditions hold

(i) (Ln, L) are ompatible,
(ii) for any bounded sequene ‖xn‖En = O(1) suh that xn ∈ D(Ln) and {Lnxn} is

P-ompat, it follows that {xn} is P-ompat;
(iii) the P-onvergene of {xn} to some element x and onvergene of {Lnxn} tosome element y as n→ ∞ imply that x ∈ D(L) and Lx = y.De�nition 3.9. The region of regularity ∆r = ∆r({An}, A), is de�ned as the set ofall λ ∈ C suh that (Ln(λ), L(λ)) are regularly ompatible, where Ln(λ) = λIn − Anand L(λ) = λI −A .The relationships between these regions are given by the following result, see [34℄.Proposition 3.10. Suppose that ∆c 6= ∅ and N (S(λ)) = {0} for at least one point
λ ∈ ∆c. Then (An, A) are ompatible and

∆c = ∆s ∩ ρ(A) = ∆s ∩ ∆r.Note that ∆c 6= ∅ and N (S(λ)) = {0} imply S(λ) = (λI −A)−1.Let Λ ⊆ C be some open onneted set. For an isolated point λ ∈ σ(A) wedenote the orresponding generalized eigenspae by W(λ;A) = Q(λ)E, where Q(λ) =
1

2πi

∫

|ζ−λ|=δ

(ζI − A)−1dζ and δ is small enough so that there are no points of σ(A) inthe dis {ζ : |ζ − λ| ≤ δ} di�erent from λ. The isolated point λ ∈ σ(A) is alled a9



Riesz point of A if λI −A is a Fredholm operator of index zero and Q(λ) is of �niterank. In a similar way we de�ne the invariant subspae
W(λ, δ;An) =

⊕

λn∈σ(An),
|λn−λ|<δ

W(λn, An),where W(λ, δ;An) = Qn(λ)En, and the projetor Qn(λ) is given by
Qn(λ) =

1

2πi

∫

|ζ−λ|=δ

(ζIn −An)−1dζ.The following theorem gives rather omplete information about the approximation ofthe spetrum, see [32℄.Theorem 3.11. Assume that Ln(λ) = λIn − An and L(λ) = λI − A are Fredholmoperators of index zero for all λ ∈ Λ. Suppose that Ln(λ) → L(λ) regularly for any
λ ∈ Λ and ρ(B) ∩ Λ 6= ∅. Then the following assertions hold

(i) for any λ0 ∈ σ(A) ∩ Λ, there exists a sequene {λn}, λn ∈ σ(An), n ∈ N, suhthat λn → λ0 as n→ ∞;

(ii) if for some sequene {λn}, λn ∈ σ(An), n ∈ N, one has λn → λ0 ∈ Λ as n→ ∞,then λ0 ∈ σ(A);

(iii) for any x ∈ W(λ0, A), there exists a sequene {xn}, xn ∈ W(λ0, δ;An), n ∈ N,suh that xn → x as n→ ∞;

(iv) there exists n0 ∈ N suh that dimW(λ0, δ;An) = dimW(λ0, A) for all n ≥ n0;

(v) any sequene {xn}, xn ∈ W(λ0, δ;An), n ∈ N, with ‖xn‖En = 1 is P-ompatand any limit point of this sequene belongs to W(λ0, A).It is shown in [34℄ that this theorem holds for losed operators as well.Remark 3.12. A Riesz point λ0 ∈ σ(A) is alled strongly stable in Kato's sense if
dimW(λ0, δ;An) ≤ dimW(λ0, A) for all n ≥ n0. It was shown in [34℄ that a Rieszpoint λ0 ∈ σ(A) is strongly stable in Kato's sense i� λ0 ∈ Λ ∩ ∆r ∩ σ(A).In the ase of operators whih have ompat resolvent it is natural to onsiderapproximate operators whih 'preserve' the property of ompatness.De�nition 3.13. A sequene of operators {Bn}, Bn : En → En, n ∈ N, onvergesompatly to an operator B : E → E if Bn

PP
−→B and the following ompatnessondition holds:

‖xn‖En = O(1) =⇒ {Bnxn} is P-ompat.De�nition 3.14. The region of ompat onvergene of resolvents, ∆cc = ∆cc(An, A),where An ∈ C(En) and A ∈ C(E) is de�ned as the set of all λ ∈ ∆c ∩ ρ(A) suh that
(λIn −An)−1 PP

−→(λI −A)−1 ompatly. 10



The region of ompat onvergene ∆cc an be haraterized as follows, see [26℄.Theorem 3.15. Assume that ∆cc 6= ∅. Then for any ζ ∈ ∆s the following impliationholds:
‖xn‖En = O(1) & ‖(ζIn −An)xn‖En = O(1) =⇒ {xn} is P-ompat. (3.5)Conversely, if for some ζ ∈ ∆c ∩ ρ(A) impliation (3.5) holds, then ∆cc 6= ∅.The ondition ∆cc 6= ∅ has many onsequenes, for example [8℄

∆cc 6= ∅ =⇒ (−An)−α PP
−→(−A)−α ompatly for all 0 < α ≤ 1. (3.6)One an ompare the onditiion ∆cc 6= ∅ with regular ompatibility (ii) of De�-nition 3.8 and see that ∆cc 6= ∅ implies regular ompatibility. Moreover, by [14℄ wehave

∆cc 6= ∅ =⇒ ∆cc = ∆c ∩ ρ(A) and ∆r = C. (3.7)Lemma 3.16. Assume that ∆cc 6= ∅. Let Λ be a ompat subset of ρ(A). Then thereis a onstant nΛ > 0 suh that Λ ⊂ ρ(An) for all n ≥ nΛ and
sup
λ∈Λ

n≥nΛ

‖(λIn −An)−1‖ <∞. (3.8)Proof. First selet µ ∈ ∆cc and prove that there is a nΛ > 0 suh that Λ ⊂ ρ(An)for all n ≥ nΛ. Suppose ontrary to our laim that we have a subsequene vn ∈
D(An), ‖vn‖ = 1, n ∈ N

′ and λn ∈ Λ suh that λnvn − Anvn = 0. Then λn → λ ∈ Λfor some subsequene N
′′ ⊂ N

′ and from the boundedness of µvn − Anvn = (µ −

λn)vn we obtain from Theorem 3.15 that vn
P
−→v ∈ E, ‖v‖ = 1 for some subsequene

N
′′′ ⊂ N

′′. Sine ∆r = C by (3.7) and (λIn − An)vn
P

−→0 De�nition 3.8 leads to
v ∈ D(A), (λI −A)v = 0, whih ontradits λ ∈ ρ(A).To prove (3.8) onsider Hilbert's identity

