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Abstract

This paper addresses existence and uniqueness of strong solutions
to stochastic porous media equations dX −∆Ψ(X)dt = B(X)dW (t)
in bounded domains of Rd with Dirichlet boundary conditions. Here
Ψ is a maximal monotone graph in R×R (possibly multivalued) with
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the domain and range all of R. Compared with the existing literature
on stochastic porous media equations no growth condition on Ψ is
assumed and the diffusion coefficient Ψ might be multivalued and
discontinuous. The latter case is encountered in stochastic models for
self-organized criticality or phase transition.

AMS subject Classification 2000: 76S05, 60H15.
Key words: stochastic porous media equation, Wiener process, convex

functions, Itô’s formula.

1 Introduction

This work is concerned with existence and uniqueness of solutions to stochas-
tic porous media equations

dX(t)−∆Ψ(X(t))dt = B(X(t))dW (t) in (0, T )× O := QT ,
Ψ(X(t)) = 0 on (0, T )× ∂O := ΣT ,
X(0) = x in O,

(1.1)

where O is an open, bounded domain of Rd, d ≥ 1, with smooth boundary
∂O, W (t) is a cylindrical Wiener process on L2(O), while B is a Lipschitz
continuous operator from H := H−1(O) to the space of Hilbert–Schmidt
operators on L2(O). (See Hypothesis H2 below).

The function Ψ : R → R (or more generally the multivalued function
Ψ : R → 2R) is a maximal monotone graph in R× R. (See the definition in
Section 1.1 below).

Existence results for equation (1.1) were obtained in [8] (see also [3],[4])
in the special case B =

√
Q, with Q linear nonnegative, Tr Q < +∞ and

Ψ ∈ C1(R) satifying the growth condition

k3 + k1|s|r−1 ≤ Ψ′(s) ≤ k2(1 + |s|r−1), s ∈ R, (1.2)

where k1, k2 > 0, k3 ∈ R, r > 1.
Under these growth conditions on Ψ, equation (1.1) covers many impor-

tant models describing the dynamics of an ideal gas in a porous medium
(see e.g. [1]) but excludes, however, other significant physical models such as
plasma fast diffusion ([5]) which arises for Ψ(s) =

√
s and phase transitions

or dynamics of saturated underground water flows (Richard’s equation). In
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the later case multivalued monotone graphs Ψ might appear as in [12]. Re-
cently in [15] (see also [14]) the existence results of [8] were extended to the
case of monotone nonlinearities Ψ such that s 7→ sΨ(s) is (comparable to) a
∆2-regular Young function (cf. assumption (A1) in [15]) thus including the
fast diffusion model. As a matter of fact, in the line of the classical work of
N. Krylov and B. Rozovskii [10] the approach used in [15] is a variational one
i.e. one considers the stochastic equation (1.1) in a duality setting induced
by a functional triplet V ⊂ H ⊂ V ′ and this requires to find appropriate
spaces V and H. This was done in [15] in an elaborate way even with O
unbounded and with ∆ replaced by very general (not necessarily differential)
operators L.

The method we use here is quite different and essentially an L1-approach
relying on weak compacteness techniques in L1(QT ) via the Dunford-Pettis
theorem which involve minimal growth assumptions on Ψ. Restricted to sin-
gle valued continuous functions Ψ the main result, Theorem 2.2 below, gives
existence and uniqueness of solutions only assuming that lims→+∞Ψ(s) =
+∞, lims→−∞Ψ(s) = −∞, Ψ monotonically increasing and

lim sup
|s|→+∞

∫ −s
0

Ψ(t)dt∫ s
0

Ψ(t)dt
< +∞. (1.3)

We note that the assumptions on Ψ in [15]) imply our assumptions. In this
sense, under assumption (H2) below on the noise, the results on this paper
extend those in [15] in case L = ∆ if O is bounded and if the coefficients do
not depend on (t, ω). The latter two were not assumed in [15]. On the other
hand a growth condition on Ψ is imposed in [15] (cf. [15, Lemma 3.2]) which
is not done here. Another main progress of this paper is that Ψ is no longer
assumed to be continuous, it might be multivalued and with exponential
growth to ±∞ (for instance of the form exp (a|x|p)). We note that (1.3) is
not a growth condition at +∞ but a kind of symmetry condition about the
behaviour of Ψ at ±∞. If Ψ is a maximal monotone graph with potential j
(i.e. Ψ = ∂j) then (1.3) takes the form (see Hypothesis (H3) below)

lim sup
|s|→+∞

j(−s)
j(s)

< +∞.

Anyway this condition is automatically satisfied for even monotonically in-
creasing functions Ψ or e.g. if a condition of the form (1.2) is satisfied. We
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note, however, that because of our very general conditions on Ψ the solu-
tion of (1.1) will be pathwise only weakly continuous in H. The question of
pathwise strong continuity of solutions, however, remains open. The main
reason is the absence of a variational setting for problem (1.1) (see [10],[14])
in the present situation. Other major technical difficulties encountered here
in the proofs are that e.g. the integration by parts formula or Itô’s formula
(see Lemmas 3.1 and 3.2 below) cannot be applied directly because of the
same reason. It should be said, however, that the L1 approach used here,
which allows to treat very general nonlinearities, is applicable to determin-
istic equations as well and seems to be new also in that context. On the
other hand, the existence for the deterministic part of equation (1.1) is an
immediate consequence of the Crandall–Liggett generation theorem for non-
linear semigroups of contractions (see [2]) which is, however, not applicable
to stochastic equations.

1.1 Notations

O is a bounded open subset of Rd, d ≥ 1, with smooth boundary ∂O. We
set

QT = (0, T )× O, ΣT = (0, T )× ∂O.

Lp(O), Lp(QT ), p ≥ 1, are standard Lp- function spaces and H1
0 (O), Hk(O)

are Sobolev spaces on O. By H := H−1(O) we denote the dual of H1
0 (O)

with the norm and the scalar product given by

|u|−1 := (A−1u, u)1/2, 〈u, v〉−1 = (A−1u, v),

respectively, where (·, ·) is the pairing between H1
0 (O) and H−1

0 and the
scalar product of L2(O). Here A denotes the Laplace operator with Dirichlet
homogeneous boundary conditions, i.e.

Au = −∆u, u ∈ D(A) = H2(O) ∩H1
0 (O). (1.4)

Given a Hilbert space U , the norm of U will be denoted by | · |U and the
scalar product by (·, ·)U . By C([0, T ];U) we shall denote the space of U -
valued continuous functions on [0, T ] and by Cw([0, T ];U) the space of weakly
continuous functions from [0, T ] to U .

Given two Hilbert spaces U and V we shall denote the space of linear
continuous operators from U to V by L(U, V ) and the space of Hilbert-
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Schmidt operators F : U → V by LHS(U, V ), with norm

‖F‖LHS(U,V ) :=

(
∞∑
i=1

|Fei|2V

)1/2

, (1.5)

where {ei} is an orthonormal basis in U .
If j : R → (−∞,+∞] is a lower semicontinuous convex function let

∂j : R→ 2R denote the subdifferential of j, i.e.

