
LIMIT THEOREMS
IN FREE PROBABILITY THEORY. II

G. P. CHISTYAKOV1,3 AND F. GÖTZE2,4

Abstract. Based on an analytical approach to the definition of multiplicative free
convolution on probability measures on the nonnegative line R+ and on the unit circle
T we prove analogs of limit theorems for nonidentically distributed random variables in
classical Probability Theory.

1. Introduction

In the last years free convolution of measures introduced by D. Voiculescu has been
intensively studied. The key concept of this definition is the notion of freeness, which can
be interpreted as a kind of independence for noncommutative random variables. As in
the classical probability the concept of independence gives rise to the classical convolution,
the concept of freeness leads to a binary operation on the probability measures on the real
line, the free convolution. Many classical results in the theory of addition of independent
random variables have their counterpart in this new theory, such as the law of large num-
bers, the central limit theorem, the Lévy-Khintchine formula and others. We refer to
Voiculescu, Dykema and Nica [17] for introduction to these topic. Bercovici and Pata [7]
established the distributional behavior of sums of free identically distributed random vari-
ables and described explicitly the correspondence between classical and free limits. They
found remarkable parallelism between the free additive and classical additive infinite di-
visibility and limits laws for free and classical additive convolution. In the paper [11],
using an analytical approach to the definition of the additive free convolution (see [10]),
the Bercovici and Pata result was proved in the case of free non-identically distributed
random variables, i. e., it was shown that the Bercovici and Pata parallelism holds in
the general case of free non-identically distributed random variables. Our approach to
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the definition of additive free convolution allowed us to obtain estimates of a rate of con-
vergence of distribution functions of free sums. We proved a semi-circle approximation
theorem (an analog of the Berry-Esseen inequality), a law of large numbers with estimates
of convergence. We described the class Lévy L� for free random variables and we gave
the canonical representation of the measures of the class L� and gave a characterization
of the class L� with the help of the property of self-decomposability, extending results by
Barndorff-Nielsen and Thorbjørnsen [3]. In this paper we study the case of free multiplica-
tive convolutions, using again an analytical approach to the definition of free convolutions,
and we prove limit theorems for probability measures (p-measures) on R+ = [0,∞) and
on T = {z ∈ C : |z| = 1} in the case of non-identically distributed p-measures. Our
results generalize the Bercovici-Pata result for p-measures on R+ in the case of identically
distributed p-measures [8] and are new for p-measures on T. We would like to empha-
size that our approach allows to obtain explicit estimates of a convergence in these limit
theorems. However, we do not address this problem in this paper.

The paper is organized as follows. In Section 2 we formulate and discuss the main
results of the paper. In Section 3 we formulate auxiliary results. In Section 4 we prove
a multiplicative free limit theorem for p-measures on R+ which implies the Bercovici and
Pata parallelism between free multiplicative and classical multiplicative infinite divisibil-
ity and between limits laws for free and classical multiplicative convolution in the general
case of free non-identically distributed random variables. In Section 5 we prove the mul-
tiplicative free limit theorem for p-measures on T and compare this result with limit
theorems for p-measures on T with respect to the operation of the classical convolution.

2. Results

Denote by M+ the set of p-measures on R+ = [0,+∞). Let X and Y be free random
variables in some noncommutative probability space having distributions µ and ν respec-
tively. Then the multiplicative free convolution of µ and ν, denoted by µ�ν, is the distri-
bution of X1/2Y X1/2. The p-measures µ� ν have been introduced by Voiculescu [16] for
compactly supported p-measures and by Bercovici and Voiculescu [6] for the class M+.

Define, following Voiculescu [16], the ψµ-function of a probability measure µ ∈ M+,
by

ψµ(z) =

∫
R+

zu

1− zu
µ(du), z ∈ C \ R+. (2.1)

The measure µ is completely determined by ψµ because z(ψµ(z) + 1) = Gµ(1/z), where

Gµ(z) :=

∫
R

µ(du)

z − u
, z ∈ C+ = {z ∈ C : =z > 0}.

Note that ψµ : C \ R+ → C is an analytic function such that ψµ(z̄) = ψµ(z), and
ψµ(z) ∈ C+ ∪ R for z ∈ C+. Introduce the Rµ-function of the measure µ by

Rµ(z) := ψµ(z)/(1 + ψµ(z)), z ∈ C \ R+. (2.2)
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We see that the function Rµ(z) belongs to the class N , i.e., Rµ(z) is analytic such that
Rµ : C+ → C+∪R, and is analytic and non-positive on the negative part of R. Moreover,
for x > 0, Rµ(−x) → 0 as x→ 0.

Denote by K the subclass of N of functions f such that f(z) ∈ N and f(z)/z ∈ N ,
and, for x > 0, f(−x) → 0 as x→ 0.

Using the approach to the definition of the multiplicative free convolution in Chistyakov
and Götze [10], we define the multiplicative free convolution in the following way.

Let µ1 and µ2 belong to M+ and let Rµ1(z) and Rµ2(z) be Nevanlinna functions which
correspond to these measures by the relation (2.2). We shall define the free multiplicative
convolution based on Rµ1(z) and Rµ2(z) only. The function Rµ(z) is an analogue of
the reciprocal Cauchy transform of the measure µ ∈M+.

It was proved [10] that there exist two unique functions Z1(z) and Z2(z) in the class
K such that

Z1(z)Z2(z) = zRµ1(Z1(z)) and Rµ1(Z1(z)) = Rµ2(Z2(z)), z ∈ C+. (2.3)

Note (for details see Section 3) that R(z) := Rµ1(Z1(z)) belongs to the class K. In-
troduce the function ψ(z) := R(z)/(1 − R(z)). We see that ψ ∈ K and thus conclude
(see again Section 3) that ψ(z) admits the representation (2.1) with some p-measure
µ ∈ M+, that is ψ(z) = ψµ(z), z ∈ C+. In addition R(z) = Rµ(z), z ∈ C+. Therefore
ψµ1(Z1(z)) = ψµ(z).

The measure µ is determined in a unique way by the measures µ1 and µ2. We write
µ := µ1 � µ2.

In this way the multiplicative free convolution of p-measures on R+ is defined by
complex analytic methods. This has been proved independently by different means in [4].

The existence and uniqueness of subordinating functions Zj(z) in (2.3) has been studied
earlier using other methods in [9], [18]–[20].

The function Rµ(z) is univalent on the left half-plane iC+ (see [6]). Let χ̃µ be the right
inverse of this function on the image Rµ(iC+). We define the Σ-transform of µ as the func-
tion Σµ(z) := χ̃µ(z)/z defined on Rµ(iC+).

From (2.3) we conclude that the relation

R
(−1)
µ1 (z)

z

R
(−1)
µ2 (z)

z
=
R

(−1)
µ (z)

z
or Σµ1(z)Σµ2(z) = Σµ(z) (2.4)

holds on a domain where all functions Σµ1 ,Σµ2 and Σµ are defined. This formula was
first proved by Voiculescu [16] (see also [6]). From (2.4) we deduce that our definition of
the multiplicative convolution µ1 � µ2 coincides with Voiculescu’s definition.

We now introduce the notion of infinitely divisible measures for multiplicative free
convolution. More precisely, a measure µ ∈ M+ is said to be �-infinitely divisible if for
every natural number n there exists a measure νn ∈M+ such that

µ = νn � νn � · · ·� νn (n times) (2.5)
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with νn ∈M+. These measures were studied intensively in Voiculescu [16], Bercovici and
Voiculescu [5], [6]. There is an analogue of the Lévy-Khintchine formula which states that
a measure µ ∈ M+ is �-infinitely divisible if and only if there exist a finite nonnegative
measure σ on [0,∞) and real numbers a and b ≥ 0 such that

Σµ(z) = exp
{
a+

b

z
−

∫
R+

u+ z

1− uz
σ(du)

}
. (2.6)

Since there is a one-to-one correspondence between the functions Σµ(z) and the triples
(a, b, σ), we shall write Σµ = (a, b, σ).

In other words, a measure µ ∈M+ is �-infinitely divisible if and only if

Σµ(z) = exp{−u(z)}, (2.7)

where u(z) ∈ N and u(z) is analytic and real-valued on the negative part of R.
As in the case of additive free convolution we can formulate the limit problem for

multiplicative free convolution. Let {µnk : n ≥ 1, 1 ≤ k ≤ kn}, kn ↑ ∞ as n → ∞, be
a triangular scheme of measures in M+ such that

lim
n→∞

max
1≤k≤kn

µnk({u : |u− 1| > ε}) = 0 (2.8)

for every ε > 0, and let {an : n ≥ 1} be a sequence of positive numbers. The measures
µnk ∈ M+ are called infinitesimal. Denote by δa a p-measure such that δa({a}) = 1. We
would like to

1) determine all µ ∈M+ such that µ(n) = δ1/an �µn1 �µn2 · · ·�µnkn → µ in the weak
topology;

2) determine conditions such that µ(n) converges weakly to a given µ.
For measures µnk ∈ M+ we denote by µ̂nk the measures defined by µ̂nk((−∞, x)):=

µnk((−∞, ankx)), x > 0, where ank :=
∫

(1−d,1+d)
uµnk(du). Here d ∈ (0, 1) is an arbitrary

fixed number.
We shall give a complete solution of this problem, proving a multiplicative free Limit

Theorem for measures in M+.

Theorem 2.1. Let µnk be a triangular scheme of infinitesimal probability measures. Then
we have

(a) The family of limit measures in the weak topology of sequences µ(n) = δ1/an �µn1 �
µn2 � · · ·� µnkn coincides with the family of �-infinitely divisible measures.

(b) There exist positive constants an such that the sequence µ(n) = δ1/an � µn1 � µn2 �
. . .�µnkn converges weakly if, and only if, σn converges weakly on [0,∞] to some
finite nonnegative measure σ on [0,∞], where, for any Borel set S ⊆ [0,∞],

σn(S) :=
kn∑

k=1

∫
S

(u− 1)2

1 + u2
µ̂nk(du).
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Then all admissible an are of the form an = exp{αn − α + o(1)}, where α is
an arbitrary finite number and

αn =
kn∑

k=1

(
log ank +

∫
R+

u2 − 1

1 + u2
µ̂nk(du)

)
,

and all possible limit measures µ ∈ M+ have a Voiculescu transform Σµ = (α,
σ({∞}), σ).

Theorem 2.1 was proved by Bercovici and Pata [8] in the identical case µn1 = · · · = µnkn .
Denote by M0

+ the set of p-measures on (0,∞). The classical multiplicative convolu-
tions of two measures µ, ν on (0,∞) is denoted by µ ~ ν. Thus, µ ~ ν is the probabil-
ity distribution of XY , where X and Y are classical (commuting) independent random
variables with probability distributions µ and ν respectively. The study of ~-infinitely
divisible p-measures reduces (by a change of variable) to the study of the usual infin-
itely divisible measures on R. The Fourier transform needs to be replaced by the Mellin
transform of a measure µ on (0,∞) defined by

Mµ(t) =

∫
(0,∞)

uit µ(du), t ∈ R.

We have

Mµ~ν(t) = Mµ(t)Mν(t), t ∈ R.
Moreover the classical Lévy-Khinchin formula is as follows (see [12], [13] for the additive
case and [8]):

A p-measure µ on (0,∞) is ~-infinitely divisible if and only if there exist a finite
nonnegative Borel measure σ on (0,∞) and a real number a such that

Mµ(t) = exp{mµ(t)} = exp
{
iat+

∫
(0,∞)

(
uit − 1− it log u

1 + log2 u

)1 + log2 u

log2 u
σ(du), t ∈ R.

Since there is a one-to-one correspondence between functions Mµ(t) and pairs (a, σ), we
shall write mµ = {a, σ}.

Comparing the formulation of Theorem 2.1 and the formulation of the classical Limit
Theorem (see Theorem 3.6 in Section 3, [13], p. 310, [12]), we obtain the following result,
which generalizes the corresponding result in [8] for the case µn1 = · · · = µnkn , n ≥ 1.

Theorem 2.2. Let µnk be a triangular scheme of infinitesimal probability measures on
(0,∞). The following assertion are equivalent:

(i) The sequence µ(n) = δ1/an ~µn1 ~µn2 ~ · · ·~µnkn converges weakly to µ~ such that
mµ~ = {a~, σ~}.

