LIMIT THEOREMS
IN FREE PROBABILITY THEORY. II

G. P. CHISTYAKOV!3 AND F. GOTZE>*

ABSTRACT. Based on an analytical approach to the definition of multiplicative free
convolution on probability measures on the nonnegative line Ry and on the unit circle
T we prove analogs of limit theorems for nonidentically distributed random variables in
classical Probability Theory.

1. INTRODUCTION

In the last years free convolution of measures introduced by D. Voiculescu has been
intensively studied. The key concept of this definition is the notion of freeness, which can
be interpreted as a kind of independence for noncommutative random variables. As in
the classical probability the concept of independence gives rise to the classical convolution,
the concept of freeness leads to a binary operation on the probability measures on the real
line, the free convolution. Many classical results in the theory of addition of independent
random variables have their counterpart in this new theory, such as the law of large num-
bers, the central limit theorem, the Lévy-Khintchine formula and others. We refer to
Voiculescu, Dykema and Nica [17] for introduction to these topic. Bercovici and Pata [7]
established the distributional behavior of sums of free identically distributed random vari-
ables and described explicitly the correspondence between classical and free limits. They
found remarkable parallelism between the free additive and classical additive infinite di-
visibility and limits laws for free and classical additive convolution. In the paper [11],
using an analytical approach to the definition of the additive free convolution (see [10]),
the Bercovici and Pata result was proved in the case of free non-identically distributed
random variables, i. e., it was shown that the Bercovici and Pata parallelism holds in
the general case of free non-identically distributed random variables. Our approach to
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the definition of additive free convolution allowed us to obtain estimates of a rate of con-
vergence of distribution functions of free sums. We proved a semi-circle approximation
theorem (an analog of the Berry-Esseen inequality), a law of large numbers with estimates
of convergence. We described the class Lévy Lg for free random variables and we gave
the canonical representation of the measures of the class Lz and gave a characterization
of the class Lg with the help of the property of self-decomposability, extending results by
Barndorff-Nielsen and Thorbjgrnsen [3]. In this paper we study the case of free multiplica-
tive convolutions, using again an analytical approach to the definition of free convolutions,
and we prove limit theorems for probability measures (p-measures) on R, = [0,00) and
on T = {z € C: |z|] = 1} in the case of non-identically distributed p-measures. Our
results generalize the Bercovici-Pata result for p-measures on R, in the case of identically
distributed p-measures [8] and are new for p-measures on T. We would like to empha-
size that our approach allows to obtain explicit estimates of a convergence in these limit
theorems. However, we do not address this problem in this paper.

The paper is organized as follows. In Section 2 we formulate and discuss the main
results of the paper. In Section 3 we formulate auxiliary results. In Section 4 we prove
a multiplicative free limit theorem for p-measures on R, which implies the Bercovici and
Pata parallelism between free multiplicative and classical multiplicative infinite divisibil-
ity and between limits laws for free and classical multiplicative convolution in the general
case of free non-identically distributed random variables. In Section 5 we prove the mul-
tiplicative free limit theorem for p-measures on T and compare this result with limit
theorems for p-measures on T with respect to the operation of the classical convolution.

2. RESuLTS

Denote by M the set of p-measures on R, = [0,+00). Let X and Y be free random
variables in some noncommutative probability space having distributions p and v respec-
tively. Then the multiplicative free convolution of 4 and v, denoted by uXwv, is the distri-
bution of X1/2Y X1/2. The p-measures y X v have been introduced by Voiculescu [16] for
compactly supported p-measures and by Bercovici and Voiculescu [6] for the class M.

Define, following Voiculescu [16], the 1,-function of a probability measure yp € M.,
by

@) = [ ), 2 eC\R,. (2.)

The measure p is completely determined by 1, because z(v,(2) + 1) = G,(1/%), where

d

Gu(z) ::/’Z(_ulz, zeCt={2€C:S3z >0}
R

Note that ¢, : C\ Ry — C is an analytic function such that ,(2) = ¢,(z), and

Yu(z) € CTUR for z € C*. Introduce the R,-function of the measure p by
Ry(2) = 6(2)/(1+ (), 2 €C\R.. (22)
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We see that the function R,,(z) belongs to the class NV, i.e., R,(z) is analytic such that
R, : Ct — C*TUR, and is analytic and non-positive on the negative part of R. Moreover,
for x>0, R,(—x) — 0 as x — 0.

Denote by K the subclass of A of functions f such that f(z) € N and f(z)/z € N,
and, for x > 0, f(—z) - 0asz — 0.

Using the approach to the definition of the multiplicative free convolution in Chistyakov
and Gotze [10], we define the multiplicative free convolution in the following way.

Let p1 and po belong to M. and let R, (2) and R,,(2) be Nevanlinna functions which
correspond to these measures by the relation (2.2). We shall define the free multiplicative
convolution based on R, (z) and R,,(z) only. The function R,(z) is an analogue of
the reciprocal Cauchy transform of the measure p € M.

It was proved [10] that there exist two unique functions Z;(z) and Z3(z) in the class
IC such that

Z(2)2(z) = :Ru(Zi(2)  and  Ry(Zi(2) = Ru(Za(2), z€CF. (23)

Note (for details see Section 3) that R(z) := R,,(Zi(z)) belongs to the class IC. In-
troduce the function ¥(2) := R(z)/(1 — R(z)). We see that ¢» € K and thus conclude
(see again Section 3) that ¢ (z) admits the representation (2.1) with some p-measure
p e My, that is ¥(z) = ¢,(2), z € CT. In addition R(z) = R,(z), 2 € CT. Therefore
Vi (Z1(2)) = u(2).

The measure p is determined in a unique way by the measures p; and py. We write
poi= pn X po.

In this way the multiplicative free convolution of p-measures on R, is defined by
complex analytic methods. This has been proved independently by different means in [4].

The existence and uniqueness of subordinating functions Z;(z) in (2.3) has been studied
earlier using other methods in [9], [18]-[20].

The function R,(z) is univalent on the left half-plane iC* (see [6]). Let x, be the right
inverse of this function on the image R, (iC*). We define the X-transform of 4 as the func-
tion X,(2) := Xu(2)/z defined on R,(iCT).

From (2.3) we conclude that the relation

R (2) BV() _ R (2)

z z - > or Em(z)zm (Z) = Zu(z) (24)

holds on a domain where all functions X, ,%,, and ¥, are defined. This formula was
first proved by Voiculescu [16] (see also [6]). From (2.4) we deduce that our definition of
the multiplicative convolution p; X o coincides with Voiculescu’s definition.

We now introduce the notion of infinitely divisible measures for multiplicative free
convolution. More precisely, a measure p € M is said to be X-infinitely divisible if for
every natural number n there exists a measure v, € M such that

p=v, X, K- Kv, (n times) (2.5)
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with v, € M. These measures were studied intensively in Voiculescu [16], Bercovici and
Voiculescu [5], [6]. There is an analogue of the Lévy-Khintchine formula which states that
a measure p € M. is M-infinitely divisible if and only if there exist a finite nonnegative
measure ¢ on [0, 00) and real numbers a and b > 0 such that

¥, (2) = exp {a+g —/ vt a(du)}. (2.6)

1—uz
Ry

Since there is a one-to-one correspondence between the functions ¥,(z) and the triples
(a,b,0), we shall write ¥, = (a, b, o).
In other words, a measure p € M is K-infinitely divisible if and only if

5(2) = exp{—u(2)}, (2.7)

where u(z) € N and u(z) is analytic and real-valued on the negative part of R.

As in the case of additive free convolution we can formulate the limit problem for
multiplicative free convolution. Let {nr : n > 1,1 < k < k,}, k, T 00 as n — o0, be
a triangular scheme of measures in M such that

nhjg()  max pnk({u: Jlu—1] >¢}) =0 (2.8)
for every € > 0, and let {a, : n > 1} be a sequence of positive numbers. The measures
fnk, € M are called infinitesimal. Denote by ¢, a p-measure such that d,({a}) = 1. We
would like to

1) determine all € M, such that u™ = 01 /an X i1 B pipo - - - X pig,, — p in the weak
topology;

2) determine conditions such that p(™ converges weakly to a given p.

For measures i, € M, we denote by fi,, the measures defined by fi,,((—o0, z)):=
fnk((—00, appx)), x > 0, where a,y := f( U fink(du). Here d € (0,1) is an arbitrary
fixed number.

We shall give a complete solution of this problem, proving a multiplicative free Limit
Theorem for measures in M.

1—d,14d)

Theorem 2.1. Let pu,x be a triangular scheme of infinitesimal probability measures. Then
we have

(a) The family of limit measures in the weak topology of sequences (™ = = 01/a, X i X
pno X - X pr, coincides with the family of M-infinitely diviszble Measures.

(b) There ezist positive constants a,, such that the sequence ,u = 01/ay, X fin1 X pino X

.. Rk, converges weakly if, and only if, o, converges weakly on [0, 00] to some
finite nonnegative measure o on [O, o], where, for any Borel set S C [0, o0],

u—l

le
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Then all admissible a,, are of the form a, = exp{a, — a + o(1)}, where « is
an arbitrary finite number and

kn 2
u—1 __
a, = E (log Ak + / T w unk(du)>,
k=1 B,

and all possible limit measures j € M, have a Voiculescu transform £, = (a,
o({o0}), o).

Theorem 2.1 was proved by Bercovici and Pata [8] in the identical case pi,1 = -+ = ping,, -

Denote by ./\/lS’r the set of p-measures on (0,00). The classical multiplicative convolu-
tions of two measures p, v on (0,00) is denoted by pu ® v. Thus, u ® v is the probabil-
ity distribution of XY, where X and Y are classical (commuting) independent random
variables with probability distributions p and v respectively. The study of ®-infinitely
divisible p-measures reduces (by a change of variable) to the study of the usual infin-
itely divisible measures on R. The Fourier transform needs to be replaced by the Mellin
transform of a measure p on (0,00) defined by

M,(t) = / u' p(du), te€R.
(0,00)
We have
M@y (t) = M, (t)M,(t), teR.
Moreover the classical Lévy-Khinchin formula is as follows (see [12], [13] for the additive
case and [8]):

A p-measure p on (0,00) is ®-infinitely divisible if and only if there exist a finite
nonnegative Borel measure o on (0, 00) and a real number a such that

M, (t) = exp{m,(t)} = exp {z’at + / (uit -1

(0,00)

it 1 + log?
AL T8 (du), teR.

