Self-organizing birth-and-death stochastic systems in continuum

Yuri Kondratiev,* Robert Minlos and Elena Zhizhina ${ }^{\dagger}$

Abstract

We consider birth-and-death stochastic particle systems in continuum which are under a self-regulation mechanism controlling configurations of particles via a pairwise interaction between them. The latter is reflected in a potential perturbation of the free generator. We show that the ground state renormalization scheme in the considered model leads to an invariant measure, a renormalized generator and resulting equilibrium birth-and-death stochastic dynamics for the system. The proof is based on the Gibbs type representation for related path space measure. This measure has OS-positivity property and is constructed via the cluster expansion method.

1 Introduction

We consider an infinite system of particles in continuum under a stochastic evolution corresponding to a heuristic generator

$$
\begin{equation*}
H=L_{0}-\alpha U . \tag{1}
\end{equation*}
$$

Here L_{0} is the generator of a non-interacting birth-and-death process (a Glauber type dynamics), and U is an operator of multiplication by a function (equals to a sum of pair interactions over the configuration of points of

[^0]the system), $0<\alpha \ll 1$ is a coupling constant. The goal of the paper is to construct and to study a process properly associated with operator (1). We will use here an approach similar to used for the investigation of an infinite system of quantum anharmonic oscillators [10] or the quantum Heisenberg model [2]. Our approach is based on the Feynman-Kac formula:
\[

$$
\begin{equation*}
e^{t H}\left(y_{1}, y_{2}\right)=\int_{x_{0}=y_{1}}^{x_{t}=y_{2}} e^{-\alpha \int_{0}^{t} U\left(x_{s}\right) d s} d \mathcal{P}_{z}^{0}(x) \tag{2}
\end{equation*}
$$

\]

where the integration in (2) is over the distribution \mathcal{P}_{z}^{0} on a space of trajectories $x=\left\{x_{s}, s \in R^{1}\right\}$ of a Glauber type free stochastic dynamics with the generator L_{0} (so-called Surgailis process, see [21]). A rigorous meaning this formula has only under some regularity assumptions on the potential U. The expression in the right hand side of (2) up to a multiplicative constant coincides with a Gibbs reconstruction of the measure \mathcal{P}_{z}^{0}. The latter gives us a hope to apply well known methods from statistical physics to the construction and investigation of semigroup (2). Let us note that the Feynman-Kac formula is in common use for the study of models in quantum statistical physics and quantum field theory, when \mathcal{P}_{z}^{0} is a measure on trajectories of a free process, usually defined by a Schrödinger operator, see $[6,19]$.

We briefly describe now our constructions and state main results of the paper. Initially, we consider truncated (over the space) potential U_{Λ}, where $\Lambda \subset \mathbb{R}^{d}$ is a bounded domain of the space \mathbb{R}^{d}. It means that we consider a system where particles interact only if they are inside of domain Λ. Then the operator $H_{\Lambda}=L_{0}-\alpha U_{\Lambda}$ is defined correctly and it is unitary equivalent up to an additive constant to the generator of a stationary Markov process

$$
\mathcal{G}_{\Lambda}=\left\{\gamma_{t}, t \in \mathbb{R}^{1}\right\}, \quad \gamma_{t} \in \Gamma
$$

with values in a space Γ of locally finite configurations in \mathbb{R}^{d}. The path space measure of the process \mathcal{G}_{Λ} may be obtained as the limit when $T \rightarrow \infty$ of the Gibbs reconstructions by the energy function $\int_{-T}^{T} U_{\Lambda}\left(\gamma_{s}\right) d s$ of the reference measure corresponding to the Surgailis process [21] with the generator L_{0}. Then taking the thermodynamic limit as $\Lambda \nearrow \mathbb{R}^{d}$ we get the limit path space measure and the stochastic process \mathcal{G}_{∞}. We prove that the limit process meets the condition of OS-positivity (Osterwalder-Schrader positivity, see, e.g., [18]). Using that fact we can construct in canonical way corresponding Hilbert space \mathcal{H} and a semigroup of self-adjoint operators in \mathcal{H} associated
with the process \mathcal{G}_{∞} and generated by an operator \hat{H}. Thus through the use of the operator \hat{H} heuristic expression (1) gains rigorous meaning, and \hat{H} should be considered as a correct regularization of the operator (1). In addition, we prove the existence of the spectral gap for the operator \hat{H} using estimates on decay of correlations for the limit process \mathcal{G}_{∞}. The main technique we use here is based on cluster expansion methods for point fields developed in [12, 14, 9, 5].

Let us discuss possible interpretations of our results in individual based models of spatial economics. In this case, a configuration should be considered as a set of economic units (points of the configuration) located in the space. A pure birth Markov process corresponds to an economic growth model in which the density of units is linearly growing in time. Assuming additionally random life time of any unit (independent and exponentially distributed for each existing one), we will arrive in the Surgailis process mentioned above. The equilibrium measure of this process is Poisson one and its Markov generator is a self-adjoint operator in corresponding Poisson L^{2}-space, see [21]. This generator admits a nice and easy spectral decomposition that relates one to the Fock space number operator in quantum field theory, see, e.g. [1]. Actually, the Surgailis process can also be considered as a free Glauber type stochastic dynamics in continuum, see, e.g. [8]. In a more realistic model, we should take into account a competition between units. One way to include this notion is related with a modification of the death rate in the generator s.t. the growing density of the configuration will increase the intensity of death.

Another possibility is based on the consideration of a rate functional which should play the role of a regulation mechanism in the economic society. Namely, configurations of units with high rate must have less chances to survive in the stochastic evolution of the system. This rate functional is included as the potential U in the model considered in this paper. Main question which appears here is the existence of an equilibrium state in such economic models as well as the construction of related equilibrium stochastic process of the economic development with described regulation based on a local interaction between units. The results of the present paper give a positive answer to this problem.

2 The model and main results

2.1 Free Glauber dynamics (Surgailis process)

The configuration space $\Gamma=\Gamma\left(\mathbb{R}^{d}\right)$ of the model is the set of all locally finite subsets of $\mathbb{R}^{d}: \gamma \subset \mathbb{R}^{d}$. The space Γ is naturally endowed with a topology, namely the weakest topology on Γ with respect to which all maps $\Gamma \ni \gamma \mapsto$ $\langle f, \gamma\rangle:=\sum_{x \in \gamma} f(x), f \in C_{0}\left(\mathbb{R}^{d}\right)$, are continuous (here, $C_{0}\left(\mathbb{R}^{d}\right)$ is the space of all continuous real-valued functions on \mathbb{R}^{d} with compact support). We denote by $\mathcal{B}(\Gamma)$ the Borel σ-algebra on Γ generated by this topology, and let π_{z} be the Poisson measure on $(\Gamma, \mathcal{B}(\Gamma))$ with activity $z, z>0$, see [7]. We define a stationary Markov process on Γ with the invariant measure π_{z}. A generator of the corresponding stochastic semigroup S_{t}^{0} acting in the functional space $L_{2}\left(\Gamma, d \pi_{z}\right)$ has a form

$$
\begin{equation*}
\left(L_{0} F\right)(\gamma)=\sum_{x \in \gamma}(F(\gamma \backslash x)-F(\gamma))+z \int_{\mathbb{R}^{d}}(F(\gamma \cup x)-F(\gamma)) d x \tag{3}
\end{equation*}
$$

The operator L_{0} is defined on local bounded functions $F(\gamma)$, and the expression (3) can be extended to a self-adjoint operator in $L_{2}\left(\Gamma, d \pi_{z}\right)$. The corresponding process is a birth-and-death process on Γ, we also call it the free Glauber dynamics or the Surgailis process, see [21]. The process can be described as follows: each particle in the configuration can disappear after an exponentially distributed life time and new particles can appear in the configuration with intensity z uniformly over the space. We denote by \mathcal{P}_{z}^{0} a distribution of the Surgailis process (on the trajectory space).

2.2 Glauber dynamics with interaction

The generator of the dynamics with interaction is given heuristically as follows:

$$
\begin{equation*}
(H F)(\gamma)=\left(L_{0} F\right)(\gamma)-\alpha U(\gamma) F(\gamma) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
U(\gamma)=\sum_{\{x, y\} \subset \gamma} \varphi(x-y) \tag{5}
\end{equation*}
$$

Here $\varphi(u) \geq 0, u \in \mathbb{R}^{d}$ is an even real-valued function (a potential) with a fast decreasing on the infinity (we give the precise conditions on φ below),
$\alpha>0$ is a small enough real constant.
Remark. We consider a non-negative potential φ only for simplification of our reasoning below. Let us stress that all results and constructions of the present paper are true for any general stable potential, see [17], with a fast decreasing on the infinity.

We will introduce below a dynamics with the generator (4) as a limit of dynamics given in bounded regions $\Lambda \subset \mathbb{R}^{d}$. Namely, let us consider the operator

$$
\begin{equation*}
\left(H_{\Lambda} F\right)(\gamma)=\left(L_{0} F\right)(\gamma)-\alpha U_{\Lambda}(\gamma) F(\gamma), \quad F \in L_{2}\left(\Gamma, d \pi_{z}\right) \tag{6}
\end{equation*}
$$

with

$$
\begin{equation*}
U_{\Lambda}(\gamma)=\sum_{\{x, y\} \subset \gamma \cap \Lambda} \varphi(x-y) . \tag{7}
\end{equation*}
$$

Theorem 1. Under assumptions (55) - (56) on the function φ and small enough α we have for all bounded $\Lambda \subset \mathbb{R}^{d}$:

1. the operator H_{Λ} is selfadjoint and bounded from above;
2. a non-degenerate ground state of H_{Λ} exists, i.e. a unique normalized eigenvector Ψ_{Λ} of the operator H_{Λ} such that $\Psi_{\Lambda}(\gamma)>0$ exists, and corresponding eigenvalue λ_{Λ}^{0} is the same as the upper boundary of the spectrum of H_{Λ}.

Proof of the theorem see in Sect 6 .
We apply below the general scheme of the ground state transformation for potential perturbations of Markov generators, see e.g. [3]. Assign a new measure on Γ in the following way:

$$
\begin{equation*}
\frac{d \nu_{z}^{\Lambda}}{d \pi_{z}}(\gamma)=\left(\Psi_{\Lambda}(\gamma)\right)^{2} \tag{8}
\end{equation*}
$$

Define an unitary transformation

$$
\begin{equation*}
W_{\Lambda}: L_{2}\left(\Gamma, \nu_{z}^{\Lambda}\right) \mapsto L_{2}\left(\Gamma, \pi_{z}\right):\left(W_{\Lambda} F\right)(\gamma)=\Psi_{\Lambda}(\gamma) F(\gamma), F \in L_{2}\left(\Gamma, \nu_{z}^{\Lambda}\right) \tag{9}
\end{equation*}
$$

and the operator \tilde{H}_{Λ} in $L_{2}\left(\Gamma, \nu_{z}^{\Lambda}\right)$

$$
\begin{equation*}
\tilde{H}_{\Lambda}=W_{\Lambda}^{-1}\left(H_{\Lambda}-\lambda_{\Lambda}^{0} I\right) W_{\Lambda} \tag{10}
\end{equation*}
$$

which is unitary equivalent to $H_{\Lambda}-\lambda_{\Lambda}^{0} I$, where I is the identity operator in $L_{2}\left(\Gamma, \pi_{z}\right)$. It follows from (3) and (6) that operator \tilde{H}_{Λ} has the following form:

$$
\begin{gathered}
\left(\tilde{H}_{\Lambda} F\right)(\gamma)=\sum_{x \in \gamma} \frac{\Psi_{\Lambda}(\gamma \backslash x)}{\Psi_{\Lambda}(\gamma)}(F(\gamma \backslash x)-F(\gamma))+ \\
z \int_{R^{d}} \frac{\Psi_{\Lambda}(\gamma \cup y)}{\Psi_{\Lambda}(\gamma)}(F(\gamma \cup y)-F(\gamma)) d y .
\end{gathered}
$$

Clear that

$$
\begin{equation*}
\tilde{H}_{\Lambda} \mathbf{1}=0, \tag{11}
\end{equation*}
$$

where $\mathbf{1} \in L_{2}\left(\Gamma, \nu_{z}^{\Lambda}\right)$ is the constant function equals to 1 . We denote by

$$
\begin{equation*}
S_{t}^{\Lambda}=\exp \left\{t H_{\Lambda}\right\} \quad \text { and } \quad \tilde{S}_{t}^{\Lambda}=\exp \left\{t \tilde{H}_{\Lambda}\right\} \tag{12}
\end{equation*}
$$

semigroups acting in the spaces $L_{2}\left(\Gamma, \pi_{z}\right)$ and $L_{2}\left(\Gamma, \nu_{z}^{\Lambda}\right)$ correspondingly. We have the following representation for the kernel of the semigroup $e^{t H_{\Lambda}}$ using the Feynman-Kac formula

$$
\begin{equation*}
S_{t}^{\Lambda}\left(\gamma_{1}, \gamma_{2}\right)=R\left(\gamma_{1}, \gamma_{2}\right)=\int_{\substack{\gamma(0)=\gamma_{1} \\ \gamma(t)=\gamma_{2}}} \exp \left\{-\alpha \int_{0}^{t} U_{\Lambda}(\gamma(\tau)) d \tau\right\} d \mathcal{P}_{z}^{0}(\gamma) \tag{13}
\end{equation*}
$$

where \mathcal{P}_{z}^{0} is the distribution of the Surgailis process. It follows from representation (13) and the strict positivity of Ψ_{Λ} that semigroups (12) improve positivity, see [16]. Moreover, relation (11) implies that

$$
\begin{equation*}
\exp \left\{t \tilde{H}_{\Lambda}\right\} 1=1 \tag{14}
\end{equation*}
$$

Consequently, \tilde{S}_{t}^{Λ} is the Markov semigroup and the associated process is a Markov stationary process with the invariant measure ν_{z}^{Λ}. Thus, the following theorem holds.

Theorem 2. Semigroup $\tilde{S}_{t}^{\Lambda}=\exp \left\{t \tilde{H}_{\Lambda}\right\}$ is the Markov semigroup. The process

$$
\begin{equation*}
\mathcal{G}_{\Lambda}=\left\{\gamma_{t}, \quad t \in R^{1}\right\}, \quad \gamma_{t} \in \Gamma \tag{15}
\end{equation*}
$$

associated with the semigroup \tilde{S}_{t}^{Λ} is the stationary reversible Markov process on Γ with the invariant measure ν_{z}^{Λ}.

We denote by $\mathcal{P}_{\Lambda, z}$ a distribution of the process \mathcal{G}_{Λ}. As any stationary reversible Markov process, process (15) has property of OS-positivity. We remind this notion and also some related facts, see [18]. Let $x=\left\{x_{t}, t \in R^{1}\right\}$ be a stationary reversible process on the space X and \mathcal{P} be a distribution on trajectories of the process. Introduce the time reflection transform ϑ in the space of trajectories $\Omega=X^{R}$:

$$
\begin{equation*}
(\vartheta x)_{t}=x_{-t}, \quad x \in \Omega . \tag{16}
\end{equation*}
$$

Since the process is reversible, ϑ preserves the distribution \mathcal{P}. The unitary representation for ϑ in the space $L_{2}(\Omega, \mathcal{P})$ we denote θ :

$$
(\theta f)(x)=f(\vartheta x), \quad f \in L_{2}(\Omega, \mathcal{P}), x \in \Omega
$$

Let $\mathcal{H}_{+} \subset L_{2}(\Omega, \mathcal{P})$ be a subspace of functions on Ω depending on the process "at present and in future":

$$
f \in \mathcal{H}_{+}: \quad f(x)=f\left(\left\{x_{t}\right\}, t \in[0, \infty)\right) .
$$

Then the reversible process x called OS-positive if for any $f \in \mathcal{H}_{+}$the quadratic form

$$
\begin{equation*}
(\theta f, f)_{L_{2}(\Omega, \mathcal{P})} \equiv(f, f)_{\mathcal{H}_{+}}=(f, f)_{+} \geq 0 \tag{17}
\end{equation*}
$$

is non-negative. We notice that any Markov stationary reversible process is always OS-positive since

$$
(f, f)_{+}=\left\|P\left(\mathcal{H}_{0}\right) f\right\|^{2}, \quad f \in \mathcal{H}_{+}
$$

where $P\left(\mathcal{H}_{0}\right)$ is a projection to the space \mathcal{H}_{0} of functions depending only on values of the process x_{0} at zero time.