(ii) The sequence µ(n) = δ1/an � µn1 � µn2 � · · · � µnkn converges weakly to µ� such
that Σµ� = (a�, 0, σ�), and σ�({0}) = σ�({∞}) = 0.
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If the equivalent conditions (i) and (ii) are satisfied then the measures σ~ and σ� are
related by

σ�(du) =
1 + log2 u

log2 u
· (u− 1)2

1 + u2
σ~(du)

while

a� + a~ =

∫
(0,∞)

(u2 − 1

u2 + 1
− log u

1 + log2 u

) 1 + log2 u

log2 u
σ�(du).

As shown in [8] there exists a sequence {µn}∞n=1 from the class M0
+ such that µn �

· · ·� µn (n times) converges weakly, but µn ~ · · ·~ µn (n times) does not.
Given two unitary elements U1, U2, which are free in some non-commutative probability

space (A, ϕ), we can form their product, which is again a unitary element. The distri-
butions of U1 and U2 are probability measures, say µ1 and µ2, on the set T of complex
numbers of modulus one. The distribution of U1U2 is µ1 � µ2, the multiplicative free
convolution of the measures µ1 and µ2.

Let µ be a probability measure on the unit circle T. We assume that T = y : −π ≤
y < π. Addition in T is modulo 2π. Following Voiculescu [16], we define the ψ-function
of a probability measure µ on T, by

ψµ(z) =

∫
[−π,π)

zeiy

1− zeiy
µ(dy). (2.9)

This is a convergent power series in D = {z ∈ C : |z| < 1}, the open unit disk of C,
such that ψµ(0) = 0. Let M∗ be the set of p-measures on T such that

∫
[−π,π)

eiy µ(dy) 6=
0. If µ ∈ M∗, the function Qµ := ψµ/(1 + ψµ) has a right inverse Q

(−1)
µ , defined in

a neighborhood of 0, such that Q
(−1)
µ (0) = 0, and we let Σµ(z) = Q

(−1)
µ (z)/z be Σµ-

transform of µ.
Note that

Qµ(z) =
ψµ(z)

1 + ψµ(z)
=
Fµ(z)− 1

Fµ(z) + 1
(2.10)

where Fµ(z) := 2ψµ(z) + 1 is a function of Carathéodory’s class C. This means (see
Section 3) that Fµ(z) is analytic and Fµ(z) : D → −i(C+ ∪ R). Since Fµ(0) = 1, such
functions Fµ(z) (see Section 3) have the form

Fµ(z) =

∫
[−π,π)

eiy + z

eiy − z
σ(dy), (2.11)

where σ is a p-measure. We see from (2.10), that Qµ ∈ S and Qµ(0) = 0, Q′
µ(0) 6= 0,

where S is the class of Schur’s functions. By definition (see Section 3) the class S is
the set of analytic functions D → D, where D is the closure of D. In the sequel we denote
by S∗ the subclass of S which consists of Schur functions Qµ such that Qµ(0) = 0 and
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Q′
µ(0) 6= 0. Since Qµ ∈ S, by the Schwarz lemma, we have |Qµ(z)/z| ≤ 1 for z ∈ D.

Hence |Q(−1)(z)/z| ≥ 1 in some neighborhood of 0.
Let µ1 and µ2 belong to M∗ and let Qµ1 and Qµ2 be Schur functions which correspond

to these measures, by (2.10). Let us define the free multiplicative convolution µ1 � µ2

based on Qµ1 and Qµ2 .
In [10] it was proved that there exist two unique functions Z1(z) and Z2(z) of the class

S∗ such that

Z1(z)Z2(z) = zQµ1(Z1(z)) and Qµ1(Z1(z)) = Qµ2(Z2(z)), z ∈ D. (2.12)

Now we shall consider the function Qµ1(Z1(z)). It is easy to see that this func-
tion belongs to the Schur class S and Qµ1(Z1(0)) = 0, Q′

µ1
(0)Z ′

1(0) 6= 0. Therefore
Qµ1(Z1(z)) = Qµ(z) for z ∈ D, where Qµ(z) has the form (2.10) for some measure
µ ∈ M∗. This measure is determined in a unique way by the measures µ1 and µ2. We
define µ := µ1 � µ2.

Thus, the multiplicative free convolution of measures in M∗ is defined by complex
analytic methods. This has been proved independently by different means in [4].

By the relation (2.10) between the functionQµ ∈ S and the function ψµ(z), we conclude
that ψµ(z) = ψµ1(Z1(z)) for z ∈ D. In addition we have in some neighborhood of 0

Q
(−1)
µ1 (z)

z

Q
(−1)
µ2 (z)

z
=
Q

(−1)
µ (z)

z
or Σµ1(z)Σµ2(z) = Σµ(z). (2.13)

This formula is due to Voiculescu [16].
Infinitely divisible measures for multiplicative free convolution in the case of measures

µ ∈ M∗ satisfy (2.5), where µ and νn belong to M∗. The infinitely divisible measures
have been intensively studied in Voiculescu [16], Bercovici and Voiculescu [5], [6]. There
is an analogue of the Lévy-Khintchine formula which states that a measure µ ∈ M∗ is
�-infinitely divisible if and only if there exist a finite nonnegative measure σ on T and
a real number a such that

Σµ(z) = exp
{
ia−

∫
[−π,π)

1 + zeiy

1− zeiy
σ(dy)

}
. (2.14)

Since there is a one-to-one correspondence between functions Σµ(z) and pairs (a, σ), we
shall write Σ = [a, σ].

In other words, a measure µ ∈M+ is �-infinitely divisible if and only if

Σµ(z) = exp{−v(z)}, (2.15)

where v(z) ∈ C.
Let us formulate the limit problem for multiplicative free convolution in the case of

measures µ ∈M∗.
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Let {µnk : n ≥ 1, 1 ≤ k ≤ kn}, kn ↑ ∞ as n→∞, be a triangular scheme of measures
in M∗. We shall say that the measures µnk are infinitesimal if

lim
n→∞

max
1≤k≤kn

µnk({y : |y| > ε}) = 0 (2.16)

for every ε > 0. Let {an : n ≥ 1} be a sequence of numbers of [−π, π). The limit problem
for multiplicative free convolution for measures µ ∈M∗ has the same form as for the case
of measures µ ∈M+.

Denote by µ̂nk the p-measure µnk � δ−ank
, where ank :=

∫
[−π,π)

g(y)µnk(dy), mod 2π,

where g(y) is a bounded continuous function on [−π, π) such that g(y) = y in a neigh-
borhood of y = 0 and g(−y) = −g(y), g(−π) = g(π − 0).

We give a complete solution of the limit problem for measures from the class M∗,
proving the following limit theorem for product of unitary free random variables.

Theorem 2.3. Let µnk be a triangular scheme of infinitesimal measures. We have
1. The family of limit measures in the weak topology of sequences δ−an �µn1�· · ·�µnkn

coincides with the family of infinitely divisible distributions.
2. There exist constants an such that the sequence δ−an �µn1 � · · ·�µnkn converges to

µ ∈M∗ if, and only if, νn converges weakly to some finite nonnegative measure ν, where
for every Borel set S ⊂ [−π, π),

νn(S) :=
kn∑

k=1

∫
S

(1− cos y) µ̂nk(dy). (2.17)

Then all admissible an are of the form an = αn − α + o(1), mod 2π, where α ∈ [−π, π)
is an arbitrary number, and

αn =
kn∑

k=1

ank +
kn∑

k=1

∫
[−π,π)

sin y µ̂nk(dy), (2.18)

and all possible limit measures µ ∈M∗ have a Voiculescu transform of type Σµ(z) = [α, ν].

We compare Theorem 2.3 with limit theorems for sums of independent random vari-
ables with values on T (see [14], [15]).

As before T denotes the group of rotations of the unit circle and the character group

T̂ of the group T is Z – the additive group of all integers (with the discrete topology).
The characteristic function qµ of the p-measure µ on the circle group T is the function on
Z defined by

qµ(m) =

∫
[−π,π)

eimy µ(dy), m ∈ Z.

Let µ1 ∗ µ2 is the convolution of p-measures on T. We have

qµ1∗µ2(m) = qµ1(m)qµ2(m), m ∈ Z.
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Recall that a p-measure µ on T is said to be idempotent if µ ∗ µ = µ. A p-measure µ is
a divisor of a p-measure λ if λ = µ ∗ ν for some p-measure ν.

Note as well that µ� δa = µ ∗ δa for µ ∈M∗ and a ∈ [−π, π). In addition, as it is easy
to see, the measures µ ∈M∗ and µ 6= δ0 are not idempotent.

Defining infinitely divisible p-measures on T in the usual way, the classical Lévy-
Khinchin formula has the following form (see [15]).

If µ is an infinitely divisible probability measure without idempotent factors, then qµ
has a representation

qµ(m) = eiam exp
{ ∫

[−π,π)

(eimy − 1− img(y))
ν(dy)

1− cos y

}
m ∈ Z, (2.19)

where a ∈ [−π, π), γ ≥ 0, g(ξ) is a bounded continuous function on [−π, π) such that
g(y) = y in a neighborhood of y = 0 and g(−y) = −g(y), g(−π) = g(π − 0) (which is
independent of µ), ν is a finite nonnegative Borel measure on T. In addition, (eimy − 1−
img(y))/(1− cos y) is defined as −m2 when y = 0.

In the following we shall write qµ = 〈a, ν〉, taking into account that qµ admits the rep-
resentation (2.19) which is not unique (see Proposition 3.11). But it turns out that if
〈a, ν〉 and 〈a′, ν ′〉 are two representations of qµ, then ν({0}) = ν ′({0}).

Theorem 2.4. Let {µnk} be a triangular scheme of infinitesimal p-measures of the class
M∗. If the sequence µn1 � · · · � µnkn converges weakly to a p-measure µ� such that
Σµ� = [α, ν], then the sequence µn1∗· · ·∗µnkn converges weakly to µ∗ such that qµ∗ = 〈α, ν〉.
There exists a triangular scheme of infinitesimal p-measures {µnk} with kn = n such that
the sequence µn1∗· · ·∗µnn of p-measures on T converges weakly to some p-measure µ ∈M∗
and δ−an � µn1 � · · · � µnn does not converge weakly for any an ∈ T to a p-measure in
M∗.

3. Auxiliary results

We need results about some classes of analytic functions (see [1], Section 3, and [2],
Section 6, §59).

The class N (Nevanlinna, R.) is the class of analytic functions f(z) : C+ → {z : =z ≥
0}. For such functions there is the integral representation

f(z) = a+ bz +

∫
R

1 + uz

u− z
τ(du), (3.1)

where b ≥ 0, a ∈ R, and τ is nonnegative bounded measure. Moreover, a = <f(i) and
τ(R) = =f(i)− b.

The Stieltjes-Perron inversion formula for the functions f of the class N has the fol-
lowing form.
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Let ρ(u) :=
∫ u

0
(1 + t2) τ(dt). Then

ρ(u2)− ρ(u1) = lim
η→0

1

π

u2∫
u1

=f(ξ + iη) dξ, (3.2)

where u1 < u2 are continuity points of the function ρ(u).
The function f(z) of the special form

f(z) =

∫
(0,∞)

1 + uz

u− z
τ(du)

admits the bound
|f(z)| = o(|z|) as z → 0 or z →∞ (3.3)

nontangentially to R (i.e., such that <z/=z stays bounded).
By Krein’s results (see [1], and [10], Section 3), the function R(z) ∈ K if and only if it

admits the following representation

R(z) = bz + z

∫
(0,∞)

τ(du)

u− z
, 0 < arg z < 2π, (3.4)

where b ≥ 0 and τ is a nonnegative measure such that∫
(0,∞)

τ(du)

1 + u
<∞. (3.5)

Let µj ∈M, j = 1, 2. Recall that we defined µ1 � µ2 in the following way.
Using (2.3) and (3.4), we see that R(z) := Rµ1(Z1(z)) and R(z)/z belong to the class

N and in addition, for x > 0, R(−x) → 0 as x → 0. Introduce the function ψ(z) :=
R(z)/(1 − R(z)). We note that ψ(z) ∈ N and ψ(z)/z ∈ N . Moreover limx→−∞ ψ(x)/x
= 0. Hence the function ψ(z) admits the representation (3.4) with b = 0.