(λIn −An)−1 − (µIn −An)−1 = (µ− λ)(λIn −An)−1(µIn −An)−1for any λ ∈ ρ(An). One an write
(λIn −An)−1 = (In − (µ− λ)(µIn −An)−1)−1(µIn −An)−1,for λ ∈ Λ. Sine (µ − λ)(µIn − An)−1 onverges ompatly to (µ − λ)(µI − A)−1and In PP

−→I stably one gets that In − (µ− λ)(µIn −An)−1 PP
−→I − (µ− λ)(µI −A)−1regularly whih implies that

‖(In − (µ− λ)(µIn −An)−1)−1‖ ≤ C for any λ ∈ Λ.The Lemma is proved. �

11



3.2 Estimates for the linear aseThe following Lemma gives the ruial linear estimate for our main Theorem 4.4.Lemma 3.17. Assume that ∆cc 6= ∅ and let the onditions (2.6), (B1) be satis�ed.Then there exist onstants M̃ ≥ 1, ω̃ > 0 suh that for all 0 ≤ α ≤ 1

‖ exp(tAn)‖B(En,Eα
n ) ≤ M̃t−αe−ω̃t for all t > 0. (3.9)Proof. We introdue the setor Σ(π − φ, ω) = {λ ∈ C : |arg(λ − ω)| < π − φ} for

ω ∈ R and 0 < φ < π
2 . From ondition (B1) we obtain suitable ω3 ∈ R, nω ∈ N and

0 < φ < π
2 suh that

‖(λIn −An)−1‖ ≤
M3

|λ− ω3|
for all λ ∈ Σ(π − φ, ω3) and n ≥ nω. (3.10)From (2.6) it follows that Reσ(A) < ω′ for some ω′ < 0 and moreover ‖(λI−A)−1‖ ≤

M
|λ−ω′| for Reλ > ω′. Now let 0 < ω̃ < |ω′| and onsider the triangular region Λ =

{λ ∈ C : Reλ ≥ −ω̃ and λ /∈ Σ(π − φ, ω3)}, see Figure 1.
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Figure 1: Figure 1Then Λ is ompat and Λ ⊂ ρ(A). By Lemma 3.16 there is a onstant nΛ > 0suh that Λ ⊂ ρ(An) for all n ≥ nΛ and sup λ∈Λ
n≥nΛ

‖(λIn − An)−1‖ < ∞. With the12



ontour G omposed of {λ : Reλ = −ω̃} and part of the boundary ∂Σ(π−φ, ω3) (seeFigure 1) we have the representation
exp(tAn) =

1

2πi

∫

G
eλt(λIn −An)−1dλ.Using the estimate (3.10) of resolvents ‖(λIn −An)−1‖ and the uniform bound on Gone gets the estimate (3.9) for t > 0, f. (2.16). �Next we introdue the operators

pα
n = (−An)−αpn(−A)α ∈ B(Eα, Eα

n ) (3.11)and show that they have the property (3.1), but for the spaes Eα, Eα
n . We then write

xn
Pα

−→x i� ‖xn − pα
nx‖Eα

n
→ 0 as n→ ∞. Obviously we have

‖xn − pα
nx‖Eα

n
= ‖(−An)αxn − pn(−A)αx‖ and

‖pα
nx‖Eα

n
= ‖pn(−A)αx‖En → ‖(−A)αx‖En = ‖x‖Eα as n→ ∞for any x ∈ D((−A)α) so that (3.1) is satis�ed.For the nonlinear result we need a theorem on uniform onvergene for linearinhomogeneous problems with ompat data.Theorem 3.18. Let A : D(A) ⊂ E → E be a losed operator satisfying (2.6) (inpartiular, A generates an exponentially dereasing semigroup). For the approximatesystem (3.4) assume ∆cc 6= ∅ and let onditions (A) and (B1) of Theorem 3.5 hold.Let K1 ⊂ Eα and K2 ⊂ E be ompat sets. Then for any ε > 0 there exist n1 =

n1(ε) ∈ N and δ = δ(ε) > 0 suh that the following property holds for all 0 < T ≤ ∞.For any solution u(t) of (2.1) with u(0) = u0 ∈ K1 and g(·) ∈ C([0, T ];K2) andfor any solution un(t) of (3.4) with un(0) = pα
nu

0 and gn(·) ∈ C([0, T ];En) with
‖gn(t) − png(t)‖En ≤ δ for t ∈ [0, T ], n ≥ n1 we have the estimate

‖un(t) − pα
nu(t)‖Eα

n
≤ ǫ for all n ≥ n1, 0 ≤ t ≤ T. (3.12)Proof. Let u(t), u(0) = u0 and un(t;uα
n), uα

n = pα
nu

0 denote the mild solution of (2.1)and (3.4), respetively and let g, gn be as in the Theorem. Then the following holds
u(t;u0) = exp(tA)u0 +

∫ t

0
exp((t− s)A)g(s)ds, t ∈ [0, T ],

un(t;uα
n) = exp(tAn)uα

n +

∫ t

0
exp((t− s)An)gn(s)ds, t ∈ [0, T ].By Lemma 3.17 we have ‖ exp(tAn)‖ ≤ Me−ωt for ω > 0, t ≥ 0. Therefore for any

ǫ > 0 there is Tǫ suh that
‖
(

exp(tAn)pα
n − pα

n exp(tA)
)

u0‖Eα
n
≤Me−ωt‖u0‖Eα ≤ ǫ, t ≥ Tǫ, (3.13)and by Corollary 3.6 there is n(Tǫ) suh that

‖ (−An)α
(

exp(tAn)pα
n − pα

n exp(tA)
)

u0‖En ≤ ǫ, t ∈ [0, Tǫ] as n ≥ n(Tǫ). (3.14)13



We note that in ase Tǫ > T we merely need a ompatness argument. A similarremark applies to the following estimates of integrals. For the ease of presentation weextend g(t) and gn(t) as onstants for t ≥ T and argue in the following for 0 ≤ t <∞.Consider the Eα
n -norm of the di�erene of integrals, i.e.