∂j(y) = {θ ∈ R : j(y) ≤ j(z) + θ(y − z), ∀ z ∈ R}

and let j∗ denote the conjugate of j (the Legendre transform of j),

j∗(p) = sup{py − j(y) : y ∈ R}.

We recall that ∂j∗ = (∂j)−1 (see e.g. [2], [6]),

j(y) + j∗(p) = py if and only if p ∈ ∂j(y) (1.6)

and
j(u) + j∗(p) ≥ pu for all p, u ∈ R. (1.7)

Given a multi-valued function Φ : R → 2R its domain is denoted by
D(Φ) = {u ∈ R : Φ(u) 6= ∅}. R(Φ) = {v : v ∈ Φ(u), u ∈ D(Φ)} is
its range. The function Φ is said to be a maximal monotone graph if it is
monotone, i.e.

(y1 − y2)(p1 − p2) ≥ 0 for all pi ∈ Φ(yi), i = 1, 2

and R(1 + Φ) = R.
Given a maximal monotone graph Ψ : R → 2R there is a unique lower

semicontinuous convex function j : R→ (−∞,+∞] such that Ψ := ∂j. The
function j is unique up to an additive constant and called the potential of Ψ.

For the maximal monotone graph Ψ we set

Ψλ =
1

λ
(1− (1 + λΨ)−1) ∈ Ψ(1 + λΨ)−1, λ > 0,

which is called the Yosida approximation of Ψ. Here 1 stands for the identity
function. The function Ψλ is Lipschitzian and monotonically increasing.
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We set jλ(u) =
∫ u

0
Ψλ(r)dr and recall that it is equal to the Moreau

approximation of j, i.e.,

jλ(u) = min

{
j(v) +

1

2λ
|u− v|2 : v ∈ R

}
. (1.8)

We have

jλ(u) = j((1 + λΨ)−1u) +
1

2λ
|u− (1 + λΨ)−1u|2. (1.9)

2 The main result

2.1 Hypotheses

(H1) W (t) is a cylindrical Wiener process on L2(O) defined by

W (t) =
∞∑
k=1

βk(t)ek, (2.1)

where {βk} is a sequence of mutually independent Brownian motions on a
filtered probability space (Ω,F , {Ft}t≥0,P), with right continuous filtration
and {ek} is an orthonormal basis in L2(O). To be more specific {ek} will be
chosen as the normalized sequence of eigenfunctions of the operator A, hence
ek ∈ Lp(O) for all k ∈ N, p ≥ 1.

(H2) B is Lipschitzian from H = H−1(O) to LHS(L2(O), D(Aγ)) where γ >
d/2.

(H3) Ψ : R→ 2R is a maximal monotone graph on R×R such that 0 ∈ Ψ(0),

D(Ψ) = R, R(Ψ) = R (2.2)

and

lim sup
|s|→+∞

j(−s)
j(s)

< +∞. (2.3)

Here j : R→ R is the potential of Ψ, i.e. ∂j = Ψ, which under assumption
(2.2) is a continuous convex function. Since 0 ∈ Ψ(0), by definition we have
j(0) = inf j. Hence subtracting j(0) we can take j such that j(0) = 0 and
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j ≥ 0 and therefore we may assume that j∗ ≥ j∗(0) = 0. We recall (see e.g.
[2],[6]) that the condition R(Ψ) = R is equivalent to

j(y) <∞ ∀ y ∈ R, lim
|y|→∞

j(y)

|y|
= +∞. (2.4)

while the condition D(Ψ) = R is equivalent to

j∗(y) <∞ ∀ y ∈ R, lim
|y|→∞

j∗(y)

|y|
= +∞. (2.5)

In particular, Hypothesis (H3) automatically holds if Ψ is a monotonically
increasing, continuous function on R satisfying condition (1.3) and

lim
s→+∞

Ψ(s) = +∞, lim
s→−∞

Ψ(s) = −∞.

In particular, it is satisfied by functions Ψ satisfying (1.2) for r > 0 or more
generally by those satisfying assumption (A1) in [15].

We need some more notations. Given a Banach space Z,

CW ([0, T ];Z) = C([0, T ];L2(Ω,F ,P;Z))

shall denote the space of all continuous adapted stochastic processes which
are mean square continuous. The space

L2
W ([0, T ];Z) = L2([0, T ];L2(Ω,F ,P : Z))

is similarly defined (see e.g. [7], [9]).

Definition 2.1 An adapted process X ∈ CW ([0, T ];H)∩L1((0, T )×O×Ω),
such that X ∈ Cw([0, T ], H),P-a.s., is said to be a strong solution to equation
(1.1) if there exists a process η ∈ L1((0, T )× O × Ω) such that

η(t, ξ) ∈ Ψ(X(t, ξ)), a.e. (t, ξ) ∈ QT , P-a.s. (2.6)∫ •
0

η(s)ds ∈ Cw([0, T ];H1
0 (O)), (2.7)

X(t)−∆

∫ t

0

η(s)ds = x+

∫ t

0

B(X(s))dW (s), ∀ t ∈ [0, T ], P-a.s. (2.8)
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j(X), j∗(η) ∈ L1((0, T )× O × Ω). (2.9)

(Here
∫ t

0
η(s)ds is initially defined as on L1(O)-valued Bochner integral). Of

course, if Ψ is single valued (2.6)-(2.8) reduce to∫ •
0

Ψ(X(s))ds ∈ Cw([0, T ];H1
0 (O)), (2.10)

and

X(t)−∆

∫ t

0

Ψ(X(s))ds = x+

∫ t

0

B(X(s))dW (s), ∀ t ∈ [0, T ], P-a.s..

(2.11)

We note that X, as in Definition 2.1, is automatically predictable.
Theorem 2.2 below is the main result of this work.

Theorem 2.2 Under Hypotheses (H1), (H2), (H3), for each x ∈ H there
is a unique strong solution X = X(t, x) to equation (1.1). Moreover, the
following estimate holds

E|X(t, x)−X(t, y)|2−1 ≤ C|x− y|2−1, for all t ≥ 0, (2.12)

where C is independent of x, y ∈ H.

Theorem 2.2 will be proved in Section 4 via fixed point arguments. Before,
in Section 3 we shall establish the existence of solutions for the equation

dY (t)−∆Ψ(Y (t))dt = G(t)dW (t) in QT ,
Ψ(Y (t)) = 0 on ΣT ,
Y (0) = x in O,

(2.13)

where G : [0, T ]→ LHS(L2(O), D(Aγ)) is a predictable process such that

E
∫ T

0

‖G(t)‖2LHS(L2(O),D(Aγ))dt < +∞ (2.14)

and γ > d/2. Here GdW is given by

GdW =
∞∑
k=1

Gekdβk.