1+log’u/ log’u
Since there is a one-to-one correspondence between functions M), (t) and pairs (a, o), we
shall write m, = {a,0}.

Comparing the formulation of Theorem 2.1 and the formulation of the classical Limit
Theorem (see Theorem 3.6 in Section 3, [13], p. 310, [12]), we obtain the following result,
which generalizes the corresponding result in [8] for the case p,1 = -+ = ping,, n > 1.

Theorem 2.2. Let p, be a triangular scheme of infinitesimal probability measures on
(0,00). The following assertion are equivalent:

(1) The sequence p™ = 01/ap ® fin1 ® flpo ® - - - ® Lk, converges weakly to p® such that
mye = {a®,0%}.

(ii) The sequence p™ = 01/a, B pin1 & ping B -+ B i, converges weakly to 12 such
that X2 = (a%,0,06™), and c®({0}) = o®({oc}) = 0.
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If the equivalent conditions (i) and (i) are satisfied then the measures c® and o® are
related by
1+ log® —1)?
o®(du) = i (;g v (=1 o®(du)
log” u 14 u?

21 1 1 + log?
a®+a® = / (u — 0gu2 ) + (;g uag(du).
u?+1 1+1log°u/ log“u

while

(0,00)

As shown in [8] there exists a sequence {f1,}52, from the class MY such that p, X
-+« X, (n times) converges weakly, but p, ® - -+ ® p, (n times) does not.

Given two unitary elements Uy, Uy, which are free in some non-commutative probability
space (A, ), we can form their product, which is again a unitary element. The distri-
butions of U; and U, are probability measures, say p; and o, on the set 7 of complex
numbers of modulus one. The distribution of U U; is p; X ps, the multiplicative free
convolution of the measures p; and ps.

Let p be a probability measure on the unit circle T. We assume that T =y : —1 <
y < 7. Addition in T is modulo 27. Following Voiculescu [16], we define the i-function
of a probability measure p on T, by

w= [ Y (dy). (2.9)

1 — zew

[_7r77r)

This is a convergent power series in D = {z € C : |z| < 1}, the open unit disk of C,
such that ,(0) = 0. Let M, be the set of p-measures on T such that f[f7T ” e u(dy) #

0. If u € M,, the function @, = ¥,/(1 + ¢,) has a right inverse QEL_I), defined in
a neighborhood of 0, such that Q,(fl)(O) = 0, and we let ¥,(2) = Q,(fl)(z)/z be X,-
transform of p.
Note that ( )
v, (2 F.(z)—1
Qu(z) = 1 +“w zz) - FMEZ) +1
1 1

(2.10)

where F,(z) = 2¢,(2) + 1 is a function of Carathéodory’s class C. This means (see
Section 3) that F,(z) is analytic and F,(z) : D — —i(C* UR). Since F,(0) = 1, such
functions F),(2) (see Section 3) have the form

Fu(2) = / - a(dy), (2.11)

e — z
[=m.m)
where o is a p-measure. We see from (2.10), that @, € S and Q,(0) = 0, @,(0) # 0,
where S is the class of Schur’s functions. By definition (see Section 3) the class S is
the set of analytic functions D — D), where D is the closure of D. In the sequel we denote
by S, the subclass of & which consists of Schur functions @, such that @,(0) = 0 and
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@,(0) # 0. Since @, € S, by the Schwarz lemma, we have |Q,(z)/z| < 1 for 2 € D.
Hence |QY(z)/z| > 1 in some neighborhood of 0.

Let p1; and ps belong to M, and let @), and @, be Schur functions which correspond
to these measures, by (2.10). Let us define the free multiplicative convolution gy X p
based on @, and @,,,.

In [10] it was proved that there exist two unique functions Z;(z) and Z,(z) of the class
S, such that

Z0(2)28(2) = 2Quu(Z1(z)  and  QuiZi(2) = Qu(Ze(=), €D, (212)

Now we shall consider the function @Q,,(Zi(z)). It is easy to see that this func-
tion belongs to the Schur class S and Q,,(Z1(0)) = 0, @,,(0)Z{(0) # 0. Therefore
Qu (Z1(2)) = Qu(z) for z € D, where Q,(z) has the form (2.10) for some measure
u € M,. This measure is determined in a unique way by the measures p; and py. We
define p 1= py X po.

Thus, the multiplicative free convolution of measures in M, is defined by complex
analytic methods. This has been proved independently by different means in [4].

By the relation (2.10) between the function (), € S and the function ,(z), we conclude
that ¢,(2) = ¥,,(Z1(z)) for z € D. In addition we have in some neighborhood of 0

Dy oD, 1),
Qui " (2) Qua " (2) _ n (2) or ¥, (2)Z,,(2) = Z,.(2). (2.13)

z z z

This formula is due to Voiculescu [16].

Infinitely divisible measures for multiplicative free convolution in the case of measures
w € M, satisfy (2.5), where p and v, belong to M,. The infinitely divisible measures
have been intensively studied in Voiculescu [16], Bercovici and Voiculescu [5], [6]. There
is an analogue of the Lévy-Khintchine formula which states that a measure u € M, is
K-infinitely divisible if and only if there exist a finite nonnegative measure ¢ on T and
a real number a such that

Y, (z) =exp {ia - / L+ 2e% O(dy)}. (2.14)

1 — zew

[777771-)

Since there is a one-to-one correspondence between functions ¥,(z) and pairs (a, o), we
shall write ¥ = [a, 0].
In other words, a measure p € M is K-infinitely divisible if and only if

Yu(z) = exp{—v(2)}, (2.15)

where v(z) € C.
Let us formulate the limit problem for multiplicative free convolution in the case of
measures u € M,.
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Let {ttnr :n>1,1 <k <k}, k, T 00 as n — o0, be a triangular scheme of measures
in M,. We shall say that the measures u,; are infinitesimal if
lim max p({y: |yl >¢}) =0 (2.16)

n—o00 1<k<ky,

for every € > 0. Let {a, : n > 1} be a sequence of numbers of [—m, 7). The limit problem
for multiplicative free convolution for measures p € M, has the same form as for the case
of measures p € M.

Denote by fi, the p-measure pi,, X d_, ., where a, = f[_mw) 9(y) pnr(dy), mod 27,
where ¢(y) is a bounded continuous function on [—7,7) such that g(y) = y in a neigh-
borhood of y = 0 and g(—y) = —g(y),9(—7) = g(m — 0).

We give a complete solution of the limit problem for measures from the class M.,
proving the following limit theorem for product of unitary free random variables.

Theorem 2.3. Let p,; be a triangular scheme of infinitesimal measures. We have

1. The family of limit measures in the weak topology of sequences 6_q, X i1 M-+ - X i
coincides with the family of infinitely divisible distributions.

2. There exist constants a,, such that the sequence 6_q, X i, X -+ -X . converges to
w € M., if, and only if, v, converges weakly to some finite nonnegative measure v, where
for every Borel set S C [—m,7),

vn(S) = i/(l — cosy) fie(dy). (2.17)

k=1 s

Then all admissible a,, are of the form a, = a, — a + o(1), mod 27, where o € [—7, )
1s an arbitrary number, and

kn kn,
a, = Zank + Z / siny fink(dy), (2.18)
k=1 k
)

=1
[-m,m
and all possible limit measures p € M, have a Voiculescu transform of type ¥,,(z) = [o, v].

We compare Theorem 2.3 with limit theorems for sums of independent random vari-
ables with values on T (see [14], [15]).

As before T denotes the group of rotations of the unit circle and the character group
T of the group T is Z — the additive group of all integers (with the discrete topology).
The characteristic function g, of the p-measure p on the circle group T is the function on

Z defined by
qu(m) = / ™ u(dy), meZ.
[_ﬂ—’ﬂ—)

Let p; * o is the convolution of p-measures on T. We have

Qua*pz (m) = qu (m>q,u2 (m)v m € L.
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Recall that a p-measure p on T is said to be idempotent if p* p = p. A p-measure p is
a divisor of a p-measure A if A = p * v for some p-measure v.

Note as well that pXd, = p* 9, for p € M, and a € [—m, 7). In addition, as it is easy
to see, the measures p € M, and p # oy are not idempotent.

Defining infinitely divisible p-measures on T in the usual way, the classical Lévy-
Khinchin formula has the following form (see [15]).

If 1 is an infinitely divisible probability measure without idempotent factors, then g,
has a representation

v(dy)

1 —cosy

) = exp { [ (=1~ im(y)

[771-771-)

} m ez, (2.19)

where a € [—m,7), v > 0, g(§) is a bounded continuous function on [—m,7) such that
g(y) = y in a neighborhood of y = 0 and g(—y) = —g(y), g(—7) = g(m — 0) (which is
independent of y), v is a finite nonnegative Borel measure on T. In addition, (e"¥ —1 —
img(y))/(1 — cosy) is defined as —m?* when y = 0.

In the following we shall write g, = (a, ), taking into account that g, admits the rep-
resentation (2.19) which is not unique (see Proposition 3.11). But it turns out that if
(a,v) and (a’, ') are two representations of g,, then v({0}) = v/({0}).

Theorem 2.4. Let {jn,} be a triangular scheme of infinitesimal p-measures of the class
M,. If the sequence iy X - X . converges weakly to a p-measure u® such that
Ym = [, V], then the sequence fun1*- - %[y, converges weakly to p* such that g,» = (o, v).
There exists a triangular scheme of infinitesimal p-measures { i} with k, = n such that
the sequence fi,1%- - - in, of p-measures onT converges weakly to some p-measure p € M,
and 0_q, X pipg K-+ - X iy, does not converge weakly for any a, € T to a p-measure in

M..

3. AUXILIARY RESULTS

We need results about some classes of analytic functions (see [1], Section 3, and [2],
Section 6, §59).