For the stationary reversible OS-positive process x we can construct a semigroup which is similar to the stochastic semigroup for a Markov process. If $I_{0} \subset \mathcal{H}_{+}$is the kernel of the quadratic form (17):

$$
I_{0}=\left\{f \in \mathcal{H}_{+}:(f, f)_{+}=0\right\},
$$

then I_{0} is a closed subspace of \mathcal{H}_{+}and we can consider a factor-space $G=$ \mathcal{H}_{+} / I_{0}. The scalar product in G is defined by the following way

$$
\begin{equation*}
\left(\left[f_{1}\right],\left[f_{2}\right]\right)_{G}=\left(f_{1}, f_{2}\right)_{+}, \tag{18}
\end{equation*}
$$

where $[f] \in G$ is the class of the element $f \in \mathcal{H}_{+}$. The space G is usually called the physical space of the process x. We denote by U_{t} a unitary operator of a time shift acting in $L_{2}(\Omega, \mathcal{P})$ in the following way

$$
\left(U_{t} f\right)(x)=f\left(s_{-t} x\right),
$$

where s_{τ} are shifts in the space of trajectories

$$
\left(s_{\tau} x\right)_{t}=x_{t-\tau}
$$

Clear, $U_{t} \mathcal{H}_{+} \subset \mathcal{H}_{+}$for any $t>0$. Then the permutation relation

$$
\theta U_{t}=U_{-t} \theta
$$

together with the unitarity of U_{t} in $L_{2}(\Omega, \mathcal{P})$ imply that the operators $U_{t}, t>$ 0 are symmetrical with respect to the quadratic form (17):

$$
\begin{equation*}
\left(\theta U_{t} f_{1}, f_{2}\right)_{L_{2}(\Omega, \mathcal{P})}=\left(\theta f_{1}, U_{t} f_{2}\right)_{L_{2}(\Omega, \mathcal{P})}, \quad f_{1}, f_{2} \in \mathcal{H}_{+} \tag{19}
\end{equation*}
$$

Proposition 1. For any $f \in \mathcal{H}_{+}$and $t \geq 0$ the following inequality holds

$$
\begin{equation*}
\left(U_{t} f, U_{t} f\right)_{+} \leq(f, f)_{+} \tag{20}
\end{equation*}
$$

Proof see in Attachment.
Inequality (20) implies that $U_{t} I_{0} \subset I_{0}$ for $t>0$, consequently the semigroup $\left\{U_{t}, t \geq 0\right\}$ in \mathcal{H}_{+}generates the semigroup $\hat{U}_{t}, t \geq 0$ of operators in G :

$$
\hat{U}_{t}[f]=\left[U_{t} f\right], \quad t>0, f \in \mathcal{H}_{+} .
$$

It follows from (19)-(20) that \hat{U}_{t} is a selfadjoint contraction semigroup. In addition, it is strongly-continuous by construction. This semigroup \hat{U}_{t} is called a tansfer-matrix of the process x. The Stone theorem, see e.g. [16], implies that the operators \hat{U}_{t} have the form:

$$
\hat{U}_{t}=e^{t h}
$$

where h is a non-positive selfadjoint operator in G. Note, that the element $e=[1]$ is a normalized ground state of the operator h with the eigenvalue 0 .

Let F be a local function on the space of trajectories $\left\{\gamma_{t}, t \in R\right\}$ of the process, that means there exist a finite interval $I \subset R^{1}$ and a bounded domain $\Lambda_{0} \subset R^{d}$ such that the function F depends only on $\left\{\gamma_{t} \cap \Lambda_{0}, t \in I\right\}$, i.e. on the
part of trajectories $\left\{\gamma_{t}, t \in R\right\}$ lying inside of a bounded domain $\Lambda_{0} \times I=M$ in R^{d+1}. The domain $M=\Lambda_{0} \times I$ is called the localization domain for F. Remind that the weak convergence of the processes $\mathcal{P}_{\Lambda, z} \Rightarrow \mathcal{P}_{\infty, z}$ means that for any local bounded function F the following holds as $\Lambda \nearrow R^{d}$

$$
\begin{equation*}
\langle F\rangle_{\mathcal{P}_{\Lambda, z}} \mapsto\langle F\rangle_{\mathcal{P}_{\infty, z}}, \tag{21}
\end{equation*}
$$

where $\langle\cdot\rangle_{\mathcal{P}_{\Lambda, z}}$ means the average over the distribution $\mathcal{P}_{\Lambda, z}$ and the same for $\langle\cdot\rangle_{\mathcal{P}_{\infty, z}}$.

Theorem 3. Under conditions of Theorem 1 distributions $\mathcal{P}_{\Lambda, z}$ of the processes (15) converge weakly as $\Lambda \nearrow R^{d}$ to the distribution $\mathcal{P}_{\infty, z}$ of a stationary reversible $O S$-positive process

$$
\begin{equation*}
\mathcal{G}_{\infty}=\left\{\gamma_{t}, \quad t \in R^{1}\right\} \tag{22}
\end{equation*}
$$

with values $\gamma_{t} \in \Gamma$. Moreover, the stationary distributions ν_{z}^{Λ} converge weakly to the marginal distribution ν_{z}^{∞} of the process (22).

The weak convergence of measures on the space Γ of locally-finite configurations is defined by the same way as in (21) with local functions F depending on the part of the configuration $\gamma \in \Gamma$ in a bounded domain $\Lambda_{0} \subset R^{d}: \quad F(\gamma)=F\left(\left.\gamma\right|_{\Lambda_{0}}\right)$.

Theorem 3 is a corollary of Theorem 4 below, a construction and investigations of process (22) will be done in the proof of Theorem 4.

Remark. Using as above OS-positivity of the process (22) with the distribution $\mathcal{P}_{\infty, z}$ we can introduce the generator of its transfer-matrix $h=\hat{H}$ acting in the corresponding physical space G. The generator can be treated as a correctly defined limit Hamiltonian (up to an additive constant) associated to the formal Hamiltonian (4). The operator \hat{H} can be considered as a regularized limit for the operators \hat{H}_{Λ}.

Conjecture. Although we proved here only that the limit process has the property of OS-positivity, we believe that the limit process should be Markov.

3 Euclidean representation

3.1 Path space measure for free Glauber dynamics

We denote by Υ a space of configurations

$$
\eta=\left(\gamma, l_{\gamma}\right)=\left\{\left(x, l_{x}\right) \mid x \in \gamma\right\}
$$

of a marked point field in the space $R^{d} \times R^{1}=R^{d+1}$. Here $\gamma \subset R^{d+1}$ is a locally-finite configuration of points in R^{d+1} :

$$
x \in \gamma: x=(s, t) \in R^{d+1}, \quad s \in R^{d}, t \in R^{1}
$$

and $l_{x} \in(0, \infty)$ is a value of the mark at the point x. The distribution \mathcal{P}_{z}^{0} of the marked point field can be described by the following way: point configurations γ form the Poisson field in R^{d+1} with an intensity $z>0$ (the corresponding distribution is denoted by Π_{z}, see [7]), and under a fixed point configuration γ the conditional distribution of marks is conditionally independent and exponential:

$$
\begin{equation*}
\operatorname{Pr}(l>u)=e^{-u}, u \geq 0 . \tag{23}
\end{equation*}
$$

A configuration $\eta \in \Upsilon$ can be visually depicted as a configuration η of rods $\xi \in \eta$ lying in R^{d+1} and directed along the positive direction of the time axis t. Here $x=x(\xi)=(s, t) \in R^{d+1}$ is the origin of the rod, and $l=l(\xi)$ is the length of the rod. Let K be a space of all rods in R^{d+1} lying along a given (time) direction, then K is the same as $R^{d+1} \times R_{+}^{1}$, and the described above configuration space Υ of rods could be identified with a subset of all locally finite configurations $\Gamma\left(R^{d+1} \times R_{+}^{1}\right)$ of points in $R^{d+1} \times R_{+}^{1}$. This permits to introduce a topology and the Borel σ-algebra on Υ generated by this topology.

We shall say that a configuration of rods η is locally finite if any bounded subset of R^{d+1} has an intersection only with a finite number of rods from this configuration. Let us denote by $\Upsilon^{\prime} \subset \Upsilon$ a set of locally finite configurations composed of pairwise disjoint rods.

Lemma 1. The set Υ^{\prime} of locally finite configurations of pairwise disjoint rods form a set of the full measure \mathcal{P}_{z}^{0}.

For the proof, see Attachment.

For any configuration $\eta \in \Upsilon^{\prime}$ and any $\tau \in R^{1}$ we consider a section $\eta \cap Y_{\tau} \subset R^{d+1}$ of rods from the configuration η by the hyperplane $Y_{\tau}=\{x=$ $(s, t): t=\tau\}$. Then by Lemma 1 we have that the projection of the section to the space R^{d} is a locally finite set $\gamma_{\tau} \in \Gamma\left(R^{d}\right)$. Thus, any configuration of rods $\eta \in \Upsilon^{\prime}$ generates a curve $\gamma=\left\{\gamma_{\tau}, \tau \in R\right\}$ in the space $\Gamma\left(R^{d}\right)$, and different curves correspond to different configurations of rods. Let a set of these curves will be Σ. Then the distribution \mathcal{P}_{z}^{0} can be regarded as a distribution on Σ, in this case call it $\hat{\mathcal{P}}_{z}^{0}$. Thus, using Lemma 1 we get the following

Lemma 2. The above curves $\gamma=\left\{\gamma_{\tau}, \tau \in R\right\} \in \Sigma$ form the full measure set of trajectories of the free Glauber dynamics from Sect. 2.1 with the generator (3), and the distribution $\hat{\mathcal{P}}_{z}^{0}$ on Σ is the same as the distribution of the Glauber dynamics.

In the representation for the trajectory $\gamma=\left\{\gamma_{\tau}, \tau \in R\right\}$ in the form of a rod configuration η the origin $x=(s, t)$ of the $\operatorname{rod} \xi \in \eta, \xi=\left(x, l_{x}\right)$ marks the position s and the time t of the birth of a new particle in the point configuration, and the length l_{x} is the life time of the particle.

Remark. Reversibility of the free Glauber dynamics implies that the above field of rods is also reversible in time. Indeed, ends of rods under reflection in time come to origins of the reflected rods, but the point field corresponding to the ends of all rods is also the Poisson field in R^{d+1} with the intensity z. This fact has been discussed earlier, see for instance [4].

3.2 Euclidean representation for dynamics of interacting particles (ensemble of rods)

For any bounded $\Lambda \subset R^{d}$ and any $0<T<\infty$ we consider a new probability measure $\hat{\mathcal{P}}_{\Lambda, T, z}$ on Σ using Feynmann-Kac representation:

$$
\begin{equation*}
\frac{d \hat{\mathcal{P}}_{\Lambda, T, z}}{d \hat{\mathcal{P}}_{z}^{0}}(\gamma)=\frac{1}{Z_{\Lambda, T}} \exp \left\{-\alpha \int_{-T}^{T} U_{\Lambda}\left(\gamma_{\tau}\right) d \tau\right\}, \gamma=\left\{\gamma_{\tau}, \tau \in R\right\} \tag{24}
\end{equation*}
$$

with the normalization factor

$$
\begin{equation*}
Z_{\Lambda, T}=\int_{\Sigma} \exp \left\{-\alpha \int_{-T}^{T} U_{\Lambda}\left(\gamma_{\tau}\right) d \tau\right\} d \hat{\mathcal{P}}_{z}^{0} \tag{25}
\end{equation*}
$$

Since $U_{\Lambda}(\gamma)>0$ and $\int_{-T}^{T} U_{\Lambda}\left(\gamma_{\tau}\right) d \tau<\infty$ on a set of the full measure, then $0<Z_{\Lambda, T}<\infty$ and relation (24) is correctly defined.

We denote by $\mathcal{P}_{\Lambda, T, z}$ a measure on the configuration space of rods which is corresponding to $\hat{\mathcal{P}}_{\Lambda, T, z}$. Then the probability density (24) is rewritten as

$$
\begin{equation*}
\frac{d \mathcal{P}_{\Lambda, T, z}}{d \mathcal{P}_{z}^{0}}(\eta)=\frac{1}{Z_{\Lambda, T}} \exp \left\{-\alpha \sum_{\left\{\xi_{j_{1}}, \xi_{\left.j_{2}\right\}}\right\} \subset \eta_{\Lambda, T}} \Phi^{T}\left(\xi_{j_{1}}, \xi_{j_{2}}\right)\right\} \tag{26}
\end{equation*}
$$

where $\eta_{\Lambda, T} \subseteq \eta$ is a subset of rods from configuration η which have intersection with $\Lambda \times[-T, T] \subset R^{d+1}$, and

$$
\begin{equation*}
\Phi^{T}\left(\xi_{1}, \xi_{2}\right)=\varphi\left(s_{1}-s_{2}\right) \Delta^{T}\left(\xi_{1}, \xi_{2}\right) \tag{27}
\end{equation*}
$$

with $\xi_{i}=\left(\left(s_{i}, t_{i}\right), l_{i}\right), \quad i=1,2$, and

$$
\begin{equation*}
\Delta^{T}\left(\xi_{1}, \xi_{2}\right)=\left|\left(t_{1}, t_{1}+l_{1}\right) \cap\left(t_{2}, t_{2}+l_{2}\right) \cap(-T, T)\right| \tag{28}
\end{equation*}
$$

is a length of the common part of the projections to the axis t of the rods ξ_{1} and ξ_{2} which are inside of $[-T, T]$. We introduce the following notation

$$
\begin{equation*}
\Delta\left(\xi_{1}, \xi_{2}\right)=\lim _{T \rightarrow \infty} \Delta^{T}\left(\xi_{1}, \xi_{2}\right)=\left|\left(t_{1}, t_{1}+l_{1}\right) \cap\left(t_{2}, t_{2}+l_{2}\right)\right| \tag{29}
\end{equation*}
$$

Thus the measure $\mathcal{P}_{\Lambda, T, z}$ on the space Υ^{\prime} of rods is the Gibbs reconstruction of the measure \mathcal{P}_{z}^{0} by means of the following pair interaction

$$
U_{\Lambda, T}(\eta)=\sum_{\left\{\xi_{1}, \xi_{2}\right\} \subset \eta_{\Lambda, T}} \Phi^{T}\left(\xi_{1}, \xi_{2}\right)
$$

For any $M \subset R^{d+1}$ we consider a set $G_{M}^{i n t}$ of all rods intersecting M and a set $G_{M}^{l o c} \subset G_{M}^{i n t}$ of all rods with origins in M. We say that a set of rods $G \subset K$ is bounded if there exists a bounded set $M \subset R^{d+1}$ such that $G \subseteq G_{M}^{i n t}$, and is strictly bounded if $G \subseteq G_{M}^{l o c}$. For any $G \subset K$ let $\Upsilon^{\prime}(G) \subseteq \Upsilon^{\prime}$ be a set of all locally finite configurations of pairwise disjoint rods from G. In the case of bounded G the space $\Upsilon^{\prime}(G)$ contains finite configurations η. For any $G \subset K$ we can represent configurations $\eta \in \Upsilon^{\prime}$ as

$$
\eta=\left(\eta_{G}, \eta_{G^{\prime}}\right), \eta_{G} \in \Upsilon^{\prime}(G), \eta_{G^{\prime}} \in \Upsilon^{\prime}\left(G^{\prime}\right) \quad \text { with } \quad G^{\prime}=K \backslash G
$$

This representaion implies the following decomposition of Υ^{\prime} to the Cartesian product

$$
\Upsilon^{\prime}=\Upsilon^{\prime}(G) \times \Upsilon^{\prime}\left(G^{\prime}\right)
$$

We say that a function $F=F(\eta)$ defined on Υ^{\prime} is local if there exists a bounded set $M \subset R^{d+1}$ such that F depends only on $\eta_{G_{M}^{i n t}} \subseteq \eta: F(\eta)=$ $F\left(\eta_{G_{M}^{\text {int }}}\right)$. If a function F depends only on $\eta_{G_{M I}^{\text {loc }}} \subseteq \eta: F(\eta)=F\left(\eta_{G_{M}^{\text {loc }}}\right)$ we denote the function F strongly local. In any case, the set $M \subset R^{d+1}$ is called the localization domain of the function F. Let us note, that each local function on the space of trajectories Σ with the localization domain $\Lambda_{0} \times I=M$ regarded as a function on the configuration space of rods Υ^{\prime} with the localization domain M.