(−An)α
∫ t

0

(

exp((t− s)An)gn(s) − pα
n exp((t− s)A)g(s)

)

ds = (3.15)
= (−An)α

∫ t

0
exp((t− s)An)

(

gn(s) − png(s)
)

ds

+(−An)α
∫ t

0

(

exp((t− s)An)pn − pα
n exp((t− s)A)

)

g(s) ds.The �rst term an be estimated in two parts
(−An)α

(

∫ t1

0
+

∫ t

t1

)

= (−An)α
∫ t1

0
exp(sAn)

(

gn(t− s) − png(t− s)
)

ds

+(−An)α
∫ t−t1

0
exp((t1 + η)An)

(

gn(t− t1 − η) − png(t− t1 − η)
)

dη.By (3.9) the seond part an be made smaller than ε uniformly in n by taking t1su�iently large. Then the �rst part with �nite t1 an be made small by the majorantterm ‖gn(t)− png(t)‖En ≤ δ as n ≥ n1. The seond term in (3.15) for any 0 < t1 ≤ tan be re-written in the same way as
(−An)α

∫ t

0

(

exp(ηAn)pn − pα
n exp(ηA)

)

g(t− η)dη =

(−An)α
∫ t1

0

(

exp(ηAn)pn − pα
n exp(ηA)

)

g(t− η)dη

+(−An)α
∫ t−t1

0

(

exp((t1 + η)An)pn − pα
n exp((t1 + η)A)

)

g(t− t1 − η)dη.Again, we �rst hoose t1 to make the seond term small uniformly in n. Then byCorollary 3.6 the �rst term onverges to 0 for �nite t1 sine g(ξ) is in the ompat set
K2. The seond term an be deomposed into two parts:

(−An)α exp(t1An)

∫ t−t1

0

(

exp(ηAn)pn − pα
n exp(ηA)

)

g(t− t1 + η)dηand
(−An)α

(

exp(t1An)pα
n − pα

n exp(t1A)

)
∫ t−t1

0
exp(ηA)g(t − t1 + η)dη.Both parts an be made small by the hoie of t1, using (3.9), (2.16) and a uniformbound on the integrals. �14



3.3 Estimates for the nonlinear aseConsider in the Banah spaes Eα
n the family of Cauhy problems

u′n(t) = Anun(t) + fn(un(t)), t ≥ 0,
un(0) = u0

n ∈ Eα
n ,

(3.16)where u0
n

Pα

−→u0 and the operators (An, A) are ompatible. We assume the nonlinearmaps fn(·) : Eα
n → En to have the following properties(F2) The mappings fn are ontinuously di�erentiable in UEα

n
(pα

nu
∗, ρ) and whenever

xn ∈ UEα
n
(pα

nu
∗, ρ) and xn

Pα

−→x then fn(xn)
P

−→f(x) and f ′n(xn)
PαP
−→f ′(x).(F3) For any ǫ > 0 there is δ > 0 suh that ‖f ′n(wn) − f ′n(zn)‖B(Eα

n ,En) ≤ ǫ as
‖wn − zn‖Eα

n
≤ δ for all wn, zn ∈ UEα

n
(pα

nu
∗; ρ).Under the above assumptions the mild solution of (3.16) exists on a maximalinterval [0, τ) in UEα

n
(pα

nu
∗, ρ) (see [15, 35℄) and we denote it by un(·) = Tn(·)u0

n :
R

+ → En. The nonlinear semigroup Tn(·) satis�es the variation of onstants formula
Tn(t)u0

n = exp(tAn)u0
n +

∫ t

0
exp((t− s)An)fn(Tn(s)u0

n)ds, t ∈ [0, τ). (3.17)Similar to (2.5) we onsider the family of nonlinear problems
Anun + fn(un) = 0 (3.18)and de�ne En = {u∗n ∈ D(An) : Anu

∗
n + fn(u∗n) = 0}. The following result is takenfrom [8℄.Proposition 3.19. Assume that the problem (2.5) has a hyperboli solution u∗ andlet onditions (F2),(F3) hold. Then, there exist n∗ ∈ N and ρ∗ > 0, so that equation(3.18) has a unique solution u∗n ∈ D(An)∩UEα

n
(pα

nu
∗, ρ∗) for eah n ≥ n∗. Moreover,

u∗n is hyperboli and satis�es ‖u∗n − pα
nu

∗‖Eα
n
→ 0 as n→ ∞.Proof. De�ne the operators M(w) = Iw+A−1f(w), Mn(wn) = Inwn+A−1

n fn(wn).The derivative M′(w) = I + A−1f ′(w) is an operator from Eα to Eα, sine A−1maps E into D(A) ⊂ Eα. From (F3) we obtain Mn(vn)
PαPα

−→ M(v) as vn
Pα

−→v and
‖M′

n(wn + pα
nu

∗) − M′
n(pα

nu
∗)‖Eα

n
≤ ρ if ‖wn‖Eα

n
≤ δ with ρ = ρ(δ) → 0 as δ →

0 uniformly in n. From ondition (F2) it is also lear that M′
n(pnu

∗)
PαPα

−→ M′(u∗)regularly, M′
n(pα

nu
∗) are Fredholm of index 0 andN(A+f ′(u∗)) = {0}. Now Theorem2 from [33℄ applies and yields the result. Hyperboliity of u∗n will follow from thespetral onsiderations below, f. (3.21). �Remark 3.20. If ∆cc 6= ∅ and we do not assume ontinuity of M′

n(·) uniformly in
n one an still get the existene of solutions u∗n of equation (3.18) and onvergene
u∗n

Pα

−→u∗, but uniqueness may fail. 15



From now on we onsider a hyperboli point u∗ and the orresponding �xed points
u∗n

Pα

−→u∗ from Proposition 3.19. Near the equilibrium u∗n we set un(t) = u∗n + vn(t),then equation (3.16) reads
v′n(t) = Au∗

n,nvn(t) + Fu∗
n,n(vn(t)), vn(0) = v0

n, t ≥ 0, (3.19)where
Au∗

n,n = An + f ′n(u∗n), Fu∗
n,n(wn) = fn(vn(t) + u∗n) − fn(u∗n) − f ′n(u∗n)wn. (3.20)We deompose Eα

n using the spetral projetion
Pn(σ+

n ) := Pn(σ+
n , Au∗

n,n) :=
1

2πi

∫

∂U(σ+
n )

(

ζIn −Au∗
n,n

)−1
dζ, (3.21)where ∂U(σ+

n ) is the boundary of the region {λ ∈ C : Reλ ≥ 0, λ /∈ Σ(π − φ, ω2)}with some 0 < θ < π
2 and ω2 given by (B1) for the operator Au∗

n,n, ompare Lemma3.17. Note that the part of ∂U(σ+
n ) on iR does not interset σ(Au∗

n,n) due to Lemma3.16. In partiular, this implies that the �xed points u∗n are hyperboli.By σ+
n we denote the part of σ(Au∗

n,n) that is inside the ontour. From therepresentations (2.10) and (3.21) we obtain
Pn(σ+

n )
PP
−→P (σ+) ompatly as n→ ∞. (3.22)In order to see this one �rst modi�es the ontour in (2.10) so that it oinides withthat in (3.21), then one uses the onvergene (ζIn − Au∗

n,n)−1 PP
−→(ζI − Au∗)−1 for

ζ ∈ ∂U(σ+) (see Proposition 3.10, and (3.7)) and the fat that the onvergene
(ζIn − Au∗

n,n)−1pnx
P

−→(ζI − Au∗)−1x is uniform for ζ ∈ ∂U(σ+). Moreover, theondition ∆cc 6= ∅ implies ompat onvergene of projetors and, therefore, by (3.7)and Theorem 3.11 dimPn(σ+
n ) = dimP (σ+) for n ≥ n0.Applying Lemma 3.17 to the semigroup exp(tAu∗

n,n) we obtain onstants M2, β̃ >
0, suh that
‖ exp(tAu∗

n,n)vn‖Eα
n
≤







M2
e−β̃t

|t|α ‖vn‖En , t ≥ 0, vn ∈ (In − Pn(σ+
n ))En,

M2
eβ̃t

|t|α ‖vn‖En , t ≤ 0, vn ∈ Pn(σ+
n )En.