The class N (Nevanlinna, R.) is the class of analytic functions f(z) : C* — {z: Sz >
0}. For such functions there is the integral representation

14+ wuz
u—z

f(z)=a+bz+ / 7(du), (3.1)

R

where b > 0, a € R, and 7 is nonnegative bounded measure. Moreover, a = Rf(i) and
T(R) = S f(i) — b.

The Stieltjes-Perron inversion formula for the functions f of the class N has the fol-
lowing form.



10 G. P. CHISTYAKOV"™? AND F. GOTZE?>*

Let p(u) := [;'(14t*) 7(dt). Then
plus) = plun) =l ~ [ 37(¢ + ) e (32

where u; < uy are continuity points of the function p(u).
The function f(z) of the special form

fe)= [ L )

u—z
(0,00)

admits the bound
f(z)]=o(lz]) as z—0 or z— o0 (3.3)
nontangentially to R (i.e., such that Rz/3z stays bounded).
By Krein’s results (see [1], and [10], Section 3), the function R(z) € K if and only if it
admits the following representation

R(z)=bz+z / T(du), 0 < argz < 2m, (3.4)

u—z
(0,00)

where b > 0 and 7 is a nonnegative measure such that

/ ) _ (3.5)
(0,00) 1 +u

Let u; € M, 7 =1,2. Recall that we defined 1 X o in the following way.

Using (2.3) and (3.4), we see that R(z) := R,,(Z1(z)) and R(z)/z belong to the class
N and in addition, for z > 0, R(—x) — 0 as x — 0. Introduce the function ¥(z) :=
R(2)/(1 — R(z)). We note that ¢(z) € N and ¢(z)/z € N. Moreover lim,_,_, ¥ (z)/x
= (0. Hence the function ¢(z) admits the representation (3.4) with b = 0.

It is easy to see that lim, ., ¥ (z) = —1 if and only if in the representation (3.4) for
R, (2) either b > 0 or 7(R*) = co. In this case we obtain for ¢)(z) the representation (2.1)
with some probability measure p € My and p({0}) = 0, that is ¢(2) = ¢,(2), z € C*.
In addition R(z) = R,(z), z € C*. Therefore 9, (Z1(2)) = ¥.(2).

Let in (3.4) b =0 and 7(R;) < oco. Then lim, ., o ¥(x) = —p=—7(Ry)/(1+7(R,)),
and we get for ¥(z) the representation (2.1) with some probability measure p € M, and
w1({0}) =1 —p. Thus, ¥(z) = ¢,(z), z € CT.

The measure y is determined in a unique way by the measures p; and py and we define
o=y X po.

As was proved in [10], (2.3) admits the following consequences.

Proposition 3.1. Let py, ..., pu, € My. There exist unique functions Z1(z), ..., Z,(z)
of the class KC such that, for z € Ct,

Z1(2) ... Zn(2) = 2(Ru (Z1(2)" Y, and Ry, (Zi(2) =+ = Ry, (Zu(2)).  (3.6)
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Moreover, R, x..&y, (%) = Ry, (Z1(2)) for all z € CT.

We need the following auxiliary results. The first three of them are due to Bercovici
and Voiculescu [6].

Proposition 3.2. Let {p,}32, and {v,}32, be sequences of p-measures on R, which
converge weakly to p-measures p and v, respectively. Then {pu, X v}>2 | converges weakly
to the p-measure p X v. The same result holds for p-measures y € Sy, on T.

Proposition 3.3. Let p; and ps be p-measures on Ry, and let p = py X po. Then we

have u({0}) = max{p ({0}), u2({0})}.

Proposition 3.4. Let 1 a p-measure on Ry such that u({0}) < 1. Then 1, is univalent
in the left half-plane iC*, and ,(iC") is a region contained in the circle with diameter

(n({0}) — 1,0); moreover ¢,(iC*T) "Ry = (u({0}) — 1,0).

Let 1 € MY. Denote by i the measure such that i(B) = pu(B™!) for any Borel set
B Cc Ry \ {0}. Denote u* := X f.

Proposition 3.5. A p-measure p € MY, satisfies i = p if and only if one of the following
relations hold, for z # 1 and |z| =1,

1) R (z) = —1/2;

) [Ry(2)] = 1;

3) |X.(2)| = 1, where ¥, is defined.

Proof. By the integral representation (2.1) for ¢,(z), it is easy to verify that

s =D e @

The first assertion of the lemma immediately follows from this formula and from the sym-
metry principle for analytic functions.
Recalling the definition of the function R,(z) and using (3.7), we get the relation

1 1
R, <t> ——, secCH (3.8)
o R,.(2)
As before the second assertion of the lemma immediately follows from (3.8) and from
the symmetry principle for analytic functions.
Using (3.8), we obtain the formula

(1) = = (3.9)

o Eu(?)

for z such that ¥, (2) is defined. We obtain the third assertion of the lemma as before. [J
We obtain, as an evident consequences of Proposition 3.5, that p® has the property

p* = p*. In addition, if gy and pe from the class MY such that ji; = py and jis = po,

then p; X s has the same property as well.
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As for multiplicative free convolution we can formulate the limit problem for the mul-
tiplicative classical convolution ®. Let {pr: n>1,1 <k <k,}, k, T 0o as n — o0, be
a triangular scheme of infinitesimal measures in M9. We shall

1) determine all u € ./\/19r such that pu™ = 01/an ® fn1 ® 2+ ® ik, — p in the weak
topology, here {a,} is a sequence of positive numbers;

2) determine conditions under which p(™ converges weakly to a given — p.

For measures p,; € MY we denote by fi,, the measures such that fi,,((—oo,z)):=
fng((—00, apg)), * > 0, Where Qplp 1= exp{f1 14 log u in(du)}. Here 7 € (0,1) is
an arbitrary but fixed number.

A complete solution of this problem follows from the Limit Theorem for classical con-
volution * (see [13], p. 310, [12]).

Theorem 3.6. Let i, be a triangular scheme of infinitesimal probability measures in
M. Then we have

1. The family of limit measures of sequences ,u = 01/a, ® fin1 ® i ® -+ @ fink,
coincides with the family of ®-infinitely divisible measures.

2. There exist positive constants a,, such that the sequence ,LL(n) = 01/a, ® Hn1 ® fin2 @
© ® g, converges weakly if, and only if, o, converges weakly on (0,00) to some finite
nonnegative measure o® on (0,00), where, for any Borel set S C (0, 00),

log” u
nk(du).
Z/1+logu’uk( u)

Then all admissible a,, are of the form a, = exp{a, — a+ o(1)}, where « is an arbitrary
finite number and

k 1+7
= logu
oy = loundu—i—/—ndu),
;</ Btk (dt) 1+10g2u“k( )
=1 4%, (0.00)
and all possible limit measures p € MY have m,, = {a,0®}.
By C we denote C. Carathéodory’s class of analytic functions F'(z) : D — {z: £z > 0}.

A function F is in C if and only if it admits the following representation (Herglotz, G.,
Riesz, F.)

F(2) = ia + / UAZ ) (3.10)

ew —z
[—m,m)
where a = SF(0) and o is finite nonnegative measure. The number @ and the measure o
are uniquely determined by F'.
Write the Stieltjes-Perron inversion formula for the function F' of the class C as follows:
Yo

1. i
k(y2) — k(1) = - 17}%1 RE(re™) dyp,

1



LIMIT THEOREMS IN FREE PROBABILITY THEORY. II 13

where —7 < y; < yo < m are continuity points of the function x(y) := o([—7,y)), y €
[—7T, 7T).
By S we denote J. Schur’s class of analytic functions ¢(z) : D — D. The classes C and

S are connected via 1 F(z) — F(0)
. e -no (3.11)

which induces a one-to-one correspondence between C and S.
As it was proved in [10], (2.12) admits the following consequences.

Proposition 3.7. Let py,...,pu, € M,. There exist unique functions Zy(z), ..., Zn(2)
of the class S, such that, for z € D,

Z0(2) . Zn(2) = 2(Qu(Z1(2)",  and Qu(Z1(2)) =+ = Qu,(Zu(2)).  (3.12)
Moreover, Q= &u, (2) = Qu, (Z1(2)) for all z € D.

Let p € M,. Denote by fi the measure such that f(B) = u(—B) for any Borel set
B C T. Denote p® := X [.

Proposition 3.8. A p-measure u € M, has the property i = u if and only if one of
the following relations hold, for real x such that —1 < x < 1,

2) $Q,(x) = 0;

3) QX (z) =0, where ¥, is defined.

Proof. By the integral representation (2.9) for ¢,(z), it is easy to verify that

Vu(2) = Yu(z), zeD. (3.13)
The first assertion of the lemma immediately follows from this formula and from the sym-
metry principle for analytic functions.
Recalling the definition of the function @,(2) (see (2.10)), we get the relation

Qu(z2) =Qu(z), =zeD. (3.14)
As before the second assertion of the lemma immediately follows from (3.14) and from
the symmetry principle for analytic functions.
Using (3.14), we obtain the formula

2a(2) = Zu(2), (3.15)

where X, (%) is defined. We obtain the third assertion of the lemma as before. [

We need the following results for the convergence of *-infinitely divisible p-measures
on T (see [14], [15]).

If v is any finite measure on T the p-measure e(v) associated with v is defined as

follows:
V2* I/n*

— v ..
e(v)=e <60+1/+ 5 o +...>,

+ot

where 1™ := v % .-+ x v (n times).
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Theorem 3.9. Let {pn, : n > 1,k =1,...,k,}, be a uniformly infinitesimal sequence
of p-measures, and let ji, = fp1 * -+ % fnk, . Let Bup = e(fink * Tng), where xpy is that
element of the group T defined by the equation

[—7‘(771')

Let Ny = Bp1 % -+ % Buk,, * T, where x, = —(Tp1 + -+ + Tpp, ). If one of the sequences
{\} and {p,} is shift compact and no limit of its shifts has an idempotent factor, then

lim sup [gx, (m) = gy, (m)| =0

=P meK

for all compact set K of Z.