A solution of (2.13) is defined to be an adapted process Y satisfying along
with η ∈ L1((0, T ) × O × Ω) conditions (2.6)-(2.9) where B(X) is replaced
by G.
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Theorem 2.3 Under Hypotheses (H1), (H3), (2.14), for each x ∈ H there
is a unique strong solution Y = YG(t, x) to equation (2.13) in the sense of
Definition 2.1. Moreover, the following estimate holds

E|YG1(t, x)− YG2(t, y)|2−1 ≤ |x− y|2−1

+E
∫ t

0

‖G1(s)−G2(s)‖2LHS(L2(O),H)ds, for all t ≥ 0,

(2.15)

for all x, y ∈ H and G1, G2 satisfying (2.14).

Remark 2.4 It should be noted that assumption (H2) excludes the case
where the covariance operator B is of the form B(X) = X, i.e. the case of
multiplicative noise.

Remark 2.5 Assumption (H3) for example allows monotonically increasing
functions Ψ which are continuous from the right on R and have a finite
number of jumps r1, r2, ..., rN . However in this case one must fill the jumps
by replacing the function Ψ by the maximal monotone (multivalued ) graph
Ψ̃(r) = Ψ(r) for r different from ri and Ψ̃(ri) = [Ψ(ri)−Ψ(ri−1− 0)]. Such a
situation might arise in modelling underground water flows (see e.g. [12]). In
this case Ψ is the diffusivity function and (1.1) reduces to Richard’s equation.
It must be also said that Theorems 2.2 and 2.3 have natural extensions to
equations of the form

dX(t)−∆Ψ(X(t))dt+ Φ(X(t))dt = B(X(t))dW (t), (2.16)

where Φ is a suitable monotonically increasing and continuous function (see
[15]). We note also that stochastic models of self-organized criticality lead
to equations of form (1.1) where Ψ(r) = H(r − xc) and H is the Heavside
function.

As in [15] one might consider the case where Ψ = Ψ(X,ω), ω ∈ Ω, but
we do not go into details, here. We also note that assumption D(Ψ) = R in
Hypothesis (H3) excludes a situation of the following type

Ψ(s) =

{
Ψ1(s) for s < s0, Ψ(s0) = (Ψ1(s0),+∞),
= ∅ for s > s0,

(2.17)

where Ψ1 is a continuous monotonically increasing function and Ψ1(r)→ −∞
as r → −∞. In this case problem (1.1) reduces to a stochastic variational
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inequality and it is relevant in the description of saturation processes in
infiltration. An analysis similar to that to be developed below shows that in
this case in Definition 2.1 the function η is no more an L1- function but a
bounded measure on QT and

∫ •
0
η(s)d must be replaced by its distribution

function. We plan to give details in a subsequent paper.
Another situation of interest covered by our assumptions (see also [15])

is that of logarithmic diffusion equations arising in plasma physics see e.g.
[13]. In this case Ψ(s) = log(µ+ |s|) sign(s).

3 Proof of Theorem 2.3

For every λ > 0 consider the approximating equation
dXλ(t)−∆(Ψλ(Xλ(t)) + λXλ(t))dt = G(t)dW (t) in (0, T )× O := QT ,
Ψλ(Xλ(t)) + λXλ(t)) = 0 on (0, T )× ∂O,
Xλ(0) = x in O,

(3.1)
which has a unique solution Xλ ∈ CW ([0, T ];H) such that

Xλ,Ψλ(Xλ) ∈ L2
W (0, T ;H1

0 (O)).

Indeed, setting yλ(t) = Xλ(t)−WG(t) where WG(t) =
∫ t

0
G(s)dW (s), we may

rewrite (3.1) as a random equation
y′λ(t)−∆Ψ̃λ(yλ(t) +WG(t)) = 0 P-a.s. in QT ,

Ψ̃λ(yλ(t) +WG(t)) = 0 on (0, T )× ∂O,
yλ(0) = x in O,

(3.2)

where Ψ̃λ(y) = Ψλ(y) + λy, λ > 0. Note that Ψ̃λ(0) = 0.
For each ω ∈ Ω the operator Γ(t) : H1

0 (O)→ H−1(O), defined by

Γ(t)y = −∆Ψ̃λ(y +WG(t)), y ∈ H1
0 (O),

is continuous, monotone and coercive, i.e.,

(Γ(t)y, y) ≥ λ|y+WG(t)|2H1
0 (O)−(Γ(t)y,WG(t)) ≥ λ

2
|y|2H1

0 (O)−Cλ|WG(t)|2H1
0 (O).

Then by classical existence theory for nonlinear equations (see e.g. [11])
equation (3.2) has a unique solution

yλ ∈ C([0, T ];L2(O)) ∩ L2(0, T ;H1
0 (O))
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with y′λ ∈ L2(0, T ;H−1(O)). The function Xλ(t) = yλ(t)+WG(t) is of course
an adapted process because the solution yλ to equation (3.2) is a continuous
function of WG and so it satisfies the required condition.

3.1 A-priori estimates

From now on we fix ω ∈ Ω and work with the corresponding solution yλ to
(3.2). We have

1

2

d

dt
|yλ(t)|2−1 + (Ψ̃λ(yλ(t) +WG(t)), yλ(t) +WG(t))

= (Ψ̃λ(yλ(t) +WG(t)),WG(t)),

(3.3)

which is equivalent to

1

2

d

dt
|yλ(t)|2−1 + (Ψλ(yλ(t) +WG(t)), yλ(t) +WG(t))

= −λ(yλ(t), yλ(t) +WG(t)) + (Ψλ(yλ(t) +WG(t)),WG(t)).

(3.4)

Now set jλ(u) =
∫ u

0
Ψλ(r)dr and let j∗λ denote the conjugate of jλ. Moreover

we set
zλ = (1 + λΨ)−1(yλ +WG), ηλ = Ψλ(jλ +WG). (3.5)

The aim of this subsection is to prove the following estimate: there exists a
(random) constant C1 such that

1

2
|yλ(t)|2−1 +

∫ t

0

∫
O

(j(zλ) + j∗(ηλ))dξds

+
1

2λ

∫ t

0

∫
O

(yλ +WG − zλ)2dξds ≤ C1(1 + |x|2−1), t ∈ [0, T ].