Theorem 4. We assume that $\varphi \geq 0$ is a non-negative integrable function and α is a small enough. Then

1. the distributions $\mathcal{P}_{\Lambda, T, z}$ converge weakly as $T \nearrow \infty$ to the distribution $\mathcal{P}_{\Lambda, \infty, z}=\mathcal{P}_{\Lambda, z}$

$$
\begin{equation*}
\mathcal{P}_{\Lambda, \infty, z}=w-\lim _{T \rightarrow \infty} \mathcal{P}_{\Lambda, T, z}, \tag{30}
\end{equation*}
$$

and the corresponding distribution $\hat{\mathcal{P}}_{\Lambda, \infty, z}=\hat{\mathcal{P}}_{\Lambda, z}$ on the space Σ is a distribution of a stationary reversible Markov process on Γ

$$
\begin{equation*}
\mathcal{G}_{\Lambda}=\left\{\gamma_{t}, \quad t \in R^{1}\right\} \tag{31}
\end{equation*}
$$

with the invariant measure ν_{z}^{Λ} and associated stochastic semigroup \tilde{S}_{t}^{Λ} generated by \tilde{H}_{Λ}. Thus, process (31) is exactly the same as process (15) from Theorem 2, that has been constructed by the different way.
2. There exists a weak limit

$$
\begin{equation*}
\mathcal{P}_{\infty, z}=w-\lim _{\Lambda / R^{d}} \mathcal{P}_{\Lambda, \infty, z}=w-\lim _{T \rightarrow \infty, \Lambda / R^{d}} \mathcal{P}_{\Lambda, T, z} . \tag{32}
\end{equation*}
$$

The corresponding distribution $\hat{\mathcal{P}}_{\infty, z}$ on the space of trajectories Σ is a distribution of a stationary reversible OS-positive process

$$
\begin{equation*}
\mathcal{G}_{\infty}=\left\{\gamma_{t}, \quad t \in R^{1}\right\} \tag{33}
\end{equation*}
$$

with values $\gamma_{t} \in \Gamma$ and the marginal distribution $\nu_{z}^{\infty}=w-\lim _{\Lambda / R^{d}} \nu_{z}^{\Lambda}$. Thus, the process (33) is the same as limit process (22) from theorem 3.

Here as above the weak convergence of distributions means the convergence of averages over corresponding distributions for any bounded local function F defined on Υ^{\prime}.

Remark As we have already mentioned above, all statements of Theorem 4 remain valid in the case of a stable integrable potential φ (not necessarily, nonnegative), although corresponding reasonings in the proof require some evident modifications.

We formulate next results on decay of correlations for the distributions $\mathcal{P}_{\Lambda, z}$ and the limit distribution $\mathcal{P}_{\infty, z}$. We assume that for all large enough $|u|$ the potential φ meets one of the folowing estimates:

$$
\text { 1) }|\varphi(u)|<\frac{c}{(1+|u|)^{2 m}}, m>d, \quad \text { 2) }|\varphi(u)|<c e^{-k|u|}
$$

with constants $c>0, m>d, k>0$, and introduce the following metrics in the space $R^{d} \times R^{1}$:

$$
\varrho\left(\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right)\right)=\left\{\begin{array}{l}
\left.m \ln \left(1+\left|s_{1}-s_{2}\right|\right)+\frac{1}{2}\left|t_{1}-t_{2}\right|, \quad \text { in the case } 1\right), \tag{34}\\
\frac{k}{2}\left|s_{1}-s_{2}\right|+\frac{1}{2}\left|t_{1}-t_{2}\right|, \text { in the case 2) }
\end{array}\right.
$$

with $s_{1}, s_{2} \in R^{d}, t_{1}, t_{2} \in R^{1}$.
Theorem 5. For any strongly local bounded functions F_{1}, F_{2} depending on the process \mathcal{G}_{∞} (or \mathcal{G}_{Λ}) with localization domains $M_{i}=\Lambda_{i} \times I_{i}, \quad i=1,2$ correspondingly the following estimate holds:

$$
\begin{equation*}
\left|\left\langle F_{1} \cdot F_{2}\right\rangle_{\mathcal{P}_{\infty, z}}-\left\langle F_{1}\right\rangle_{\mathcal{P}_{\infty, z}}\left\langle F_{2}\right\rangle_{\mathcal{P}_{\infty, z}}\right|<C^{\left|M_{1}\right|+\left|M_{2}\right|}\left(\left|M_{1}\right|+\left|M_{2}\right|\right) e^{-d\left(M_{1}, M_{2}\right)} \tag{35}
\end{equation*}
$$

and the analogous one is true for the processes \mathcal{G}_{Λ}. Here $C>0$ is a constant, $\left|M_{i}\right|$ are d+1-dimensional volumes of the domains M_{i}, and $d\left(M_{1}, M_{2}\right)$ is the distance between the domains in the metric (34):

$$
d\left(M_{1}, M_{2}\right)=\inf _{\left(s_{i}, i_{i}\right) \in M_{i}, i=1,2} \varrho\left(\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right)\right) .
$$

Corollary. The operator \hat{H} has a spectral gap, i.e. there exists a gap between 0 and the spectrum of \hat{H} in the orthogonal complement to the ground
state $e \in G$. In particular, that implies the uniqueness of the ground state.
For computational convenience we modify the definition of the measure $\mathcal{P}_{\Lambda, T, z}$. We call $G_{\Lambda, T}^{0}=G_{\Lambda \times(-T, T)}^{\text {int }} \subset K$ a set of rods which have an intersection with $\Lambda \times(-T, T) \subset R^{d+1}, G_{\Lambda, T}^{ \pm} \subset K$ a set of rods entirely belonging to the region $\Lambda \times(T,+\infty)$ (in the case +) and correspondingly, entirely belonging to the region $\Lambda \times(-\infty,-T)$ (in the case -), $G_{\Lambda^{\prime}, \infty} \subset K$ a set of rods lying inside $\Lambda^{\prime} \times(-\infty, \infty) \subset R^{d+1}$ with $\Lambda^{\prime}=R^{d} \backslash \Lambda$. Obviously, these sets are mutually disjoint and their union is the same as K. Then any configuration $\eta \in \Upsilon^{\prime}$ is the sum of 4 mutually disjoint configurations

$$
\begin{equation*}
\eta=\eta_{G_{\Lambda, T}^{0}} \cup \eta_{G_{\Lambda, T}^{+}} \cup \eta_{G_{\Lambda, T}^{-}} \cup \eta_{G_{\Lambda^{\prime}, \infty}}, \tag{36}
\end{equation*}
$$

and the configuration space Υ^{\prime} is the Cartesian product of the spaces

$$
\begin{equation*}
\Upsilon^{\prime}=\Upsilon^{\prime}\left(G_{\Lambda, T}^{0}\right) \times \Upsilon^{\prime}\left(G_{\Lambda, T}^{+}\right) \times \Upsilon^{\prime}\left(G_{\Lambda, T}^{-}\right) \times \Upsilon^{\prime}\left(G_{\Lambda^{\prime}, \infty}\right) \tag{37}
\end{equation*}
$$

We denote by

$$
\begin{equation*}
\mathcal{P}_{G_{\Lambda, T}^{0}, z}^{0}, \mathcal{P}_{G_{\Lambda, T}^{+}, z}^{0}, \mathcal{P}_{G_{\Lambda, T}^{-}, z}^{0}, \mathcal{P}_{G_{\Lambda^{\prime}, \infty}, z}^{0} \tag{38}
\end{equation*}
$$

distributions on the spaces of corresponding configurations, i.e. restrictions of the distribution \mathcal{P}_{z}^{0} to the sets

$$
\Upsilon^{\prime}\left(G_{\Lambda, T}^{0}\right), \Upsilon^{\prime}\left(G_{\Lambda, T}^{+}\right), \Upsilon^{\prime}\left(G_{\Lambda, T}^{-}\right), \Upsilon^{\prime}\left(G_{\Lambda^{\prime}, \infty}\right)
$$

respectively.
We consider next a general random field $\Pi(M, \zeta, p)$. Here $M \subset R^{d+1}$ is a domain in $R^{d+1}, \zeta=\zeta(x), x \in M$ is a positive function defined on M, the function $\zeta(x)$ specifies an activity (non-homogeneous, in general) of the Poisson field of the rods origins $x \in M, \quad p=\left\{p_{x}(l)=\operatorname{Pr}\left(l_{x}>l\right), l>\right.$ $0, x \in M\}$ is a family of distribution functions marked by points $x \in M$ for the length of a rod with the origin at $x \in M$. Under fixed origins of the rods their lengths have conditionally-independent distributions with densities $p_{x}(l)$.

Lemma 3. 1. All components $\eta_{G_{\Lambda, T}^{0}}, \eta_{G_{\Lambda, T}^{+}}, \eta_{G_{\Lambda, T}^{-}}, \eta_{G_{\Lambda^{\prime}, \infty}}$ in decomposition (36) are independent, i.e.

$$
\begin{equation*}
\mathcal{P}_{z}^{0}=\mathcal{P}_{G_{\Lambda, T}^{0}, z}^{0} \times \mathcal{P}_{G_{\Lambda, T}^{+}, z}^{0} \times \mathcal{P}_{G_{\Lambda, T}^{-}, z}^{0} \times \mathcal{P}_{G_{\Lambda^{\prime}, \infty}, z}^{0} \tag{39}
\end{equation*}
$$

2. Each distribution from (38) is a distribution of the form $\Pi(M, \zeta, p)$, namely,
a) in the case $\mathcal{P}_{G_{\Lambda^{\prime}, \infty}, z}^{0}$

$$
\begin{equation*}
M=\Lambda^{\prime} \times(-\infty,+\infty), \quad \zeta(x) \equiv z, p_{x}(l)=e^{-l}, l>0, x \in M \tag{40}
\end{equation*}
$$

b) in the case $\mathcal{P}_{G_{\Lambda, T}^{+}, z}^{0}$

$$
\begin{equation*}
M=\Lambda \times(T,+\infty), \zeta(x) \equiv z, p_{x}(l)=e^{-l}, l>0, x \in M \tag{41}
\end{equation*}
$$

c) in the case $\mathcal{P}_{G_{\Lambda, T}^{0}, z}^{0}$

$$
\begin{align*}
& M=\Lambda \times(-\infty, T), \zeta(x)=\left\{\begin{array}{c}
z, x \in \Lambda \times(-T, T) \\
z e^{-\tau}, x \in \Lambda \times(-\infty,-T)
\end{array}\right. \tag{42}\\
& p_{x}(l)=\left\{\begin{array}{c}
e^{-l}, l>0, x \in \Lambda \times(-T, T) \\
e^{\tau} e^{-l} \chi(\tau, \infty)+\chi(0, \tau), x \in \Lambda \times(-\infty,-T)
\end{array}\right.
\end{align*}
$$

where $\tau=-T-t>0$ is a distance from $x=(s, t) \in \Lambda \times(-\infty,-T)$ to the hyperplane $Y_{-T}=\{x: t=-T\}, \chi(a, b)$ is the characteristic function of the interval (a, b);
d) in the case $\mathcal{P}_{G_{\Lambda, T}^{-}, z}^{0}$
$M=\Lambda \times(-\infty,-T), \zeta(x)=z\left(1-e^{-\tau}\right), p_{x}(l)=e^{-l} \chi(0, \tau), l>0, x \in M$.

Proof of Lemma 3. We consider a decomposition of a configuration $\eta \in \Upsilon^{\prime}$ to four configurations

$$
\begin{equation*}
\eta=\hat{\eta}_{\Lambda, 0} \cup \hat{\eta}_{\Lambda,+} \cup \hat{\eta}_{\Lambda,-} \cup \hat{\eta}_{\Lambda^{\prime}} . \tag{44}
\end{equation*}
$$

Here $\hat{\eta}_{\Lambda^{\prime}}$ is a configuration of rods which are entirely outside of the cylinder $\Lambda \times(-\infty,+\infty), \hat{\eta}_{\Lambda,-}$ is a configuration from rods with origins in $\Lambda \times$ $(-\infty,-T), \hat{\eta}_{\Lambda, 0}$ is a configuration from rods with origins in $\Lambda \times(-T, T)$ and $\hat{\eta}_{\Lambda,+}$ is a configuration of rods which are entirely inside of the region $\Lambda \times(T,+\infty)$.

Since any $\operatorname{rod} \xi \in \eta$ belongs to one of the sub-configurations

$$
\hat{\eta}_{\Lambda, 0}, \hat{\eta}_{\Lambda,+}, \hat{\eta}_{\Lambda,-}, \hat{\eta}_{\Lambda^{\prime}}
$$

and it is determined only by the origin of the $\operatorname{rod} \xi$, all these configurations are configurations of a marked Poisson field in the corresponding volumes $\Lambda \times(-T, T), \Lambda \times(T, \infty), \Lambda \times(-\infty,-T), \Lambda^{\prime} \times(-\infty, \infty)$. That implies independence of all configurations, and compareing (36) with (44) we have:

$$
\hat{\eta}_{\Lambda^{\prime}}=\eta_{G_{\Lambda^{\prime}, \infty}}, \hat{\eta}_{\Lambda,+}=\eta_{G_{\Lambda, T}^{+}}, \hat{\eta}_{\Lambda, 0} \cup \hat{\eta}_{\Lambda,-}=\eta_{G_{\Lambda, T}^{0}} \cup \eta_{G_{\Lambda, T}^{-}} .
$$

The configuration $\hat{\eta}_{\Lambda,-}$ can be decomposed into two configurations

$$
\hat{\eta}_{\Lambda,-}=\breve{\eta}_{\Lambda,-} \cup \breve{\eta}_{\Lambda, 0},
$$

where $\breve{\eta}_{\Lambda,-}$ is a configuration of rods which are entirely inside of the region $\Lambda \times(-\infty,-T), \breve{\eta}_{\Lambda, 0}$ is a configuration of rods with origins in $\Lambda \times(-\infty,-T)$ which have intersection with $\Lambda \times(-T, T)$. Since the question about belonging a $\operatorname{rod} \xi \in \hat{\eta}_{\Lambda,-}$ to one of the configurations $\breve{\eta}_{\Lambda,-}, \breve{\eta}_{\Lambda, 0}$ depends on the length of the rod, the configurations $\breve{\eta}_{\Lambda,-}$ and $\breve{\eta}_{\Lambda, 0}$ are independent, and the activity of the rods origins equals to the product of z on the probability to reach (in the case $\breve{\eta}_{\Lambda, 0}$) or not to reach (in the case $\breve{\eta}_{\Lambda,-}$) the level $-T$. Distributions for the length of the rods are also properly changed. Moreover,

$$
\breve{\eta}_{\Lambda,-}=\eta_{G_{\Lambda, T}^{-}}, \quad \eta_{G_{\Lambda, T}^{0}}=\breve{\eta}_{\Lambda, 0} \cup \hat{\eta}_{\Lambda, 0} .
$$

Thus, configurations $\breve{\eta}_{\Lambda,-}$ form a field (M, ζ, p) defined by (43) and the union of configurations $\breve{\eta}_{\Lambda, 0} \cup \hat{\eta}_{\Lambda, 0}$ form again the field (M, ζ, p) defined by (42).