Theorem 3.10. Let {p,} be a sequence of x-infinitely divisible p-measures without idem-
potent divisors with representations {(a,,v,)} and p is an infinitely divisible p-measure
without idempotent divisors with a representation {(a,v)}. The conditions v, — v weakly
and a,, — a as n — oo are sufficient for the weak convergence i, — [i.

This result is a simple consequence of Theorem 4.10 in [15].
The following proposition (see [14], p. 112) show that the representation (2.19) is not
unique.

Proposition 3.11. There exist two finite nonnegative measures vy # vo on T such that
U1 =1y and

exp{ / (et — 1) Vl(dt)} = exp{ / (e —1) ug(dt)}, m € Z. (3.17)
=) [~m,m)

Proof. Following the arguments in [14], p. 112, we consider the function f(z) =
47 sin(nx), where x € [—m, 7) and n # 0 belongs to Z. We see that

1 )
— me dr = g, €7,
o / e f(x)dr =q m
[—7‘(,71')
where ¢, = 2mi if m =n, q,, = —2mi if m = —n, and ¢,, = 0 otherwise. Writing f* and

f~ for the positive and negative parts of f, we define two measures
1 n 1 _
n(S) = o [ [ra)de, v(S) = [ f(x)de
s 2m
S S

for all Borel sets on [—7, 7). Then vy # vy, but (3.17) holds which was to be proved. O
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4. MULTIPLICATIVE FREE LIMIT THEOREM IN M,

In Section 4 we prove Theorem 2.1. We denote here by ¢ positive absolute constants.
For some measure v and for some parameter d we denote by ¢(v), ¢(d), and ¢(v, T) positive
constants which depend on the measure v, on the parameter d, and on v and d, respec-
tively. By ¢;(v),c;(d),c;j(v,d), j =1,..., we denote explicit positive constants depending
on corresponding measures and parameters. In the first step we establish some properties
of the measures {p,, : n > 1,1 < k < k,}, k, T oo, satisfying condition (2.8), and
the corresponding transforms {R,,,(z) :n>1,1 <k < k,}.

It is clear that the condition (2.8) is equivalent to the following one

(u—1)
max / BESTE g (du) — 0, n — oo.
b b ]RJF

Recall that i, are the p-measures such that fi,((—o00,z)) = i ((—00, angz)), where
Apg = f(l_d Hd)uunk(du). Here d € (0,1) is an arbitrary but fixed number. Since

maxg—1,. g, |Gkn — 1| — 0 as n — 0o, we conclude

€= max e, — 0, n—o00, where gy iZ/ Fink (du). (4.1)

k=1,...kn

Let p € M with a finite second moment. Denote
2 2 2
o) = [untdn), o) i= [ ptaw) - ([ untan))”
Ry Ry Ry

Consider the p-measures p,x, k = 1,..., k,, such that, for all Borel set B C R,

1 T (dut) _ [ Hnk(du)
pnk(B) = @/1+u2 with b := Tra (4.2)

B R
First let us prove that
la(pnr) — 1| < c(d)enr, m>mng, k=1,... kp, (4.3)
where ng is a sufficiently large positive integer. Write

u—1 _

balaow) -V =+ L= (- [+ [ ) ).

1+ u?

|anku_1‘§d ‘anku_1‘>d
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We note that

1 - -
L=y [ -Disd 0@ [ - 0P
|anru—1|<d lanku—1|<d
1
= / (x — ang) ik (dz) + Oc(d)enr, = Oc(d)en.
zank

[1—d,1+d]

Here and in the sequel we denote by 6 a real quantity such that || < 1. Furthermore,

et [ S < e

lanku—1|>d

The last two estimates together with the obvious lower bound

1
bnkzz_l’ nZno, kzl,...,kn, (44)
prove (4.3).
Secondly we shall prove that
1
§€nk S UQ(pnk) S C(d)gnk‘a n Z no, k= 17 ) kn (45)

Indeed, using (4.3) and (4.4), we have the relation, for n > ng, k=1,...,k,,

o2 (pni) = b / wﬁnk(du) < i/ (u— 122ﬁnk(du)

Ry Ry
2alpu) — 1)? [ fuildu) _ (24 e(d))zu
< < c(d)enk-
* bnk 1 + u2 o bnk o C( >E "
Ry

In view of (4.3) and (4.4), we obtain the lower bound

o) 2 o [ S i)~ 2laton) ~ 1 (5 [ G )

~ bk 1+ u? nk 1+ u?
Ry Ry
1 1
Z <b_ - 4C(d)\/5nk>5nk 2 55711@7 n Z no, k= 1, PN k)n
nk
The estimate (4.5) follows from the last two bounds.
For every k = 1,...,k, we have, taking into account (3.4),
e (d
R =cuztz [ 2 e\ Dol k=i (46)
u —

(0,00)
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where ¢, are nonnegative constants and 7, are nonnegative measures such that

[ B < (4
(0,00)
Since ;
xR S\ Cx Ank(i) _ o (pnk)
SR, (1) =S, +“wﬁnk O a(pnk)(l LT (pnk)), (4.8)
and 0 )
_ ¢Ank i _ (Pnk)
Rig,, (1) = Ry +‘;mk 0= T ou) (4.9)

we have, by (4.3) and (4.5) , forn > ng, k=1,..., kp,

1 Tk (du)
R < / L+ <c(d)enr, and |Rg,, (1) —i| < c(d)enk. (4.10)
(0,00)
In view of the bound
1 Q(z)
< 2€Ch, u>0, 4.11
‘u—z‘_\/1+u2 ( )
where
1 T 1+ Rz\ . n —
Q(z)=1+—ifzeC (z(C)andQ(z):zZ(l—I— >1fz€(C N (—iC™),
|z| Sz
we obtain from (4.10) and (4.11)
2
Tnk d’LL
<|z—1 d)enr < c(d)en(lz] +1)Q(2 4.12
| |/¢m,u_z| Dens < cld)emlsl + DR (112)

for z € C*, and
Rﬁnk (Zl) _ Rﬁnk('zQ)

|21 — 22| Tk (du)

21 29 . lu — z1||u — 29|
k(d
<Jar - 21QGQ0) [ Y < c@enle - QIR (413

R4

for 21,2, € CT.
In addition, using (4.10) and (4.12), we easily conclude that

c1(d)enkSz < SRy, (2)/2)] < ca(d)en Sz and  |R(Ry,, (2)/2) — 1| < e(d)en
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for z € C such that 1/4 < |z|] <2 and 7/4 < argz < 7, and for n > ng, k = 1,..., k,.
Hence for the same z and n, k the following relations hold

Ry (2)/2 — 1| < e(d)ene and  c3(d) < fg((ﬁ“f;r;/j)) < e(d). (4.14)

The relations (4.14) imply that the inverse functions R(ﬂ;i)(z) exist and are analytic in
the domain Dy := {z € C: 1/2 < |z] < 3/2, 37/8 < argz < m}. Moreover, for z € D,
and forn >ng, k=1,...,k,,

(BED(2)/2) — 1] < e(d)ew,  and c5(d)§—a§:(ﬂ_§r;/z j)gc(;(d). (4.15)

Proof of Theorem 2.1. Sufficiency.
By Proposition 3.1, there exist unique functions Z,1(2),. .., Zuk, (z) of class K such
that, for all z € Ct,

R (Zm(2) _ Bpn(Zn2(2) B, (Zok, (2))
2 Zn(z)  Zuka(2)

(4.16)

and
Ry, (Zn1(2)) = -+ = Ry (Znk, (2)). (4.17)
Moreover, R, (z) := Ry, (2) = Ra,,(Zuk(2)), k= 1,..., k,, where [i,, := Jip1 X -+ K [y, .
By Propositions 3.3, 3.4, we see that the functions X5 (2), X5,,(2), k = 1,..., ky,
are defined on some domain € C iC*™ which contains the interval (1 — 1/A,,0), where

the parameter A, := maxy_1 .k, inx({0}) satisfies A, < maxy—1__x, € and tends to 0
as n — 00. By (4.16) and (4.17), we have

Eﬁn (Z) = Eﬁm (Z) R Zﬁnkn (Z), z €. (4.18)

-----

Denote 7, := Zi;l enk- Recall that, by the assumption of the theorem, 1, — ([0, c0])
as n — oo. Hence 1, < 0([0,00]) + 1 for n > ng. We see that £ (2),n > ng, admit
an analytic continuation in D; and there, by (4.15),

exp{ —c(d)m} < [¥5,(2)] = [Sa.u (2)] - - [Zg, (2)] < exp {e(d)na ) (4.19)
and
es(d) < _a;g_Egsg(i) _aig Zﬁnl(Z):_ a;grjrg S, (2) < coldim. (4.20)

In addition we note that, by (4.19) and (4.20), for z € Dy := {z € C: 1/2 < |z| <
3/2,m — ¢7(d) < arg z < 7} with sufficiently small ¢;(d) and n > ng, k =1,..., k,,

A LD (2 Z(gl) RED (4
() - sl Zo)V0) _ 2 L)

Y
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and hence, for the same z,n, k,

2225, () _ Ty, (2) 1
22, (2) 2 Ta(2)
By (4.15), (4.19) and (4.20), we see from (4.21) that there exist points z,, such that
2ok € {2z € C:emsDm < |z| < es@m 7 — co(d) < argz < m — c7(d)/2}, where
1 < arg(Znk(znk) / 2nk)
c(d) = na(m — arg zu)

(4.21)

e DM < | Z1 (2n) /2] < €D and < ¢(d) (4.22)

forn > ng, k=1,...,k, with some positive constant ¢(d) > 1.
The functions Z,,, n > 1, k =1,..., k,, are in K and therefore, by (3.4),
unk(du)

Znk(2) = dppz + 2 / 2 € CT, (4.23)

(0,00)

u—z
where d,, are nonnegative constants and v, are nonnegative measures such that

/ Vak (1) < 0
14w

(0,00)