It is easy to see that limx→−∞ ψ(x) = −1 if and only if in the representation (3.4) for
Rµ1(z) either b > 0 or τ(R+) = ∞. In this case we obtain for ψ(z) the representation (2.1)
with some probability measure µ ∈ M+ and µ({0}) = 0, that is ψ(z) = ψµ(z), z ∈ C+.
In addition R(z) = Rµ(z), z ∈ C+. Therefore ψµ1(Z1(z)) = ψµ(z).

Let in (3.4) b = 0 and τ(R+) <∞. Then limx→−∞ ψ(x) = −p = −τ(R+)/(1 + τ(R+)),
and we get for ψ(z) the representation (2.1) with some probability measure µ ∈M+ and
µ({0}) = 1− p. Thus, ψ(z) = ψµ(z), z ∈ C+.

The measure µ is determined in a unique way by the measures µ1 and µ2 and we define
µ := µ1 � µ2.

As was proved in [10], (2.3) admits the following consequences.

Proposition 3.1. Let µ1, . . . , µn ∈ M+. There exist unique functions Z1(z), . . . , Zn(z)
of the class K such that, for z ∈ C+,

Z1(z) . . . Zn(z) = z(Rµ1(Z1(z)))
n−1, and Rµ1(Z1(z)) = · · · = Rµn(Zn(z)). (3.6)
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Moreover, Rµ1�···�µn(z) = Rµ1(Z1(z)) for all z ∈ C+.

We need the following auxiliary results. The first three of them are due to Bercovici
and Voiculescu [6].

Proposition 3.2. Let {µn}∞n=1 and {νn}∞n=1 be sequences of p-measures on R+ which
converge weakly to p-measures µ and ν, respectively. Then {µn � ν}∞n=1 converges weakly
to the p-measure µ� ν. The same result holds for p-measures µ ∈ S∗ on T.

Proposition 3.3. Let µ1 and µ2 be p-measures on R+, and let µ = µ1 � µ2. Then we
have µ({0}) = max{µ1({0}), µ2({0})}.

Proposition 3.4. Let µ a p-measure on R+ such that µ({0}) < 1. Then ψµ is univalent
in the left half-plane iC+, and ψµ(iC+) is a region contained in the circle with diameter
(µ({0})− 1, 0); moreover ψµ(iC+) ∩ R+ = (µ({0})− 1, 0).

Let µ ∈ M0
+. Denote by µ̄ the measure such that µ̄(B) = µ(B−1) for any Borel set

B ⊂ R+ \ {0}. Denote µs := µ� µ̄.

Proposition 3.5. A p-measure µ ∈M0
+ satisfies µ̄ = µ if and only if one of the following

relations hold, for z 6= 1 and |z| = 1,
1) <ψµ(z) = −1/2;
2) |Rµ(z)| = 1;
3) |Σµ(z)| = 1, where Σµ is defined.

Proof. By the integral representation (2.1) for ψµ(z), it is easy to verify that

ψµ̄

(1

z̄

)
+

1

2
= −

(
ψµ(z) +

1

2

)
, z ∈ C+. (3.7)

The first assertion of the lemma immediately follows from this formula and from the sym-
metry principle for analytic functions.

Recalling the definition of the function Rµ(z) and using (3.7), we get the relation

Rµ̄

(1

z̄

)
=

1

Rµ(z)
, z ∈ C+. (3.8)

As before the second assertion of the lemma immediately follows from (3.8) and from
the symmetry principle for analytic functions.

Using (3.8), we obtain the formula

Σµ̄

(1

z̄

)
=

1

Σµ(z)
(3.9)

for z such that Σµ(z) is defined. We obtain the third assertion of the lemma as before. �
We obtain, as an evident consequences of Proposition 3.5, that µs has the property

µ̄s = µs. In addition, if µ1 and µ2 from the class M0
+ such that µ̄1 = µ1 and µ̄2 = µ2,

then µ1 � µ2 has the same property as well.
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As for multiplicative free convolution we can formulate the limit problem for the mul-
tiplicative classical convolution ~. Let {µnk : n ≥ 1, 1 ≤ k ≤ kn}, kn ↑ ∞ as n→∞, be
a triangular scheme of infinitesimal measures in M0

+. We shall

1) determine all µ ∈M0
+ such that µ(n) = δ1/an ~µn1 ~µn2 · · ·~µnkn → µ in the weak

topology, here {an} is a sequence of positive numbers;
2) determine conditions under which µ(n) converges weakly to a given → µ.
For measures µnk ∈ M0

+ we denote by µ̂nk the measures such that µ̂nk((−∞, x)):=
µnk((−∞, ankx)), x > 0, where ank := exp{

∫
(1−τ,1+τ)

log uµnk(du)}. Here τ ∈ (0, 1) is

an arbitrary but fixed number.
A complete solution of this problem follows from the Limit Theorem for classical con-

volution ∗ (see [13], p. 310, [12]).

Theorem 3.6. Let µnk be a triangular scheme of infinitesimal probability measures in
M0

+. Then we have

1. The family of limit measures of sequences µ(n) = δ1/an ~ µn1 ~ µn2 ~ · · · ~ µnkn

coincides with the family of ~-infinitely divisible measures.
2. There exist positive constants an such that the sequence µ(n) = δ1/an ~ µn1 ~ µn2 ~

· · · ~ µnkn converges weakly if, and only if, σn converges weakly on (0,∞) to some finite
nonnegative measure σ~ on (0,∞), where, for any Borel set S ⊂ (0,∞),

σn(S) :=
kn∑

k=1

∫
S

log2 u

1 + log2 u
µ̂nk(du).

Then all admissible an are of the form an = exp{αn − α+ o(1)}, where α is an arbitrary
finite number and

αn =
kn∑

k=1

( 1+τ∫
1−τ

log uµnk(du) +

∫
(0,∞)

log u

1 + log2 u
µ̂nk(du)

)
,

and all possible limit measures µ ∈M0
+ have mµ = {α, σ~}.

By C we denote C. Carathéodory’s class of analytic functions F (z) : D → {z : <z ≥ 0}.
A function F is in C if and only if it admits the following representation (Herglotz, G.,
Riesz, F.)

F (z) = ia+

∫
[−π,π)

eiy + z

eiy − z
σ(dy), (3.10)

where a = =F (0) and σ is finite nonnegative measure. The number a and the measure σ
are uniquely determined by F .

Write the Stieltjes-Perron inversion formula for the function F of the class C as follows:

κ(y2)− κ(y1) =
1

π
lim
r↑1

y2∫
y1

<F (reiϕ) dϕ,
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where −π ≤ y1 < y2 < π are continuity points of the function κ(y) := σ([−π, y)), y ∈
[−π, π).

By S we denote J. Schur’s class of analytic functions ϕ(z) : D → D. The classes C and
S are connected via

ϕ(z) =
1

z

F (z)− F (0)

F (z) + F (0)
, (3.11)

which induces a one-to-one correspondence between C and S.
As it was proved in [10], (2.12) admits the following consequences.

Proposition 3.7. Let µ1, . . . , µn ∈ M∗. There exist unique functions Z1(z), . . . , Zn(z)
of the class S∗ such that, for z ∈ D,

Z1(z) . . . Zn(z) = z(Qµ1(Z1(z)))
n−1, and Qµ1(Z1(z)) = · · · = Qµn(Zn(z)). (3.12)

Moreover, Qµ1�···�µn(z) = Qµ1(Z1(z)) for all z ∈ D.

Let µ ∈ M∗. Denote by µ̄ the measure such that µ̄(B) = µ(−B) for any Borel set
B ⊂ T. Denote µs := µ� µ̄.

Proposition 3.8. A p-measure µ ∈ M∗ has the property µ̄ = µ if and only if one of
the following relations hold, for real x such that −1 < x < 1,

1) =ψµ(x) = 0;
2) =Qµ(x) = 0;
3) =Σµ(x) = 0, where Σµ is defined.

Proof. By the integral representation (2.9) for ψµ(z), it is easy to verify that

ψµ̄(z̄) = ψµ(z), z ∈ D. (3.13)

The first assertion of the lemma immediately follows from this formula and from the sym-
metry principle for analytic functions.

Recalling the definition of the function Qµ(z) (see (2.10)), we get the relation

Qµ̄(z̄) = Qµ(z), z ∈ D. (3.14)

As before the second assertion of the lemma immediately follows from (3.14) and from
the symmetry principle for analytic functions.

Using (3.14), we obtain the formula

Σµ̄(z̄) = Σµ(z), (3.15)

where Σµ(z) is defined. We obtain the third assertion of the lemma as before. �
We need the following results for the convergence of ∗-infinitely divisible p-measures

on T (see [14], [15]).
If ν is any finite measure on T the p-measure e(ν) associated with ν is defined as

follows:

e(ν) = e−ν(T)
(
δ0 + ν +

ν2∗

2!
+ · · ·+ νn∗

n!
+ . . .

)
,

where νn∗ := ν ∗ · · · ∗ ν (n times).
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Theorem 3.9. Let {µnk : n ≥ 1, k = 1, . . . , kn}, be a uniformly infinitesimal sequence
of p-measures, and let µn = µn1 ∗ · · · ∗ µnkn. Let βnk = e(µnk ∗ xnk), where xnk is that
element of the group T defined by the equation

eimxnk = exp
{
− im

∫
[−π,π)

g(x)µnk(dx)
}
, m ∈ Z. (3.16)

Let λn = βn1 ∗ · · · ∗ βnkn ∗ xn, where xn = −(xn1 + · · · + xnkn). If one of the sequences
{λn} and {µn} is shift compact and no limit of its shifts has an idempotent factor, then

lim
n→∞

sup
m∈K

|qλn(m)− qµn(m)| = 0

for all compact set K of Z.

Theorem 3.10. Let {µn} be a sequence of ∗-infinitely divisible p-measures without idem-
potent divisors with representations {〈an, νn〉} and µ is an infinitely divisible p-measure
without idempotent divisors with a representation {〈a, ν〉}. The conditions νn → ν weakly
and an → a as n→∞ are sufficient for the weak convergence µn → µ.

This result is a simple consequence of Theorem 4.10 in [15].
The following proposition (see [14], p. 112) show that the representation (2.19) is not

unique.

Proposition 3.11. There exist two finite nonnegative measures ν1 6= ν2 on T such that
ν1 = ν2 and

exp
{ ∫

[−π,π)

(eimt − 1) ν1(dt)
}

= exp
{ ∫

[−π,π)

(eimt − 1) ν2(dt)
}
, m ∈ Z. (3.17)

Proof. Following the arguments in [14], p. 112, we consider the function f(x) =
4π sin(nx), where x ∈ [−π, π) and n 6= 0 belongs to Z. We see that

1

2π

∫
[−π,π)

eimxf(x) dx = qm, m ∈ Z,

where qm = 2πi if m = n, qm = −2πi if m = −n, and qm = 0 otherwise. Writing f+ and
f− for the positive and negative parts of f , we define two measures

ν1(S) =
1

2π

∫
S

f+(x) dx, ν2(S) =
1

2π

∫
S

f−(x) dx

for all Borel sets on [−π, π). Then ν1 6= ν2, but (3.17) holds which was to be proved. �
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4. Multiplicative free limit theorem in M+

In Section 4 we prove Theorem 2.1. We denote here by c positive absolute constants.
For some measure ν and for some parameter d we denote by c(ν), c(d), and c(ν, τ) positive
constants which depend on the measure ν, on the parameter d, and on ν and d, respec-
tively. By cj(ν), cj(d), cj(ν, d), j = 1, . . . , we denote explicit positive constants depending
on corresponding measures and parameters. In the first step we establish some properties
of the measures {µnk : n ≥ 1, 1 ≤ k ≤ kn}, kn ↑ ∞, satisfying condition (2.8), and
the corresponding transforms {Rµnk

(z) : n ≥ 1, 1 ≤ k ≤ kn}.
It is clear that the condition (2.8) is equivalent to the following one

max
k=1,...,kn

∫
R+

(u− 1)2

1 + u2 µnk(du) → 0, n→∞.

Recall that µ̂nk are the p-measures such that µ̂nk((−∞, x)) = µnk((−∞, ankx)), where
ank :=

∫
(1−d,1+d)

uµnk(du). Here d ∈ (0, 1) is an arbitrary but fixed number. Since

maxk=1,...,kn |akn − 1| → 0 as n→∞, we conclude

εn := max
k=1,...,kn

εnk → 0, n→∞, where εnk :=

∫
R+

(u− 1)2

1 + u2 µ̂nk(du). (4.1)

Let µ ∈M+ with a finite second moment. Denote

a(µ) :=

∫
R+

uµ(du), σ2(µ) :=

∫
R+

u2 µ(du)−
( ∫

R+

uµ(du)
)2

.