(3.6)

By (1.6) we have

j∗λ(Ψλ(yλ(t)+WG(t)))+jλ(yλ(t)+WG(t)) = Ψλ(yλ(t)+WG(t))(yλ(t)+WG(t)).
(3.7)
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Substituting this identity into (3.4) yields

1

2
|yλ(t)|2−1 +

∫ t

0

∫
O

(jλ(yλ(s) +WG(s)) + j∗λ(Ψλ(yλ(s) +WG(s)))dξds

=
1

2
|x|2−1 +

∫ t

0

∫
O

(Ψλ(yλ(s) +WG(s))WG(s))dξds

−λ
∫ t

0

∫
O

yλ(s)(yλ(s) +WG(s))dξds,

(3.8)
Then, using (1.9) ,(3.5) and the fact that j∗λ ≥ j∗ for all λ > 0, by (3.8) we
see that

1

2
|yλ(t)|2−1 +

∫ t

0

∫
O

(j(zλ(s)) + j∗(ηλ(s)))dξds

+
1

2λ

∫ t

0

∫
O

(yλ(s) +WG(s)− zλ(s))2dξds

≤ 1

2
|x|2−1 +

∫ t

0

∫
O

ηλ(s)WG(s)dξds− λ
∫ t

0

∫
O

yλ(s)(yλ(s) +WG(s))dξds.

(3.9)
We now estimate the first integral from the right hand side of (3.9) as follows∣∣∣∣∫ t

0

∫
O

ηλ(s)WG(s)dξds

∣∣∣∣ ≤ δ

∫ t

0

∫
O

|ηλ(s)|dξds, (3.10)

where δ := sups∈[0,T ] |WG(s)|L∞(O) < +∞. We note that by assumption
(2.14) and since γ > d/2 it follows by Sobolev embedding that WG(·) has
continuous sample paths in D(Aγ) ⊂ L∞(O) and so δ is indeed finite.

Substituting (3.10) in (3.9) yields

1

2
|yλ(t)|2−1 +

∫ t

0

∫
O

(j(zλ(s)) + j∗(ηλ(s))dξds

+
1

2λ

∫ t

0

∫
O

(yλ(s) +WG − zλ(s))2dξds

≤ 1

2
|x|2−1 + δ

∫ t

0

∫
O

|ηλ(s)|dξds− λ
∫ t

0

∫
O

yλ(s)(yλ(s) +WG(s))dξds.
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Since

−yλ(s)(yλ(s) +WG(s)) ≤ −1

2
|yλ(s)|2 +

1

2
W 2
G(s),

we find

1

2
|yλ(t)|2−1 +

∫ t

0

∫
O

(j(zλ(s)) + j∗(ηλ(s))dξds+
λ

2

∫ t

0

∫
O

|yλ(s)|2dξds

+
1

2λ

∫ t

0

∫
O

(yλ(s) +WG(s)− zλ(s))2dξds

≤
(

1

2
|x|2−1 + δ

∫ t

0

∫
O

|ηλ(s)|dξds+
λ

2

∫ t

0

∫
O

W 2
G(s)dξds

)
, t ∈ [0, T ].

(3.11)
On the other hand, we recall that condition D(Ψ) = R is equivalent with

j∗ <∞ and lim
|p|→∞

j∗(p)

|p|
= +∞. (3.12)

So, there exists N = N(ω) such that

|ηλ(s)| > N ⇒ j∗(ηλ(s)) > 2Cδ|ηλ(s)|.

Consequently, for C > |QT | we have that∫ t

0

∫
O

|ηλ(s)|dξds =

∫ ∫
|ηλ(s)|>N

|ηλ(s)|dξds+

∫ ∫
|ηλ(s)|≤N

|ηλ(s)|dξds

≤ 1

2Cδ

∫ t

0

∫
O

j∗(ηλ(s))dξds+NCδ.

Substituting this into (3.11), since j ≥ 0, we obtain (3.6), which in particular
implies ∫ t

0

∫
O

(j(zλ(s)) + j∗(ηλ(s))dξds ≤ C1(1 + |x|2−1), (3.13)

and ∫ t

0

∫
O

(yλ +WG − zλ)2dξds ≤ 2λC1(1 + |x|2−1). (3.14)
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3.2 Convergence for λ→ 0

Since (by (2.4) and (2.5))

lim
|u|→∞

j(u)/|u| =∞, lim
|u|→∞

j∗(u)/|u| =∞, (3.15)

we deduce from (3.13) that the sequences {zλ} and {ηλ} are bounded and
equi-integrable in L1(QT ). Then by the Dunford-Pettis theorem the se-
quences {zλ} and {ηλ} are weakly compact in L1(QT ). Hence along a subse-
quence, again denoted by λ, we have

zλ → z, ηλ → η weakly in L1(QT ) as λ→ 0. (3.16)

Moreover, by (3.14) we see that z = y +WG, where

yλ → y weakly∗ in L∞(0, T ;H) and weakly in L1(QT ). (3.17)

Also note that by (3.2) we have for every t ∈ [0, T ]

yλ(t)−∆

(∫ t

0

(ηλ(s) + λ(yλ(s) +WG(s)))ds

)
= x (3.18)

and so the sequence
{∫ •

0
(ηλ(s) + λyλ(s))ds

}
is bounded in L∞(0, T ;H1

0 (O)).
Hence, selecting a further subsequence if necessary (see (3.8)), we have

lim
λ→0

∫ •
0

(ηλ(s) + λyλ(s))ds =

∫ •
0

η(s)ds weakly∗ in L∞(0, T ;H1
0 (O)).

(3.19)
So, by (3.18) we find

y(t) + A

∫ t

0

η(s)ds = x a.e. t ∈ [0, T ]. (3.20)

Since ∫ •
0

η(s)ds ∈ C([0, T ];L1(O)) ∩ L∞(0, T ;H1
0 (O)),

t 7→
∫ t

0
η(s)ds is weakly continuous in H1

0 (O) and therefore we infer that so

is t 7→ A
∫ t

0
η(s)ds in H. Thus the function

ỹ(t) := −A
∫ t

0

η(s)ds+ x, t ∈ [0, T ], (3.21)
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is an H-valued weakly continuous version of y. Furthermore, we claim that
for λ→ 0

yλ(t)→ ỹ(t) weakly in H, ∀ t ∈ [0, T ].

Indeed, since ηλ → η weakly in L1(QT ) and λ(yλ + WG) → 0 weakly in
L1(QT ) (since it even converges strongly in L2(QT ) to zero by (3.11)), it
follows that for every t ∈ [0, T ]∫ t

0

(ηλ(s) + λ(yλ(s) +WG(s)))ds→
∫ t

0

η(s)ds weakly in L1(O).

Hence by (3.18)) and the definition of η̃ we obtain that for every t ∈ [0, T ]

(−∆)−1yλ(t)→ (−∆)−1ỹ(t) weakly in L1(O).

Since by (3.11) yλ(t), λ > 0, are bounded in H, the above immediately
implies the claim.

From now on we shall consider this particular version ỹ of y defined in
(3.21). For simplicity we denote it again by y; so we have

yλ(t)→ y(t) weakly in H, ∀ t ∈ [0, T ].