(3.23)Similar to (2.13) we onsider for v−n , v+
n ∈ UEα

n
(0; ρ) the boundary value problem

v′n(t) = Au∗
n,nvn(t) + Fu∗

n,n(vn(t)), 0 ≤ t ≤ T, (3.24)
(In − Pn(σ+

n ))vn(0) = (In − Pn(σ+
n ))v−n , Pn(σ+

n )vn(T ) = Pn(σ+
n )v+

n ,where the ase T = ∞ is inluded in the usual way. Using ondition (F2) one �ndsthat the mild solution of problem (3.24) satis�es for 0 ≤ t ≤ T the equation
vn(t) = exp((t− T )Au∗

n,n)Pn(σ+
n )v+

n + exp(tAu∗
n,n)(In − Pn(σ+

n ))v−n + (3.25)
+

∫ T

0
ΓT,n(t, s)Fu∗

n,n(vn(s))ds,16



where the Green's funtion is
ΓT,n(t, s) =

{

exp((t− s)Au∗,n)(In − Pn(σ+
n )), 0 ≤ s ≤ t ≤ T,

exp((t− s)Au∗,n)Pn(σ+
n ), 0 ≤ t < s ≤ T.

(3.26)In ase T = ∞ the v+
n term in (3.25) vanishes. The analog of Proposition 2.2 is thefollowing result.Proposition 3.21. Let the above assumptions on A,An and onditions (F2), (F3)be satis�ed. Then there exists ρ̃ > 0 suh that for any 0 < ρ̃2 ≤ ρ̃ we �nd 0 < ρ̃1 ≤ ρ̃2with the property that equation (3.25) has a unique solution vn(·) = vn(v−n , v

+
n , ·) ∈

C([0, T ];UEα
n
(0; ρ̃2)) for all v−n , v+

n ∈ UEα
n
(0; ρ̃1) and for all 0 < T ≤ ∞.Proof. We repeat the proof of Proposition 2.2 for the spae of ontinuous boundedfuntions C([0, T ];Eα

n ) with the operators Au∗
n,n, Fu∗

n,n(·), Pn(σ+
n ) and Gn(v−n , v

+
n ; ·)de�ned by the right-hand side of (3.25). Note that (F3) guarantees that the esti-mates in (3.23) an be done with onstants independent of n and, therefore, Lemma6.1 applies with uniform data. Moreover, the estimates (2.19) and (2.20) hold uni-formly in n. From (6.7) we �nd a onstant C∗ > 0 suh that for any two vn, wn ∈

C([0, T ],UEα
n
(0; ρ̃2)) we have for ‖ · ‖ = ‖ · ‖C([0,T ];Eα

n ) the estimate
‖vn − wn‖ ≤ C∗‖vn −Gn(v−n , v

+
n ; vn) − (wn −Gn(v−n , v

+
n ;wn))‖. (3.27)

�4 Shadowing for a general disretization sheme4.1 Adapted disretization mapsIn addition to pn, p
α
n we need disretizing maps that are adapted to the hyperbolisplitting. First note that the spetral projetors P = P (σ+) and Pn = Pn(σ+

n )are �nite dimensional and satisfy Pn
PP
−→P ompatly, see (3.22). Then de�ne thedisretizing maps p̃n : E 7→ En by

p̃n = PnpnP + (In − Pn)pn(I − P ) (4.1)and p̃α
n : Eα 7→ Eα

n by
p̃α

nx =

{

(Au∗
n,n)−αPnpn(Au∗)αPx, x ∈ PEα,

(−Au∗
n,n)−α(In − Pn)pn(−Au∗)α(I − P )x, x ∈ (I − P )Eα.

(4.2)Note that the spetra of Au∗ = A+ f ′(u∗) and Au∗
n,n = An + f ′n(u∗n) are partitionedin suh a way that the frational powers of the operators are well de�ned.Proposition 4.1. The system {p̃n} is equivalent to the system {pn} on E and thesystem {p̃α

n} is equivalent to the system {pα
n} on Eα. In partiular, we have bounds

‖p̃n‖B(E,En) ≤ C̃, ‖p̃α
n‖B(Eα,Eα

n ) ≤ C̃α for all n ∈ N (4.3)and supx∈K2
‖(pn − p̃n)x‖ → 0, supx∈K1

‖(pα
n − p̃α

n)x‖ → 0 as n → ∞ for ompatsets K2 ⊂ E,K1 ⊂ Eα. 17



Proof. From the equality
(p̃n − pn)x = 2(Pnpn − pnP )Px− (Pnpn − pnP )x,we �nd that the system {p̃n} is equivalent to {pn} on E. In the α-ase the followingholds on (I − P )Eα

pα
n − p̃α

n = (−An)−α(pn − p̃n)(−A)α + (−An)−αp̃n(−A)α − (−Au∗
n,n)−αp̃n(−Au∗)α

= (−An)−α(pn − p̃n)(−A)α + ((−An)−α − (−Au∗
n,n)−α)p̃n(−A)α

+(−Au∗
n,n)−αp̃n((−A)α − (−Au∗)α)

= (−An)−α(pn − p̃n)(−A)α +
(

(−An)−α − (−Au∗
n,n)−α

)

p̃n(−A)α

+(−Au∗
n,n)−αp̃n((−A)α − (−Au∗)α)

= (−An)−α(pn − p̃n)(−A)α + (−Au∗
n,n)−α

(

(−Au∗
n,n)α(−An)−α − In

)

p̃n(−A)α

−(−Au∗
n,n)−αp̃n((−Au∗)α(−A)−α − I)(−A)α

= (−An)−α(pn − p̃n)(−A)α(−Au∗
n,n)−α

+
(

((−Au∗
n,n)α(−An)−α − In)p̃n − p̃n((−Au∗)α(−A)−α − I)