Consider the p-measures ρnk, k = 1, . . . , kn, such that, for all Borel set B ⊆ R+,

ρnk(B) =
1

bnk

∫
B

µ̂nk(du)
1 + u2 with bnk :=

∫
R+

µ̂nk(du)
1 + u2 . (4.2)

First let us prove that

|a(ρnk)− 1| ≤ c(d)εnk, n ≥ n0, k = 1, . . . , kn, (4.3)

where n0 is a sufficiently large positive integer. Write

bnk(a(ρnk)− 1) = I1 + I2 :=
( ∫
|anku−1|≤d

+

∫
|anku−1|>d

) u− 1

1 + u2
µ̂nk(du).
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We note that

I1 =
1

2

∫
|anku−1|≤d

(u− 1)µ̂nk(du) + θc(d)

∫
|anku−1|≤d

(u− 1)2µ̂nk(du)

=
1

2ank

∫
[1−d,1+d]

(x− ank)µnk(dx) + θc(d)εnk = θc(d)εnk.

Here and in the sequel we denote by θ a real quantity such that |θ| ≤ 1. Furthermore,

|I2| ≤ c(d)

∫
|anku−1|>d

(u− 1)2

1 + u2
µ̂nk(du) ≤ c(d)εnk.

The last two estimates together with the obvious lower bound

bnk ≥
1

4
, n ≥ n0, k = 1, . . . , kn, (4.4)

prove (4.3).
Secondly we shall prove that

1

2
εnk ≤ σ2(ρnk) ≤ c(d)εnk, n ≥ n0, k = 1, . . . , kn. (4.5)

Indeed, using (4.3) and (4.4), we have the relation, for n ≥ n0, k = 1, . . . , kn,

σ2(ρnk) =
1

bnk

∫
R+

(u− a(ρnk))
2

1 + u2
µ̂nk(du) ≤

2

bnk

∫
R+

(u− 1)2

1 + u2
µ̂nk(du)

+
2(a(ρnk)− 1)2

bnk

∫
R+

µ̂nk(du)

1 + u2
≤ (2 + c(d))εnk

bnk

≤ c(d)εnk.

In view of (4.3) and (4.4), we obtain the lower bound

σ2(ρnk) ≥
1

bnk

∫
R+

(u− 1)2

1 + u2
µ̂nk(du)− 2|a(ρnk)− 1|

( 1

bnk

∫
R+

(u− 1)2

1 + u2
µ̂nk(du)

)1/2

≥
( 1

bnk

− 4c(d)
√
εnk

)
εnk ≥

1

2
εnk, n ≥ n0, k = 1, . . . .kn.

The estimate (4.5) follows from the last two bounds.
For every k = 1, . . . , kn we have, taking into account (3.4),

Rbµnk
(z) = cnkz + z

∫
(0,∞)

τnk(du)

u− z
, z ∈ C \ [0,∞), k = 1, . . . , kn, (4.6)
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where cnk are nonnegative constants and τnk are nonnegative measures such that∫
(0,∞)

τnk(du)
1 + u

<∞. (4.7)

Since

=Rbµnk
(i) = = ψbµnk

(i)

1 + ψbµnk
(i)

= a(ρnk)
(
1 +

σ2(ρnk)

1 + a2(ρnk)

)
, (4.8)

and

<Rbµnk
(i) = < ψbµnk

(i)

1 + ψbµnk
(i)

= − σ2(ρnk)
1 + a2(ρnk)

, (4.9)

we have, by (4.3) and (4.5) , for n ≥ n0, k = 1, . . . , kn,

1

8
εnk ≤

∫
(0,∞)

τnk(du)

1 + u2
≤ c(d)εnk, and |Rbµnk

(i)− i| ≤ c(d)εnk. (4.10)

In view of the bound ∣∣∣ 1

u− z

∣∣∣ ≤ Q(z)√
1 + u2

z ∈ C+, u > 0, (4.11)

where

Q(z) := 1 +
1

|z|
if z ∈ C+ ∩ (iC+) and Q(z) := 2

(
1 +

1 + <z
=z

)
if z ∈ C+ ∩ (−iC+),

we obtain from (4.10) and (4.11)∣∣∣Rbµnk
(z)

z
− 1

∣∣∣ ≤ ∣∣∣Rbµnk
(z)

z
− Rbµnk

(i)

i

∣∣∣ + |Rbµnk
(i)− i|

≤ |z − i|
∫

R+

τnk(du)√
1 + u2|u− z|

+ c(d)εnk ≤ c(d)εnk(|z|+ 1)Q(z) (4.12)

for z ∈ C+, and∣∣∣Rbµnk
(z1)

z1

− Rbµnk
(z2)

z2

∣∣∣ ≤ ∫
R+

|z1 − z2|τnk(du)

|u− z1||u− z2|

≤ |z1 − z2|Q(z1)Q(z2)

∫
R+

τnk(du)

u2 + 1
≤ c(d)εnk|z1 − z2|Q(z1)Q(z2) (4.13)

for z1, z2 ∈ C+.
In addition, using (4.10) and (4.12), we easily conclude that

c1(d)εnk=z ≤ =(Rbµnk
(z)/z)| ≤ c2(d)εnk=z and |<(Rbµnk

(z)/z)− 1| ≤ c(d)εnk
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for z ∈ C such that 1/4 ≤ |z| ≤ 2 and π/4 ≤ arg z ≤ π, and for n ≥ n0, k = 1, . . . , kn.
Hence for the same z and n, k the following relations hold

|Rbµnk
(z)/z − 1| ≤ c(d)εnk and c3(d) ≤

arg(Rbµnk
(z)/z)

εnk(π − arg z)
≤ c4(d). (4.14)

The relations (4.14) imply that the inverse functions R
(−1)bµnk

(z) exist and are analytic in

the domain D1 := {z ∈ C : 1/2 < |z| < 3/2, 3π/8 < arg z < π}. Moreover, for z ∈ D1

and for n ≥ n0, k = 1, . . . , kn,

|(R(−1)bµnk
(z)/z)− 1| ≤ c(d)εnk and c5(d) ≤ −

arg(R
(−1)bµnk

(z)/z)

εnk(π − arg z)
≤ c6(d). (4.15)

Proof of Theorem 2.1. Sufficiency.
By Proposition 3.1, there exist unique functions Zn1(z), . . . , Znkn(z) of class K such

that, for all z ∈ C+,

Rbµn1(Zn1(z))

z
=
Rbµn1(Zn2(z))

Zn1(z)
. . .

Rbµnn(Znkn(z))

Znkn(z)
(4.16)

and

Rbµn1(Zn1(z)) = · · · = Rbµnn(Znkn(z)). (4.17)

Moreover, Rn(z) := Rbµn(z) = Rbµnk
(Znk(z)), k = 1, . . . , kn, where µ̂n := µ̂n1 � · · ·� µ̂nkn .

By Propositions 3.3, 3.4, we see that the functions Σbµn(z), Σbµnk
(z), k = 1, . . . , kn,

are defined on some domain Ω ⊆ iC+ which contains the interval (1 − 1/∆n, 0), where
the parameter ∆n := maxk=1,...,kn µnk({0}) satisfies ∆n ≤ maxk=1,...,kn εnk and tends to 0
as n→∞. By (4.16) and (4.17), we have

Σbµn(z) = Σbµn1(z) . . .Σbµnkn
(z), z ∈ Ω. (4.18)

Denote ηn :=
∑kn

k=1 εnk. Recall that, by the assumption of the theorem, ηn → σ([0,∞])
as n → ∞. Hence ηn ≤ σ([0,∞]) + 1 for n ≥ n0. We see that Σbµn(z), n ≥ n0, admit
an analytic continuation in D1 and there, by (4.15),

exp
{
− c(d)ηn

}
≤ |Σbµn(z)| = |Σbµn1(z)| . . . |Σbµnkn

(z)| ≤ exp
{
c(d)ηn

}
(4.19)

and

c5(d)ηn ≤ −arg Σbµn(z)

π − arg z
= −

arg Σbµn1(z) + · · ·+ arg Σbµnkn
(z)

π − arg z
≤ c6(d)ηn. (4.20)

In addition we note that, by (4.19) and (4.20), for z ∈ D2 := {z ∈ C : 1/2 < |z| <
3/2, π − c7(d) < arg z < π} with sufficiently small c7(d) and n ≥ n0, k = 1, . . . , kn,

Σbµn(z) =
(Rbµnk

(Znk)
(−1)(z)

z
=
Z

(−1)
nk (R

(−1)bµnk
(z))

z
,
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and hence, for the same z, n, k,

Znk(zΣbµn(z))

zΣbµn(z)
=
R

(−1)bµnk
(z)

z

1

Σbµn(z)
. (4.21)

By (4.15), (4.19) and (4.20), we see from (4.21) that there exist points znk such that
znk ∈ {z ∈ C : e−c8(d)ηn ≤ |z| ≤ ec8(d)ηn , π − c7(d) < arg z < π − c7(d)/2}, where

e−c(d)ηn ≤ |Znk(znk)/znk| ≤ ec(d)ηn and
1

c(d)
≤ arg(Znk(znk)/znk)

ηn(π − arg znk)
≤ c(d) (4.22)

for n ≥ n0, k = 1, . . . , kn with some positive constant c(d) > 1.
The functions Znk, n ≥ 1, k = 1, . . . , kn, are in K and therefore, by (3.4),

Znk(z) = dnkz + z

∫
(0,∞)

νnk(du)

u− z
z ∈ C+, (4.23)

where dnk are nonnegative constants and νnk are nonnegative measures such that∫
(0,∞)

νnk(u)

1 + u
<∞.

Applying the bounds (4.22) to the integral representation (4.23), we easily obtain the fol-
lowing estimates, for all n ≥ n0, k = 1, . . . , kn,

e−c11(d)ηn ≤ dnk +

∫
(0,∞

(u+ c9(d))νnk(du)

(u+ c9(d))2 + c10(d)
≤ ec11(d)ηn (4.24)

and

c12(d)ηn ≤
∫

(0,∞)

νnk(u)

1 + u2
≤ c13(d)ηn. (4.25)

Then we obtain, using (4.11) and (4.24),

|Znk(z)| ≤ c(σ, d)|z|Q(z), z ∈ C+, n ≥ n0, k = 1, . . . , kn. (4.26)

On the other hand, by (4.24), (4.25) and the lower bound

1

|u− z|2
≥ 1

(u+ |<z|)2 + (=z)2
≥ 1

2

1

u2 + |z|2
≥ 1

2

1

1 + |z|2
· 1

1 + u2
, u > 0, z ∈ C,

we have, for the same z, n, k,

|Znk(z)| ≥ |z|=(Znk(z)/z) = |z|=z
∫

(0,∞)

νnk(du)

(u−<z)2 + (=z)2
≥ c12(d)

2
ηn

|z|=z
1 + |z|2

(4.27)
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and

|Znk(z)| ≥ |z||<(Znk(z)/z| = |z|
∣∣∣dnk +

∫
(0,∞)

(u−<z) νnk(du)

(u−<z)2 + (=z)2

∣∣∣
≥ max

{
0,

1

2(1 + |z|2)

(
dnk +

∫
(0,∞)

u νnk(du)

1 + u2

)

− (1 + sign(<z))<z
∫

(0,∞)

νnk(du)

(u−<z)2 + (=z)2

}
≥ c(d)|z|gn(z), (4.28)

where

gn(z) := max
{

0, (e−c11(d)ηn − c(d)ηn)
1

2(1 + |z|2)
− (1 + sign(<z))c14(d)ηn<z

1 + (<z)2

(=z)2

}
.