Formula (26) implies that only the distribution $\mathcal{P}_{G_{\Lambda, T}^{0}, z}^{0}$ of the component $\eta_{G_{\Lambda, T}^{0}}$ is subjected to a reconstruction:

$$
\begin{equation*}
\mathcal{P}_{\Lambda, T, z}=\mathcal{P}_{G_{\Lambda, T}^{0}, z}^{0} \times \mathcal{P}_{G_{\Lambda, T}^{+}, z}^{0} \times \mathcal{P}_{G_{\Lambda, T}^{-}, z}^{0} \times \mathcal{P}_{G_{\Lambda^{\prime}, \infty}, z}^{0}, \tag{45}
\end{equation*}
$$

where $\mathcal{P}_{G_{\Lambda, T}^{0}, z}$ is assigned by a probability density analogous to (26):

$$
\begin{equation*}
\frac{d \mathcal{P}_{G_{\Lambda, T}^{0}, z}}{d \mathcal{P}_{G_{\Lambda, T}^{0}, z}^{0}}\left(\eta_{G_{\Lambda, T}^{0}}\right)=\frac{1}{Z_{\Lambda, T}} \exp \left\{-\alpha \sum_{\left\{\xi_{j_{1}}, \xi_{j_{2}}\right\} \subset \eta_{G_{\Lambda, T}^{0}}^{0}} \Phi^{T}\left(\xi_{j_{1}}, \xi_{j_{2}}\right)\right\} . \tag{46}
\end{equation*}
$$

We denote by

$$
\begin{equation*}
\Upsilon^{0}=\bigcup_{n=0}^{\infty} \Upsilon_{n}^{0} \tag{47}
\end{equation*}
$$

a space of finite configurations of rods in R^{d+1}. Here Υ_{n}^{0} is a set of all n rods configurations, and $\Upsilon_{0}^{0}=\{\emptyset\}$. Then the Lebesgue-Poisson measure $\lambda_{\zeta, p}$ wtih intensity $\zeta=\zeta(x)$ and distribution function $p=\left\{p_{x}(l)\right\}$ for the length of rods can be considered on the space Υ^{0}. This measure on each $\Upsilon_{n}^{0}, n=0,1,2, \ldots$ is defined as follows

$$
\begin{equation*}
\int_{\Upsilon_{n}^{0}} f(\eta) d \lambda_{\zeta, p}=\frac{1}{n!} \int_{K^{n}} \tilde{f}\left(\xi_{1}, \ldots, \xi_{n}\right) \prod_{i=1}^{n}\left(-d p_{x_{i}}\left(l_{i}\right)\right) \prod_{i=1}^{n} \zeta\left(x_{i}\right) d x_{i} \tag{48}
\end{equation*}
$$

where $\xi_{i}=\left(x_{i}, l_{i}\right)$ are rods, $f(\eta)$ is a bounded function on Υ^{0} with a finite support and $\tilde{f}\left(\xi_{1}, \ldots, \xi_{n}\right)$ is a symmetrical extension of $f(\eta)$ to the space K^{n} of ordered sequences of rods $\left(\xi_{1}, \ldots, \xi_{n}\right), \xi_{i} \cap \xi_{j}=\emptyset, i \neq j$. We will use the notation $\lambda_{\zeta, p}=\lambda_{z}$ in the case when $\zeta \equiv z, p_{x}(l)=e^{-l}, l>0, \forall x$. For any $G \subset K$ let $\Upsilon^{0}(G) \subset \Upsilon^{0}$ be a set of all finite configurations of rods from G, and $\lambda_{\zeta, p}^{G}$ be a restriction of the measure $\lambda_{\zeta, p}$ to the set $\Upsilon^{0}(G)$. Then for any two non-intersecting domains $G_{1}, G_{2} \subset K$ we have

$$
\begin{equation*}
\Upsilon^{0}\left(G_{1} \cup G_{2}\right)=\Upsilon^{0}\left(G_{1}\right) \times \Upsilon^{0}\left(G_{2}\right), \quad \lambda_{\zeta, p}^{G_{1} \cup G_{2}}=\lambda_{\zeta, p}^{G_{1}} \times \lambda_{\zeta, p}^{G_{2}} \tag{49}
\end{equation*}
$$

Moreover, for any integrable functions $F(\eta), \phi_{i}(\eta), i=1, \ldots, m$ defined on the space Υ^{0} the following equality holds, see for example [12],

$$
\begin{align*}
& \int_{\Upsilon^{0}}\left(F(\eta) \sum_{\left(\eta_{1}, \ldots, \eta_{m}\right)}^{(\eta)} \phi_{1}\left(\eta_{1}\right) \ldots \phi_{m}\left(\eta_{m}\right)\right) d \lambda_{\zeta, p}(\eta)= \tag{50}\\
& \underbrace{\int_{\Upsilon^{0}} \ldots \int_{\Upsilon^{0}}}_{m \text { times }} F\left(\eta_{1} \cup \ldots \cup \eta_{m}\right) \prod_{i=1}^{m} \phi_{i}\left(\eta_{i}\right) \prod_{i=1}^{m} d \lambda_{\zeta, p}\left(\eta_{i}\right) .
\end{align*}
$$

Here the sum in the left-hand side of (50) is taken over all ordered sets $\left(\eta_{1}, \ldots, \eta_{m}\right)$ of m nonempty finite configurations $\eta_{i} \in \Upsilon^{0}$ such that $\eta_{i} \cap \eta_{j}=$ $\emptyset, i \neq j$, and $\cup_{1}^{m} \eta_{i}=\eta$.

In what follows we will take $G \subset G_{\Lambda, T}^{0}$ and will write for simplicity $\lambda^{G}=$ $\lambda_{,, p}^{G}$, where $\zeta(x), p=\left\{p_{x}(l)\right\}$ are defined by formulas (42). The measure $\lambda^{G, p}\left(\Upsilon^{0}(G)\right)$ for any bounded domain $G \subset G_{\Lambda, T}^{0}$ is equal to

$$
\begin{equation*}
\lambda^{G}\left(\Upsilon^{0}(G)\right)=\exp \left\{\int_{G} \zeta(x)\left(-d p_{x}(l)\right) d x\right\} . \tag{51}
\end{equation*}
$$

In the case $G=G_{\Lambda, T}^{0}\left(=G_{M}^{\text {int }}, M=\Lambda \times(-T, T)\right)$

$$
\begin{equation*}
\int_{G_{\Lambda, T}^{0}} \zeta(x)\left(-d p_{x}(l)\right) d x=(2 T+1)|\Lambda| z \tag{52}
\end{equation*}
$$

where $|\Lambda|$ is a d-dimensional volume of the domain $\Lambda \subset R^{d}$.
In the case $G=G_{M=\Lambda \times(-T, T)}^{l o c}$

$$
\int_{G_{M}^{l o c}} \zeta(x)\left(-d p_{x}(l)\right) d x=2 T|\Lambda| z .
$$

Lemma 4. The probability measure $\mathcal{P}_{G_{\Lambda, T}, z}^{0}$ on $\Upsilon_{G_{\Lambda, T}^{0}}^{\prime}$ defined by (42) is equal to

$$
\begin{equation*}
\mathcal{P}_{G_{\Lambda, T}^{0}, z}^{0}=e^{-(2 T+1)|\Lambda| z} \lambda^{G_{\Lambda, T}^{0}} . \tag{53}
\end{equation*}
$$

For the proof see Appendix.
Next we consider the probability density

$$
\begin{equation*}
\hat{p}_{\Lambda, T, z}(\eta)=\frac{d \mathcal{P}_{G_{\Lambda, T}^{0}, z}}{d \lambda^{G_{\Lambda, T}^{0}}}(\eta) \tag{54}
\end{equation*}
$$

for $\mathcal{P}_{G_{\Lambda, T}^{0}, z}$ with respect to the measure $\lambda^{G_{\Lambda, T}^{0}}\left(\right.$ instead of the measure $\left.\mathcal{P}_{G_{\Lambda, T}, z}^{0}\right)$. Density (54) can be defined again by formula (46) where the new normalizing factor $\hat{Z}_{\Lambda, T}$ is related with the normalizing factor from (46) by the following way

$$
\hat{Z}_{\Lambda, T}=Z_{\Lambda, T} e^{(2 T+1)|\Lambda| z} .
$$

Let us note that for any bounded $G \subset K$ the sets Υ_{G}^{\prime} and $\Upsilon^{0}(G)$ are the same up to a set with zero λ^{G} measure, consequently the distributions $\mathcal{P}_{G_{\Lambda, T}^{0}, z}^{0}$ and $\mathcal{P}_{G_{\Lambda, T}^{0}, z}$ could be considered as distributions on $\Upsilon^{0}\left(G_{\Lambda, T}^{0}\right)$.

4 Related cluster expansion

At the beginning of the section we formulate conditions on the potential $\varphi(u)$

$$
\begin{equation*}
\text { Positivity: } \varphi(u) \geq 0 \text {; } \tag{55}
\end{equation*}
$$

boundedness and fast decreasing on the infinity:

$$
\begin{equation*}
\text { a) } \varphi(u)<\frac{c}{(1+|u|)^{2 m}}, \quad m>d, \quad \text { or } \quad \text { b) } \varphi(u)<c e^{-k|u|} \tag{56}
\end{equation*}
$$

with an absolute constant $c>0$. The last inequality (56) can be rewritten as

$$
\begin{equation*}
\varphi(u)<C \exp \{-2 \hat{\varrho}(0, u)\}, \tag{57}
\end{equation*}
$$

where

$$
\hat{\varrho}\left(s_{1}, s_{2}\right)=\left\{\begin{array}{l}
m \ln \left(1+\left|s_{1}-s_{2}\right|\right), \quad \text { in case a, } \tag{58}\\
\frac{k}{2}\left|s_{1}-s_{2}\right|, \quad \text { in case b }
\end{array}\right.
$$

is a metrics in $R^{d}, s_{1}, s_{2} \in R^{d}($ see (34)).
Further we will follow constructions from the book [12]. The density (54) $\hat{p}_{\Lambda, T, z}(\eta), \eta \in \Upsilon^{0}\left(G_{\Lambda, T}^{0}\right) \equiv \Upsilon_{\Lambda, T}$ has the following representation

$$
\hat{p}_{\Lambda, T, z}(\eta)=\left\{\begin{array}{l}
\hat{Z}_{\Lambda, T}^{-1}, \quad \eta=\emptyset \tag{59}\\
\hat{Z}_{\Lambda, T}^{-1} \sum_{\left\{\eta_{1}, \ldots, \eta_{m}\right\}}^{(\eta)} \prod_{i=1}^{m} K^{T}\left(\eta_{i}\right), \eta \neq \emptyset
\end{array}\right.
$$

where the sum $\sum_{\left\{\eta_{1}, \ldots, \eta_{m}\right\}}^{(\eta)}$ is taken over all partitions of the finite configuration of rods η, i.e. over all unordered sets of mutually-disjoint configurations $\eta_{1}, \ldots, \eta_{m}, \eta_{i} \subseteq \eta, i=1, \ldots, m, m=1,2, \ldots$, such that $\cup \eta_{i}=\eta$. We will use further the following designation: $\left\{\eta_{1}, \ldots, \eta_{m}\right\}$ for unordered sets and $\left(\eta_{1}, \ldots, \eta_{m}\right)$ for ordered sets of configurations.

The cluster weight $K^{T}(\eta)$ is equal to

$$
K^{T}(\eta)= \begin{cases}1, & |\eta|=1 \tag{60}\\ \sum_{\sigma}^{(\eta)} & \kappa_{\sigma}^{T}, \\ ,|\eta| \geq 2\end{cases}
$$

where $|\eta|$ is the number of rods in the configuration η, the sum $\sum_{\sigma}^{(\eta)}$ is taken over all connected graphs σ with the set of nodes $V(\sigma)=\left\{\xi_{1}, \ldots, \xi_{s}\right\}=\eta$, and

$$
\begin{equation*}
\kappa_{\sigma}^{T}=\prod_{\left\langle\xi_{i}, \xi_{j}\right\rangle \in \sigma}\left(e^{-\alpha \Phi^{T}\left(\xi_{i}, \xi_{j}\right)}-1\right), \tag{61}
\end{equation*}
$$

where the product is over all edges $\left\langle\xi_{i}, \xi_{j}\right\rangle$ of the graph σ.
Lemma 5. For any stable potential φ the cluster weight meets the following bound as $|\eta| \geq 2$

$$
\begin{equation*}
\left|K^{T}(\eta)\right| \leq e^{\alpha B \sum_{\xi \in \eta} l(\xi)} \sum_{\mathcal{T}}^{(\eta)} \prod_{\left\langle\xi_{i}, \xi_{j}\right\rangle \in \mathcal{T}}\left(1-e^{-\alpha\left|\Phi^{T}\left(\xi_{i}, \xi_{j}\right)\right|}\right) \tag{62}
\end{equation*}
$$

where the sum is taken over all trees with the vertex set $V(\mathcal{T})=\eta, l(\xi)$ is the length of the $\operatorname{rod} \xi, B$ is a constant.

Under $\varphi \geq 0$ ($B=0$) bound (62) can be rewritten as

$$
\begin{equation*}
\left|K^{T}(\eta)\right| \leq \sum_{\mathcal{T}}^{(\eta)} \prod_{\left\langle\xi_{i}, \xi_{j}\right\rangle \in \mathcal{T}}\left|\left(e^{-\alpha \Phi^{T}\left(\xi_{i}, \xi_{j}\right)}-1\right)\right| \tag{63}
\end{equation*}
$$

where the sum is taken over all trees with the same vertex set $V(\mathcal{T})=\eta$ as above.

For the proof see attachment.
We formulated Lemma 5 for the general case of a stable potential because bound (62) is the crucial point in the proof of Theorem 4. Further line of the proof is well adapted to the general case, and we return here again to the case of a non-negative potential $\varphi \geq 0$ to make our reasoning more simple.

Then

$$
\begin{equation*}
\hat{Z}_{\Lambda, T}=1+\int_{\Upsilon^{0}\left(G_{\Lambda, T}^{0}\right) \backslash \emptyset} \sum_{\left\{\eta_{1}, \ldots, \eta_{m}\right\}}^{(\eta)} \prod_{i=1}^{m} K^{T}\left(\eta_{i}\right) d \lambda^{G_{\Lambda, T}^{0}}(\eta) \tag{64}
\end{equation*}
$$

Using equality (50), we have

$$
\begin{align*}
\hat{Z}_{\Lambda, T}=1 & +\sum_{m=1}^{\infty} \frac{1}{m!}\left(\int_{\Upsilon^{0}\left(G_{\Lambda, T}^{0}\right) \backslash \emptyset} K^{T}(\eta) d \lambda^{G_{\Lambda, T}^{0}}(\eta)\right)^{m}= \tag{65}\\
& \exp \left\{\int_{\Upsilon^{0}\left(G_{\Lambda, T}^{0}\right) \backslash \emptyset} K^{T}(\eta) d \lambda^{G_{\Lambda, T}^{0}}(\eta)\right\} .
\end{align*}
$$

For any bounded set $G \subset G_{\Lambda, T}^{0}$ the space $\Upsilon^{0}\left(G_{\Lambda, T}^{0}\right)$ can be written as

$$
\begin{equation*}
\Upsilon^{0}\left(G_{\Lambda, T}^{0}\right)=\Upsilon^{0}(G) \times \Upsilon^{0}\left(G_{\Lambda, T}^{0} \backslash G\right) \tag{66}
\end{equation*}
$$

We denote a distribution on $\Upsilon^{0}(G)$ generated by the distribution $\mathcal{P}_{G_{\Lambda, T}^{0}, z}$ (46) as $\mathcal{P}_{\Lambda, T, z}^{G}$.
Lemma 6. The probability density $p_{\Lambda, T, z}^{G}(\eta)=\frac{d \mathcal{P}_{, T, z}^{G}}{d \lambda^{G}}, \eta \in \Upsilon^{0}(G)$ is equal to

$$
p_{\Lambda, T, z}^{G}(\eta)=f_{\Lambda, T}^{G}\left\{\begin{array}{l}
1, \quad \eta=\emptyset \tag{67}\\
\sum_{\left\{\eta_{1}, \ldots, \eta_{m}\right\}}^{(\eta)} \prod_{i=1}^{m} r_{\Lambda, T}^{G}\left(\eta_{i}\right), \eta \neq \emptyset
\end{array}\right.
$$

where the sum is taken over partitions of the configuration η, and

$$
\begin{gather*}
r_{\Lambda, T}^{G}(\eta)=\int_{\Upsilon^{0}\left(G_{\Lambda, T}^{0} \backslash G\right)} K^{T}(\eta \cup \bar{\eta}) d \lambda_{\Lambda, T}^{G^{0} \backslash G}(\bar{\eta}), \tag{68}\\
f_{\Lambda, T}^{G}=\exp \left\{-\int_{\Upsilon^{0}(G) \backslash \emptyset} r_{\Lambda, T}^{G}(\eta) d \lambda^{G}(\eta)\right\}= \tag{69}\\
\exp \left\{-\int_{\Upsilon_{0}^{0}(G) \backslash \emptyset} d \lambda^{G}(\eta) \int_{\Upsilon^{0}\left(G_{\Lambda, T}^{0} \backslash G\right)} K^{T}(\eta \cup \bar{\eta}) d \lambda^{G_{\Lambda, T}^{0} \backslash G}(\bar{\eta})\right\} .
\end{gather*}
$$

Proof of Lemma 6 follows the same line as in [12].
It follows from (67) that the average of any bounded function F on $\Upsilon^{0}(G)$ with a bounded set $G \subset G_{\Lambda, T}^{0}$ equals to

$$
\begin{gather*}
\langle F\rangle_{\mathcal{P}_{\Lambda, T, z}}=\langle F\rangle_{\mathcal{P}_{\Lambda, T, z}^{G}}= \tag{70}\\
f_{\Lambda, T}^{G}\left[F(\emptyset)+\int_{\Upsilon^{0}(G) \backslash\{\emptyset\}}\left(F(\eta) \sum_{\left\{\eta_{1}, \ldots, \eta_{m}\right\}}^{(\eta)} \prod_{i=1}^{m} r_{\Lambda, T}^{G}\left(\eta_{i}\right)\right) d \lambda^{G}(\eta)\right]= \\
f_{\Lambda, T}^{G}\left[F(\emptyset)+\sum_{m=1}^{\infty} \frac{1}{m!} \int_{\Upsilon^{0}(G) \backslash\{\emptyset\}} \ldots \int_{\Upsilon^{0}(G) \backslash\{\emptyset\}} F\left(\bigcup_{i=1}^{m} \eta_{i}\right) \prod_{i=1}^{m} r_{\Lambda, T}^{G}\left(\eta_{i}\right) \prod_{i=1}^{m} d \lambda^{G}\left(\eta_{i}\right)\right]= \\
f_{\Lambda, T}^{G}\left[F(\emptyset)+\sum_{m=1}^{\infty} \frac{1}{m!} \int_{\left(\Upsilon^{0}(G) \backslash\{\emptyset\}\right)^{m}\left(\Upsilon_{(G)}^{0}\left(G_{\Lambda, T}^{0} \backslash G\right)\right)^{m}}\left[\int_{i=1}^{m} \eta_{i=1}^{m} \prod_{i=1}^{m} K^{T}\left(\eta_{i} \cup \bar{\eta}_{i}\right)\right.\right. \\
\left.\prod_{i=1}^{m} d \lambda^{G}\left(\eta_{i}\right) \prod_{i=1}^{m} d \lambda^{G_{\Lambda, T}^{0} \backslash G}\left(\bar{\eta}_{i}\right)\right] .
\end{gather*}
$$

For any bounded set $\Lambda \subset R^{d}$ we introduce a "tube"

$$
G_{\Lambda, \infty}=\Lambda \times\{-\infty, \infty\} \times R_{+}^{1} \subset K
$$

in the space of rods.