)

(−A)α.In the last step we show that (−Au∗
n,n)α(−An)−α PP

−→(−Au∗)α(−A)−α. To this endfollowing [15℄ we onsider the formula
(−Au∗)−α − (−A)−α =

sin(πα)

π

∫ ∞

0
z−α

(

(zI +Au∗)−1 − (zI +A)−1
)

dz = (4.4)
=

sin(πα)

π

∫ ∞

0
z−α

(

(zI +Au∗)−1(f ′(u∗)(−A)−α)(−A)α(zI +A)−1
)

dz.Sine ‖(−A)α(zI +A)−1‖ = O(|z|α−1) as z → ∞ the integral will onverge even if weapply (−Au∗)α. Therefore onvergene (−Au∗
n,n)α(−An)−α PP

−→(−Au∗)α(−A)−α fol-lows from f ′n(u∗n)A−α
n

PP
−→f ′(u∗)A−α and Lebesgue's dominated onvergene theorem.The uniform onvergene on ompat sets follows as in Lemma 3.3. �Remark 4.2. It is easy to see that (−A)α(−Au∗)−α is a bounded operator and

(−An)α(−Au∗
n,n)−α PP

−→(−A)α(−Au∗)−α. Indeed, ‖(−A)α(zI − Au∗)−1‖ = O(|z|α−1)as z → ∞ and therefore interhanging A and Au∗ in (4.4) one gets the statements onboundedness and onvergene in the same way as in Proposition 4.1.Proposition 4.3. Consider 0 < α < γ ≤ 1 and let (F1) − (F3) be satis�ed, then
sup

w∈UEγ (0;ρ)

‖Fu∗
n,n(p̃α

nw) − p̃nFu∗(w)‖En → 0 as n→ ∞. (4.5)Proof. First note
Fu∗

n,n(p̃α
nw) − p̃nFu∗(w) = fn(u∗n + p̃α

nw) − p̃nf(u∗ + w)

−
(

fn(u∗n) − p̃nf(u∗) + f ′n(u∗n)p̃α
nw − p̃nf

′(u∗)w
)

,and observe that by Proposition 4.1 we an replae the maps p̃n, p̃
α
n by pn, p

α
n. FromProposition 3.19 and (F2) we obtain f(u∗n + pα

nw)
P

−→f(u∗ +w), fn(u∗n)
P

−→f(u∗) and
f ′n(u∗n)

PαP
−→f ′(u∗). Following the proof of (3.2) one then shows that the onvergeneis uniform on ompat sets in Eα. �18



4.2 Shadowing with disretization in spae variablesThe �rst result approximates orbits of the general evolution equation (2.7) by appro-priate orbits of the 'spatially disretized' system (3.16).Theorem 4.4. Let A be the generator of an exponentially dereasing analyti C0-semigroup and onsider 0 ≤ α < γ < 1. For the disretized system (3.16) assume thatthe linear parts satisfy ∆cc 6= ∅ and ondition (B1) and the nonlinear parts satisfyonditions (F1), (F2), (F3). Then there exists ρ0 > 0 with the following property.For any ε0 > 0 there is an n0 = n0(ε0) ∈ N suh that for any mild solution u(t) of(2.7) satisfying u(t) ∈ UEγ(u∗, ρ0), 0 ≤ t ≤ T for some 0 < T ≤ ∞ there exist initialvalues u0
n ∈ Eα

n , n ≥ n0 suh that the mild solution un(t;u0
n) of (3.16) exists on [0, T ]and satis�es

sup
0≤t≤T

‖pα
nu(t) − un(t;u0

n)‖Eα
n
≤ ε0 ∀n ≥ n0(ε). (4.6)Proof. We will ollet the onditions on n0 and ρ0 during the proof. Let u(t),

0 ≤ t ≤ T, be a mild solution of (2.7) suh that u(t) ∈ UEγ (u∗, ρ0) for all 0 ≤ t ≤ T .Then v(t) := u(t) − u∗ ∈ UEγ (0, ρ0) is a solution of (2.14) with
v− = (I − P )v(0), v+ = Pv(0). (4.7)By the hoie of norms (2.12) we have
‖v−‖Eγ ≤ ρ0, ‖v+‖Eγ ≤ ρ0. (4.8)We apply Proposition 2.2 with γ in plae of α and with ρ̂2 = ρ̂. We require ρ0 ≤ ρ̂1whih implies ρ0 ≤ ρ̂2 as well. Beause of uniqueness in C([0, T ],UEγ(0, ρ̂2)) thesolution v(v−, v+, ·) from Proposition 2.2 satis�es v(t) = v(v−, v+, t), 0 ≤ t ≤ T .Next we de�ne the disrete boundary values
v−n = p̃α

nv
−, v+

n = p̃α
nv

+. (4.9)By the de�nition (4.2) we have v−n = p̃α
nv

− = (In−Pn)p̃α
nv

− and v+
n = p̃α

nv
+ = Pnp̃

α
nv

+and from (4.3)
‖v±n ‖Eα

n
≤ C̃α‖v

±‖Eα ≤ C̃αρ0. (4.10)Then we apply Proposition 3.21 with ρ̃2 = ρ̃ and require C̃αρ0 ≤ ρ̃1(ρ̃2). Taking theorresponding unique solutions of (3.25)
vn(·) = vn(v−n , v

+
n )(·) ∈ C([0, T ],UEα

n
(0, ρ̃2)) (4.11)we laim that

u0
n = u∗n + vn(0), un(t) = vn(t) + u∗n (4.12)satisfy the assertion of the present Theorem. We require C̃αρ0 ≤ ρ̃1 so that we anapply (3.27) to vn(t) and wn(t) = p̃α

nv(t). We obtain
sup

0≤≤T
‖vn(t) − p̃α

nv(t)‖Eα
n
≤ C∗ sup

0≤t≤T
‖η−n (t) + η+

n (t)‖Eα
n
, (4.13)19



where the terms on the right-hand side are given by
η−n (t) = p̃α

n exp(tAu∗)(I − P )v− − exp(tAu∗
n,n)(In − Pn)v−n

+ p̃α
n

∫ t

0
exp((t− s)Au∗)(I − P )Fu∗(v(s))ds

−

∫ t

0
exp((t− s)Au∗

n,n)(In − Pn)Fu∗
n,n(p̃α

nv(s))ds,

η+
n (t) = p̃α

n exp((t− T )Au∗)Pv+ − exp((t− T )Au∗
n,n)Pnv

+
n

+ p̃α
n

∫ T

t
exp((t− s)Au∗)PFu∗(v(s))ds

−

∫ T

t
exp((t− s)Au∗

n,n)PnFu∗
n,n(p̃α

nv(s))ds.We estimate η+
n by an appliation of Theorem 3.18 with the settings Ẽ = (I − P )E,