Note that the estimate (4.28) is only useful if ηn is sufficiently small.
Finally we get from (4.27) and (4.28), for z ∈ C+, n ≥ n0, k = 1, . . . , kn.

|Znk(z)| ≥ ρn(z) := |z|
(c12(d)

2
ηn

|z|=z
1 + |z|2

+ c(d)gn(z)
)
. (4.29)

Using (4.12), we deduce∣∣∣Rbµnk
(Znk(z))

Znk(z)
− 1

∣∣∣ ≤ c(σ, d)εnk(|Znk(z)|+ 1)Q(Znk(z)) (4.30)

for z ∈ C+, n ≥ n0, and k = 1, . . . , kn.
If <Znk(z) ≥ 0, then, using sin(x) ≥ 2

π
x for 0 ≤ x ≤ π/2, we obtain

=Znk(z) = |Znk(z)| sin(argZnk(z)) ≥
2

π
|Znk(z)| argZnk(z) ≥

2

π
|Znk(z)| arg z (4.31)

and we get, by (4.26), (4.29), and (4.31),

Q(Znk(z)) ≤ 2 + 2
1 + |Znk(z)|

=Znk

≤ 2 + c(σ, d)
Q(z)(1 + |z|)2

ρn(z)=z
. (4.32)

If <Znk(z) ≤ 0, we have, by (4.29),

Q(Znk(z)) ≤ 1 +
1

|Znk(z)|
≤ 1 +

1

ρn(z)
. (4.33)

Applying (4.26), (4.32), and (4.33) to (4.30), we finally deduce∣∣∣Rbµnk
(Znk(z))

Znk(z)
− 1

∣∣∣ ≤ c(σ, d)εnkQ1(z) := c(σ, d)εnk
Q2(z)(1 + |z|)3

ρn(z)=z
(4.34)

for z ∈ C+, n ≥ n0, and k = 1, . . . , kn.
Introduce the domainD(T ) := {z ∈ C : 1/T < =z < T, −T < <z < T} for sufficiently

large T > c(σ, d) > 1.



LIMIT THEOREMS IN FREE PROBABILITY THEORY. II 21

We shall estimate below the function ρn(z) for z ∈ D(T ). First we assume that
ηn > δ0T

−7 with sufficiently small δ0 = δ0(σ, d). In this case we obtain from (4.29) that
ρn(z) ≥ c(σ, d)T−10. Now we consider the case where ηn ≤ δ0T

−7. Then, it is easy to see,
that the function gn(z) admits the estimate

gn(z) ≥ c(σ, d)T−2
(
1− 10ec11(d)ηnc14(d)ηnT

7
)
≥ 1

2
c(σ, d)T−2

and we obtain that ρn(z) ≥ 1
2
c(σ, d)T−3. Hence we finally have

ρn(z) ≥ c(σ, d)T−10, z ∈ D(T ). (4.35)

Using this bound we see that the following estimate holds

Q1(z) ≤ c(σ, d)T 18, z ∈ D(T ). (4.36)

It follows from (4.34) and (4.36) that the right-hand side of (4.34) does not exceed

1/2 for z ∈ D(δε
−1/18
n ) with sufficiently small δ = δ(σ, d) > 0. Using series expansion of

the function log(1− z) for |z| < 1 and (4.34), we easily obtain, for n ≥ n0, k = 1, . . . , kn,

log
Rbµnk

(Znk(z))

Znk(z)
=
Rbµnk

(Znk(z))

Znk(z)
− 1 + rnk(z), z ∈ D(δε−1/18

n ), (4.37)

where the function rnk(z) is analytic in D(δε
−1/18
n ) and admits the following estimate

|rnk(z)| ≤ c(σ, d)ε2
nkQ

2
1(z). (4.38)

In (4.37) we choose the principal branch of the logarithm.
Let us return to the relation (4.17). In view of (4.26) and (4.34), we have, for z ∈

D(δε
−1/18
n ), n ≥ n0 and k = 2, . . . , kn,

|Zn1(z)− Znk(z)| ≤ |Rbµn1(Zn1(z))− Zn1(z)|+ |Rbµnk
(Znk(z))− Znk(z)|

≤ c(σ, d)εn|z|Q(z)Q1(z). (4.39)

Denote

qnk(z) :=
Rbµnk

(Znk(z))

Znk(z)
− Rbµnk

(Zn1(z))

Zn1(z)
, z ∈ C+, n ≥ n0, k = 2, . . . , kn. (4.40)

By (4.13), it follows that

|qnk(z)| ≤ c(d)εnk|Znk(z)− Zn1(z)|Q(Znk(z))Q(Zn1(z))

for z ∈ D(δε
−1/18
n ), n ≥ n0 and k = 1, . . . , kn. Taking into account (4.39) and (4.32),

(4.33), (4.35), and (4.36) we have, for z ∈ D(T ) with T ≤ δε
−1/18
n and n ≥ n0, k =

1, . . . , kn,

|qnk(z)| ≤ c(σ, d)εnkεnT
51. (4.41)
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Consider the functions

fnk(z) := (1− z)(1 + ψbµnk
(z))− 1 = z

∫
R+

(u− 1) µ̂nk(du)
1− uz

=
z

1− z

( ∫
R+

u2 − 1

u2 + 1
µ̂nk(du) +

∫
R+

u+ z

1− uz

(u− 1)2

u2 + 1
µ̂nk(du)

)
(4.42)

for z ∈ C+, n = 1, . . . , k = 1, . . . , kn. It is easy to see that

Rµnk
(z)

z
− 1 =

1− z

z
fnk(z) + θnk(z) :=

1− z

z

(
fnk(z)−

f 2
nk(z)

1 + fnk(z)

)
. (4.43)

Since by (4.11), for u > 0 and z ∈ C+,

u

|1− uz|
≤ uQ(z)√

1 + u2
and

1

|1− uz|
≤ Q(z)√

1 + u2
,

we obtain from (4.42), for z ∈ C+ and n ≥ n0, k = 1, . . . , kn,∣∣∣ ∫
R+

u+ z

1− uz

(u− 1)2

u2 + 1
µ̂nk(du)

∣∣∣ ≤ (1 + |z|)Q(z)

∫
R+

(u− 1)2

u2 + 1
µ̂nk(du) ≤ εnk(1 + |z|)Q(z).

(4.44)
Moreover, recalling the definition of µ̂nk, it is not difficult to deduce the following bound,
for n ≥ n0, k = 1, . . . , kn,∣∣∣ ∫

R+

u2 − 1

u2 + 1
µ̂nk(du)

∣∣∣ ≤ ∣∣∣ ∫
{u≥0, |anku−1|<d}

(u− 1) µ̂nk(du)
∣∣∣

+c(d)

∫
{u≥0, |anku−1|<d}

(u− 1)2 µ̂nk(du) +

∫
{u≥0, |anku−1|≥d}

µ̂nk(du) ≤ c(d)εnk. (4.45)

The estimates (4.44) and (4.45) together imply

|fnk(z)| ≤ c(d)εnk
|z|(1 + |z|)
|1− z|

Q(z) (4.46)

for z ∈ C+, n ≥ n0 and k = 1, . . . , kn. Since, as it is easy to see, |fnk(z)| ≤ 1/2 for

z ∈ D(δε
−1/18
n ) and hence |1 + fnk(z)| ≥ 1/2 for the same z, n, k, it follows immediately

from (4.46) that

|θnk(z)| ≤ c(d)ε2
nk

|z|(1 + |z|)2

|1− z|
Q2(z) (4.47)

for z ∈ D(δε
−1/18
n ) and n ≥ n0, k = 1, . . . , kn. Denote

rn(z) =
kn∑

k=1

rnk(z), qn(z) =
kn∑

k=1

qnk(z), θn(z) =
kn∑

k=1

θnk(Zn1(z)).



LIMIT THEOREMS IN FREE PROBABILITY THEORY. II 23

Using (4.16), (4.37), (4.40), and (4.43), we have, for n ≥ n0,

Rbµn1(Zn1(z))

z
= exp

{ 1− Zn1(z)
Zn1(z)

kn∑
k=1

fnk(Zn1(z))

+
kn∑

k=1

rnk(z) +
kn∑

k=1

qnk(z) +
kn∑

k=1

θnk(Zn1(z))
}

= exp
{1− Zn1(z)

Zn1(z)

kn∑
k=1

fnk(Zn1(z)) + rn(z) + qn(z) + θn(z)
}

= exp
{∫

R+

u+ 1

u− 1
σn(du) +

∫
R+

u+ Zn1(z)

1− uZn1(z)
σn(du) + rn(z) + qn(z) + θn(z)

}
.

(4.48)

By (4.38), (4.41) and (4.36), we obtain, for z ∈ D(T ) with T ≤ δε
−1/18
n and n ≥ n0,

|rn(z)|+ |qn(z)| ≤ c(σ, d)εn

kn∑
k=1

εnk(Q
2
1(z) + T 51) ≤ c(σ, d)εnT

51. (4.49)

In addition, by (4.26), (4.31)–(4.33), (4.35), and (4.47) we conclude, for the same z and
n as above,

|θn(z)| ≤ c(d)εn

kn∑
k=1

εnk
|Zn1(z)|(1 + |Zn1(z)|)2

|1− Zn1(z)|
Q2(Zn1(z)) ≤ c(σ, d)εnT

39. (4.50)

From (4.49) and (4.50) we see that, for sufficiently large n ≥ n0,

|rn(z)|+ |qn(z)|+ |θn(z)| ≤ c(σ, d)ε1/52
n , z ∈ D(ε−1/52

n ). (4.51)

Denote

a′n := exp
{
α+ o(1)−

∫
R+

u+ 1

u− 1
σn(du)

}
.

By (4.45),

| log a′n| ≤ c15(d) + |α| <∞ for all n ≥ n0, (4.52)

and we can rewrite (4.48) in the form

Rbµn1(Zn(z))

z
= exp

{
α+ o(1) +

∫
R+

u+ Zn(z)

1− uZn(z)
σn(du) + ∆n(z)

}
, (4.53)

where Zn(z) := Zn1(a
′
nz), and ∆n(z) is an analytic function in D(e−c15(d)−αε

−1/52
n ), where

it admits the following estimate

|∆n(z)| ≤ c(σ, d)ε1/52
n . (4.54)



24 G. P. CHISTYAKOV1,3 AND F. GÖTZE2,4

Return to the representation (4.23) for the functions Zn1(z). By (4.24), (4.52), and
the vague compactness theorem (see [13], p. 179), we conclude that there exist a subse-
quence {n′} such that

dn′1 → d1 an′ → a, and

∫
(0,∞

νn′1(du)

1 + u
→ d2, n′ →∞,

where dj ≥ 0, j = 1, 2, a > 0, and {νn′1(du)/(1 + u)} converges in the vague topology to
some nonnegative measure ν1 such that ν1(R+) ≤ d2. Rewrite the formula (4.23) with
k = 1 in the form

Zn′1(z) = dn′1z + z

∫
(0,∞

(u+ 1

u− z
− 1

)νn′1(du)

1 + u
+ z

∫
(0,∞

νn′1(du)

1 + u
.

Since the kernel under the integral sign in the last formula tends to 0 as u→∞ uniformly
in z from every compact set in C+, we obtain, by the Helly-Bray lemma (see [13], p. 181),

Zn′1(z) → d1z + z

∫
R+

u+ 1

u− z
ν1(du) + (d2 − ν1(R+))z

uniformly on every compact set in C+. Finally we obtain from this relation that Zn′(z) →
Z(z) as n′ →∞ uniformly on every compact set in C+, where Z(z) ∈ N and Z(z)/z ∈ N .
In addition we note that Rbµn1(z) → z uniformly on every compact set in C+. Then,
recalling the assumption of the theorem, we have σn → σ weakly on [0,∞] and (4.54),
and therefore we easily deduce from (4.53), that

Z(z)

z
= exp

{
α+

∫
[0,∞]

u+ Z(z)

1− uZ(z)
σ(du)

}
, z ∈ C+. (4.55)

We see from (4.55) that Z 6≡ 0. Since the function Z(z) is univalent on iC+, it has
a right inverse on the image Z(iC+). Putting in (4.55) z = Z(−1)(w) and using (2.6),
we conclude that Z(z) = Rτ (z), where τ is a �-infinitely divisible p-measure. Hence
Z(z) ∈ K. In addition note that the equation (4.55) has an unique solution in classK. Now
suppose that {Zn(z)} does not converges to Z(z) on some compact in C+. Then as above
there exists a subsequence {n′′} such that Zn′′(z) → Z∗(z) as n′′ →∞ on every compact
set in C+, where Z∗(z) ∈ K. The function Z∗(z) satisfies Z∗(z) 6≡ Z(z), z ∈ C+. But
Z∗(z) is a solution of (4.55). We thus arrive at contradiction. Hence {Zn(z)} converges to
Z(z) uniformly on every compact set in C+. From (4.55) it follows that Z(z) is infinitely
divisible with parameters (α, σ({∞}), σ). Since Rbµn1(Zn(z)) → Z(z) uniformly on every
compact set in C+, the sufficiency of the assumptions of the second part of the theorem
is proved.