We can also rewrite equation (3.21) as

yt(t)−∆η(t) = 0 in D ′(QT ), y(0) = x. (3.22)

Now we are going to show that

η(t, ξ) ∈ Ψ(y(t, ξ) +WG(t, ξ)) a.e. (t, ξ) ∈ QT . (3.23)

For this we shall need the following inequality

lim inf
λ→0

∫
QT

yληλdξdt ≤
∫
QT

yηdξdt. (3.24)

3.2.1 Proof of (3.24)

We first recall equation (1.6) which yields

jλ(yλ +WG) + j∗λ(ηλ) = (yλ +WG)ηλ, a.e. in QT ,
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and so by (1.9) and since j∗λ ≥ j∗, we have

j(yλ +WG) + j∗(ηλ) ≤ (yλ +WG)ηλ a.e. in QT ,

which yields∫
QT

(j(yλ +WG) + j∗(ηλ))dξdt ≤
∫
QT

(yλ +WG)ηλdξdt.

Since the convex functional

(z, ζ)→
∫
QT

(j(z) + j∗(ζ))dξdt

is lower semicontinuous on L1(QT )×L1(QT ) (and consequently weakly lower
semicontinuous on this space) we obtain that∫

QT

(j(y +WG) + j∗(η))dξdt ≤ lim inf
λ→0

∫
QT

yληλdξdt+

∫
QT

WGηdξdt. (3.25)

Furthermore, by (3.6) and again by the weak lower semicontinuity of convex
integrals in L1(QT ) it follows that

j(y +WG), j∗(η) ∈ L1(QT ). (3.26)

On the other hand, since j(u) + j∗(p) ≥ up for all u, p ∈ R (see (1.7)), we
have

(WG + y)η ≤ j(y +WG) + j∗(η) a. e. in QT . (3.27)

Moreover, by assumption (2.3) we see that for every M > 0 there exists
R = R(M) ≥ 0, such that

j(−y −WG) ≤Mj(y +WG) on QR

where
QR = {(t, ξ) ∈ QT : |y(t, ξ) +WG(t, ξ)| ≥ R}.

Since j(y +WG) ∈ L1(QT ) we have, by continuity of j,

j(−y −WG) ≤ h a. e. in QT , (3.28)

where h ∈ L1(QT ). On the other hand, since j is bounded from below we
have

j(−y −WG) ∈ L1(QT ). (3.29)
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Taking into account that by virtue of the same inequality (1.7), besides (3.27),
we have that

−(y +WG)η ≤ j(−y −WG) + j∗(η) a. e. in QT , (3.30)

by (3.27) and (3.28) it follows that a. e. in QT we have

|(WG + y)η| ≤ max{j(y +WG) + j∗(η), j(−y −WG) + j∗(η)} ∈ L1(QT )

and therefore yη ∈ L1(QT ) as claimed (recall that WG ∈ L∞(QT )).
Now we come back to equation (3.4) which by integration yields

1

2

(
|yλ(T )|2−1 − |x|2−1

)
+

∫
QT

yληλdξdt+ λ

∫
QT

yλ(yλ +WG)dξdt = 0. (3.31)

Taking into account that

yλ(T )→ y(T ) weakly in H, (3.32)

by (3.31) we have that

lim inf
λ→0

∫
QT

yληλdξdt ≤ −
1

2

(
|y(T )|2−1 − |x|2−1

)
. (3.33)

In order to complete the proof one needs an integration by parts formula
in equation (3.21) (or (3.22)), obtained multiplying the equation by y and
integrating on QT . Formally this is possible because yη ∈ L1(QT ) and
y(t) ∈ H−1(O) for all t ∈ [0, T ]. But, in order to prove it rigorously, one must
give sense to (y′(t), y(t)). Lemma 3.1 below answers this question positively
and by (3.33) also proves (3.24).

We first note that since j, j∗ are nonnegative and convex and j(0) = 0 =
j∗(0), we have for all measurable f : QT → R and α ∈ [0, 1],

j(f) ∈ L1(QT )⇒ j(αf) ∈ L1(QT )

and
j∗(f) ∈ L1(QT )⇒ j∗(αf) ∈ L1(QT ).

Furthermore, as in the proof of (3.28) by (2.3) we obtain that

j(f) ∈ L1(QT )⇒ j(−f) ∈ L1(QT ).

17



By (2.3) we see that the latter is also true for j∗, if f ∈ L1(QT ) and α is
small enough. Indeed by (2.3) there are M,R > 0 such that

j(−s) ≤Mj(s) if |s| ≥ R,

hence replacing s by (−s) we get

1

M
j(s) ≤ j(−s) if |s| ≥ R.

Now an elementary calculation implies that for all p ∈ R

j∗(−p) ≤ R|p|+ 1

M
j∗(Mp).

Hence

j∗(−p/M) ≤ R

M
|p|+ 1

M
j∗(p).

Therefore for α := 1/M we have

0 ≤ j∗(−αf) ≤ R

M
|f |+ 1

M
j∗(f) ∈ L1(QT ).

Hence, y and η constructed above fulfill all conditions in the following lemma
since WG ∈ L∞(QT ).

Lemma 3.1 Let y ∈ Cw([0, T ];H−1(O)) ∩ L1(QT ) and η ∈ L1(QT )
∩L∞(0, T ;H1(O)) satisfy

y(t) + A

∫ t

0

η(s)ds = x, t ∈ [0, T ]. (3.34)

Furthermore, assume that for some α > 0, j(αy), j∗(αη) ∈ L1(QT ). Then
yη ∈ L1(QT ), ∫

QT

yηdξdt = −1

2

(
|y(T )|2−1 − |x|2−1

)
. (3.35)

and
YεΣε → yη in L1(QT ),

where Yε,Σε are defined in (3.36) below.
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Proof. We set for ε > 0

Yε = (1 + εA)−my, Σε = (1 + εA)−mη, (3.36)

where m ∈ N is such that m > max{2, (d+ 2)/4}. Then

Yε ∈ Cw([0, T ];H1
0 (O) ∩H2m−1(O)) ⊂ Cw([0, T ];H1

0 (O) ∩ C(O))

and

Σε ∈ L1(0, T ;W 2,q(O)), 1 < q <
d

d− 1
.

Hence YεΣε ∈ L1(QT ) and for ε→ 0
Yε(t)→ y(t) strongly in H−1(O), ∀ t ∈ [0, T ]
Yε → y strongly in L1(QT )
Σε → η strongly in L1(QT )∫ t

0

Σε(s)ds→
∫ t

0

η(s)ds strongly in H1
0 (O) ∀ t ∈ [0, T ].

(3.37)

Here we note that the last fact follows because (3.34) implies that
∫ •

0
η(s)ds ∈

Cw([0, T ];H1
0 (O)). We have also by (3.34)

Yε(t) + A

∫ t

0

Σε(s)ds = (1 + εA)−mx, ∀ t ∈ [0, T ],

which implies
d

dt
Yε(t) + AΣε(t) = 0

and, taking inner product in H−1(O) with Yε(t), we obtain

1

2

d

dt
|Yε(t)|2−1 +

∫
O

Σε(t)Yε(t)dξ = 0, a.e. t ∈ [0, T ].