D(Ã) = D(A)∩ Ẽ, Ã = Au∗ , g(t) = (I−P )Fu∗(v(t)), gn(t) = (In−Pn)Fu∗
n,n(p̃α

nv(t)),
K1 = UEγ (0, ρ0), K2 = {(I − P )Fu∗(w) : w ∈ UEγ(0, ρ0)}, ε̃ = ε0

4C∗ , u0 = v−,
Ẽn = (In − Pn)En, Ẽα

n = (In − Pn)Eα
n , un(0) = p̃α

nu(0) = p̃α
nv

−. Note that bythe ontinuity of Fu∗ from Eα to E and the ompat embedding of Eγ in Eα theset K1 is ompat in Eα and K2 is ompat in E. The estimate (3.12) applies for
n ≥ n3 = max(n1(ε̃), n2) where n2 is hosen by Proposition 4.3 suh that for n ≥ n2

sup
0≤t≤T

‖gn(t) − p̃ng(t)‖Ẽn
≤ sup

0≤t≤T
‖(I − Pn)

(

Fu∗
n,n(p̃α

nv(t)) − pnFu∗(v(t))
)

‖En

+ sup
w∈K2

‖(I − Pn)(pnP − Pnpn)Fu∗(w)‖En

≤ δ = δ(ε̃).Therefore we have ‖η−n ‖Eα
n

≤ ε̃ and by an analogous reasoning the same estimatefor ‖η+
n ‖Eα

n
and n ≥ n4. Finally, by (4.13) and Proposition 3.19 we obtain for some

n5 ≥ n4 and all 0 ≤ t ≤ T, n ≥ n5

‖un(t) − pα
nu(t)‖Eα

n
≤ ‖vn(t) − pα

nv(t)‖Eα
n

+ ‖u∗n − pα
nu

∗‖Eα
n
≤
ε0
2

+
ε0
2

= ε0.

�In the following Lemma we approximate vetors of a ompat sequene in thedisrete spaes by disretizations of ontinuous elements.Lemma 4.5. Let 0 ≤ α < γ < 1 and let {v0
n} be a bounded sequene in Eγ

n. Then forany ε > 0 there is a number n0(ε) suh that infv∈Eα ‖v0
n − p̃α

nv‖Eα
n
≤ ε for n ≥ n0(ε).In addition, if 0 ≤ α ≤ β < γ < 1 and the sequene {v0

n} lies in PnE
γ
n and satis�es

‖v0
n‖Eγ

n
≤ b then one an �nd n1(ε) and a onstant Ĉ > 0 suh that

inf
v∈PEβ ,‖v‖

Eβ≤Ĉb
‖v0

n − pα
nv‖Eα

n
≤ ε for all n ≥ n1(ε). (4.14)If v0

n ∈ (In − Pn)Eγ
n instead of v0

n ∈ PnE
γ
n then (4.14) holds with the in�mum takenover v ∈ (I − P )Eβ, ‖v‖Eβ ≤ Ĉb. 20



Proof. Proposition 4.1 shows that it is su�ient to prove the assertion with pα
n inplae of p̃α

n. Assume that the statement is not true. Then there exists a sequene {v0
n},an ε > 0 and a subsequene N

′ ⊆ N suh that ‖(−An)γv0
n‖ ≤ b and ‖v0

n − p
α
nv‖Eα

n
> εfor all n ∈ N

′, v ∈ Eα. First of all, the sequene (−A)−α
n (−A)αnv

0
n = v0

n is P-ompatby (3.6) and therefore there are N
′′ ⊆ N

′ and v̄ ∈ E suh that v0
n

P
−→v̄ as n ∈ N

′′.Sine 0 ≤ α < γ < 1 and (−An)α−γ(−An)γv0
n = (−An)αv0

n we obtain in a similarway from (3.6) that (−An)αv0
n is P-ompat. Thus there is N

′′′ ⊆ N
′′ suh that

(−An)αv0
n

P
−→z ∈ E as n ∈ N

′′′ and we onlude (−An)−α(−An)αv0
n

P
−→(−A)−αz as

n ∈ N
′′′. On the other hand v0

n
P

−→v̄ as n ∈ N
′′ whih implies v̄ = (−A)−αz ∈ Eα.Finally we have ‖v0

n − pα
n v̄‖Eα

n
= ‖(−An)αv0

n − pnz‖En → 0 as n ∈ N
′′′ for some

v̄ ∈ Eα whih is a ontradition. To prove the seond assertion we extend the previousargument. First by (3.6) and Lemma 3.3 we have for every 0 ≤ λ < 1 a onstant
C[λ] > 0 suh that

‖(−A)−λ‖B(E,E), ‖(−An)−λ‖B(En,En) ≤ C[λ] for all n ∈ N. (4.15)De�ne Ĉ = C[γ−β]+1. In the proof above we an arrange that (−An)βv0
n

P
−→y ∈ E for

n ∈ N
′′′ and then obtain v̄ = (−A)−βy ∈ Eβ . Using v0

n ∈ PnE
γ
n and the onvergeneof projetors (3.22) we �nd

0 = (In − Pn)v0
n

P
−→v̄ − P v̄,hene v̄ ∈ PEβ. Moreover for n ∈ N

′′′ large
‖v̄‖Eβ = ‖y‖E ≤ ‖(−An)β−γ(−An)γv0

n‖En + b ≤ (C[γ−β] + 1)b = Ĉb.This ontradits ‖v0
n − pα

nv‖ > ε for all v ∈ PEβ with ‖v‖Eβ ≤ Ĉb. �This Lemma will be used for onstruting the appropriate boundary data for thefollowing inverse shadowing result.Theorem 4.6. Let the assumptions of Theorem 4.4 hold. Then there exists ρ0 > 0with the following property. For any ε0 > 0 there is an n0 = n0(ε0) ∈ N suh that forany mild solution un(t), n ≥ n0 of (3.16) satisfying un(t) ∈ UEγ
n
(u∗n, ρ0), 0 ≤ t ≤ Tfor some 0 < T ≤ ∞ there exist initial values un,0 ∈ Eα, n ≥ n0, suh that the mildsolution u(t;un,0) of (2.7) exists on [0, T ] and satis�es

sup
0≤t≤T

‖un(t) − pα
nu(t;u

n,0)‖Eα
n
≤ ε0 ∀n ≥ n0(ε0). (4.16)Proof. As in Theorem 4.4 we take some ε0 > 0 and list the onditions on n0 and