Lemma 7. There exist the following limits as $T \rightarrow \infty$ 1) for any bounded domain $G \subset G_{\Lambda, \infty}$:

$$
\begin{equation*}
\lambda_{\zeta, p}^{G} \rightarrow \lambda_{z}^{G} \tag{71}
\end{equation*}
$$

where $\lambda_{\zeta, p}^{G}$ is the Lebesque-Poisson measure defined by (42), and λ_{z}^{G} is the Lebesque-Poisson measure with parameters $\zeta(x) \equiv z$ and $p_{x}(l)=e^{-l}$, see (41);
2) for any finite configuration $\eta \in \Upsilon^{0}$

$$
\begin{equation*}
K^{T}(\eta) \rightarrow K(\eta) \tag{72}
\end{equation*}
$$

where $K(\eta)$ is defined similarly to $K^{T}(\eta)$, see (60) - (61) with $\Phi\left(\xi_{1}, \xi_{2}\right)$ instead of the function $\Phi^{T}\left(\xi_{1}, \xi_{2}\right)$, see (27);
3) for any bounded domain $G \subset G_{\Lambda, \infty}$:

$$
\begin{gather*}
f_{\Lambda, \infty}^{G}=\lim _{T \rightarrow \infty} f_{\Lambda, T}^{G}= \\
\exp \left\{-\int_{\Upsilon^{0}(G) \backslash\{0\}} \int_{\Upsilon^{0}\left(G_{\Lambda, \infty} \backslash G\right)} K(\eta \cup \bar{\eta}) d \lambda_{z}^{G}(\eta) d \lambda^{G_{\Lambda, \infty} \backslash G}(\bar{\eta})\right\} \tag{73}
\end{gather*}
$$

where $f_{\Lambda, T}^{G}$ is defined in (69);
4)

$$
\begin{equation*}
\lim _{T \rightarrow \infty}\langle F\rangle_{\mathcal{P}_{\Lambda, T, z}^{G}}=\langle F\rangle_{\mathcal{P}_{\Lambda, \infty, z}} \tag{74}
\end{equation*}
$$

for any bounded domain $G \subset G_{\Lambda, \infty}$ and a bounded local function F. Here

$$
\begin{array}{r}
\langle F\rangle_{\mathcal{P}_{\Lambda, \infty, z}}=f_{\Lambda, \infty}^{G}\left(F(\emptyset)+\sum_{m=1}^{\infty} \frac{1}{m!} \int_{\left(\Upsilon^{0}(G) \backslash\{\emptyset\}\right)^{m}} \prod_{i=1}^{m} d \lambda^{G}\left(\eta_{i}\right)\right. \\
\left.\int_{\left(\Upsilon^{0}\left(G_{\Lambda, \infty} \backslash G\right)\right)^{m}} \prod_{i=1}^{m} d \lambda^{G_{\Lambda, \infty} \backslash G}\left(\bar{\eta}_{i}\right) F\left(\bigcup_{i=1}^{m} \eta_{i}\right) \prod_{i=1}^{m} K\left(\eta_{i} \cup \bar{\eta}_{i}\right)\right) .
\end{array}
$$

Proof. The statements of items 1) and 2) are clear.
3) The integral in (69) can be bounded from above by

$$
\left|\int_{\Upsilon^{0}(G) \backslash\{\theta\}} d \lambda_{z}^{G}(\eta) \int_{\Upsilon^{0}\left(G_{\Lambda, T}^{0} \backslash G\right)} K^{T}(\eta \cup \bar{\eta}) d \lambda_{z}^{G_{\Lambda, T}^{0} \backslash G}(\bar{\eta})\right|<
$$

$$
\begin{gather*}
\int_{\Upsilon^{0}(G) \backslash\{\varnothing\}} d \lambda_{z}^{G}(\eta) \int_{\Upsilon^{0}\left(G_{\Lambda, \infty} \backslash G\right)} d \lambda_{z}^{G_{\Lambda, \infty} \backslash G}(\bar{\eta})\left(\sum_{\xi \in \eta} \chi_{G}(\xi)\right)\left|K^{T}(\eta \cup \bar{\eta})\right|= \\
z \int_{G} d \xi \int_{\Upsilon^{0}(G)} d \lambda_{z}^{G}(\eta) \int_{\Upsilon^{0}\left(G_{\Lambda, \infty} \backslash G\right)} d \lambda_{z}^{G_{\Lambda, \infty} \backslash G}(\bar{\eta})\left|K^{T}(\xi \cup \eta \cup \bar{\eta})\right|= \\
z \int_{G} d \xi \int_{\Upsilon^{0}\left(G_{\Lambda, \infty}\right)} d \lambda_{z}^{G_{\Lambda, \infty}}(\eta)\left|K^{T}(\xi \cup \eta)\right| . \tag{75}
\end{gather*}
$$

Here $\chi_{G}(\xi), \xi=(x, l)$ is the characteristic function of $G, d \xi=d x(-d p(l))=$ $d x e^{-l} d l$ and we used in (75) general formula (49) and equality (50).

Next using estimate

$$
\left|e^{-\alpha \Phi^{T}\left(\xi_{i}, \xi_{j}\right)}-1\right| \leq\left|e^{-\alpha \Phi\left(\xi_{i}, \xi_{j}\right)}-1\right|
$$

and estimate (63) we can continue

$$
\begin{align*}
& z \int_{G} d \xi \int_{\Upsilon^{0}\left(G_{\Lambda, \infty}\right)} d \lambda_{z}^{G_{\Lambda, \infty}}(\eta)\left|K^{T}(\xi \cup \eta)\right|= \\
& z|G|+z \int_{G} d \xi_{0} \sum_{n=2}^{\infty} \frac{z^{n-1}}{(n-1)!} \int_{K^{n-1}}\left|K^{T}\left(\xi_{0}, \xi_{1}, \ldots, \xi_{n-1}\right)\right| d \xi_{1} \ldots d \xi_{n-1}< \\
& z|G|+\sum_{n=2}^{\infty} \frac{z^{n}}{(n-1)!} \sum_{\substack{\tau: V(\mathcal{T})=\\
\left\{\xi_{0}, \xi_{1}, \ldots, \xi_{n}\right\}}} \int_{G} d \xi_{0} \int_{K^{n-1}} d \xi_{1} \ldots d \xi_{n-1} \prod_{\left\langle\xi_{i}, \xi_{j}\right\rangle \in \mathcal{T}}\left|e^{-\alpha \Phi^{T}\left(\xi_{i}, \xi_{j}\right)}-1\right| \leq \\
& z|G|+\sum_{n=2}^{\infty} \frac{z^{n}}{(n-1)!} \sum_{\substack{\mathcal{T}: V(\mathcal{T})=\\
\left\{\xi_{0}, \xi_{1}, \ldots, \xi_{n-1}\right\}}} \int_{G} d \xi_{0} \int_{K^{n-1}} d \xi_{1} \ldots d \xi_{n-1} \prod_{\left\langle\xi_{i}, \xi_{j}\right\rangle \in \mathcal{T}}\left|e^{-\alpha \Phi\left(\xi_{i}, \xi_{j}\right)}-1\right| \leq \\
& z|G|+\sum_{n=2}^{\infty} \frac{z^{n}}{(n-1)!} \sum_{\substack{\kappa_{0}, \ldots, \kappa_{n-1}: \\
\kappa_{0}+\ldots+\kappa_{n-1}=2(n-1)}} \sum_{\substack{\mathcal{T}: V(\mathcal{T})=\left\{\xi_{0}, \ldots, \xi_{n-1}\right\} \\
r(i)=\kappa_{i}, i=0, \ldots, n-1}} \tag{76}\\
& \int_{G} d \xi_{0} \int_{K^{n-1}} \prod_{i=1}^{n-1} d \xi_{i} \prod_{\left\langle\xi_{i}, \xi_{j}\right\rangle \in \mathcal{T}}\left|e^{-\alpha \Phi\left(\xi_{i}, \xi_{j}\right)}-1\right| .
\end{align*}
$$

Here the summation in $\sum_{\substack{\mathcal{T}: V(\mathcal{T})=\left\{\xi_{0}, \ldots, \xi_{n-1}\right\} \\ r(i)=\kappa_{i}, i=0, \ldots, n-1}}$ is over trees \mathcal{T} with a set of points of the tree $\left\{\xi_{0}, \ldots, \xi_{n-1}\right\}$ and vertex degrees $r(i)=\kappa_{i}>0, i=0, \ldots, n-1$. We notice that any tree with n points has exactly $n-1$ edges and the sum of the vertex degrees equals to $2(n-1)$.

The integration over variables $\xi_{0}, \xi_{1}, \ldots, \xi_{n-1}$ will operate recurrently. On the first step we will integrate over all "end variables", i.e. the variables ξ_{i} associated with the end points of the tree $\mathcal{T}^{0}=\mathcal{T}$ exceptint the variable ξ_{0}. Then we pass on to a new tree $\mathcal{T}^{(1)}$, which is constructed as a result of eliminating of all integrated on the first step points together with corresponding edges. If we continue this procedure we will integrate over all variables $\xi_{1}, \ldots, \xi_{n-1}$ step by step, and ξ_{0} will be the last variable for integration.

Let us estimate a result of the first integration over the "end variables" for the following integral (under given tree \mathcal{T}^{0}):

$$
\begin{equation*}
I\left(\mathcal{T}^{0}\right)=\int_{G} d \xi_{0} \int_{K^{n-1}} \prod_{i=1}^{n-1} d \xi_{i} \prod_{\left\langle\xi_{i}, \xi_{j}\right\rangle \in \mathcal{T}^{0}}\left|e^{-\alpha \Phi\left(\xi_{i}, \xi_{j}\right)}-1\right| \tag{77}
\end{equation*}
$$

We will show next that for a fixed $\operatorname{rod} \xi \in K$ the integral

$$
\begin{equation*}
J(\xi)=\int_{K}\left|e^{-\alpha \Phi(\xi, \bar{\xi})}-1\right| d \bar{\xi} \tag{78}
\end{equation*}
$$

meets the following estimate

$$
\begin{equation*}
J(\xi)<4 \alpha R l(\xi) \tag{79}
\end{equation*}
$$

with a length $l(\xi)$ of the $\operatorname{rod} \xi$, and $R=\int_{R^{d}} \varphi(u) d u$. We remind that $\Phi(\xi, \bar{\xi}) \geq 0, \alpha>0$, then putting $\bar{\xi}=\{(\bar{s}, \bar{t}), \bar{l}\}$ we have

$$
\begin{equation*}
J(\xi)<\alpha \int_{K} \varphi(s-\bar{s}) \Delta(\xi, \bar{\xi}) d \bar{s} d \bar{t} e^{-\bar{l}} d \bar{l}<\alpha R \int_{R^{1} \times R_{+}^{1}} \Delta(\xi, \bar{\xi}) d \bar{t} e^{-\bar{l}} d \bar{l} \tag{80}
\end{equation*}
$$

since $\Delta(\xi, \bar{\xi})$ doesn't depend on s and \bar{s}. We consider now 4 cases to get an estimate on the integral in (80).

1. A projection of the $\operatorname{rod} \bar{\xi}$ to the time axis t is entirely covered by a projection of the $\operatorname{rod} \xi$, i.e. in the notation $\xi=\{(s, t), l\}$ we have $t<\bar{t}<$
$\bar{t}+\bar{l}<t+l$. In this case

$$
\begin{gather*}
\int_{R^{1} \times R_{+}^{1}} \Delta(\xi, \bar{\xi}) d \bar{t} e^{-\bar{l}} d \bar{l}=\int_{0}^{l} \bar{l} e^{-\bar{l}} d \bar{l} \int_{0}^{l-\bar{l}} d \bar{t}= \tag{81}\\
\int_{0}^{l} \bar{l}(l-\bar{l}) e^{-\bar{l}} d \bar{l}<l \int_{0}^{\infty} \bar{l} e^{-\bar{l}} d \bar{l}=l .
\end{gather*}
$$

2. In the projection to the axis t the rods ξ and $\bar{\xi}$ are overlapping in such way that $t<\bar{t}<t+l<\bar{t}+\bar{l}$. Then

$$
\begin{equation*}
\int \Delta(\xi, \bar{\xi}) d \bar{t} e^{-\bar{l}} d \bar{l}=\int_{0}^{l} u e^{-u} d u \int_{0}^{\infty} e^{-m} d m<l \tag{82}
\end{equation*}
$$

We used here new variables

$$
\bar{l}=u+m, u=\Delta(\xi, \bar{\xi}), \bar{t}=l-u
$$

3. The similar case: the projections of rods ξ and $\bar{\xi}$ are overlapping in such way that $\bar{t}<t<\bar{t}+\bar{l}<t+l$. Then we have the same estimate as (82).
4. A projection of the $\operatorname{rod} \xi$ to the time axis t is entirely covered by a projection of the $\operatorname{rod} \bar{\xi}$, i.e. $\bar{t}<t<t+l<\bar{t}+\bar{l}$. In this case

$$
\begin{equation*}
\int \Delta(\xi, \bar{\xi}) d \bar{t} e^{-\bar{l}} d \bar{l}<l e^{-l} \int_{0}^{\infty} e^{-m_{1}} d m_{1} \int_{0}^{\infty} e^{-m_{2}} d m_{2}<l . \tag{83}
\end{equation*}
$$

Thus, (80) - (83) immediately imply (79). For any node i of the reminder tree, i.e. for nodes of a new tree \mathcal{T}^{1}, we denote by $K^{(1)}(i)$ the number of bonds of the tree \mathcal{T}^{0} incident to the node i and eliminated on the first step. The above estimates imply the following bound on the integral $I\left(\mathcal{T}^{0}\right)$

$$
\begin{align*}
I\left(\mathcal{T}^{0}\right)< & \int_{G} d \xi_{0} \int_{K^{n_{1}-1}} \prod_{\substack{\left\langle\xi_{i}, \xi_{j}\right\rangle \in \mathcal{T}^{(1)}}}\left|e^{-\alpha \Phi\left(\xi_{i}, \xi_{j}\right)}-1\right| \tag{84}\\
& \prod_{i \in V\left(\mathcal{T}^{(1)}\right)}\left(4 R \alpha l_{i}\right)^{K^{(1)}(i)} \prod_{\substack{i \in V\left(\mathcal{T}^{(1)}\right) \\
i \neq 0}} d \xi_{i},
\end{align*}
$$

where n_{1} is a number of nodes of the tree $\mathcal{T}^{(1)}$. We notice that for end nodes $i \in V\left(\mathcal{T}^{(1)}\right)$ of the tree $\mathcal{T}^{(1)}$, i.e. nodes eliminated on the second step of our procedure, we have

$$
K^{(1)}(i)=\kappa_{i}-1,
$$

where κ_{i} is the degree of the node i in the original tree $\mathcal{T}^{(0)}$. Thus, to continue the estimation of integral $I\left(\mathcal{T}^{0}\right)$ after the second step we have to find a bound for the following integral

$$
\begin{gather*}
J_{\kappa}(\xi)=\int\left|e^{-\alpha \Phi(\xi, \bar{\xi})}-1\right|(4 R \alpha \bar{l})^{\kappa-1} d \bar{\xi}< \tag{85}\\
(4 R \alpha)^{\kappa-1} R \alpha \int \Delta(\xi, \bar{\xi}) \bar{l}^{\kappa-1} e^{-\bar{l}} d \bar{t} d \bar{l}
\end{gather*}
$$

Let us consider again 4 cases as above.