Applying the bounds (4.22) to the integral representation (4.23), we easily obtain the fol-

lowing estimates, for all n > ng, k=1,...,k,,
_ + ¢o(d)) Vi (du)
e~ < q . 4+ / - < et (@ 4.24
= o wra@) +eold (4.24)
and
Vni(u
crz(d)mn < / 1 —ki—(uz < ci3(d) - (4.25)
(0,00)
Then we obtain, using (4.11) and (4.24),
Zoi(2)| < c(o,d)|2|Q(2), 2€CT, n>ng, k=1,... k,. (4.26)
On the other hand, by (4.24), (4.25) and the lower bound
LR ! >1 1 >1 1 ! >0,2€C
= = . u 2
lu—2z]2 7 (u+|R2])2+(S2)2 — 2w+ |22 — 214 |2]2 1+ w? ’ ’
we have, for the same z,n, k,
Vi (du) cr2(d) 2|8z

|Znk(2)] 2 |2[3(Znr(2)/2) = [2|32 /
(0,00)

(u—R2)2+ (82)2 = 2 1y | 2|2 (4:27)
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and
(u— Rz2) Vpr(du)
Zo(2)] > |21 R(Z, — |2|dn |
Z0k(2)| 2 LIR(Z(2) /2] = |+ [ S
(0,00)
1 U Vg (du)
> - — R T
—max{o’ 2(1 + |2]2) (d"” / 1+ u? )
(0,00)
— (1 + sign(Rz))Rz / Vo (1) } > o(d)|2|gn(2) (4.28)
g (u—RN2)2+ (S2)2) — In\2): '
(0,00)
where
B 1 , 1+ (Rz2)?
— c11(d)nn
0(2) = mas {0, (7 — () 5 = (1 + sign(Re)ens(dmRe—g 5
Note that the estimate (4.28) is only useful if 7, is sufficiently small.
Finally we get from (4.27) and (4.28), for z € C*, n > ng, k =1,... k.
cr2(d) |28z
> = . .
22 2 pnlz) = 12l (F o + cld)on(2) (4.29)
Using (4.12), we deduce
R; (Zk(z
%’:;)) — 1’ < (o, d)enk(|Znk(2)] + 1)Q(Znk(2)) (4.30)

forz€e C*,n>ng,and k=1,...,k,.
If RZ,x(2) > 0, then, using sin(z) > 2z for 0 < 2 < 7/2, we obtain

. 2
SZnk(2) = | Zn(2) | sin(arg Z,x(2)) > ;\an(zﬂ arg Zni(z) > ;|an(z)] argz  (4.31)
and we get, by (4.26), (4.29), and (4.31),

20y, @ [
Q(Zni(2)) <2+2 37 <2+ ¢(o,d) IO (4.32)
If RZ,1(2) <0, we have, by (4.29),
1 1
Q(Zu(2) <1 |an( )| < ) (4.33)
Applying (4.26), (4.32), and (4.33) to (4.30), we finally deduce
R, (Zni(2)) _ Q*(z)(L + |2])°
B 1| < eo,d)enk@Q1(2) = c(o,d)en on(2)5 (4.34)

for e CT,n>ng,and k=1,...,k,.
Introduce the domain D(T') :={2 € C: 1/T < ¥z < T, —T < Rz < T} for sufficiently
large T' > ¢(o,d) > 1.
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We shall estimate below the function p,(z) for z € D(T). First we assume that
N > 0T~ with sufficiently small 8y = do(o, d). In this case we obtain from (4.29) that
pn(2) > c(o,d)T~1°. Now we consider the case where 1, < §T~". Then, it is easy to see,
that the function g,(z) admits the estimate

1
gn(2) > c(o,d) T2 (1 — IOecll(d)""cl4(d)77nT7) > ic(a, d)T?

and we obtain that p,(z) > 2¢(o,d)T 3. Hence we finally have

pn(2) > c(o,d) T, z € D(T). (4.35)
Using this bound we see that the following estimate holds

Q1(2) < c(o,d)T", z € D(T). (4.36)

It follows from (4.34) and (4.36) that the right-hand side of (4.34) does not exceed

1/2 for z € D(62,""®) with sufficiently small § = d(o,d) > 0. Using series expansion of
the function log(1 — z) for |z| < 1 and (4.34), we easily obtain, for n > ng, k = 1,..., ky,

Rﬁnk(an(Z)) Rﬁnk (an('z))

lo = — 14 ru(z), ze D0, 4.37
R S (), 2D, (48T

where the function r,;(z) is analytic in D(de, Y ') and admits the following estimate
ru(2)] < e(o, d)en, Q7 (2)- (4.38)

In (4.37) we choose the principal branch of the logarithm.
Let us return to the relation (4.17). In view of (4.26) and (4.34), we have, for z €

D(égﬁl/lg), n>ngand k=2,...,k,,
|1 Zn1(2) = Zu(2)| < | Ry (Z01(2)) = Zia(2)| + | R, (Z0k(2)) — Zni(2))]
< (0, d)en|2|Q(2)Q1(2). (4.39)
Denote

Rﬁ k(an(Z)) Rﬁ k(Zm(Z)) +
: n — fin > =2,..., k. 4.4
Gnk(2) ) Znle) 2€C", n>ng, k ook (4.40)

By (4.13), it follows that
|gnr(2)| < e(d)enk| Znk(2) — Zn1 (2)|Q(Znr(2))Q(Zna(2))

for z € D(éaﬁl/lg), n > mngand k = 1,...,k,. Taking into account (4.39) and (4.32),
(4.33), (4.35), and (4.36) we have, for z € D(T) with T" < sen® and n > ng, k =
1. ks

|an(2>| S C(Ua d)gnkenT51- (441)
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Counsider the functions

fr(z) 1= (1= 2)(L+ ¥, () = 1 = / |

1 —uz
R4
z u? —1 u+z (u—1)>2 .

- o w(du)) 4.42
1_Z(/ i+ [ )

R, R,

forreCt,n=1,...,k=1,...,k,. It is easy to see that
Runk(z)_ 11—z 11—z

(fnk( ) — ﬂ) (4.43)

Since by (4.11), for u > 0 and z € C™,

u uQ() 1 Q(z)
< and < ,
|1 —uz| = 1+ u2 11 —uz| = 1+ u2

we obtain from (4.42), for z € Ct and n > ng, k =1,..., k,,

’/ 2 O ] < 0 EDQE) [ () < w1+ 12DQC)

1—uz v?+1 u? 41
Ry
(4.44)
Moreover, recalling the definition of fi,y, it is not difficult to deduce the following bound,
formn>ng, k=1,...,k
u? —1
| / o)< [ @ DA

{UZO7 |anku71|<d}

e(d) / (10— 1)? i (du) + / fe(du) < (e, (4.45)
{u>0, lapru—1|<d} {u>0, lanru—1|>d}

The estimates (4.44) and (4.45) together imply

)] < e Q) (4.46)

for 2 € Ct, n > nyg and k = 1,...,k,. Since, as it is easy to see, |fu(2)| < 1/2 for
z € D(6e, ™) and hence |1 + foe(2)] > 1/2 for the same z,n, k, it follows immediately
from (4.46) that

y 21+ 2])?

Bus(2)] < (e Q) (4.47)
for z € D(éenl/lg) and n >ng, k=1,...,k,. Denote
k}n kn

k=1 k=1
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Using (4.16), (4.37), (4.40), and (4.43), we have, for n > ny,

kn
B (D) _ o 1‘/1(15) S e Zua(2))
k=1 . . .
i E Stz
k=1 k=1 k=1

= {75 D () o) + () + 0,0}

oo [ ontn)+ [ {2 o )+ 2) )+ 0a())-

u—1 1 —uZ,(2)
R, R,
(4.48)
By (4.38), (4.41) and (4.36), we obtain, for z € D(T') with T' < 5en /™ and n > ng,
kn
70 (2)] + |gn(2)] < (o, d)en ank(Q%(z) + T < ¢(o,d)e, T (4.49)
k=1

In addition, by (4.26), (4.31)—(4.33), (4.35), and (4.47) we conclude, for the same z and
n as above,

10,(2)] < e(d)en ienk ’2"1(71)’<_1;1|<Z;)1|(2)|) Q*(Zni (2)) < o, d)en T, (4.50)

k=1
From (4.49) and (4.50) we see that, for sufficiently large n > ny,
[ (2)] + 1gu(2)] + 10a(2)] < c(o, d)e/, 2 € D(e; '), (4.51)
Denote 1
al, == exp {a +o(1) — / ut an(du)}.
u—1
R
By (4.45),
|logal,| < ci5(d) + |a] < oo forall n > ng, (4.52)
and we can rewrite (4.48) in the form
R; (Z, Zn
M —exp {a+o(1) +/%an(du) +An(z)}, (4.53)
Ry
where Z,(2) := Z,1(al,z), and A,(z) is an analytic function in D(e—m(d)—%;l/”), where

it admits the following estimate

|AL(2)] < (o, d)el/>2. (4.54)
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Return to the representation (4.23) for the functions Z,;(z). By (4.24), (4.52), and
the vague compactness theorem (see [13], p. 179), we conclude that there exist a subse-
quence {n'} such that
Vn/l(dU)

I+u

dy1 — di a, — a, and /
(0,00
where d; > 0,7 =1,2, a > 0, and {v,1(du)/(1 + u)} converges in the vague topology to

some nonnegative measure vq such that v;(R;) < dy. Rewrite the formula (4.23) with
k =1 in the form

u+1 V1 (du) / Vp1 (du)
Zoi (2) = doy ( - 1) AL
1(2) 1Z+Z/ u—z 1+u +z 14+u
(0,% (07%

Since the kernel under the integral sign in the last formula tends to 0 as 4 — oo uniformly
in z from every compact set in C*, we obtain, by the Helly-Bray lemma (see [13], p. 181),

Zn(2) — dyz + z/

Ry

u+1
u—z

vi(du) + (dz — v1(Ry))z

uniformly on every compact set in C*. Finally we obtain from this relation that Z,.(z) —
Z(z) asn’ — oo uniformly on every compact set in C*, where Z(z) € N and Z(z)/z € N.
In addition we note that Ry, (2) — z uniformly on every compact set in C*. Then,
recalling the assumption of the theorem, we have o,, — o weakly on [0, 00] and (4.54),
and therefore we easily deduce from (4.53), that

Z(;):exp{a—i— / %g(du)}’ ~eCt. (4.55)

[0,00]

We see from (4.55) that Z # 0. Since the function Z(z) is univalent on iC*, it has
a right inverse on the image Z(iC*). Putting in (4.55) 2 = Z(-Y(w) and using (2.6),
we conclude that Z(z) = R,(z), where 7 is a X-infinitely divisible p-measure. Hence
Z(z) € K. In addition note that the equation (4.55) has an unique solution in class K. Now
suppose that {Z,(z)} does not converges to Z(z) on some compact in C*. Then as above
there exists a subsequence {n”} such that Z,(z) — Z*(z) as n” — oo on every compact
set in C*, where Z*(z) € K. The function Z*(z) satisfies Z*(z) # Z(z), z € C*. But
Z*(z) is a solution of (4.55). We thus arrive at contradiction. Hence {Z,,(2)} converges to
Z(z) uniformly on every compact set in C*. From (4.55) it follows that Z(z) is infinitely
divisible with parameters (o, o({o0}), o). Since Ry, (Z,(2)) — Z(z) uniformly on every
compact set in CT, the sufficiency of the assumptions of the second part of the theorem
is proved.