ρ0 during the proof. Consider a mild solution un(t), 0 ≤ t ≤ T of (3.16) that lies in
UEγ

n
(u∗n, ρ0) and de�ne

vn(t) = un(t) − u∗n, v−n = (In − Pn)vn(0), v+
n = Pnvn(T ). (4.17)By the uniform boundedness of projetors we have for some Cb ≥ 1

‖v−n ‖Eγ
n
≤ Cbρ0, ‖v+

n ‖Eγ
n
≤ Cbρ0. (4.18)21



We apply Proposition 3.21 to the values v±n with γ instead of α and ρ̃2 = ρ̃. Werequire Cbρ0 ≤ ρ̃1 so that vn(t) = vn(v−n , v
+
n , t), 0 ≤ t ≤ T holds by the uniqueness ofsolutions in C([0, T ],UEγ

n
(0, ρ̃)). Now take α < β < γ and use Lemma 4.5 to onstrutboundary values vn,− ∈ (I − P )Eβ , vn,+ ∈ PEβ, n ≥ n1(ε0) suh that

‖v−n − p̃α
nv

n,−‖Eα
n

+ ‖v+
n − p̃α

nv
n,+‖Eα

n
≤

ε0
16M2C∗

, ‖vn,±‖Eβ ≤ Ĉρ0, (4.19)see (3.23),(3.27). In the next step we apply Proposition 2.2 with boundary values
vn,± and β instead of α. Choose ρ̂2 suh that (f. (4.15),(4.3))

C̃αC[β−α]ρ̂2 ≤ ρ̃2,require (C[γ−α] + Ĉ)ρ0 ≤ ρ̃2 and denote the unique solution in C([0, T ];UEβ(0; ρ̂2))by vn(t), 0 ≤ t ≤ T . We will show that
un,0 = vn(0) + u∗, u(t;un,0) = vn(t) + u∗, 0 ≤ t ≤ T, (4.20)satis�es (4.6). For this purpose we insert vn(·) and wn(·) := p̃α

nv
n(·) into (3.27). Thisinequality is valid sine ‖vn(t)‖Eα

n
≤ C[γ−α]ρ0,

‖wn(t)‖Eα
n
≤ C̃α‖v

n(t)‖Eα ≤ C̃αC[β−α]‖v
n(t)‖Eβ ≤ C̃αC[β−α]ρ̂2 ≤ ρ̃2and ‖v±n ‖Eα

n
≤ C[γ−α]‖v

±
n ‖Eγ

n
≤ C[γ−α]Cbρ0 ≤ ρ̃1.We obtain the estimate

‖vn − wn‖C([0,T ];Eα
n ) ≤ C∗‖wn −Gn(v−n , v

+
n , wn)‖C([0,T ];Eα

n ) (4.21)
≤ C∗ sup

0≤t≤T
‖η−n (t) + η+

n (t) + ϕ−
n (t) + ϕ+

n (t)‖Eα
n
, (4.22)where the terms on the right-hand side are given by

η−n (t) = p̃α
n exp(tAu∗)(I − P )vn,− − exp(tAu∗

n,n)(In − Pn)p̃α
nv

n,−

+ p̃α
n

∫ t

0
exp((t− s)Au∗)(I − P )Fu∗(vn(s))ds

−

∫ t

0
exp((t− s)Au∗

n,n)(In − Pn)Fu∗
n,n(p̃α

nv
n(s))ds,

η+
n (t) = p̃α

n exp((t− T )Au∗)Pvn,+ − exp((t− T )Au∗
n,n)Pnp̃

α
nv

n,+

+ p̃α
n

∫ T

t
exp((t− s)Au∗)PFu∗(vn(s))ds

−

∫ T

t
exp((t− s)Au∗

n,n)PnFu∗
n,n(p̃α

nv
n(s))ds,

ϕ−
n (t) = exp(tAu∗

n,n)(In − Pn)(p̃α
nv

n,− − v−n ),

ϕ+
n (t) = exp((t− T )Au∗

n,n)Pn(p̃α
nv

n,+ − v+
n ).We obtain the estimate ‖η±n ‖ ≤ ε0

8C∗ by Theorem 3.18 in almost the same way asin Theorem 4.4, f. (4.13), the main di�erene being that v(s) is replaed by vn(s)22



and the ompat sets are given by K2 = {(I − P )Fu∗(w) : w ∈ UEβ(0, ρ̂2)} and
K1 = UEβ (0, Ĉρ0), f. (4.19).For the seond terms we have from Lemma 3.17 and (4.19)

‖ϕ−
n (t) + ϕ+

n (t)‖ ≤M2e
−β̃t ε0

8M2C∗
≤

ε0
8C∗

.Using this in (4.21) and Proposition 3.19 we �nally have for n large
‖un(t) − pα

nu(t, u
n,0)‖Eα

n
≤ ‖vn(t) − pα

nv
n(t)‖Eα

n
+ ‖u∗n − pα

nu
∗‖Eα

n
≤ ε0.

�5 AppliationsIn this setion we show how the assumptions of the Theorems 4.4 and 4.6 an besatis�ed for �nite element and �nite di�erene methods.Example 5.1. Let Ω ⊂ R
d be a bounded smooth domain. Consider the seond orderstrongly ellipti operator

Lu(x) =
d

∑

i,j=1

aij(x)uxixj(x) +
d

∑

j=1

bj(x)uxj (x) + c(x)u(x), (5.1)where the oe�ientes aij, bj , c are smooth bounded funtions. Consider the assoiatedparaboli problem
ut(t, x) = Lu(t, x) + f(u(t, x)), t > 0, x ∈ Ω, (5.2)

u(t, x) = 0, t > 0, x ∈ ∂Ω, u(0, x) = u0(x) ∈ H1
0 (Ω).Let E = L2(Ω) and de�ne the operator A : D(A) ⊂ E → E by D(A) = H2(Ω)∩H1

0 (Ω)and Au = Lu for all u ∈ D(A). It is well known that A generates an analyti andompat C0-semigroup {exp(tA) : t ≥ 0}. Assume that c(x) is hosen suh thatthe spetrum of A is loated to the left of the imaginary axis. Then, we an de�nethe frational powers (−A)α of −A as before. It is well known that E1 = D(A) =
H2(Ω) ∩H1

0 (Ω) and E1/2 = H1
0 (Ω).As to the nonlinear term f(·), it is known (see [3, 19℄) that under some growth on-ditions, the problem (5.2) is loally well-posed in E1/2 and the operator-funtion f(·)is Frehet di�erentiable as a funtion from Eα to E. For example, these assumptionsare as follows, f. [19℄: the salar funtion f(x, ·) : R → R, x ∈ Ω, is in C2(R,R)and one has

|f
(l)
ξ (x, ξ)| ≤ C(1 + |ξ|δ+1−l) for any ξ ∈ R, x ∈ Ω,where l = 1, 2, and δ = 2 if d = 3 and δ ∈ [1,∞) if d = 2. Then one an show (see[19℄) that
‖f ′(u) − f ′(v)‖B(E1/2,E) ≤ C(ρ)‖u− v‖E1/2 (5.3)and