1. In the first case

$$
\begin{equation*}
\int \Delta(\xi, \bar{\xi}) \bar{l}^{\kappa-1} e^{-\bar{l}} d \bar{t} d \bar{l}=\int_{0}^{l} \bar{l}^{\kappa}(l-\bar{l}) e^{-\bar{l}} d \bar{l}<l \int_{0}^{\infty} \bar{l}^{\kappa} e^{-\bar{l}} d \bar{l}=l \kappa! \tag{86}
\end{equation*}
$$

$2-3$. Using the same change of variables as above

$$
\bar{l}=u+m, u=\Delta(\xi, \bar{\xi}), \bar{t}=l-u
$$

we have

$$
\begin{array}{r}
\int \Delta(\xi, \bar{\xi}) \bar{l}^{\kappa-1} e^{-\bar{l}} d \bar{t} d \bar{l}=\int_{0}^{l} u e^{-u} \int_{0}^{\infty}(m+u)^{\kappa-1} e^{-m} d m d u< \tag{87}\\
\quad l \int_{0}^{\infty} \int_{0}^{\infty}(m+u)^{\kappa-1} e^{-m-u} d m d u=l \int_{0}^{\infty} v^{\kappa} e^{-v} d v=l \kappa!
\end{array}
$$

4. Here

$$
\begin{gather*}
\int \Delta(\xi, \bar{\xi}) \bar{l}^{\kappa-1} e^{-\bar{l}} d \bar{t} d \bar{l}=l \int_{0}^{\infty} \int_{0}^{\infty}\left(m_{1}+m_{2}+l\right)^{\kappa-1} e^{-m_{1}-m_{2}-l} d m_{1} d m_{2}< \\
l \int_{0}^{\infty} s^{\kappa-1} e^{-s} d s \int_{0}^{s-l} d m_{1}<l \int_{0}^{\infty} s^{\kappa} e^{-s} d s=l \kappa! \tag{88}
\end{gather*}
$$

where $s=m_{1}+m_{2}+l$.
Thus

$$
\begin{equation*}
J_{\kappa}(\xi)<(4 R \alpha)^{\kappa} l \kappa!, \quad l=l(\xi) \tag{89}
\end{equation*}
$$

and consequently,

$$
\begin{equation*}
I\left(\mathcal{T}^{0}\right) \leq \int_{G} d \xi_{0} \int_{K^{n_{2}-1}} \prod_{\left\langle\xi_{i}, \xi_{j}\right\rangle \in \mathcal{T}^{(2)}}\left|e^{-\alpha \Phi\left(\xi_{i}, \xi_{j}\right)}-1\right| \tag{90}
\end{equation*}
$$

$$
\prod_{i \in V\left(\mathcal{T}^{(2)}\right)}\left(4 R \alpha l_{i}\right)^{K^{(2)}(i)} \prod_{j \in V\left(\mathcal{T}^{(1)} \backslash \mathcal{T}^{(2)}\right)} \kappa_{j}!(4 R \alpha)^{\kappa_{j}-1} \prod_{\substack{i \in V\left(\mathcal{T}^{(2)}\right) \\ i \neq 0}} d \xi_{i}
$$

Here $K^{(2)}(i)$ is a number of bonds incident to the node $i \in V\left(\mathcal{T}^{(2)}\right)$ and eliminated on the second step, $V\left(\mathcal{T}^{(1)}\right) \backslash V\left(\mathcal{T}^{(2)}\right)$ is a set of nodes of the tree $\mathcal{T}^{(1)}$ eliminated on the second step.

If we continue this procedure in the same way we get eventually the following estimate with the last node ξ_{0}

$$
\begin{gather*}
I\left(\mathcal{T}^{0}\right) \leq \int_{G} l_{0}^{\kappa} d \xi_{0}(4 R \alpha)^{\kappa_{0}} \prod_{\substack{i \in V\left(\mathcal{T}^{(0)}\right) \\
i \neq 0}}\left(\kappa_{i}!(4 R \alpha)^{\kappa_{i}-1}\right)< \tag{91}\\
(4 R \alpha)^{n-1} \int_{G} l_{0}^{\kappa} d \xi_{0} \prod_{\substack{i \in V\left(\mathcal{T}^{(0)}\right) \\
i \neq 0}} \kappa_{i}!
\end{gather*}
$$

Here we used that $\sum_{i \in V\left(\mathcal{T}^{(0)}\right)} \kappa_{i}=2 n-2$.
Let us estimate now

$$
\int_{G} l_{0}^{\kappa} d \xi_{0}
$$

We denote by $M \subset R^{d+1}$ a bounded closed subset of R^{d+1} such that all rods from G have some intersection with M. And let $G_{M}, G \subseteq G_{M} \subset K$ be a set of all rods from K intersecting M. We suppose that set M has no "time holes", i.e. each stright line parallel to the time axis intersects M at a point or in a segment.

Let $\Lambda \subset R^{d}$ be a projection of M to the space R^{d}. Then the following bound holds

$$
\begin{equation*}
\int_{G} l_{0}^{\kappa} d \xi_{0} \leq \int_{G_{M}} l_{0}^{\kappa} d \xi_{0}=(\kappa+1)!|\Lambda|+\kappa!|M| \tag{92}
\end{equation*}
$$

where $|\Lambda|$ is a d-dimensional volume of Λ, and $|M|$ is a $d+1$-dimensional volume of M. Indeed, we can represent G_{M} as a union of two nonoverlapping sets

$$
G_{M}=G^{0} \cup G^{1}
$$

where G^{0} is a set of all rods with origins in M, and G^{1} is a set of rods with origins outside of M (in the "past" of M). Then

$$
\begin{equation*}
\int_{G^{0}} l_{0}^{\kappa} d \xi_{0} \leq \int_{M} d x \int_{0}^{\infty} l^{\kappa} e^{-l} d l=\kappa!|M| \tag{93}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{G^{1}} l_{0}^{\kappa} d \xi_{0}=|\Lambda| \int_{0}^{\infty} \int_{0}^{\infty}(r+s)^{\kappa} e^{-(r+s)} d r d s=(\kappa+1)!|\Lambda| . \tag{94}
\end{equation*}
$$

Thus, estimate (91) together with (92) and bound $\kappa+1 \leq n$ implies

$$
\begin{equation*}
I\left(\mathcal{T}^{0}\right) \leq \prod_{i \in V\left(\mathcal{T}^{(0)}\right)} \kappa_{i}!(4 R \alpha)^{n-1}(|M|+n|\Lambda|) \tag{95}
\end{equation*}
$$

The number of all trees \mathcal{T} with n vertecis and fixed vertex degrees $\left\{\kappa_{i}, i \in\right.$ $V(\mathcal{T})\}$ is equal, see [12, 15, 20],

$$
\frac{(n-2)!}{\prod_{i \in V(\mathcal{T})}\left(\kappa_{i}-1\right)!}<\frac{2^{n}(n-2)!}{\prod_{i \in V(\mathcal{T})} \kappa_{i}!}
$$

The number of ordered set $\left\{\kappa_{i}\right\}$ from n integer positive numbers such that

$$
\kappa_{1}+\ldots+\kappa_{n}=2 n-2,
$$

can be estimated from above by $C_{2 n-3}^{n}<2^{2 n-3}$. Substituting these bounds to (76) we get for small enough α

$$
\begin{gather*}
z \int_{G} d \xi \int_{\Upsilon^{0}\left(G_{\Lambda, \infty}\right)} d \lambda_{z}^{G_{\Lambda, \infty}}(\eta)|K(\xi \cup \eta)| \leq z|G|+ \\
\sum_{n=2}^{\infty} \frac{z^{n}(n-2)!}{(n-1)!}(4 R \alpha)^{n-1} 2^{3 n-3}(|M|+n|\Lambda|)<(|M|+|\Lambda|) C(\alpha, z), \tag{96}
\end{gather*}
$$

where $C(\alpha, z)$ is a constant doesn't depending on G. Finally, relations (72), (75), (96) and dominated convergence theorem imply (73).

Let us consider now the last statement of the Lemma. The expressions under the integral in the square brackets at two last lines in formula (70) converge as $T \rightarrow \infty$ to the expressions

$$
F\left(\cup_{i=1}^{m} \eta_{i}\right) \prod_{i=1}^{m} K\left(\eta_{i} \cup \bar{\eta}_{i}\right) .
$$

Consequently, the integral in the square brackets in expression (70) is majorized by the following sum

$$
\begin{align*}
& \max _{\eta}|F(\eta)| \sum_{m=1}^{\infty} \frac{1}{m!} \int_{\left(\Upsilon^{0}(G) \backslash\{(\gamma\})^{m}\right.} \int_{\left(\Upsilon^{0}\left(G_{\Lambda, \infty}^{0} \backslash G\right)\right)^{m}} \prod_{i=1}^{m} K\left(\eta_{i} \cup \bar{\eta}_{i}\right) \tag{97}\\
& \prod_{i=1}^{m} d \lambda^{G}\left(\eta_{i}\right) \prod_{i=1}^{m} d \lambda^{G_{\Lambda, \infty}^{0} \backslash G}\left(\bar{\eta}_{i}\right)< \\
& \max _{\eta}|F(\eta)| \sum_{m=1}^{\infty} \frac{1}{m!}\left(\int_{G} \int_{\Upsilon^{0}\left(G_{\Lambda, \infty}\right)} K(\xi \cup \eta) d \lambda^{G_{\Lambda, \infty}}(\eta) d \xi\right)^{m}< \\
& \max _{\eta}|F(\eta)| \exp \{(|M|+|\Lambda|) C(\alpha, z)\} .
\end{align*}
$$

Thus Lemma 7 is proved completely.
Corollary. Formulae (67) - (69) imply that $\langle F\rangle$ is the average of the function F over a probability distribution $\mathcal{P}_{\Lambda, \infty, z}^{G}$ on the set $\Upsilon^{0}(G)$, where the probability density with respect to the measure λ_{z}^{G} is given by

$$
p_{\Lambda, \infty, z}^{G}(\eta)=\left\{\begin{array}{c}
f_{\Lambda, \infty}^{G}, \quad \eta=\emptyset \tag{98}\\
f_{\Lambda, \infty}^{G} \quad \sum_{\left\{\eta_{1}, \ldots, \eta_{s}\right\}}^{(\eta)} \prod_{i} r_{\Lambda, \infty}^{G}\left(\eta_{i}\right), \quad \eta \neq \emptyset,
\end{array}\right.
$$

with

$$
\begin{aligned}
r_{\Lambda, \infty}^{G}(\eta) & =\int_{\Upsilon^{0}\left(G_{\Lambda, \infty} \backslash G\right)} K(\eta \cup \bar{\eta}) d \lambda_{z}^{G_{\Lambda, \infty} \backslash G}(\bar{\eta}), \\
f_{\Lambda, \infty}^{G} & =\exp \left\{-\int_{\Upsilon^{0}(G)} r_{\Lambda, \infty}^{G}(\eta) d \lambda_{z}^{G}(\eta)\right\} .
\end{aligned}
$$

Let $G_{0} \subset K$ is a set of rods intersecting hyperplane $Y_{0}=\left\{(s, t) \in R^{d+1}\right.$: $t=0\}$. We can introduce in G_{0} new coordinates $\xi=\left(s, l_{-}, l_{+}\right)$, where $s=\xi \cap Y_{0} \in \Lambda \subset R^{d}$ is the point of intersection of the $\operatorname{rod} \xi$ with the hyperplane $Y_{0}, l_{-}=|t|, l_{+}=l-|t|$ are lengths of two parts of the $\operatorname{rod} \xi$ lying to the left and to the right of the point s respectively. Then

$$
d \xi=d s e^{-l_{-}} d l_{-} e^{-l_{+}} d l_{+},
$$

and the space $\Upsilon^{0}\left(G_{0}\right)$ can be considered as a space of finite configurations of pairs $\eta=\left\{\left(\xi_{-}, \xi_{+}\right)_{i}\right\}_{i}$ of rods with corresponding lengths l_{-}, l_{+}. These pairs are situated on the different sides of the hyperplane Y_{0} and have the common end $s \in \Lambda$ lying on Y_{0}. The measure $\lambda_{z}^{G_{0}}$ on $\Upsilon^{0}\left(G_{0}\right)$ can be written as

$$
\begin{equation*}
d \lambda_{z}^{G_{0}}(\eta)=d \mu_{z}^{\Lambda}(\gamma) \prod_{s \in \gamma} e^{-l_{-}(s)} d l_{-}(s) \prod_{s \in \gamma} e^{-l_{+}(s)} d l_{+}(s), \quad \eta \in \Upsilon^{0}\left(G^{0}\right) \tag{99}
\end{equation*}
$$

where $\gamma=\gamma(\eta)=\left\{s_{i}\right\}$ is a configuration of points of intersection of the rods $\xi \in \eta$ with the hyperplane $Y_{0}, d \mu_{z}^{\Lambda}(\gamma)$ is d-dimensional Lebesgue-Poisson measure with activity z on the set of finite configurations in $\Lambda ; l_{-}(s), l_{+}(s)$ are lengths of the corresponding parts of the $\operatorname{rod} \xi$ "attached" at point $s \in \gamma$.

We denote by $\Pi_{\Lambda, \infty}^{G_{0}}$ a probability distribution on the set $\Gamma^{0}(\Lambda)$ of finite configurations inside Λ induced by the distribution $\mathcal{P}_{\Lambda, \infty}^{G_{0}}$ on $\Upsilon^{0}\left(G_{0}\right)$. From (99) it is seen that the density

$$
\tilde{\omega}_{\Lambda, \infty, z}(\gamma)=\frac{d \Pi_{\Lambda, \infty}^{G_{0}}}{d \mu_{z}^{\Lambda}}
$$

of this distribution with respect to d-dimensional Lebesgue-Poisson measure μ_{z}^{Λ} on $\Gamma^{0}(\Lambda)$ is equal to

$$
\begin{gather*}
\tilde{\omega}_{\Lambda, \infty, z}(\gamma)=\int p_{\Lambda, \infty}^{G_{0}}\left(\gamma,\left\{l_{-}(s), s \in \gamma\right\},\left\{l_{+}(s), s \in \gamma\right\}\right) \tag{100}\\
\prod_{s \in \gamma} e^{-l_{-}(s)} d l_{-}(s) \prod_{s \in \gamma} e^{-l_{+}(s)} d l_{+}(s)
\end{gather*}
$$

where $p_{\Lambda, \infty}^{G_{0}}\left(\gamma,\left\{l_{-}(s), s \in \gamma\right\},\left\{l_{+}(s), s \in \gamma\right\}\right)$ is the same density $p_{\Lambda, \infty, z}^{G}(\eta)$ as in formula (98) rewritten in the new variables. Formulas (98) and (100) imply that

$$
\tilde{\omega}_{\Lambda, \infty, z}(\gamma)=\varphi_{\Lambda} \times\left\{\begin{align*}
1, & \gamma=\emptyset, \tag{101}\\
\sum_{\left\{\gamma_{1}, \ldots, \gamma_{m}\right\}}^{(\gamma)} \prod_{i=1}^{m} \varrho_{\Lambda}\left(\gamma_{i}\right), & \gamma \neq \emptyset,
\end{align*}\right.
$$

where $\sum_{\left\{\gamma_{1}, \ldots, \gamma_{m}\right\}}^{(\gamma)}$ is the same as above sum over all partitions of the configuration γ,

$$
\varphi_{\Lambda}=\exp \left\{-\int_{\Gamma^{0}(\Lambda)} \varrho_{\Lambda}(\gamma) d \mu_{z}^{\Lambda}(\gamma)\right\}
$$

and $\varrho_{\Lambda}(\gamma)$ is defined as

$$
\begin{equation*}
\varrho_{\Lambda}(\gamma)=\int r_{\Lambda, \infty}^{G_{0}}\left(\gamma,\left\{l_{-}(s)\right\},\left\{l_{+}(s)\right\}\right) \prod_{s \in \gamma} e^{-l_{-}(s)} d l_{-}(s) \prod_{s \in \gamma} e^{-l_{+}(s)} d l_{+}(s) . \tag{102}
\end{equation*}
$$

5 Representation for ground state Ψ_{Λ}

We find now another representation for the probability distribution $\Pi_{\Lambda, \infty}^{G_{0}}$ on the set $\Gamma^{0}(\Lambda)$. Let us consider the trajectory space $\hat{\Upsilon}\left(G_{\Lambda, T}\right)$, then the density $\hat{\omega}_{\Lambda, T}^{G_{0}}$ of the distribution $\Pi_{\Lambda, T}^{G_{0}}$ on the space of configurations $\hat{\gamma}=\gamma_{t=0} \subset \Lambda$ with respect to the Poisson measure π_{z} on $\Gamma^{0}(\Lambda)$ can be written as

$$
\begin{equation*}
\hat{\omega}_{\Lambda, T}^{G_{0}}(\hat{\gamma})=\frac{Z_{\Lambda,(-T, 0)}(\hat{\gamma}) Z_{\Lambda,(0, T)}(\hat{\gamma})}{Z_{\Lambda,(-T, T)}} \tag{103}
\end{equation*}
$$

where partition function $Z_{\Lambda,(-T, T)}=Z_{\Lambda, T}$ is defined by (25), and

$$
\begin{align*}
Z_{\Lambda,(0, T)}(\hat{\gamma}) & =\int_{\Upsilon_{\Lambda}^{+}(\hat{\gamma})} e^{-\alpha \int_{0}^{T} U_{\Lambda}(\gamma(t)) d t} d \mathcal{P}_{\Lambda, z}^{0,+}(\{\gamma(t), t>0\} \mid \hat{\gamma}), \tag{104}\\
Z_{\Lambda,(-T, 0)}(\hat{\gamma}) & =\int_{\Upsilon_{\Lambda}^{-}(\hat{\gamma})} e^{-\alpha \int_{-T}^{0} U_{\Lambda}(\gamma(t)) d t} d \mathcal{P}_{\Lambda, z}^{0,-}(\{\gamma(t), t<0\} \mid \hat{\gamma}), \tag{105}
\end{align*}
$$

with $Z_{\Lambda,(-T, 0)}(\hat{\gamma})=Z_{\Lambda,(0, T)}(\hat{\gamma})$ and

$$
\begin{equation*}
Z_{\Lambda,(-T, T)}=\int_{\Gamma^{0}(\Lambda)} Z_{\Lambda,(-T, 0)}(\hat{\gamma}) Z_{\Lambda,(0, T)}(\hat{\gamma}) d \pi_{z}(\hat{\gamma}) . \tag{106}
\end{equation*}
$$

Here $\Upsilon_{\Lambda}^{+}(\hat{\gamma})$ is the space of trajectories $\{\gamma(t), t>0\}$ of the free Glauber dynamics considered in a "semi-tube" of future $\Lambda \times(0, \infty)$ with condition

$$
\begin{equation*}
\gamma(t=0)=\hat{\gamma} \tag{107}
\end{equation*}
$$

The space $\Upsilon_{\Lambda}^{-}(\hat{\gamma})$ is defined by the analogous way. Conditional distributions $\mathcal{P}_{\Lambda, z}^{0, \pm}(\cdot \mid \hat{\gamma})$ are generated by the distribution $\mathcal{P}_{\Lambda, z}^{0}$ on the space of trajectories of the free Glauber dynamics under condition (107), and the conditional distributions are given on the spaces $\Upsilon_{\Lambda}^{ \pm}(\hat{\gamma})$ respectively; π_{z} is the stationary distribution on $\Gamma^{0}(\Lambda)$ of the free Glauber dynamics considered in the domain $\Lambda \times(-\infty, \infty)$, i.e. the Poisson measure on $\Gamma(\Lambda)$ with the intensity z.