Necessity. First we assume without loss of generality that p,,({0}) =0, n > 1,k =
1,... ky, that is all p,, € M.
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Indeed, by Proposition 3.2, we conclude from assumptions of the theorem that 4, /,, X
fin1 & B fiyp,, — p weakly as n — oo, where fi,, = ptng — ik ({0}) (00— 95, ) and v, > 0
are sufficiently small positive numbers. It is clear that if prove the necessity conditions
for the measures [i,,;; we obtain the necessity conditions for the measures fi,.

Denote p1;,. = pinr M iy, n > 1, k =1,...,k, and p° := X . By Proposition 3.2,
we have the relation

M(n’s) = piny Mg - Ry, — p® weakly as n — oo. (4.56)

The relations (4.16) and (4.17) hold for the measures p?,, n > 1, k = 1,..., k,, with
the functions R,s (2), n > 1, k =1,... ky,, replacing R, (2), n > 1,k =1,...,k,, and
with some functions Z,;s(2) € K,n > 1, k = 1,...,k,, replacing Z,x(2), n > 1, k =
1,..., k,. Rewrite (4.16) in the form

Rys (Zs(2))  Rus, (Zms(2)) Ry, (Znk,s(2))
z an,s(z) o ann,S(Z> ’

By Proposition 3.5 and the relations (2.4) and (3.9), the measures p,, n > 1, k =
1,..., ky, are symmetric with respect to 1, i.e., g, = ;. and 1™%) has the same property
as well. Since Rys (Znk,s(2)) = R0 (2), 2 € C*, and, by Proposition 3.5, |R o« (€)| =
1, [Rys (e")] = 1,0 < t < 27, we conclude, using the univalence of R-functions in
C* N (iC*), that | Zps(e")| =1, n>1, k=1,...,k,, for the same t as well.

Let us show that the p-measures p, are infinitesimal as well. Since the estimates
(4.15) hold for the functions R; (2), we have the relation

z e CH. (4.57)

log X0 (2) =log¥g,,(2) +1logXs (2), 2z€ Dy, n>ng, k=1,... kn,

where we choose the principle branch of the logarithm. Using (4.15), it is not difficult to
deduce from this relation that

‘Ruik(fl) - 7,| < C(d>€nk7 n > No, k= 17 cey kn

In view of (4.8) and (4.9), replacing the measures fin; by p2,, and pnr by p3, (as defined
in (4.2), replacing fi, by pf,), we conclude

la(ph) =1 < e(d)ene  and  *(pp) < c(d)en. (4.58)

It remains to note that

) = [ (= aloe))” o () > / W=7 e ()

14 u? 14 u?

oot 1) [Py = [ ) —olager) 11 wso)
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From (4.58) and (4.59) we see that the following inequality holds

(u — 1)2 s
Enks = / T pop(du) < c(d)epr, n>mng, k=1,... k,
Ry
which implies that the measures p, are infinitesimal.
Hence Rys (2) — z as n — oo uniformly in k = 1,..., k, and on every compact set in
C\ [0,00). Moreover R, (z) is univalent in C* N (iC*). Denote 2y := (—1 +14)/v/2. Then
Rys (20) € C* N (iCT) and Zyuks(20) € CT N (iC*). By the assumption of the theorem,

we have R, (Znrs(20)) — Rus(20) as n — oo uniformly in & = 1,..., k,. Therefore
an,s(20> - R,uS<ZO) (460)
and
R(Rys, (Znk,s(20))/ Znks(20)) — 1 (4.61)
as n — oo uniformly in k =1,..., k,.

Using the integral representation

nk,s d
R‘U‘Sk(Z):an’SZ—l—Z / Ma Z€C+7 nZ]-?k:lw"ak'rw
" u—z
(0,00)

where ¢, s > 0 and 7, s are finite nonnegative measures such that

/ Tok,s(du) <o
1+u

(0,00)
we deduce
R s Zn s\ 2 nk.s d
N MLZk( ) = $Znk.s(0) / - RZ : k2( U)C‘Z 2
nk,s(20)> (0'o0) (u nk,s(ZO)) + (\S‘ nk,s(20)>
Since, as in (4.10), for n > ng, k =1,..., k,,
Tok.s(du
C16Enk,s < / % < c17(d)enks (4.62)

(0,00)

we obtain from the previous formula, using (4.60),

R, (Zps(z
c1s(p)enks < S M”’“( ks(%0)) < (P’ d)enks, n>ng k=1,... k. (4.63)
an,s(ZO)
We conclude from (4.61) and (4.63) that, for n > ng and k =1,...,k,,

Rys, (Znk,s(20))
an:,s(ZO)

CQO(MS)gnhS < arg < 21 (,us? d)gnk,s-
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In view of these inequalities and (4.57), we arrive at the relation

R,s o nk s(zO

n ,8 Z
arg i 1 ! 0 = Z > ) = 20 Z€nks. (464)
nks 0

Therefore we obtain from (4.62) and (4.64) the relation
Tn S
Z / 1k+u2 = 17 Zﬁnksﬁc , N> nyg. (4.65)

Since 1%, = fink X [i,;, we note, by the definition of the free K-convolution (see Sec-
tion 3), that there exists a function Wy (2) € K such that R,: (2) = R, (Wauk(2)), 2 €
C*. The p-measures {fi,x} and {j;,} are infinitesimal, therefore R, (z) and R, (z)
tend to z as n — oo uniformly in & = 1,...,k, and every compact set in C*. Hence
Wi (20V/2) — 20v/2 as n — oo uniformly in k = 1,..., k,. In the following we shall use
the relation

(Bin®) (B (W) o Wkl2) | o R W) Wn(2)
Note that if f(z) € K, then f(z)/z takes values in C* N (—iC*) when z € CT N (:C™).
Therefore we conclude from the previous relation that

Tok,s(du) Rys k(zo\/_) unk( Wor(20V2)) (s Wan(20V2) Tk (du)
/ u? +1 =3 20V2 Wi (20V/2) R 20V/2 _4/ u? +1

(0,00) (0,00)
forn >ng, k=1,...,k,. In view of (4.10) and (4.65), we obtain from this that

zeCt.

1
3 Zank < c17(d) Zenk,s <c(p®), n>ngp. (4.66)
k=

Return to (4.16) and (4.17). Since R, (2) = Fp,(bn2/ay), where b, = 15, @k, we see
that R,w (2) = Ra,,(Znk(bnz/an)), z€ CT, k=1,... k,. For z € C" N (iC"), functions
from the class K take values in C* N (iC*) and are univalent. Since Rj; ,(2) tend to z
and Ry , (Znx(bnz/ay)) tend to R,(2) as n — oo uniformly in k =1,..., k, and on every
compact set in C*, we obtain that the sequence {Z,x(b,z/a,)}5%, converges uniformly in
k=1,...,k, and on every compact set in C* N (iC*) to the function R,(z) € K. It is
easy to see that this relation holds on every compact set in C*. Using relations (4.16) and
(4.17) with b,z/a, replacing z and taking into account that the measures fin1, ..., fnk,
are infinitesimal and the upper bound (4.66) holds, we can repeat the arguments which
we used for the proof of (4.48). We arrive at the relation, for z € C*,

—Z”ZS;"/Z/:") —exp{ [T o+ [ u@:ffgj /“;3> ouldu) + An(2)},  (467)

R, Ry
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where A, (z) is analytic in C* and A,(z) — 0 on every compact set in C*. By (4.66),
the sequence {0, } is tight in the vague topology. Therefore there exists a subsequence {n'}
such that {o,/} converges to some finite nonnegative measure o in the vague topology and

lim,, 00 0, (R ) exists and finite. Thus, we can conclude from (4.67) that ¥/, d’, /a!, — e
as n’ — oo, where ] € R and
1
d,, = exp { / Zi_ . an(du)},
Ry

and the following relation holds

R,(2) { / vy / u+ Ry(2)

I - dw)}, zecCt 4.68

eXp 4§ aq R#(Z) + 1—UR#(Z) U( U) ) z ’ ( )
Ry

with a4, > 0.

We shall show that {o,} converges to a measure ¢ on R, in the vague topology.
Assume to the contrary that there exists a subsequence {n”} such that {o,~} converges
in the vague topology to some finite nonnegative measure o1 # o and lim,»_, ., 0,7 (R})
exists and finite. Then b’d” /a" — e®1 as n” — oo, where o/ € R, and (4.68) holds with
of € R,af > 0 replacing o}, a4 and o7 replacing 0. Comparing the relations (4.68) with
old and new parameters, we deduce the formula

al U+ 2z . al u+z
0/1_?2+agz+ / T a(du):a’1’+2mm—72+ag'z+ / TR oi(du), zeCT,
(0,00) (0,00)

(4.69)
where m € Z and 0 < oy < 00, 0 < aff < co. By (3.3), we easily conclude that

‘/ “+Zaumy+‘/ “+Zammﬂ=dvm 2 eCH
1—wuz
(0,00) (0,00)

1 —wuz

as z — 0 or z — oo nontangentially. Comparing the behavior of all terms in (4.69) as
z — oo and as z — 0, we easily see that o) = «of for j = 2,3. Applying the Stieltjes-
Perron inversion formula (see Section 3), we obtain that o = oy and m = 0. Finally we
get o) = af, a contradiction.