Necessity. First we assume without loss of generality that µnk({0}) = 0, n ≥ 1, k =
1, . . . , kn, that is all µnk ∈M0

+.
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Indeed, by Proposition 3.2, we conclude from assumptions of the theorem that δ1/an �
µ̃n1�· · ·�µ̃nkn → µ weakly as n→∞, where µ̃nk := µnk−µnk({0})(δ0−δγnk

) and γnk > 0
are sufficiently small positive numbers. It is clear that if prove the necessity conditions
for the measures µ̃nk we obtain the necessity conditions for the measures µnk.

Denote µs
nk := µnk � µ̄nk, n ≥ 1, k = 1, . . . , kn and µs := µ � µ̄. By Proposition 3.2,

we have the relation

µ(n,s) := µs
n1 � µs

n2 � · · ·� µs
nkn

→ µs weakly as n→∞. (4.56)

The relations (4.16) and (4.17) hold for the measures µs
nk, n ≥ 1, k = 1, . . . , kn, with

the functions Rµs
nk

(z), n ≥ 1, k = 1, . . . , kn, replacing Rµnk
(z), n ≥ 1, k = 1, . . . , kn, and

with some functions Znk,s(z) ∈ K, n ≥ 1, k = 1, . . . , kn, replacing Znk(z), n ≥ 1, k =
1, . . . , kn. Rewrite (4.16) in the form

Rµs
n1

(Zn1,s(z))

z
=
Rµs

n1
(Zn1,s(z))

Zn1,s(z)
. . .

Rµs
nkn

(Znkn,s(z))

Znkn,s(z)
, z ∈ C+. (4.57)

By Proposition 3.5 and the relations (2.4) and (3.9), the measures µs
nk, n ≥ 1, k =

1, . . . , kn, are symmetric with respect to 1, i.e., µ̄s
nk = µs

nk and µ(n,s) has the same property
as well. Since Rµs

nk
(Znk,s(z)) = Rµ(n,s)(z), z ∈ C+, and, by Proposition 3.5, |Rµ(n,s)(eit)| =

1, |Rµs
nk

(eit)| = 1, 0 < t < 2π, we conclude, using the univalence of R-functions in

C+ ∩ (iC+), that |Znk,s(e
it)| = 1, n ≥ 1, k = 1, . . . , kn, for the same t as well.

Let us show that the p-measures µs
nk are infinitesimal as well. Since the estimates

(4.15) hold for the functions Rb̄µnk
(z), we have the relation

log Σµs
nk

(z) = log Σbµnk
(z) + log Σb̄µnk

(z), z ∈ D1, n ≥ n0, k = 1, . . . , kn,

where we choose the principle branch of the logarithm. Using (4.15), it is not difficult to
deduce from this relation that

|Rµs
nk

(i)− i| ≤ c(d)εnk, n ≥ n0, k = 1, . . . , kn.

In view of (4.8) and (4.9), replacing the measures µ̂nk by µs
nk, and ρnk by ρs

nk (as defined
in (4.2), replacing µ̂nk by µs

nk), we conclude

|a(ρs
nk)− 1| ≤ c(d)εnk and σ2(ρs

nk) ≤ c(d)εnk. (4.58)

It remains to note that

σ2(ρs
nk) ≥

∫
R+

(u− a(ρs
nk))

2

1 + u2
µs

nk(du) ≥
∫

R+

(u− 1)2

1 + u2
µs

nk(du)

− 2|a(ρs
nk)− 1|

∫
R+

|u− 1|
1 + u2

µs
nk(du) ≥

∫
R+

(u− 1)2

1 + u2
µs

nk(du)− 2|a(ρs
nk)− 1|. (4.59)
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From (4.58) and (4.59) we see that the following inequality holds

εnk,s :=

∫
R+

(u− 1)2

1 + u2
µs

nk(du) ≤ c(d)εnk, n ≥ n0, k = 1, . . . , kn,

which implies that the measures µs
nk are infinitesimal.

Hence Rµs
nk

(z) → z as n→∞ uniformly in k = 1, . . . , kn and on every compact set in

C\ [0,∞). Moreover Rµs
nk

(z) is univalent in C+∩ (iC+). Denote z0 := (−1+ i)/
√

2. Then
Rµs

nk
(z0) ∈ C+ ∩ (iC+) and Znk,s(z0) ∈ C+ ∩ (iC+). By the assumption of the theorem,

we have Rµs
nk

(Znk,s(z0)) → Rµs(z0) as n→∞ uniformly in k = 1, . . . , kn. Therefore

Znk,s(z0) → Rµs(z0) (4.60)

and

<(Rµs
nk

(Znk,s(z0))/Znk,s(z0)) → 1 (4.61)

as n→∞ uniformly in k = 1, . . . , kn.
Using the integral representation

Rµs
nk

(z) = cnk,sz + z

∫
(0,∞)

τnk,s(du)

u− z
, z ∈ C+, n ≥ 1, k = 1, . . . , kn,

where cnk,s ≥ 0 and τnk,s are finite nonnegative measures such that∫
(0,∞)

τnk,s(du)

1 + u
<∞,

we deduce

=
Rµs

nk
(Znk,s(z0))

Znk,s(z0))
= =Znk,s(z0)

∫
(0,∞)

τnk,s(du)

(u−<Znk,s(z0))2 + (=Znk,s(z0))2
.

Since, as in (4.10), for n ≥ n0, k = 1, . . . , kn,

c16εnk,s ≤
∫

(0,∞)

τnk,s(du)

1 + u2
≤ c17(d)εnk,s, (4.62)

we obtain from the previous formula, using (4.60),

c18(µ
s)εnk,s ≤ =

Rµs
nk

(Znk,s(z0))

Znk,s(z0)
≤ c19(µ

s, d)εnk,s, n ≥ n0, k = 1, . . . , kn. (4.63)

We conclude from (4.61) and (4.63) that, for n ≥ n0 and k = 1, . . . , kn,

c20(µ
s)εnk,s ≤ arg

Rµs
nk

(Znk,s(z0))

Znk,s(z0)
≤ c21(µ

s, d)εnk,s.
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In view of these inequalities and (4.57), we arrive at the relation

arg
Rµs

n1
(Zn1,s(z0))

z0

=
kn∑

k=1

arg
Rµs

nk
(Znk,s(z0))

Znk,s(z0)
≥ c20(µ

s)
kn∑

k=1

εnk,s. (4.64)

Therefore we obtain from (4.62) and (4.64) the relation

kn∑
k=1

∫
(0,∞)

τnk,s(du)

1 + u2
≤ c17(d)

kn∑
k=1

εnk,s ≤ c(µs), n ≥ n0. (4.65)

Since µs
nk = µ̂nk � ¯̂µnk, we note, by the definition of the free �-convolution (see Sec-

tion 3), that there exists a function Wnk(z) ∈ K such that Rµs
nk

(z) = Rbµnk
(Wnk(z)), z ∈

C+. The p-measures {µ̂nk} and {µs
nk} are infinitesimal, therefore Rµs

nk
(z) and Rbµnk

(z)
tend to z as n → ∞ uniformly in k = 1, . . . , kn and every compact set in C+. Hence
Wnk(z0

√
2) → z0

√
2 as n → ∞ uniformly in k = 1, . . . , kn. In the following we shall use

the relation

=
Rµs

nk
(z)

z
= =Rbµnk

(Wnk(z))

Wnk(z)
<Wnk(z)

z
+ <Rbµnk

(Wnk(z))

Wnk(z)
=Wnk(z)

z
, z ∈ C+.

Note that if f(z) ∈ K, then f(z)/z takes values in C+ ∩ (−iC+) when z ∈ C+ ∩ (iC+).
Therefore we conclude from the previous relation that∫

(0,∞)

τnk,s(du)

u2 + 1
≥ =

Rµs
nk

(z0

√
2)

z0

√
2

≥ =Rbµnk
(Wnk(z0

√
2))

Wnk(z0

√
2)

<Wnk(z0

√
2)

z0

√
2

≥ 1

4

∫
(0,∞)

τnk(du)

u2 + 1

for n ≥ n0, k = 1, . . . , kn. In view of (4.10) and (4.65), we obtain from this that

1
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kn∑
k=1

εnk ≤ c17(d)
kn∑

k=1

εnk,s ≤ c(µs), n ≥ n0. (4.66)

Return to (4.16) and (4.17). SinceRµ(n)(z) = Fbµn(bnz/an), where bn =
∏kn

k=1 ank, we see
that Rµ(n)(z) = Rbµnk

(Znk(bnz/an)), z ∈ C+, k = 1, . . . , kn. For z ∈ C+ ∩ (iC+), functions
from the class K take values in C+ ∩ (iC+) and are univalent. Since Rbµnk

(z) tend to z
and Rbµnk

(Znk(bnz/an)) tend to Rµ(z) as n→∞ uniformly in k = 1, . . . , kn and on every
compact set in C+, we obtain that the sequence {Znk(bnz/an)}∞n=1 converges uniformly in
k = 1, . . . , kn and on every compact set in C+ ∩ (iC+) to the function Rµ(z) ∈ K. It is
easy to see that this relation holds on every compact set in C+. Using relations (4.16) and
(4.17) with bnz/an replacing z and taking into account that the measures µn1, . . . , µnkn

are infinitesimal and the upper bound (4.66) holds, we can repeat the arguments which
we used for the proof of (4.48). We arrive at the relation, for z ∈ C+,

Zn1(bnz/an)

bnz/an

= exp
{∫

R+

u+ 1

u− 1
σn(du) +

∫
R+

u+ Zn1(bnz/an)

1− uZn1(bnz/an)
σn(du) + ∆̃n(z)}, (4.67)
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where ∆̃n(z) is analytic in C+ and ∆̃n(z) → 0 on every compact set in C+. By (4.66),
the sequence {σn} is tight in the vague topology. Therefore there exists a subsequence {n′}
such that {σn′} converges to some finite nonnegative measure σ in the vague topology and
limn′→∞ σn′(R+) exists and finite. Thus, we can conclude from (4.67) that b′nd

′
n/a

′
n → eα′

1

as n′ →∞, where α′1 ∈ R and

dn := exp
{∫

R+

u+ 1

u− 1
σn(du)

}
,

and the following relation holds

Rµ(z)

z
= exp

{
α′1 −

α′2
Rµ(z)

+

∫
R+

u+Rµ(z)

1− uRµ(z)
σ(du)

}
, z ∈ C+, (4.68)

with α′2 ≥ 0.
We shall show that {σn} converges to a measure σ on R+ in the vague topology.

Assume to the contrary that there exists a subsequence {n′′} such that {σn′′} converges
in the vague topology to some finite nonnegative measure σ1 6≡ σ and limn′′→∞ σn′′(R+)
exists and finite. Then b′′nd

′′
n/a

′′
n → eα′′

1 as n′′ →∞, where α′′1 ∈ R, and (4.68) holds with
α′′1 ∈ R, α′′2 ≥ 0 replacing α′1, α

′
2 and σ1 replacing σ. Comparing the relations (4.68) with

old and new parameters, we deduce the formula

α′1−
α′2
z

+α′3z+

∫
(0,∞)

u+ z

1− uz
σ(du) = α′′1 +2mπi−α′′2

z
+α′′3z+

∫
(0,∞)

u+ z

1− uz
σ1(du), z ∈ C+,

(4.69)
where m ∈ Z and 0 ≤ α′3 <∞, 0 ≤ α′′3 <∞. By (3.3), we easily conclude that∣∣∣ ∫

(0,∞)

u+ z

1− uz
σ(du)

∣∣∣ +
∣∣∣ ∫
(0,∞)

u+ z

1− uz
σ1(du)

∣∣∣ = o(|z|), z ∈ C+,

as z → 0 or z → ∞ nontangentially. Comparing the behavior of all terms in (4.69) as
z → ∞ and as z → 0, we easily see that α′j = α′′j for j = 2, 3. Applying the Stieltjes-
Perron inversion formula (see Section 3), we obtain that σ = σ1 and m = 0. Finally we
get α′1 = α′′1, a contradiction.