As before we rewrite expressions (104) - (105) for partition functions using the ensemble of rods. Any configuration from $\Upsilon_{\Lambda, T}^{+}$can be decomposed into a pair of configurations of rods $\left(\tilde{\eta}_{\hat{\gamma}}, \eta\right)$, where $\tilde{\eta}_{\hat{\gamma}}=\left\{\xi_{s}, s \in \hat{\gamma}\right\}$ is a configuration of rods ξ_{s} attached to a corresponding point $s \in \hat{\gamma}$ of the point configuration $\hat{\gamma} \subset \Lambda$, and η is a configuration of "free" rods with origins from $\Lambda \times(0, T) \subset R^{d+1}$. Similarly, the space of configurations $\Upsilon_{\Lambda, \infty}^{+}=\Upsilon_{\Lambda}^{+}$can be represented as a space of pairs of rods $\left(\tilde{\eta}_{\hat{\gamma}}, \eta\right)$, where $\tilde{\eta}_{\hat{\gamma}}=\left\{\xi_{s}, s \in \hat{\gamma}\right\}$ is defined as above, and a "free" configuration η of rods with origins from $\Lambda \times(0, \infty)$ can be again decomposed into a pair of configurations with origins in $\Lambda \times(0, T)$ and in $\Lambda \times[T, \infty)$ respectively. Thus, the distribution $\mathcal{P}_{\Lambda, z}^{0,+}(\cdot \mid \hat{\gamma})$ on $\Upsilon_{\Lambda, \infty}^{+}$is represented as a product

$$
\mathcal{P}_{\Lambda, z}^{0,+}(\cdot \mid \hat{\gamma})=\mathcal{P}_{\Lambda, T}^{0,+}(\cdot \mid \hat{\gamma}) \times \mathcal{P}_{\Lambda,[T, \infty)}^{0,+}(\cdot \mid \hat{\gamma}),
$$

and

$$
d \mathcal{P}_{\Lambda, T}^{0,+}\left(\left(\tilde{\eta}_{\hat{\gamma}}, \eta\right) \mid \hat{\gamma}\right)=d \lambda_{z^{G_{\Lambda, T}}}^{+}(\eta) \prod_{s \in \hat{\gamma}} e^{-l(s)} d l(s) e^{-|\Lambda| T z},
$$

where $G_{\Lambda, T}^{+}$is the set of rods with origins in $\Lambda \times(0, T)$. Then we get

$$
\begin{equation*}
Z_{\Lambda,(0, T)}(\hat{\gamma})=\int \prod_{s \in \hat{\gamma}} e^{-l(s)} d l(s) \int d \lambda z^{G_{\Lambda, T}^{+}}(\eta) e^{-\alpha} \sum_{\left\{\xi_{i}, \xi_{j}\right\} \subset \tilde{n}_{\hat{\gamma}} \cup \eta} \Phi^{T}\left(\xi_{i}, \xi_{j}\right) \quad e^{-|\Lambda| T z} . \tag{108}
\end{equation*}
$$

Using the same reasoning as above the exponent in (108) can be rewritten as

$$
\begin{gathered}
e^{-\alpha} \sum_{\left\{\xi_{i}, \xi_{j}\right\} \cup \tilde{\eta}_{\tilde{\gamma}} \cup \eta} \Phi^{T}\left(\xi_{i}, \xi_{j}\right) \\
=\sum_{m} \sum_{\left\{\left(\tilde{\eta}_{1}, \eta_{1}\right), \ldots,\left(\tilde{\eta}_{m}, \eta_{m}\right)\right\}}^{\tilde{\eta}_{\tilde{\gamma}} \cup \eta} \prod_{i=1}^{m} K^{T}\left(\tilde{\eta}_{i} \cup \eta_{i}\right)= \\
\sum_{m} \sum_{r \leq m} \sum_{\left\{\tilde{\eta}_{1}, \ldots, \tilde{\eta}_{r}\right\}}^{\tilde{\eta}_{\hat{\gamma}}} \sum_{\left(\eta_{1}, \eta_{2}\right)}^{\eta} \sum_{\left(\eta_{1}^{(1)}, \ldots, \eta_{r}^{(1)}\right)}^{\eta_{1}} \prod_{i=1}^{r} K^{T}\left(\tilde{\eta}_{i} \cup \eta_{i}^{(1)}\right) \\
\quad \sum_{\left\{\eta_{1}^{(2)}, \ldots, \eta_{m-r}^{(2)}\right\}}^{\eta_{2}} \prod_{j=1}^{m-r} K^{T}\left(\eta_{j}^{(2)}\right) .
\end{gathered}
$$

Here the sum $\sum_{\left\{\tilde{\eta}_{1}, \ldots, \tilde{\eta}_{r}\right\}}^{\tilde{\eta}_{\tilde{\prime}}}$ is taken over all unordered partition of $\tilde{\eta}_{\hat{\gamma}}$, the sum $\sum_{\left(\eta_{1}, \eta_{2}\right)}^{\eta}$ is the sum over ordered decomposition of η into two configurations $\eta_{1} \cup \eta_{2}$, the sum $\sum_{\left(\eta_{1}^{(1)}, \ldots, \eta_{r}^{(1)}\right)}^{\eta_{1}}$ is taken over all ordered partitions of η_{1} into r sub-configurations $\eta_{i}^{(1)}$ (which can be empty), and the last sum $\sum_{\left\{\eta_{1}^{(2)}, \ldots, \eta_{m-r}^{(2)}\right\}}^{\eta_{2}}$ is defined by the similar way.

Using decomposition (109) we have

$$
\begin{align*}
& Z_{\Lambda \times[0, T]}(\hat{\gamma})= \sum_{m} \sum_{\left\{\hat{\gamma}_{1}, \ldots, \hat{\gamma}_{m}\right\}}^{(\hat{\gamma})} \prod_{i=1}^{m}\left(\int K^{T}\left(\tilde{\eta}_{\hat{\gamma}_{i}} \cup \eta\right) d \lambda_{z}^{G_{\Lambda, T}^{+}}(\eta) \prod_{s \in \hat{\gamma}_{i}} e^{-l_{s}} d l_{s}\right) \\
& \exp \left\{\int_{\Upsilon^{0}(\Lambda, T)} K^{T}(\eta) d \lambda_{z}^{G_{\Lambda, T}^{+}}(\eta)-z|\Lambda| T\right\}= \tag{110}\\
& \sum_{m} \sum_{\left\{\hat{\gamma}_{1}, \ldots, \hat{\gamma}_{m}\right\}}^{\left(\prod_{i=1}^{(\hat{\gamma})} \hat{\varrho}_{\Lambda, T}\left(\hat{\gamma}_{i}\right) \exp \left\{\int_{\Upsilon^{0}(\Lambda, T)} K^{T}(\eta) d \lambda_{z}^{G_{\Lambda, T}^{+}}(\eta)-z|\Lambda| T\right\},\right.}
\end{align*}
$$

where

$$
\begin{equation*}
\hat{\varrho}_{\Lambda, T}(\hat{\gamma})=\int_{\Upsilon^{\circ}(\Lambda, T) \times R_{+}^{|\hat{\gamma}|}} K^{T}\left(\tilde{\eta}_{\hat{\gamma}} \cup \eta\right) d \lambda_{z}^{G_{\Lambda, T}^{+}}(\eta) \prod_{s \in \hat{\gamma}} e^{-l_{s}} d l_{s} \tag{111}
\end{equation*}
$$

with $\tilde{\eta}_{\hat{\gamma}}=\left\{\left(s, l_{s}\right), s \in \hat{\gamma}\right\}$. Then (106), (110) together with

$$
d \pi_{z}(\hat{\gamma})=d \mu_{z}^{\Lambda}(\hat{\gamma}) e^{-z|\Lambda|}
$$

imply that

$$
\begin{align*}
Z_{\Lambda \times(-T, T)}= & \exp \left\{2 \int_{\Upsilon^{0}(\Lambda, T)} K^{T}(\eta) d \lambda_{z}^{G_{\Lambda, T}^{+}}(\eta)-2|\Lambda| T z-|\Lambda| z\right\} \tag{112}\\
& \int\left(\sum_{m} \sum_{\left\{\hat{\gamma}_{1}, \ldots, \hat{\gamma}_{m}\right\}}^{(\hat{\gamma})} \prod_{i=1}^{m} \hat{\varrho}_{\Lambda, T}\left(\hat{\gamma}_{i}\right)\right)^{2} d \mu_{z}^{\Lambda}(\hat{\gamma})
\end{align*}
$$

Thus using (103) we get the following expression for the density $\hat{\omega}_{\Lambda, \infty}^{G_{0}}(\hat{\gamma})$

$$
\begin{gather*}
\hat{\omega}_{\Lambda, \infty}^{G_{0}}(\hat{\gamma})=\lim _{T \rightarrow \infty} \frac{Z_{\Lambda \times(0, T)}(\hat{\gamma}) Z_{\Lambda \times(-T, 0)}(\hat{\gamma})}{Z_{\Lambda \times(-T, T)}}= \tag{113}\\
\frac{\left(\sum_{m} \sum_{\left\{\hat{\gamma}_{1}, \ldots, \hat{\gamma}_{m}\right\}}^{\left(\hat{\gamma}_{i=1}\right)} \prod_{\Lambda, \infty}^{m}\left(\hat{\gamma}_{i}\right)\right)^{2} e^{z|\Lambda|}}{\int\left(\sum_{m} \sum_{\left\{\hat{\gamma}_{1}, \ldots, \hat{\gamma}_{m}\right\}}^{(\hat{\gamma})} \prod_{i=1}^{m} \hat{\varrho}_{\Lambda, \infty}\left(\hat{\gamma}_{i}\right)\right)^{2} d \mu_{z}^{\Lambda}(\hat{\gamma})}
\end{gather*}
$$

with

$$
\begin{equation*}
\hat{\varrho}_{\Lambda, \infty}(\hat{\gamma})=\lim _{T \rightarrow \infty} \hat{\varrho}_{\Lambda, T}(\hat{\gamma})=\int_{\Upsilon^{\circ}(\Lambda, \infty) \times R_{+}^{|\hat{\gamma}|}} K\left(\tilde{\eta}_{\hat{\gamma}} \cup \eta\right) d \lambda_{z}^{G_{\Lambda, \infty}^{+}}(\eta) \prod_{s \in \hat{\gamma}} e^{-l_{s}} d l_{s} . \tag{114}
\end{equation*}
$$

Thus, we get

$$
d \Pi_{\Lambda, \infty}^{G_{0}}(\hat{\gamma})=\hat{\omega}_{\Lambda, \infty}^{G_{0}}(\hat{\gamma}) d \mu_{z}^{\Lambda}(\hat{\gamma}) e^{-z|\Lambda|}
$$

On the other hand, as follows from the Feynman-Kac formula, we have for semigroup $\exp \left\{t H_{\Lambda}\right\}$

$$
\begin{equation*}
Z_{\Lambda \times(-T, T)}=\int_{\Upsilon_{\Lambda, \infty}} \exp \left\{-\alpha \int_{-T}^{T} U_{\Lambda}(\gamma(t)) d t\right\} d \mathcal{P}_{z}^{0}(\sigma)=\left(e^{2 T H_{\Lambda}} 1,1\right)_{\mu_{z}^{\Lambda}} e^{-z|\Lambda|} \tag{115}
\end{equation*}
$$

where $(\cdot, \cdot)_{\mu_{z}^{\Lambda}}$ is the scalar product in $L_{2}\left(\Gamma^{0}(\Lambda), \mu_{z}^{\Lambda}\right)$. Similar to (115) we get

$$
\begin{equation*}
Z_{\Lambda \times(0, T)}(\hat{\gamma})=Z_{\Lambda \times(-T, 0)}(\hat{\gamma})=\left(e^{T H_{\Lambda}} 1\right)(\hat{\gamma}) . \tag{116}
\end{equation*}
$$

Thus (113) implies that

$$
\begin{equation*}
\Psi_{\Lambda}(\hat{\gamma}) \equiv \lim _{T \rightarrow \infty} \frac{\left(e^{T H_{\Lambda}} 1\right)(\hat{\gamma})}{\left\|e^{T H_{\Lambda}} 1\right\|_{L_{2}\left(\Gamma^{0}(\Lambda), \mu_{\Sigma}^{\Lambda}\right)}}=\lim _{T \rightarrow \infty} \frac{Z_{\Lambda \times(0, T)}(\hat{\gamma})}{\left(Z_{\Lambda \times(-T, T)}\right)^{1 / 2}} \tag{117}
\end{equation*}
$$

exists and equals to

$$
\begin{equation*}
\Psi_{\Lambda}(\hat{\gamma})=\frac{\sum_{m} \sum_{\left\{\hat{\gamma}_{1}, \ldots, \hat{\gamma}_{m}\right\}}^{(\hat{\gamma})} \prod_{i=1}^{m} \hat{\varrho}_{\Lambda, \infty}\left(\hat{\gamma}_{i}\right) e^{\frac{1}{2} z|\Lambda|}}{\left(\int_{\Gamma^{0}(\Lambda)}\left(\sum_{m} \sum_{\left\{\hat{\gamma}_{1}, \ldots, \hat{\gamma}_{m}\right\}}^{(\hat{\gamma})} \prod_{i=1}^{m} \hat{\varrho}_{\Lambda, \infty}\left(\hat{\gamma}_{i}\right)\right)^{2} d \mu_{z}^{\Lambda}(\hat{\gamma})\right)^{1 / 2}} \tag{118}
\end{equation*}
$$

Consequently, (113) and (118) imply that $\hat{\omega}_{\Lambda, \infty}^{G_{0}}(\hat{\gamma})=\Psi_{\Lambda}^{2}(\hat{\gamma})$, and finally we have $\Pi_{\Lambda, \infty}^{G_{0}}=\nu_{z}^{\Lambda}$, where the measure ν_{z}^{Λ} was defined by formula (8).