Hence

lim
ε→0

∫
QT

Σε(t)Yε(t)dξdt = −1

2

(
|y(T )|2−1 − |x|2−1

)
(3.38)

and by (3.37) we may assume that for ε→ 0

Yε → y, Σε → η a. e. in QT . (3.39)
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Moreover by (1.7) we have

α2ΣεYε ≤ j(αYε) + j∗(αΣε), −α2ΣεYε ≤ j(−αYε) + j∗(αΣε) a. e. in QT .
(3.40)

Now we claim that for ε→ 0

j(αYε)→ j(αy), j∗(αΣε)→ j∗(αη), j(−αYε)→ j(−αy) in L1(QT ).
(3.41)

By (3.39) these convergences hold a.e. in QT . So, in order to prove (3.41)
it suffices to show that {j(αYε)}, {j∗(αΣε)}, {j(−αYε)} are equi-integrable
on QT and so that they are weakly compact in L1(QT ). To this end let
y ∈ L1(O) and let Yε := (1 + εA)−1y, i.e. Yε is the solution to the Dirichlet
problem 

Yε − ε∆Yε = y, in O,

Yε = 0, on ∂O.
(3.42)

It may be represented as

Yε(ξ) =

∫
O

G(ξ, ξ1)y(ξ1)dξ1, ∀ ξ ∈ O, (3.43)

where G is the associated Green function. It is well known that
∫
O
G(ξ, ξ1)dξ1

is the solution to (3.42) with y = 1 so that by the maximum principle we
have 0 <

∫
O
G(ξ, ξ1)dξ1 ≤ 1 for all ξ ∈ O.

We may rewrite Yε as

Yε(ξ) =

∫
O

G(ξ, ξ2)dξ2

∫
O

G̃(ξ, ξ1)y(ξ1)dξ1, ∀ ξ ∈ O,

where

G̃(ξ, ξ1) =
G(ξ, ξ1)∫

O
G(ξ, ξ2)dξ2

and so
∫

O
G̃(ξ, ξ1)dξ1 = 1 for all ξ ∈ O.

Then, if j(y) ∈ L1(O), j(0) = 0 by Jensen’s inequality we have

j(Yε(ξ)) ≤
∫

O

G(ξ, ξ2)dξ2

∫
O

G̃(ξ, ξ1)j(y(ξ1))dξ1

=

∫
O

G(ξ, ξ1)j(y(ξ1))dξ1, ∀ ξ ∈ O.
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Hence we have shown that for any y ∈ L1(O) with j(y) ∈ L1(O),

j((1 + εA)−1y) ≤ (1 + εA)−1j(y).

Iterating and using the fact that (1 + εA)−1 preserves positivity we get for
all m ∈ N

j((1 + εA)−my) ≤ (1 + εA)−mj(y), a.e. in O. (3.44)

Now let y be as in the assertion of the lemma and Yε as in (3.36). Integrating
over QT , since (1 + εA)−m is a contraction on L1(O), (3.44) applied to αy
implies ∫

QT

j(αYε(ξ, t))dξdt ≤
∫
QT

j(αy(ξ2, t))dξ2dt.

Taking into account that j(αy) ∈ L1(QT ) we infer that {j(αYε)} is equi-
integrable on QT . The same argument applies to {j∗(αΣε)}, {j(−αYε)}.

Then (3.40) implies that the sequence {ΣεYε} is equi-integrable on QT

and consequently by the Dunford-Pettis theorem, weakly compact in L1(QT ).
Since {ΣεYε} is a.e. convergent to yη we infer that for ε→ 0

ΣεYε → yη strongly in L1(QT ), (3.45)

which combined with (3.38) implies (3.35) as desired. �

3.2.2 Proof of (3.23)

We have
j(zλ)− j(u) ≤ ηλ(zλ − u), ∀ u ∈ R a.e. in QT .

Integrating over QT yields∫
QT

j(zλ)dξdt ≤
∫
QT

j(u)dξdt+

∫
QT

ηλ(zλ − u)dξdt, ∀ u ∈ L∞(QT ).

Note that by the definition of Ψλ we have

zλ = −ληλ + yλ +WG.

Therefore, since z = y+WG, by (3.24) and Fatou’s lemma we can let λ→ 0
to obtain∫

QT

j(z)dξdt−
∫
QT

j(u)dξdt ≤
∫
QT

η(z − u)dξdt, ∀ u ∈ L∞(QT ).
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Now by Lusin’s theorem for each ε > 0 there is a compact subset Qε ⊂ QT

such that (dξ ⊗ dt)(QT \Qε) ≤ ε and y, η are continuous on Qε. Let (t0, x0)
be a Lebesgue point for y, η and yη and let Br be the ball of center (t0, x0)
and radius r. We take

u(t, ξ) =

{
z(t, ξ), if (t, ξ) ∈ Qε ∩Bc

r

v, if (t, ξ) ∈ (Qε ∩Br) ∪ (QT \Qε).

Here v is arbitrary in R. Since u is bounded we can substitute into the above
inequality to get∫

Br∩Qε
(j(z)− j(v)− η(z − v))dξdt ≤

∫
QT \Qε

(η(z − v) + j(v)− j(z))dξdt.

Letting ε→ 0 we obtain that∫
Br

(j(z)− j(v)− η(z − v))dξdt ≤ 0, ∀ v ∈ R, r > 0.

This yields

j(z(t0, x0)) ≤ j(v) + η(t0, x0)(z(t0, x0)− v), ∀ v ∈ R.

and therefore η(t0, x0) ∈ ∂j(z(t0, x0)) = Ψ(z(t0, x0)). Since almost all points
of QT are Lebesgue points we get (3.23) as claimed.

3.3 Completion of Proof of Theorem 2.3

Let us first summarize what we have proved for the pair (y, η) ∈ L1(QT ) ×
L1(QT ). We have

y ∈ Cw([0, T ];H),

∫ •
0

η(s)ds ∈ Cw([0, T ];H1
0 (O)),

η(t, ξ) ∈ Ψ(y(t, ξ)) for a.e. (t, ξ) ∈ QT ,

y(t) + A

∫ t

0

η(s)ds = x, t ∈ [0, T ],

j(αy), j∗(αy) ∈ L1(QT ) for some α ∈ (0, 1].
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We claim that (y, η) is the only such pair. Indeed, if (ỹ, η̃) is another then

j(α
2
(y − ỹ)) ≤ 1

2
j(αy) + 1

2
j(−αỹ)

and
j∗(α

2
(y − ỹ)) ≤ 1

2
j∗(αy) + 1

2
j∗(−αỹ).

But as we have seen before Lemma 3.1 the right hand sides are in L1(QT ).
Hence y−ỹ, η−η̃ fulfill all conditions of Lemma 3.1 and adopting the notation
from there we have for ε > 0

Yε(t)− Ỹε(t) = ∆

∫ t

0

(Σε(s)− Σ̃ε(s))ds

=

∫ t

0

∆(Σε(s)− Σ̃ε(s))ds, t ∈ [0, T ].