Since {σn} converges to the measure σ in the vague topology, we obtain from (4.67)
that an/(bndn) → eα′

1 as n→∞. It remains to show that {σn} converges to the measure
σ weakly in [0,∞]. For this we note that it follows from (4.67) and (4.68) the relation

lim
n→∞

∫
[0,∞]

( 1 +R2
µ(z)

1− uRµ(z)
− 1

)
σn(du) =

∫
[0,∞]

( 1 +R2
µ(z)

1− uRµ(z)
− 1

)
σ(du),

holds on every compact set in C+, where σ({∞}) = α′2. This relation implies that
limn→∞ σn([0,∞]) = σ([0,∞]) as was to be proved.
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Thus the necessity of the assumptions of the theorem is proved and Theorem 2.1 is
completely proved. �

5. Multiplicative free limit theorem in M∗

In Section 5 we prove Theorem 2.3 and Theorem 2.4. Here we denote by c positive ab-
solute constants. For some measure ν we denote by c(ν) positive constants which depend
on the measure ν. By cj, cj(ν), j = 1, . . . , we denote explicit absolute positive constants
and explicit positive constants depending on the corresponding measure, respectively.

Let {µnk : n ≥ 1, 1 ≤ k ≤ kn}, where kn ↑ ∞ as n → ∞, be a triangular scheme of
measures inM∗. It is not difficult to see that condition (2.16) is equivalent to the following
relation

max
k=1,...,kn

∫
[−π,π)

(1− cos y)µnk(dy) → 0, n→∞.

Recall that µ̂nk are p-measures such that µ̂nk([−π, x)) = µnk([−π+ank, x+ank)), where
ank :=

∫
[−π,π)

sinuµnk(du). Since maxk=1,...,kn |akn| → 0 as n→∞, we conclude

εn := max
k=1,...,kn

εnk := max
k=1,...,kn

∫
[−π,π)

(1− cos y) µ̂nk(dy) → 0, n→∞. (5.1)

Proof of Theorem 2.3. Sufficiency. From Proposition 3.7 we obtain, for all z ∈ D,

Qbµn1(Zn1(z))

z
=
Qbµn1(Zn1(z))

Zn1(z)
. . .

Qbµnkn
(Znkn(z))

Znkn(z)
, (5.2)

where Zn1(z), . . . , Znkn(z) belong to the class S∗, and

Qbµn1(Zn1(z)) = · · · = Qbµnkn
(Znkn(z)). (5.3)

Moreover, Qn(z) := Qbµn(z) = Qbµn1(Zn1(z)), where µ̂n := µ̂n1 � · · · � µ̂nkn . Taking into
account (2.10) we have

Qbµnk
(z) =

Fbµnk
(z)− 1

Fbµnk
(z) + 1

, z ∈ D, k = 1, . . . , kn, (5.4)

where the functions Fbµnk
(z) admit the representation (2.11) with some p-measures σ̃nk

replacing σ.
In the sequel we denote Sµ(z) := Qµ(z)/z, z ∈ D, for µ ∈M∗.
Consider the functions Sbµnk

(z) := Qbµnk
(z)/z, n ≥ 1, k = 1, . . . , kn, in D. By Schwarz’s

lemma, these functions belong to the class S (the class of Schur functions) and

Sbµnk
(0) =

∫
[−π,π)

eiy µ̂nk(dy) = e−iank

∫
[−π,π)

eiy µnk(dy).

It is not difficult to verify that

|1− Sbµnk
(0)| ≤ cεnk (5.5)
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for n ≥ n0, k = 1, . . . , kn, with a sufficienly large positive constant n0. Indeed, we easily
have

=Sbµnk
(0) =

∫
[−π,π)

sin y µ̂nk(dy) =

∫
[−π,π)

(sin y − ank)µnk + cθεnk = cθεnk

Since <(1 − Sbµnk
(z)) ≥ 0, we see that 1 − Sbµnk

(z) belongs to Carathéodory’s class C.
Therefore (see Section 3), this function admits the representation

1− Sbµnk
(z) = −i=Sbµnk

(0) +

∫
[−π,π)

eiy + z

eiy − z
σnk(dy), z ∈ D, (5.6)

where σnk is a finite nonnegative measure such that σnk([−π, π)) = 1 − <Sbµnk
(0). By

(5.5), we note that σnk([−π, π)) ≤ cεnk. Therefore we conclude

|1− Sbµnk
(z)| ≤ cεnk +

∫
[−π,π)

1 + |z|
1− |z|

σnk(dy) ≤
cεnk

1− |z|
, z ∈ D. (5.7)

In addition we have from (5.6), for z1, z2 ∈ D,

|Sbµnk
(z1)− Sbµnk

(z2)| ≤
∫

[−π,π)

2|z1 − z2|
|eiy − z1||eiy − z2|

σnk(dy) ≤
cεnk|z1 − z2|

(1− |z1|)(1− |z2|)
. (5.8)

Return to the functions Znk(z) in (5.2) and (5.3). These functions are in the class S∗.
Therefore

|Znk(z)/z| ≤ 1, z ∈ D. (5.9)

Using (5.7) and (5.9) we obtain, for z ∈ D,

|1− Sbµnk
(Znk(z))| ≤

cεnk

1− |Znk(z)|
≤ cεnk

1− |z|
. (5.10)

Let rn := 1− c1εn, n ≥ n0, with sufficiently large positive constants c1 and n0. Then,
by (5.10), |1− Sbµnk

(Znk(z))| ≤ cεnk/(1− rn) ≤ 1/2 for z ∈ Drn := {z ∈ C : |z| < rn}. In
view of (5.10), we obtain, using the series expansion for log(1 + z), |z| < 1,

Sbµnk
(Znk(z)) = exp

{
−

(
1− Sbµnk

(Znk(z))
)

+ qnk(z)
}
, z ∈ Drn , (5.11)

where the analytic function qnk(z) in Drn admits the estimate |qnk(z)| ≤ cε2
nk/(1−|z|)2, z ∈

Drn .
In the next step we conclude from (5.8) and (5.9) that, for z ∈ D,

|Sbµnk
(Znk(z))− Sbµnk

(Zn1(z))| ≤
cεnk|Znk(z)− Zn1(z)|

(1− |Znk(z)|)(1− |Zn1(z)|)
≤ cεnk|Znk(z)− Zn1(z)|

(1− |z|)2
.

(5.12)
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On the other hand we see from (5.3) and (5.10) that, for z ∈ Drn ,∣∣∣Znk(z)

Zn1(z)
− 1

∣∣∣ =
∣∣∣Sbµnk

(Zn1(z))

Sbµnk
(Znk(z))

− 1
∣∣∣

≤ 2|1− Sbµnk
(Znk(z))|+ 2|1− Sbµnk

(Zn1(z))| ≤
cεnk

1− |z|
.

Hence

|Znk(z)− Zn1(z)| ≤
cεnk|z|
1− |z|

, z ∈ Drn .

Applying this inequality to (5.12) we obtain

|gnk(z)| ≤
cε2

nk|z|
(1− |z|)3

where gnk(z) := Sbµnk
(Znk(z))− Sbµnk

(Zn1(z)). (5.13)

for z ∈ Drn and n ≥ n0, k = 1, . . . , kn.
Note that, for z ∈ D,

(1− z)(1 + ψbµnk
(z))− 1 = −

∫
[−π,π)

z(1− eiy)
1− zeiy µ̂nk(dy)

=−
∞∑

k=0

zk+1

∫
[−π,π)

eiky(1− eiy) µ̂nk(dy) = −
∞∑

p=0

zp+1

∫
[−π,π)

(1− eiy) µ̂nk(dy)

+
∞∑

p=0

zp+1

∫
[−π,π)

(1− eipy)(1− eiy) µ̂nk(dy).

Using (5.5) and the simple relation
∫

[−π,π)
|1− eiy|2 µ̂nk(dy)| = 2

∫
[−π,π)

(1− cos y) µ̂nk(y) =

2εnk, we easily arrive at the upper bound, for z ∈ Drn ,

|(1− z)(1 + ψbµnk
(z))− 1| ≤ 2|z|

1− |z|

∫
[−π,π)

(1− eiy) µ̂nk(dy)

+
∞∑

p=1

p|z|p+1

∫
[−π,π)

|1− eiy|2 µ̂nk(dy) ≤ cεnk

( |z|
1− |z|

+
|z|2

(1− |z|)2

)
≤ cεnk

|z|
(1− |z|)2

.

(5.14)

On the other hand

1− (1− z)
ψbµnk

(z)

z
=

∫
[−π,π)

1− eiy

1− zeiy
µ̂nk(dy).

Repeating the previous arguments we obtain the inequality∣∣∣1− (1− z)
ψbµnk

(z)

z

∣∣∣ ≤ cεnk
1

(1− |z|)2 , z ∈ Drn . (5.15)
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Denote r′n = 1− c2εn, n ≥ n0, with a sufficiently large constant c2 > c1.
By (5.14) and (5.15) and the series expansion of the function 1/(1 + z) for z ∈ D, we

have, for z ∈ Dr′n ,

1− Sbµnk
(z) = 1− ψbµnk

(z)

z(1 + ψbµnk
(z))

=
(1− z)

(
1− 1−z

z
ψbµnk

(z)
)

(1− z)(1 + ψbµnk
(z)

= fnk(z) + dnk(z) :=

∫
[−π,π)

(1− z)(1− eiy)

1− zeiy
µ̂nk(dy) + dnk(z)

= −i
∫

[−π,π)

sin y µ̂nk(dy) +

∫
[−π,π)

1 + zeiy

1− zeiy
(1− cos y) µ̂nk(dy) + dnk(z), (5.16)

where dnk(z) is an analytic function in Dr′n such that |dnk(z)| ≤ cε2
nk/(1−|z|)4. It remains

to note, by (5.9), that from (5.16) it follows

1− Sbµnk
(Zn1(z)) = fnk(Zn1(z)) + bnk(z) (5.17)

for z ∈ Dr′n and n ≥ n0, k = 1, . . . , kn, where bnk(z) is analytic function in z ∈ Dr′n such
that |bnk(z)| ≤ cε2

nk|/(1− |z|)4.
Using (5.11), (5.13), and (5.17), we rewrite (5.2) in the form

Qbµn1(Zn1(z))

z
= exp

{
−

kn∑
k=1

fnk(Zn1(z)) +
kn∑

k=1

gnk(z) +
kn∑

k=1

qnk(z)−
kn∑

k=1

bnk(z)
}

:= exp
{
i

kn∑
k=1

∫
[−π,π)

sin y µ̂nk(dy)−
∫

[−π,π)

1 + Zn1(z)e
iy

1− Zn1(z)eiy
νn(dy) + gn(z) + qn(z)− bn(z)

}
,

(5.18)

where, for sufficiently large n ≥ n0,

|gn(z)|+ |qn(z)|+ |bn(z)| ≤
kn∑

k=1

|gnk(z)|+
kn∑

k=1

|qnk(z)|+
kn∑

k=1

|bnk(z)|

≤ cεn

(1− |z|)4

kn∑
k=1

εnk ≤
c(ν([−π, π)) + 1)εn

(1− |z|)4
(5.19)

for z ∈ Dr′n . From (5.19) we see that, for n ≥ n0,

|gn(z)|+ |qn(z)|+ |bn(z)| ≤ c(ν([−π, π)) + 1)ε1/5
n , z ∈ Dr′′n , (5.20)

where r′′n := 1− ε
1/5
n . Denote βn :=

∑kn

k=1 ank − an.

Consider the sequence of the functions {Z̃n1(z) := Zn1(ze
iβn)}∞n=1, z ∈ D. By (5.9), we

conclude that there exists a subsequence {n′} such that Z̃n′1 → Z(z) as n′ →∞ uniformly
on every compact set in D and Z(z) ∈ S. In addition we note that Qbµn1(z) → z uniformly
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on every compact set in D. Then, by the assumption of the theorem that νn → ν weakly,
αn − an → α, mod 2π, and (5.20), we deduce from (5.18) the relation

Z(z)

z
= exp

{
iα−

∫
[−π,π)

1 + Z(z)eiy

1− Z(z)eiy
ν(dy)

}
, z ∈ D, (5.21)

where α ∈ [−π, π). This implies that Z ′(0) 6= 0. Hence Z(z) ∈ S∗.
Since Z(z) has an inverse Z(−1)(z) defined in some neighborhood of 0, we see that

the equation (5.21) has an unique solution in the class of functions Z ∈ S∗. Now assume
that {Z̃n1(z)}∞n=1 does not converge to Z(z) on some compact set in D. Then, as above,
there exists a subsequence {n′′} such that Z̃n′′1(z) → Z∗(z) as n′′ →∞ on every compact
set in D, and Z∗(z) ∈ S∗ and Z(z) 6≡ Z∗(z), z ∈ D. But Z∗(z) is a solution of (5.21) and we
arrive at a contradiction. Hence, {Z̃n1(z)} converges to Z(z) uniformly on every compact
set in D. Using (5.21) we note that Z(z) is infinitely divisible with the parameters (α, ν).
Since Qbµnk

(Z̃n1(z)) → Z(z) on every compact set in D, the sufficiency of the assumptions
of Theorem 2.3 is proved.