Since {o,} converges to the measure o in the vague topology, we obtain from (4.67)
that a,/(b,d,) — e as n — oo. It remains to show that {0} converges to the measure
o weakly in [0, oo]. For this we note that it follows from (4.67) and (4.68) the relation

) 1 Ri(z) 1 Ri(z)
fm ](%W—l)"n““):[ /] (Tt~ ) o)

holds on every compact set in C*, where o({o0}) = o). This relation implies that

lim,, 00 0, ([0, 00]) = ([0, 00]) as was to be proved.
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Thus the necessity of the assumptions of the theorem is proved and Theorem 2.1 is
completely proved. [

5. MULTIPLICATIVE FREE LIMIT THEOREM IN M,

In Section 5 we prove Theorem 2.3 and Theorem 2.4. Here we denote by ¢ positive ab-
solute constants. For some measure v we denote by ¢(v) positive constants which depend
on the measure v. By ¢;,¢;(v), j = 1,..., we denote explicit absolute positive constants
and explicit positive constants depending on the corresponding measure, respectively.

Let {ptnp :n > 1,1 < k < k,}, where k, T oo as n — o0, be a triangular scheme of
measures in M,. It is not difficult to see that condition (2.16) is equivalent to the following
relation

max / (1 —cosy) pnk(dy) — 0, n — oo.
o n[—7r,7r)

Recall that fi,; are p-measures such that fi,,([—7,2)) = pnr([—7+ank, T+an)), where
Qplp = f[fﬂ ” Sinu g (du). Since maxg—1 g, |arn| — 0 as n — oo, we conclude

En 1= MAX gy 1= MAX / (1 — cosy) fink(dy) — 0, n — oo. (5.1)
—7,7)

Proof of Theorem 2.3. Sufficiency. From Proposition 3.7 we obtain, for all z € D,
Qi (Zn(2) _ Qan(Zni(2)) Qe (G (2))

. , 5.2
z Zn1(2) Dk, (2) 52)

where Z,1(2), ..., Zuk, (2) belong to the class S,, and
Qi1 (Zn1(2)) = -+ = Qp,p, (Zik, (2))- (5.3)

Moreover, Q,(2) := Qz,(2) = Q,,(Zn(2)), where [, 1= [,y X - X [i,;,. Taking into
account (2.10) we have
Qunk(z) - Fﬁnk (Z) + 17

where the functions F; , (2) admit the representation (2.11) with some p-measures &,
replacing o.

In the sequel we denote S, (z) := Q,.(2)/z, z € D, for p € M,.

Consider the functions S; ,(2) == Qa,,(2)/2,n>1,k=1,... k,, in D. By Schwarz’s
lemma, these functions belong to the class S (the class of Schur functions) and

Sh(0) = / e L (dy) = e "k / e fnr(dy).

[—m,m) [—m,m)

It is not difficult to verify that

zeD, k=1,... ky, (5.4)

11— S5, (0)] < ez (5.5)
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forn >ng, k=1,...,k,, with a sufficienly large positive constant ngy. Indeed, we easily
have

355, (0) = / siny fink(dy) = / (Siny — ang) fnk + cleng = ey
[—m,m) [—m,m)

Since R(1 — S5, (2)) > 0, we see that 1 — S5 , (2) belongs to Carathéodory’s class C.
Therefore (see Section 3), this function admits the representation

e+ 2

ew — z

1—5;,,(2) =—i%S;,,(0) + / one(dy), z€D, (5.6)

[771-771')

where o, is a finite nonnegative measure such that o,,([—m, 7)) = 1 — RS; ,(0). By
(5.5), we note that o, ([—m, 7)) < cenx. Therefore we conclude

1 + ‘Z’ Cenk
1-5; < ce, e (dy) < , D. 5.7
| unk(z)|_05k+/ 1_|Z|Uk(y)_1_‘z| z € (5.7)
[_7"771')
In addition we have from (5.6), for z1, 2z € D,
2|21 — 29| Cenk|z1 — 22|
Suu(21) = B (2)] < / = aller — o] W S T Ay 68

[771-’7‘-)

Return to the functions Z,;(z) in (5.2) and (5.3). These functions are in the class S,.
Therefore

| Zuk(2) /2] <1, z € D. (5.9)
Using (5.7) and (5.9) we obtain, for z € D,

CEnk CEnk
1-5 - “

At (Zun(2)] < 77— Za ol ST (5.10)

Let r, :== 1 — ¢1e,, n > ng, with sufficiently large positive constants ¢; and ng. Then,
by (5.10), |1 — S5, (Zuk(2))| < cepi/(1 —1) <1/2for 2 €D, :={2€C:|z| <r,}. In
view of (5.10), we obtain, using the series expansion for log(1 + z), |z] < 1,

S (Zan(2)) = exp { = (1= S5, (Zun(2)) + ()}, z€D,,  (511)
where the analytic function g, (z) in D, admits the estimate |g.x(2)| < ce2,/(1—|z|)?, z €
D,, .

In the next step we conclude from (5.8) and (5.9) that, for z € D,
Cenk| Znk(2) — Zn1(2)| Cenk| Znk(2) — Zn1 (2)|

1S (Zo(2)) = S (2 )| < G 7SS AT 20D S = (= 7))
(5.12)
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On the other hand we see from (5.3) and (5.10) that, for z € D, ,

Zn(2) Ak (Znie(2))
CEnk
< 2[1 = Sp (Zun(2)| + 2|1 = 85, (Zi (2))] < 17— Ek
Hence
Zu(2) = Zm(2) < =L e,
1—|z]
Applying this inequality to (5.12) we obtain
ce? |z
k()| < 1 et gua(e) = S5, (Zue) — SalZul). (613)
for €D, andn>ng, k=1,... k.
Note that, for z € D,
1—e
(1= 2)(1+ 05, () 1= - / =) Gy
[—71',71')
=-) M / ™ (1 — €Y) ini(dy) = Z 2P / (1—€") fnr(dy)
k=0 [—m,m) p= [—m,m)

. Zzp“ [ = em - en )
[=m,m)
Using (5.5) and the simple relation [ [1—e¥[* Gu(dy)| =2 [_ (1 —cosy) fiu(y) =
2enk, we easily arrive at the upper bound for z € D,, ,

2|z YN o~
0=+ v, () -1 2 [ =) ey
[—7’1’771')
kd |2 2|
+ ) plz|Ptt / — e i (dy) < cenk< + ) < cepp——s.
Z o L=z (1—12]) (1—1z])?
(5.14)
On the other hand
5o (2 1—ev _
1—(1— Z)M = / T o Hnr(dy).
z 1-—
[_7"77")
Repeating the previous arguments we obtain the inequality
1
1— (1 o )¢Mnk ‘ < ce nkm, z e DT’n' (515)
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Denote !, = 1 — ¢y, n > ng, with a sufficiently large constant c; > ¢;.
By (5.14) and (5.15) and the series expansion of the function 1/(1 + z) for z € D, we
have, for z € D,/ ,
ot ) ()
Z) = — =
2(1+ vz, (2)) (1=2)(1+ vz, (2)

=l + e = A=) & (dy) + du(2)

1-5;

Hnk

1 — zew
[771-’7‘-)
. N 1+ ze® .
= — / siny fink(dy) + / T oo (1 — cosy) fnk(dy) + dnr(2), (5.16)
[—m,m) [—m,m)

where d,,;,(z) is an analytic function in D, such that |d,;(2)] < c2,/(1—|z])*. It remains
to note, by (5.9), that from (5.16) it follows

1= 55,.(Zm(2)) = fre(Zn1(2)) + b (2) (5.17)

for z € D,y and n > ng, k = 1,..., k,, where b,;(2) is analytic function in z € D,, such
that b, (2)] < ce2p|/(1 = [2])".
Using (5.11), (5.13), and (5.17), we rewrite (5.2) in the form

10 WACHEIES SYRERS MRS oY)

k=1

= exp 2 / sinyfion(dy) = [ T )+ () + n(e) — (2

[—m,m)
(5.18)
where, for sufficiently large n > ny,
kn kn kn
190 ()] + 140 ()] + 102(2)] <D gk (2)] + D lar(2)] + D [bur()
k=1 k=1 k=1
k
CEn B c(v([-m, 7))+ e,
< —— ) eu < (5.19)
(1—\Z|)4,; (1 —z))*
for 2 € D,,. From (5.19) we see that, for n > ny,
192 (2)] + 1gn(2)] + [ba(2)] < c(v([=m,m) + Dey/®, 2 €Dy, (5.20)

where 7/ :=1— /% Denote By = ZZ; Qpk — O

Consider the sequence of the functions {Z,1(z) := Zn1(2e??2)}2 |, z € D. By (5.9), we
conclude that there exists a subsequence {n'} such that Z,, — Z(z) as n’ — oo uniformly
on every compact set in D and Z(z) € S. In addition we note that Qz,,(2) — z uniformly
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on every compact set in D. Then, by the assumption of the theorem that v, — v weakly,
a, — a, — a, mod 27, and (5.20), we deduce from (5.18) the relation

Ziz) = exp {z’oz - / % y(dy)}, z €D, (5.21)

[—7T,7T)

where a € [—m, ). This implies that Z'(0) # 0. Hence Z(z) € S..