Differentiating and subsequently taking the inner product in H with Yε(t)−
Ỹε(t) and integrating again we arrive at

1

2

∣∣∣(1 + εA)−m(Yε(t)− Ỹε(t))
∣∣∣2
−1

=

∫ t

0

∫
O

(Yε(s)− Ỹε(s))(Σε(s)− Σ̃ε(s))dξds

=

∫ t

0

∫
O

((1 + εA)−m(y(s)− ỹ(s))(1 + εA)−m(η(s)− η̃(s))dξds, t ∈ [0, T ].

Letting ε→ 0 and applying Lemma 3.1 we obtain that for t ∈ [0, T ]

1

2
|y(t)− ỹ(t)|2−1 =

∫ t

0

∫
O

(y(s)− ỹ(s))(η(s)− η̃(s))dξds ≤ 0

by the monotonicity of Ψ.
Now let us consider the ω-dependence of y and η. By (3.21), (3.23) we

know that y = y(t, ξ, ω) is the solution to the equation{
y′(t)−∆Ψ(y(t) +WG(t)(ω)) = 0 a.e. t ∈ [0, T ],
y(0) = x

(3.46)

and as seen earlier for η = η(t, ξ, ω) as in (3.16)

y ∈ Cw([0, T ];H) ∩ L1(QT ), η ∈ L1(QT )∫ •
0

η(s)ds ∈ Cw([0, T ];H1
0 (O)),

(3.47)
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and

η(t, ξ, ω) ∈ Ψ(y(t, ξ, ω)) +WG(t, ξ, ω) a.e. (t, ξ, ω) ∈ QT × Ω. (3.48)

By the above uniqueness of (y, η), it follows that for any sequence λ → ∞
we have P-a.s.

yλ(t)→ y(t) weakly in H = H−1(O), ∀ t ∈ [0, T ],

yλ → y weakly in L1(QT ),∫ t

0

ηλ(s)ds→
∫ t

0

η(s)ds weakly in L1(O), ∀ t ∈ [0, T ]

and weakly in H1
0 (O), a.e. t ∈ [0, T ],

ηλ → η weakly in L1(QT ).

Therefore y and η are strong L1(QT )-limits of a sequence of convex conbina-
tions of yλ, ηλ respectively, and since yλ and ηλ are predictable processes, it
follows that so are y and η. In particular, this means that Y (t) = y(t)+WG(t)
is an H-valued weakly continuous adapted process and that the following
equation is satisfied

Y (t)−∆

∫ t

0

η(s)ds = x+

∫ t

0

G(s)dW (s), t ∈ [0, T ]. (3.49)

Equivalently 
dY (t)−∆Ψ(Y (t))dt = G(t)dW (t),

Y (0) = x.
(3.50)

In order to prove that Y is a solution of (3.50) in the sense of Definition
2.1 with G(t) replacing B(X(t)) and to prove uniqueness and some energy
estimates for solutions to equation (3.50) we need an Itô’s formula type result.
As in the case of Lemma 3.1 the difficulty is that the integral∫

QT

Ψ(Y )Y dξdt

might be (in general) not well defined taking into account that Ψ(Y ), Y ∈
L1(QT ) only. We , however, have
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Lemma 3.2 Let Y be a H-valued weakly continuous adapted process satis-
fying equation (3.49). Then the following equality holds

1

2
|Y (t)|2−1 =

1

2
|x|2−1 −

∫ t

0

∫
O

η(s)Y (s)dξds

+

∫ t

0

〈Y (s), G(s)dW (s)〉−1 +
1

2

∫ t

0

‖G(s)‖2LHS(L2(O),H)ds, P-a.s.

(3.51)

Furthermore, Y ∈ CW ([0, T ];H) ∩ L1((0, T ) × O × Ω), and η ∈ L1((0, T ) ×
O × Ω) and all conditions (2.6)-(2.9) are satisfied.

Proof. By Lemma 3.1 we have that Y η ∈ L1(QT ). Next we introduce the
sequences (see the proof of Lemma 3.1)) for m ∈ N

Yε = (1 + εA)−mY, Σε = (1 + εA)−mη.

For large enough m we can apply Itô’s formula to the problem
dYε(t) + AΣε(t) = (1 + εA)−mGdW (t)

Yε(0) = (1 + εA)−mx = xε.
(3.52)

We have

1

2
|Yε(t)|2−1 =

1

2
|xε|2−1 −

∫ t

0

∫
O

Σε(s)Yε(s)dξds

+

∫ t

0

〈Yε(s), Gε(s)dW (s)〉−1 +
1

2

∫ t

0

‖Gε(s)‖2LHS(L2(O),H)ds, t ∈ [0, T ].

(3.53)
where Gε = (1 + εA)−mG. Letting ε → 0 (since WG ∈ L∞(QT )) we get by
(3.45) ∫

QT

YεΣεdξds→
∫
QT

Y ηdξds, Pa.s..

Furthermore

Yε(t)→ Y (t) strongly in H−1(O), ∀ t ∈ [0, T ],

which by virtue of (3.53) yields (3.51), if we one proves first that for t ∈ [0, T ]

P− lim
ε→0

∫ t

0

〈Yε(s), Gε(s)dW (s)〉 =

∫ t

0

〈Y (s), G(s)dW (s)〉. (3.54)
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We shall even show that this convergence in probability is locally uniform
in t. We have by a standard consequence of the Burkholder-Davis-Gundy
inequality for p = 1 (see e.g. [14, Corollary D-0.2]) that for Ȳε := (1 +
εA)−2mY and δ1, δ2 > 0

P

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

〈Y (s), G(s)dW (s)〉 −
∫ t

0

〈Yε(s), Gε(s)dW (s)〉
∣∣∣∣ ≥ δ1

]

≤ 3δ2
δ1

+ P
[∫ T

0

‖G(s)‖2LHS(L2(O),H)|Y (s)− Y ε(s)|2−1ds ≥ δ2

]
.

(3.55)

Since Y ∈ Cw([0, T ];H), P-a.s. and (1+εA)−1 is a contraction on H we have

sup
s∈[0,T ]

|Y (s)− Y ε(s)|−1 ≤ 2 sup
s∈[0,T ]

|Y (s)|2−1, P-a.s..

Hence by (2.14) the second term on the right hand side of (3.55) converges
to zero as ε → 0. Taking subsequently δ2 → 0, (3.55) implies (3.54). We
emphasize that, since the left hand size of (3.51) is not continuous P-a.s.
(though all terms on the right hand side are), the P-zero set of ω ∈ Ω for
which (3.51) does not hold might depend on t.