Necessity. Denote µs
nk := µnk � µ̄nk, n ≥ 1, k = 1, . . . , kn and µs := µ � µ̄. By

Proposition 3.2, we have the relation

µ(n,s) := µs
n1 � µs

n2 � · · ·� µs
nkn

→ µs weakly as n→∞. (5.22)

For the measures µs
nk, n ≥ 1, k = 1, . . . , kn, the relations (5.2) and (5.3) hold with

the functions Qµs
nk

(z), n ≥ 1, k = 1, . . . , kn, replacing Qµnk
(z), n ≥ 1, k = 1, . . . , kn, and

with some functions Znk,s(z) ∈ S∗, n ≥ 1, k = 1, . . . , kn, replacing Znk(z), n ≥ 1, k =
1, . . . , kn. Rewrite (5.2) in the form

Qµ(n,s)(z)

z
=
Qµs

n1
(Zn1,s(z))

Zn1,s(z)
. . .

Qµs
nkn

(Znkn,s(z))

Znkn,s(z)
, z ∈ D. (5.23)

By Proposition 3.8, the measures µs
nk, n ≥ 1, k = 1, . . . , kn, are symmetric, i.e., µ̄s

nk = µs
nk

and µ(n,s) has the same property as well. Since Qµs
nk

(Znk,s(z)) = Qµ(n,s)(z), z ∈ D, and
by Proposition 3.8, =Qµ(n,s)(t) = 0, =Qµs

nk
(t) = 0, −1 < t < 1, we conclude that, for

the same t, =Znk,s(t) = 0, n ≥ 1, k = 1, . . . , kn, as well.
Let us show that the p-measures µs

nk are infinitesimal. Consider the functions Sµs
nk

(z),

n ≥ 1, k = 1, . . . , kn, in D. Since µs
nk = µ̂nk � ¯̂µnk, we note, by the definition of the free �-

convolution (see Section 3), that there exists functions Wnk,1(z),Wnk,2(z) ∈ S∗ such that
Qµs

nk
(z) = Qbµnk

(Wnk,1(z)) and Sµs
nk

(z) = Sbµnk
(Wnk,1(z))Sb̄µnk

(Wnk,2(z)), z ∈ D. Choosing

in the last relation z = 0 we get Sµs
nk

(0) = Sbµnk
(0)Sb̄µnk

(0) = |Sbµnk
(0)|2. Therefore

εnk,s := 1− Sµs
nk

(0) =

∫
[−π,π)

(1− cos y)µs
nk(dy) → 0 (5.24)

as n→∞ uniformly in k = 1, . . . , kn as was to be proved.
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Note that (5.23) implies the relation

Sµ(n,s)(0) = Sµs
n1

(0)Sµs
n2

(0) . . . Sµs
nkn

(0)

from which we conclude with the help of (5.24)

Sµ(n,s)(0) = exp
{
− (1 + cθ max

k=1,...,kn

εnk,s)
kn∑

k=1

εnk,s

}
, n ≥ n0. (5.25)

By the assumption of the theorem, we have Sµ(n,s)(0) → Sµs(0) 6= 0 and we obtain from
(5.25)

kn∑
k=1

εnk,s < c(µs) <∞. (5.26)

Since µs
nk = µ̂nk � ¯̂µnk, we saw above that there exist functions Wnk,1(z) ∈ S∗ such

that Qµs
nk

(z) = Qbµnk
(Wnk,1(z)), z ∈ D. The p-measures {µ̂nk} and {µs

nk} are infinitesimal,
therefore Qµs

nk
(z) and Qbµnk

(z) tend to z as n→∞ uniformly in k = 1, . . . , kn and on every
compact set in D. Thus Wnk(z) → z as n → ∞ uniformly in k = 1, . . . , kn and on every
compact set in D. Therefore we have W ′

nk(0) → 1 as n →∞ uniformly in k = 1, . . . , kn.
In addition, by (5.9), the functions Wnk(z) satisfy |W ′

nk(0)| ≤ 1, n ≥ 1, k = 1, . . . , kn.
The relation Sµs

nk
(0) = Sbµnk

(0)W ′
nk,1(0) implies

1− Sµs
nk

(0) = 1−<Sbµnk
(0) + <Sbµnk

(0)(1−<W ′
nk,1(0)) + =Sbµnk

(0)=W ′
nk,1(0)

and

0 = =Sbµnk
(0)<W ′

nk,1(0) + <Sbµnk
(0)=W ′

nk,1(0).

From the last two relations we easily obtain

1− Sµs
nk

(0) = 1−<Sbµnk
(0) + <Sbµnk

(0)
(
1−<W ′

nk,1(0)
(
1 +

(=Sbµnk
(0)

<Sbµnk
(0)

)2)
. (5.27)

From (5.5) it follows that

1−<Sbµnk
(0) = εnk, |=Sbµnk

(0)| ≤ cεnk, n ≥ n0, k = 1, . . . , kn. (5.28)

Applying (5.28) to (5.27), we deduce

εnk = 1−<Sbµnk
(0) ≤ 1− Sµs

nk
(0) + <Sbµnk

(0)<W ′
nk,1(0)

(=Sbµnk
(0)

<Sbµnk
(0)

)2

≤ 1− Sµs
nk

(0) + cε2
nk = εnk,s + cε2

nk

for n ≥ n0, k = 1, . . . , kn.
In view of (5.26), the last inequality implies

1

2

kn∑
k=1

εnk ≤
kn∑

k=1

εnk,s ≤ c(µs) <∞, n ≥ n0. (5.29)
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Now we return to (5.2) and (5.3). Since Qµ(n)(z) = Qbµn(ei(bn−an)z), where bn =∑kn

k=1 ank, we see that Qµ(n)(z) = Qbµnk
(Znk(e

i(bn−an)z), z ∈ D, k = 1, . . . , kn. Since

Qbµnk
(z) tend to z and Qbµnk

(Znk(e
i(bn−an)z)) tend to Qµ(z) as n → ∞ uniformly in

k = 1, . . . , kn and on every compact set in D, we obtain that {Znk(e
i(bn−an)z)}∞n=1 converges

uniformly on every compact set in D to some function Z(z) ∈ S∗. Using relations (5.2) and
(5.3) with ei(bn−an)z replacing z and taking into account that the measures µn1, . . . , µnkn

are infinitesimal and the upper bound (5.29) holds, we can repeat the arguments which
we used for the proof of (5.18). Thus we arrive at the relation, for z ∈ D,

Qbµnk
(Zn1(e

i(bn−an)z))

ei(bn−an)z

= exp
{
i

∫
[−π,π)

sin y

1− cos y
νn(dy)−

∫
[−π,π)

1 + Zn1(e
i(bn−an)z)eiy

1− Zn1(ei(bn−an)z)eiy
νn(dy) + ρ̂n(z)}, (5.30)

where ρ̂n(z) is an analytic function in D and ρ̂n(z) → 0 on every compact set in D. Denote
dn :=

∫
[−π,π)

sin y
1−cos y

νn(dy).

By (5.29), the sequence {νn} is tight in the weak topology. Therefore there exists
a subsequence {n′} such that {νn′} converges to some finite nonnegative measure ν in
the weak topology. Thus, we can conclude from (5.30) that ei(bn′+dn′−an′ ) → eiα as n′ →∞,
where α ∈ [−π, π), and that the following relation holds

Z(z)

z
= exp

{
iα−

∫
[−π,π)

1 + Z(z)eiy

1− Z(z)eiy
ν(dy)

}
, z ∈ D. (5.31)

We shall show that {νn} converges to a finite nonnegative measure ν in the weak
topology. Assume to the contrary that there exists a subsequence {n′′} such that {νn′′}
converges in the weak topology to some finite nonnegative measure ν1 6≡ ν. Then
ei(bn′′+dn′′−an′′ ) → eiα1 as n′′ →∞, where α1 ∈ [−π, π), and (5.31) holds with α1 ∈ (−π, π],
replacing α and ν1 replacing ν. We then deduce from (5.31) with old and new parameters

exp
{
iα−

∫
[−π,π)

1 + zeiy

1− zeiy
ν(dy)

}
= exp

{
iα1 −

∫
[−π,π)

1 + zeiy

1− zeiy
ν1(dy)

}
, z ∈ D. (5.32)

We see from (5.32) that

<
∫

[−π,π)

1 + zeiy

1− eiy
ν(du) = <

∫
[−π,π)

1 + zeiy

1− zeiy
ν1(dy), z ∈ D.

Applying the Stieltjes-Perron inversion formula (see Section 3), we obtain that ν = ν1.
Finally we get α = α1.

Since {νn} converges to the measure ν in the weak topology, we obtain from (5.30)
that ei(bn+dn−an) → eiα as n→∞.
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Thus a necessity of the assumptions of the theorem is proved and Theorem 2.3 is
completely proved. �

Now we shall prove Theorem 2.4.
Proof. At first we shall prove the first statement of the theorem. Assume that the se-

quence µn1 � · · · � µnkn converges weakly to a p-measure µ� such that Σµ� = [α, ν].
By Theorem 2.3, we have νn → ν, where νn is defined by the formula (2.17), and
αn = α + o(1), mod 2π, where αn is defined by the formula (2.18). Let us show that
the sequence µn1 ∗ · · · ∗ µnkn converges weakly to the p-measure µ∗ such that qµ∗ =
〈α, ν〉. Consider the sequence {µn} of ∗-infinitely divisible measures with representa-
tions 〈αn, νn〉. By Theorem 3.10, we have µn → µ weakly as n → ∞, where µ is ∗-
infinitely divisible measure with a representation 〈α, ν〉. On the other hand we see that
µn = xn ∗ e(µn1 ∗ xn1) ∗ · · · ∗ e(µnkn ∗ xnkn), where xn = −(xn1 + · · · + xnkn) and xnk are
defined by (3.16). By Theorem 3.9, we obtain the first statement of the theorem.

As for the second statement of the theorem, consider p-measures e(νj), j = 1, 2, where
νj, j = 1, 2, are measures from Proposition 3.11. Denote by µnk, n ≥ 1, k = 1, . . . , n,
the p-measures e(ν1/n). It is easy to see that µnk = e(ν2/n) and µn1 ∗ · · · ∗ µnn =
µn1 ∗ · · · ∗ µnn = e(ν1). The measures {µnk, µnk} are infinitesimal and the sequence
{µn1 ∗ · · · ∗ µnn, µn1 ∗ · · · ∗ µnn} obviously converges weakly to e(ν1) = e(ν2). Let us show
that the sequence {δa′

n
�µn1 � · · ·�µnn, δa′′

n
�µn1 � · · ·�µnn} does not converge weakly to

some p-measure in M∗ for any a′n ∈ T, a′′n ∈ T. Assume to the contrary that there exists
a sequence a′n ∈ T, a′′n ∈ T such that the previous sequence of p-measures converge weakly
to some p-measure in M∗. Then, by Theorem 2.3, for every Borel set S ⊆ [−π, π),

n

∫
S

(1− cos y) µ̂nk(dy) → ν(S), n

∫
S

(1− cos y) µ̂nk(dy) → ν(S), n→∞, (5.33)

where ν is some finite nonnegative measure and µ̂nk = µnk � δank
, µ̂nk = µnk � δ−ank

with
ank = −

∫
[−π,π)

sin y µnk(dy). Since, by the definition of µnk,

µnk = e−ν1([−π,π))/n
(
δ0 +

ν1

n
+

1

2!

ν1 ∗ ν1

n2
+ . . .

)
,

µnk = e−ν2([−π,π))/n
(
δ0 +

ν2

n
+

1

2!

ν2 ∗ ν2

n2
+ . . .

)
,

we note from (5.33) that

ν1((x, π)) = ν((x, π)) and ν2((x, π)) = ν((x, π))

for every fixed x ∈ (0, π), a contradiction. Thus the theorem is proved completely. �
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