Since Z(z) has an inverse Z(~Y(z) defined in some neighborhood of 0, we see that
the equation (5.21) has an unique solution in the class of functions Z € S,. Now assume
that {Z,1(2)}22, does not converge to Z(z) on some compact set in ID. Then, as above,
there exists a subsequence {n”} such that Z,(z) — Z*(z) as n” — oo on every compact
setinD, and Z*(z) € S, and Z(2) # Z*(z), z € D. But Z*(z) is a solution of (5.21) and we
arrive at a contradiction. Hence, {Zn1(2)} converges to Z(z) uniformly on every compact
set in I. Using (5.21) we note that Z(z) is infinitely divisible with the parameters (o, v).
Since Qﬁnk(an(z)) — Z(z) on every compact set in ), the sufficiency of the assumptions
of Theorem 2.3 is proved.

Necessity. Denote 5, = pipp X i, n > 1,k = 1,...,k, and p° := p X . By
Proposition 3.2, we have the relation

M(n,s) = gy Bpmy B Bypes . — p® weakly as n — oo. (5.22)

For the measures p?,, n > 1,k = 1,..., k,, the relations (5.2) and (5.3) hold with
the functions Qs (2), n > 1, k =1,... ky, replacing Q. (2), n > 1,k =1,..., k,, and
with some functions Z,,4(2) € S, n > 1, k = 1,...,k,, replacing Z,,(2),n > 1, k =
L,...,k,. Rewrite (5.2) in the form

Qu(n,s)(z) - Q“Zl (an,s(z)) Q“ikn (anms(z))
< B an,s(z) o ann,s(z) ’

By Proposition 3.8, the measures p,, n > 1, k = 1,..., k,, are symmetric, i.e., fi, = 1,
and p(™* has the same property as well. Since Qus (Znks(2)) = Qe (2), z € D, and
by Proposition 3.8, SQ,m.«(t) = 0, IQ,: (t) = 0, =1 < t < 1, we conclude that, for
the same ¢, 32, 5(t) =0, n > 1, k=1,... k,, as well.

Let us show that the p-measures p;, are infinitesimal. Consider the functions S, (2),

2 eD. (5.23)

n>1,k=1,...,k,, inD. Since y, = finx X]i,;, we note, by the definition of the free X-
convolution (see Section 3), that there exists functions W 1(2), Wik2(z) € S, such that
Qﬂik<z) = Qu,, Whk(2)) and Sz, (2) = Sa,, Whr1(2))S5  (Waka(2)), 2 € D. Choosing

Pk

in the last relation z = 0 we get Sy: (0) = 5g,,(0)S;  (0) = [9,,(0)]*. Therefore

o = 1= 5,5, (0) = [ (1= cosy) piy(dy) =0 (5.24)

[—71’,7'(')

as n — oo uniformly in £k =1,..., k, as was to be proved.
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Note that (5.23) implies the relation
S (0) = Sps (0)Sys,(0)...Sys (0)

M
from which we conclude with the help of (5.24)

S, (0) = exp{ —(1+ch maxkn Enk.s) Z enkﬁ}, n > ny. (5.25)

- k=1

.....

By the assumption of the theorem, we have S, (0) — S,s(0) # 0 and we obtain from
(5.25)

kn
Zenk,s < e(p®) < oo. (5.26)
k=1

Since p, = fnx X [, we saw above that there exist functions Wika(z) € S, such
that Qs (2) = Qa,.(Wak1(2)), 2 € D. The p-measures {fi,x} and {1, } are infinitesimal,

therefore Qs (2) and Qg,, () tend to 2z as n — oo uniformly in k = 1,..., k, and on every
compact set in D. Thus W,x(2) — 2z as n — oo uniformly in £ = 1,...,k, and on every
compact set in D. Therefore we have W/, (0) — 1 as n — oo uniformly in k =1,..., k,.

In addition, by (5.9), the functions W,,,(z) satisty |W/, (0)| <1, n>1,k=1,... k,.
The relation S, (0) = 5, (0)W,j1(0) implies

1= 8, (0) =1 =R, (0) + RSz, (0)(1 = RW,. 1 (0) + 35, (0) Wiy 1(0)

and
0 =S5, (0)RW,,1(0) + RS, (0)IW,, 1 (0).

From the last two relations we easily obtain

1S, (0) =1—RS;,(0) + RS, (0) (1 — R, 1(0) (1 + (;f?f—égi)z) (5.27)

From (5.5) it follows that
1 —RS,(0) =ceng,  [895,,(0)] <cen, n>ng, k=1,...,k,. (5.28)
Applying (5.28) to (5.27), we deduce

) 355, (0)2
enk = 1 = RS, (0) <1 =5y (0) + RS, (O)RW,(0) (%Sli—kEOD
Hnk

<1-— Sﬂzk(O) + c&‘ik = Epk,s + cgik

forn>ng, k=1,... k,.
In view of (5.26), the last inequality implies

k k

1 n n

5 Zank < Z’Enk,s <c(p’) < oo, m>mng. (5.29)
k=1 k=1
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Now we return to (5.2) and (5.3). Since Q,m(z) = Qu,(e'®*)z), where b, =
Zk | Gk, We see that Q,m(2) = Qg (Zuk(€’ Wbn=an)z) 2 € D,k = 1,...,k,. Since
Qn,,.(2) tend to z and Qg (Zn (e~ “")z)) tend to Q,(z) as n — oo uniformly in
k=1,...,k,and on every compact set in D, we obtain that {Z,;(e®»=%)2)}2 | converges
uniformly on every compact set in D to some function Z(z) € S.. Using relations (5.2) and
(5.3) with €(®»=) 2 replacing z and taking into account that the measures ji,1, .. ., fnk,
are infinitesimal and the upper bound (5.29) holds, we can repeat the arguments which
we used for the proof of (5.18). Thus we arrive at the relation, for z € D,

Qe (Zin (e ~n)2))

ei(bn —an) =

sin 1 (eilbn—an) ) ety R
=exp {z / —yun(dy)— / L+ Zo . ) — v, (dy) + pu(2)},  (5.30)

1 —cosy 1— an(el(bn—an)z)ezy n
[—m,m) [—m,m)

where p,,(z) is an analytic function in D and p,,(z) — 0 on every compact set in D. Denote
Q= Ji o T2 0 (dy).

By (5.29), the sequence {v,} is tight in the weak topology. Therefore there exists
a subsequence {n'} such that {v,,} converges to some finite nonnegative measure v in
the weak topology. Thus, we can conclude from (5.30) that e*(®w+dw =) — €1 a5 n’ — oo,
where a € [—m, ), and that the following relation holds

Ziz) = exp {ioz — / %ﬁzzz V(dy)}, z € D. (5.31)

[—71’,7'(')

We shall show that {v,} converges to a finite nonnegative measure v in the weak
topology. Assume to the contrary that there exists a subsequence {n”} such that {v,~}
converges in the weak topology to some finite nonnegative measure v; #Z r. Then
elbwrtdwr=anr) i1 g n/ — oo, where oy € [—7, ), and (5.31) holds with a; € (—, 7],
replacing « and v replacing v. We then deduce from (5.31) with old and new parameters

1+ zei 1+ ze
exp {ia— / +—26.u(dy)}:exp {ml— / +—Ze.l/1(dy)}, zeD. (5.32)

1 — zew 1 — zew
[—m,m) [—m,m)

We see from (5.32) that
1 1 ty
R / + 2% v(du) =R / +Z€. n(dy), zeD.

1—ew 1— zew
[—m,m) [=m,m)

Applying the Stieltjes-Perron inversion formula (see Section 3), we obtain that v = v;.
Finally we get a = ;.

Since {v,} converges to the measure v in the weak topology, we obtain from (5.30)
that ei(bntdn=an) _, eiv 55 1 — o0.
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Thus a necessity of the assumptions of the theorem is proved and Theorem 2.3 is
completely proved. [

Now we shall prove Theorem 2.4.

Proof. At first we shall prove the first statement of the theorem. Assume that the se-
quence fin; X - X iy, converges weakly to a p-measure p® such that Y = o,
By Theorem 2.3, we have v, — v, where v, is defined by the formula (2.17), and
a, = a+ o(1), mod 27, where «,, is defined by the formula (2.18). Let us show that
the sequence i1 * -+ * [k, converges weakly to the p-measure p* such that g, =
(ar,v). Consider the sequence {u,} of *-infinitely divisible measures with representa-
tions (ay, v,). By Theorem 3.10, we have u, — p weakly as n — oo, where p is *-
infinitely divisible measure with a representation (o, 7). On the other hand we see that
P = Tp % €(fin1 * Tp1) * - -k €(fpk, * Tpk, ), where x, = —(Tp1 + -+ + Tk, ) and x,; are
defined by (3.16). By Theorem 3.9, we obtain the first statement of the theorem.

As for the second statement of the theorem, consider p-measures e(v;), j = 1,2, where

vj,j = 1,2, are measures from Proposition 3.11. Denote by p,i,n > 1,k = 1,...,n,
the p-measures e(vy/n). It is easy to see that 1, = e(va/n) and p,1 * -« % fip, =
Ty % =+ % [, = e(v1). The measures {fink, fi,;,} are infinitesimal and the sequence

{fbn1 % =+ = % fpy Ty * -+ * % [, } Obviously converges weakly to e(vq) = e(1»). Let us show
that the sequence {dq; X g1 X+ - X pi,, 60 Wi, K- - - X7, . } does not converge weakly to
some p-measure in M, for any a/, € T,a € T. Assume to the contrary that there exists
a sequence a!, € T, a! € T such that the previous sequence of p-measures converge weakly
to some p-measure in M,. Then, by Theorem 2.3, for every Borel set S C [—m, ),

n / (1 - cosy) Bualdy) — v(S), n / (1 - cosy) Fin(dy) — v(S), n — o0, (5.33)

S S
where v is some finite nonnegative measure and fi,g = g X dg, , ﬁnk = L XO_q , With
ank, = — [ siny pyk(dy). Since, by the definition of i,
[771',7T)
[ = e—ul([fﬂ,w))/n<5o+ " +1V1 * V1 >7
n 2! n?
1 vy xv
—  _ —ws(—mm)/n (5 o Aha¥te >
Ly = € o+ - + 21 2 )

we note from (5.33) that
vi(z,m)) = v((z,m) and  »((z,m)) = v((z, 7))

for every fixed = € (0, 7), a contradiction. Thus the theorem is proved completely. [J
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