‖f(u)−f(v)−f ′(w)(u−v)‖
E

k−1
2

≤ C(ρ)(‖u−w‖E1/2 +‖v−w‖E1/2)‖u−v‖Ek/2 (5.4)23



for k = 1, 2, and any v,w, u ∈ {z ∈ E : ‖z−u∗‖E1/2 ≤ ρ}. The inequalities (5.3)-(5.4)imply ondition (F1).With the operator A and the funtion f(·) de�ned in this way the problem (2.3) iswell posed and has all properties we need for our main Theorems.Moreover, the approximation problems (3.16) also have the required propertieswhen de�ned by the �nite element method.Indeed, let A, E and E1/2 be as before. It is well known (see [17℄) that A is inone-to-one orrespondene with a sesquilinear form a : E1/2 × E1/2 → C suh that
|a(u, v)| ≤ c1‖u‖E1/2‖v‖E1/2 , u, v ∈ E1/2,

Re a(u, u) ≥ c2‖u‖E1/2 , u ∈ E1/2,

a(u, v) = 〈−Au, v〉, u ∈ D(A), v ∈ E1/2.Consider a onvex polygon Ω ⊂ R
2 and a regular triangulation where the triangleshave maximum diameter h. Denote by Sh the spae of funtions in E1/2 that arelinear in eah element and vanish on the boundary.Then Sh is a family of �nite dimensional subspaes of H1

0 (Ω) with the standardapproximation property (see[30℄)
inf

χ∈Sh

(

‖v − χ‖E + h‖v − χ‖E1/2

)

≤ Ch2‖v‖E1 for v ∈ H2(Ω) ∩H1
0 (Ω).We denote by Phu the projetion of u ∈ E onto Sh = E

1/2
h with respet to the L2(Ω)inner produt. These operators play the role of the onneting mappings {ph}. In thisframework, the �nite element approximation Ah : Sh → Sh of A is de�ned by

〈−Ahφh, ψh〉 = a(φh, ψh), φh, ψh ∈ E
1/2
h .In other words, Ah is the operator assoiated with the sesquilinear form ah(·, ·) whihis the restrition of a(·, ·) to E1/2

h ×E
1/2
h . In this setting one an prove [11℄ that thereexists a onstant C and an aute angle θ suh that for u ∈ E and θ ≤ |argz| ≤ π wehave

‖(zI −A)−1u− (zIh −Ah)−1Phu‖E ≤ Ch2‖u‖E .This estimate shows P-onvergene with uniform onvergene of resolvents. Sine ourresolvent (λI−A)−1 is ompat for some λ, then the above inequality yields (with µ(·)being the measure of nonompatness)
µ((zIh−Ah)−1xh) ≤ µ((zI−A)−1xh)+limh→0‖(zI−A)−1xh−(zIh−Ah)−1xh‖E = 0and therefore ompat onvergene of resolvents as h → 0. In this way, our basiassumption ∆cc 6= ∅ an be veri�ed.Finally with fh(vh) = phf(vh) for vh ∈ E

1/2
h and Fu∗

h,h(vh) = fh(vh − u∗h) −
fh(u∗h) − f ′h(u∗h)vh the problems (3.18),(3.19) are well-de�ned. The estimate (5.4)shows ‖Fu∗(v(t))‖E ≤ c(ρ)‖v(t)‖2

E1/2 and, moreover, one has F ′
u∗(0) = 0 and ondi-tion (F3) in the form ‖Fu∗

h,h(vh)‖En ≤ c̃(ρ)‖vh‖
2

E
1/2
h

, sine ‖ph‖ is uniformly bounded.24



Example 5.2. Resolvent estimates suh as (B1) were proved for �nite element and�nite di�erene methods for example in [5, 6].Without going into details we show howto get ompat onvergene of resolvents for the �nite di�erene method. Consider,for example, in the spae E = L2(0, 1) the operator A de�ned by
Av(x) =

d2v(x)

dx2
with D(A) = {v(·) ∈ H1

0 (0, 1) ∩H2(0, 1) : v(0) = v(1) = 0}.We hoose step-sizes h = 1
n and approximate A by the operators

Anun = ∂̄h ∂hun = {
1

h2
(un,(k+1)h − 2un,kh + un,(k−1)h)}n−1

k=1 , (5.5)where un,· ∈ En = L2
h(0, 1) = D(An) = {{un,kh}

n−1
k=1 ∈ R

n−1}. Note that we set
un,0 = un,nh = 0 in (5.5). The disretization maps pn are given by (f. [32℄)

(pnu)kh =
1

h

∫ (k+ 1
2
)h

(k− 1
2
)h

u(x)dx, u ∈ E. (5.6)With 〈un,·, vn,·〉En = h
∑n−1

k=1 un,khvn,kh the summation by parts formula reads (using
un,0 = un,nh = 0 again)

−〈∂̄h ∂hun, un〉En = 〈∂hun, ∂hun〉En = ‖∂hun‖
2
En

= h

n
∑

k=1

(
un,kh − un,(k−1)h

h
)2.This implies ‖∂hun‖

2
En

≤ ‖Anun‖En‖un‖En . Hene for any bounded sequene {un}suh that {Anun} is also bounded in En the last inequality shows that ‖un‖E
1/2
n

isbounded. This implies that {un} is P-ompat. Now we an use Theorem 3.15 to getompat onvergene of resolvents.6 AppendixWe use the following quantitative Lipshitz inverse mapping theorem, f. [16℄, [32℄.Lemma 6.1. Assume Y and Z are Banah spaes, F ∈ C1(Y,Z) and F ′(y0) is ahomeomorphism for some y0 ∈ Y . Let k, σ, δ > 0 be three onstants, suh that thefollowing estimates hold:
‖F ′(y) − F ′(y0)‖ ≤ k < σ ≤

1

‖F ′(y0)−1‖
for any y ∈ UY (y0; δ),

‖F (y0)‖ ≤ (σ − k)δ.Then F has a unique zero ȳ ∈ UY (y0; δ) and the following inequalities are satis�ed
‖F ′(y)−1‖ ≤

1

σ − k
for all y ∈ UY (y0; δ),

‖y1 − y2‖ ≤
1

σ − k
‖F (y1) − F (y2)‖ for any y1, y2 ∈ UY (y0; δ). (6.7)25
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