Next we want to prove that

E

[
sup
t∈[0,T ]

|Y (t)|2−1

]
<∞. (3.56)

To this end first note that by (3.48) and (1.6) we have

η(s)Y (s) = j(Y (s)) + j∗(η(s)) ≥ 0, (3.57)

hence (3.51) implies that for every t ∈ [0, T ]

|Y (t)|2−1 ≤ |x|2−1 +Nt +

∫ t

0

‖G(s)‖2LHS(L2(O),H)ds, P-a.s., (3.58)

where

Nt :=

∫ t

0

〈Y (s), G(s)dW (s)〉−1, t ≥ 0,

is a continuous local martingale such that

< N >t= 2

∫ t

0

|G∗(s)Y (s)|2L2(O)ds, t ≥ 0,
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where G∗(s) is the adjoint of G(s) : L2(O)→ H. We shall prove that

E

[
sup
t∈[0,T ]

|Nt|

]
< +∞. (3.59)

By the Burkholder-Davis-Gundy inequality for p = 1 applied to the stopping
times

τN := inf{t ≥ 0 : |Nt| ≥ N} ∧ T, N ∈ N,

we obtain

E

[
sup

t∈[0,τN ]

|Nt|

]
≤ 3E

[
sup

s∈[0,τN ]

|Y (s)|−1

(
4

∫ τN

0

‖G(s)‖2LHS(L2(O);H)ds

)1/2
]

≤ 6C

(
E

[
sup

s∈[0,τN ]

|Y (s)|2−1

])1/2

,

(3.60)
where

C :=

(
E
[∫ T

0

‖G(s)‖2LHS(L2(O);H)ds

])1/2

<∞.

Since Y ∈ Cw([0, T ];H), we know that s 7→ |Y (s)|2−1 is lower semicontinuous.
Therefore by (3.58)

sup
s∈[0,τN ]

|Y (s)|2−1 = sup
s∈[0,τN ]∩Q

|Y (s)|2−1 ≤ |x|2−1 + sup
s∈[0,τN ]

|Ns|

+

∫ T

0

‖G(s)‖2LHS(L2(O);H)ds, P-a.s..

So (3.60) implies that for all N ∈ N(
E

[
sup

t∈[0,τN ]

|Nt|

])2

≤ 36C2

[
|x|2−1 + E

[
sup

s∈[0,τN ]

|Ns|

]
+ C2

]
,

which entails that

sup
N∈N

E

[
sup

t∈[0,τN ]

|Nt|

]
<∞.
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By monotone convergence this implies (3.59), since Nt has continuous sample
paths and τN ↑ T as N →∞. Now (3.58) implies that (4.11) holds.

By (3.59), (3.57) and (3.51) it follows that

ηY ∈ L1((0, T )× O × Ω). (3.61)

Hence by (3.57)
j(Y ), j∗(η) ∈ L1((0, T )× O × Ω)

and therefore
Y, η ∈ L1((0, T )× O × Ω).

Taking expectation in (3.51) we see that t 7→ E[|Y (t)|2−1] is continuous. Since
Y ∈ Cw([0, T ];H),P-a.s., (3.61) then also implies that Y ∈ CW ([0, T ];H).
This in turn together with (3.49) implies that also (2.7) holds. �

Now we come back to the proof of Theorem 2.3. We first note that Lemma
3.2 also implies the uniqueness of the solution Y and estimate (2.15). Indeed
by (3.55) and monotonicity of Ψ we have for Y Gi, i = 1, 2 the estimate
(2.15). This concludes the proof of Theorem 2.3. �

4 Proof of Theorem 2.2

Consider the space

K =
{
X ∈ CW ([0, T ];H) ∩ L1((0, T )× O × Ω) : X predictable,

sup
t∈[0,T ]

E[e−2αt|X(t)|2−1] ≤M2
1 , E

∫
QT

j(X(s))dξds ≤M2

}
,

(4.1)

where α > 0,M1 > 0 and M2 > 0 will be specified later.
The space K is endowed with the metric induced by the norm

‖X‖α =

(
sup
t∈[0,T ]

E[e−2αt|X(t)|2−1]

)1/2

.

Note that K is closed in the norm ‖ · ‖α. Indeed, if Xn → X in ‖ · ‖α then
since

E
∫
QT

j(Xn(s))dξds ≤M2, ∀ n ∈ N,
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(3.15) implies that

Xn → X, in L1((0, T )× O × Ω)

and by Fatou’s Lemma we get

E
∫
QT

j(X(s))dξds ≤M2.

as claimed. Now consider the mapping Γ : K → CW ([0, T ];H)∩L1((0, T )×
O × Ω) defined by

Y = Γ(X), (4.2)

where Y ∈ CW ([0, T ];H)∩L1((0, T )×O ×Ω) is the solution in the sense of
Definition 2.1 of the problem

dY (t)−∆Ψ(Y (t))dt = B(X(t))dW (t) in QT ,
Ψ(Y (t)) = 0 on ΣT ,
Y (0) = x in O.

(4.3)

We shall prove that for α,M1,M2 suitably chosen, Γ maps K into itself and
it is a contraction in the norm ‖ · ‖α.

Indeed by (3.51) and (1.6) for any solution Y to (4.3) we have that

1

2
|Y (t)|2−1 +

∫ t

0

∫
O

(j(Y (s)) + j∗(η(s)))dξds

=

∫ t

0

〈Y (s), B(X(s))dW (s)〉−1

+
1

2

∫ t

0

‖B(X(s))‖2LHS(L2(O),H)ds+
1

2
|x|2−1, t ∈ [0, T ], P-a.s..

By Hypothesis (H2) we have

1

2
sup
t∈[0,T ]

E[e−2αt|Y (t)|2−1] + e−2αtE
∫ t

0

∫
O

(j(Y (s)) + j∗(η(s)))dξds

≤ 1

2
|x|2−1 +

L2

2
sup
t∈[0,T ]

[
e−2αt

∫ t

0

E|X(s)|2−1ds

]

≤ 1

2
|x|2−1 +

L2

2
sup
t∈[0,T ]

∫ t

0

e−2α(t−s)Ee−2αs|X(s)|2−1ds ≤
1

2
|x|2−1 +

L2M2
1

4α
.
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Hence

sup
t∈[0,T ]

E[e−2αt|Y (t)|2−1] ≤
L2M2

1

2α
+ |x|2−1

and

E
∫
QT

(j(Y (s)) + j∗(η(s))))dξ ≤
(
L2M2

1

2α
+ |x|2−1

)
e2αT .

Hence for α > L2, M2
1 > 2|x|2−1 and M2 ≥ M2

1 e
2αT we have that Y ∈ K

and the operator Γ maps K into itself. By a similar computation involving
Hypothesis (H2) we see that for M1,M2 and α suitably chosen we have

‖Y1 − Y2‖α ≤
C√
α
‖X1 −X2‖α (4.4)

where Yi = ΓXi, i = 1, 2. Hence for a suitable α, Γ is a contraction and so
equation X = Γ(X) has a unique solution in Γ. This completes the proof. �
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