6 Proof of Theorem 1

Using decomposition $L_{2}\left(\Gamma, d \pi_{z}\right)=L_{2}\left(\Gamma^{0}(\Lambda), d \pi_{z}^{\Lambda}\right) \otimes L_{2}\left(\Gamma^{0}\left(\Lambda^{\prime}\right), d \pi_{z}^{\Lambda^{\prime}}\right)$ and equality $d \pi_{z}^{\Lambda}=d \mu_{z}^{\Lambda} e^{-z|\Lambda|}$ we can reduce the problem of self-adjointness for the operator H_{Λ} on $L_{2}\left(\Gamma, d \pi_{z}\right)$ to the same problem for the operator H_{Λ}^{\prime} on $\mathcal{H}_{\Lambda}=L_{2}\left(\Gamma^{0}(\Lambda), \mu_{z}^{\Lambda}\right)$ acting as follows

$$
\begin{gather*}
\left(H_{\Lambda}^{\prime} \Phi\right)_{n}\left(s_{1}, \ldots, s_{n}\right)=\sum_{i=1}^{n} \Phi_{n-1}\left(s_{1}, \ldots, \breve{s_{i}} \ldots s_{n}\right)- \tag{119}\\
\left(\alpha U_{\Lambda}\left(s_{1}, \ldots, s_{n}\right)+n+z|\Lambda|\right) \Phi_{n}\left(s_{1}, \ldots, s_{n}\right)+z \int_{\Lambda} \Phi_{n+1}\left(s_{1}, \ldots, s_{n}, s\right) d s, n \geq 1, \\
\left(H_{\Lambda}^{\prime} \Phi\right)_{0}=-z \Phi_{0}+z \int_{\Lambda} \Phi_{1}(s) d s, \quad n=0 .
\end{gather*}
$$

Here $\breve{s_{i}}$ means that the variable s_{i} is omitted,

$$
\begin{equation*}
\Phi=\left(\Phi_{0}, \Phi_{1}\left(s_{1}\right), \ldots \Phi_{n}\left(s_{1}, \ldots, s_{n}\right), \ldots\right) \in L_{2}\left(\Gamma^{0}(\Lambda)\right) \tag{120}
\end{equation*}
$$

$\Phi_{n}\left(s_{1}, \ldots, s_{n}\right)$ is the value of $\Phi(\gamma)$ on the stratum $\Gamma_{n}^{0}(\Lambda) \subset \Gamma^{0}(\Lambda)$ of n points configurations $\gamma=\left(s_{1}, \ldots, s_{n}\right), s_{i} \neq s_{j}$, and $U_{\Lambda}\left(s_{1}, \ldots, s_{n}\right) \geq 0$. The operator H_{Λ}^{\prime} is a symmetrical operator on the set $D_{\text {fin }} \subset \mathcal{H}_{\Lambda}$ of finite
vectors, i.e. vectors with $\Phi_{n}=0$ for all $n>N=N(\Phi)$. Thus, H_{Λ}^{\prime} is a closable operator. For the closure, we will use the same notation H_{Λ}^{\prime}.

To complete the proof of the self-adjointness we should check that for large enough $\xi>0$ the range $\operatorname{Ran}\left(H_{\Lambda}^{\prime}-\xi E\right)=\mathcal{H}_{\Lambda}$, or what is equivalent that the equation

$$
\begin{equation*}
\left(H_{\Lambda}^{\prime}-\xi E\right) F=G \tag{121}
\end{equation*}
$$

is solvable for large enough $\xi>0$ and all $G \in \mathcal{H}_{\Lambda}$. We can rewrite H_{Λ}^{\prime} as $H_{\Lambda}^{\prime}=T+R$ separating the diagonal (over number of variables s_{i}) part T of H_{Λ}^{\prime}. Then positivity of T implies that (121) is equivalent to the equation

$$
\begin{equation*}
(T-\xi E)\left(E+(T-\xi E)^{-1} R\right) F=G \tag{122}
\end{equation*}
$$

If

$$
\begin{equation*}
\left.\|(T-\xi E)^{-1} R\right) \|<1 \tag{123}
\end{equation*}
$$

then the solution of equation (122) can be found as

$$
F=\left(E+(T-\xi E)^{-1} R\right)^{-1}(T-\xi E)^{-1} G .
$$

Thus, we should prove inequality (123).
Denote by $\mathcal{H}_{\Lambda, n} \subset \mathcal{H}_{\Lambda}$ a subspace of sequences (120) with $\Phi_{k}=0, k \neq n$, then the norm in $\mathcal{H}_{\Lambda, n}$ is defined as

$$
\left\|\Phi_{n}\right\|_{\mathcal{H}_{\Lambda, n}}^{2}=\frac{z^{n}}{n!} \int_{\Lambda^{n}} \Phi_{n}^{2}\left(s_{1}, \ldots, s_{n}\right) d s_{1} \ldots d s_{n}
$$

For any $n \geq 1$ we have

$$
\left\|\frac{\sum_{i=1}^{n} \Phi_{n-1}\left(s_{1}, \ldots, \breve{s_{i}} \ldots s_{n}\right)}{\left(\alpha U_{\Lambda}\left(s_{1}, \ldots, s_{n}\right)+n+z|\Lambda|+\xi\right)}\right\|_{\mathcal{H}_{\Lambda, n}}<\frac{\sqrt{n z|\Lambda|}\left\|\Phi_{n-1}\right\|_{\mathcal{H}_{\Lambda, n-1}}}{n+z|\Lambda|+\xi}
$$

Consequently,

$$
\begin{gather*}
\left\|\frac{\sum_{i=1}^{n} \Phi_{n-1}\left(s_{1}, \ldots, \breve{s}_{i} \ldots s_{n}\right)}{\left(\alpha U_{\Lambda}\left(s_{1}, \ldots, s_{n}\right)+n+z|\Lambda|+\xi\right)}\right\|_{\mathcal{H}_{\Lambda, n}}^{2}<\frac{n z|\Lambda|}{(n+z|\Lambda|+\xi)^{2}}\left\|\Phi_{n-1}\right\|_{\mathcal{H}_{\Lambda, n-1}}^{2}< \\
\max _{n} \frac{n z|\Lambda|}{(n+z|\Lambda|+\xi)^{2}}\left\|\Phi_{n-1}\right\|_{\mathcal{H}_{\Lambda, n-1}}^{2} . \tag{124}
\end{gather*}
$$

Similarly, we get

$$
\begin{gather*}
\left\|\frac{z \int_{\Lambda} \Phi_{n+1}\left(s_{1}, \ldots, s_{n}, s\right) d s}{\left(\alpha U_{\Lambda}\left(s_{1}, \ldots, s_{n}\right)+n+z|\Lambda|+\xi\right)}\right\|_{\mathcal{H}_{\Lambda, n}}^{2}<\frac{(n+1) z|\Lambda|}{(n+z|\Lambda|+\xi)^{2}}\left\|\Phi_{n+1}\right\|_{\mathcal{H}_{\Lambda, n+1}}^{2}< \\
\max _{n} \frac{(n+1) z|\Lambda|}{(n+z|\Lambda|+\xi)^{2}}\left\|\Phi_{n+1}\right\|_{\mathcal{H}_{\Lambda, n+1}}^{2} . \tag{125}
\end{gather*}
$$

Finally (119), (124), (125) imply that

$$
\left\|(T-\xi E)^{-1} R\right\|<2 \sqrt{\max _{n} \frac{(n+1) z|\Lambda|}{(n+z|\Lambda|+\xi)^{2}}}<1
$$

for all large enough ξ. The first statement of Theorem 1 is proved.
We will use the following proposition in the proof of the second statement of the theorem.

Proposition [11]. Let H be a bounded from above self-adjoint operator in a Hilbert space $L_{2}(\Omega, \mu)$, where (Ω, μ) is a space with a finite measure μ, the semigroup $\exp \{t H\}$ meets the condition of improving positivity (see [16]), and the limit

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{e^{T H} 1}{\left\|e^{T H} 1\right\|}=\Psi \tag{126}
\end{equation*}
$$

exists, such that $(\Psi, 1)>0$. Then Ψ is a unique ground state of the operator H and $\Psi>0$.

In our case we see from (117) - (118) that (126) holds and
$\left(\Psi_{\Lambda}(\hat{\gamma}), 1\right)_{L_{2}\left(\Gamma^{0}(\Lambda), \mu_{z}^{\Lambda}\right)}=\frac{\exp \left\{\int_{\Gamma^{0}(\Lambda)} \hat{\varrho}_{\Lambda, \infty}(\hat{\gamma}) d \mu_{z}^{\Lambda}(\hat{\gamma})+\frac{1}{2} z|\Lambda|\right\}}{\left(\int_{\Gamma^{0}(\Lambda)}\left(\sum_{m} \sum_{\left\{\hat{\gamma}_{1}, \ldots, \hat{\gamma}_{m}\right\}}^{(\hat{y}} \prod_{i=1}^{m} \hat{\varrho}_{\Lambda, \infty}\left(\hat{\gamma}_{i}\right)\right)^{2} d \mu_{z}^{\Lambda}(\hat{\gamma})\right)^{1 / 2}}>0$
consequently, the operator H_{Λ} has a unique ground state $\Psi_{\Lambda}(\gamma)>0$. Thus, the second state of Theorem 1 is proved.

7 Proof of Theorem 4

7.1 First statement

As follows from representation (98) probability measures $\left\{\mathcal{P}_{\Lambda, \infty, z}^{G}, G \subset G_{\Lambda, \infty}\right\}$ constructed in Lemma 7 form an consistent family of measures, i.e. for any two bounded sets $G_{1} \subset G_{2} \subset G_{\Lambda, \infty}$ we have:

$$
\mathcal{P}_{\Lambda, \infty, z}^{G_{2}} \mid \Upsilon^{0}\left(G_{1}\right)=\mathcal{P}_{\Lambda, \infty, z}^{G_{1}} .
$$

That implies, see [13], that a probability measure $\tilde{\mathcal{P}}_{\Lambda, \infty, z}$ exists on $\Upsilon\left(G_{\Lambda, \infty}\right)$, such that for any local function F_{G} with $G \subseteq G_{M}^{\text {int }} \subset G_{\Lambda, \infty}$ (with some bounded set $M \subset \Lambda \times(-\infty, \infty))$:

$$
\lim _{T \rightarrow \infty}\left\langle F_{G}\right\rangle_{\mathcal{P}_{\Lambda, T, z}}=\left\langle F_{G}\right\rangle_{\mathcal{P}_{\Lambda, \infty, z}^{G}}=\left\langle F_{G}\right\rangle_{\tilde{\mathcal{P}}_{\Lambda, \infty, z}}
$$

If we consider a measure on the space Υ of the following form

$$
\begin{equation*}
\mathcal{P}_{\Lambda, \infty, z}=\tilde{\mathcal{P}}_{\Lambda, \infty, z} \times \mathcal{P}_{\Lambda^{\prime}, \infty, z}^{0} \tag{127}
\end{equation*}
$$

where $\mathcal{P}_{\Lambda^{\prime}, \infty, z}^{0}$ is the distribution of the free dynamics on Λ^{\prime}, we get (30).
We will show next that a distribution $\hat{\mathcal{P}}_{\Lambda, \infty, z}$ of the process associated with the semigroup $\tilde{S}_{t}^{\Lambda}=\exp \left\{t \tilde{H}_{\Lambda}\right\}$ (i.e. the Markov process \mathcal{G}_{Λ} from Theorem $2)$ is the same as the distribution $\mathcal{P}_{\Lambda, \infty, z}(127)$.

Lemma 8. The following asymptotics hold as $T \rightarrow \infty$

$$
\begin{equation*}
\left.Z_{\Lambda, T}(\gamma)=e^{\lambda_{\Lambda}^{0} T} \Psi_{\Lambda}(\gamma)\left(\Psi_{\Lambda}(\gamma), 1\right)_{\pi_{z}}+\delta\right) \tag{128}
\end{equation*}
$$

with $\|\delta\|_{L_{2}\left(\Gamma^{0}(\Lambda), \pi_{z}\right)}=o(1)$,

$$
\begin{equation*}
Z_{\Lambda \times(-T, T)}=e^{2 \lambda_{\Lambda}^{0} T}\left(\left(\Psi_{\Lambda}(\gamma), 1\right)_{\pi_{z}}^{2}+o(1)\right), \tag{129}
\end{equation*}
$$

where λ_{Λ}^{0} is the eigenvalue corresponding to the ground state Ψ_{Λ}, see Theorem 1.

Proof. Let $\mathcal{H}^{\perp} \subset L_{2}\left(\Gamma^{0}(\Lambda), \pi_{z}\right)$ be the orthogonal complement to the vector Ψ_{Λ}, and H_{Λ}^{\perp} be a restriction of the operator H_{Λ} to the space \mathcal{H}^{\perp}. Then formula (115) implies

$$
\left(e^{T H_{\Lambda}} 1\right)(\gamma)=e^{\lambda_{\Lambda}^{0} T} \Psi_{\Lambda}(\gamma)\left(\Psi_{\Lambda}(\gamma), 1\right)_{\pi_{z}}+e^{H_{\Lambda}^{\perp} T} 1^{\perp}(\gamma),
$$

where 1^{\perp} is the projection of the vector 1 to the space \mathcal{H}^{\perp}. We estimate now the norm of the second term:

$$
\begin{gather*}
\left\|e^{H_{\Lambda}^{\perp} T} 1^{\perp}\right\|^{2}=\int_{-\infty}^{\lambda_{\Lambda}^{0}} e^{2 \lambda T} d \sigma_{1 \perp}(\lambda)= \\
e^{2 \lambda_{\Lambda}^{0} T}\left(\int_{-\infty}^{\lambda_{\Lambda}^{0}-a} e^{2\left(\lambda-\lambda_{\Lambda}^{0}\right) T} d \sigma_{1^{\perp}}(\lambda)+\int_{\lambda_{\Lambda}^{0}-a}^{\lambda_{\Lambda}^{0}} e^{2\left(\lambda-\lambda_{\Lambda}^{0}\right) T} d \sigma_{1^{\perp}}(\lambda)\right) . \tag{130}
\end{gather*}
$$

Here $\sigma_{1^{\perp}}(\Delta)$ is the spectral measure of the operator H_{Λ}^{\perp} on the vector 1^{\perp}. Then the first term in the bracket in (130) is less then $e^{-2 a T}$ and the second term is estimated from above by $\sigma_{1^{\perp}}\left(\lambda_{\Lambda}^{0}-a, \lambda_{\Lambda}^{0}\right)$. Since the ground state is unique, then the measure $\sigma_{1^{\perp}}(\lambda)$ is continuous at the point $\lambda=\lambda_{\Lambda}^{0}$. Consequently, taking $a=\frac{1}{\sqrt{T}}$ we get that both terms in (130) tend to 0 as $T \rightarrow \infty$.

Using the same reasoning and formula (115) we obtain asymptotics (129). Lemma is proved completely.

We remaind that $\hat{\mathcal{P}}_{\Lambda, \infty, z}$ is a distribution on the space of trajectories of the process

$$
\mathcal{G}_{\Lambda}=\left\{\gamma(t), t \in R^{1}\right\}
$$

associated with Markov semigroup $\exp \left\{t \tilde{H}_{\Lambda}\right\}$. For any finite time intervals $t_{0}<t_{1}<\ldots<t_{n}$ and any bounded functions $f_{0}, f_{1}, \ldots, f_{n}$ on $\Gamma^{0}(\Lambda)$ the average over $\hat{\mathcal{P}}_{\Lambda, \infty, z}$ can be written as

$$
\begin{gather*}
\left\langle\prod_{i=0}^{n} f_{i}\left(\gamma\left(t_{i}\right)\right)\right\rangle_{\hat{\mathcal{P}}_{\Lambda, \infty, z}}= \tag{131}\\
\int_{\left(\Gamma^{0}(\Lambda)\right)^{n}} f_{n}\left(\gamma_{n}\right) Q_{t_{n}-t_{n-1}}\left(\gamma_{n}, \gamma_{n-1}\right) \ldots f_{1}\left(\gamma_{1}\right) Q_{t_{1}-t_{0}}\left(\gamma_{1}, \gamma_{0}\right) f_{0}\left(\gamma_{0}\right) \prod_{i=0}^{n} d \nu_{z}^{\Lambda}\left(\gamma_{i}\right),
\end{gather*}
$$

where $Q_{t}\left(\gamma, \gamma^{\prime}\right)$ is the kernel of the operator $\exp \left\{t \tilde{H}_{\Lambda}\right\}$ in the space $L_{2}\left(\Gamma^{0}(\Lambda), \nu_{z}^{\Lambda}\right)$:

$$
\begin{equation*}
\left(\exp \left\{t \tilde{H}_{\Lambda}\right\} f\right)(\gamma)=\int_{\Gamma^{0}(\Lambda)} Q_{t}\left(\gamma, \gamma^{\prime}\right) f\left(\gamma^{\prime}\right) d \nu_{z}^{\Lambda}\left(\gamma^{\prime}\right) \tag{132}
\end{equation*}
$$

On the other hand, the average over $\mathcal{P}_{\Lambda, \infty, z}$, see (127), is calculated as the limit

$$
\begin{gather*}
\left\langle\prod_{i=0}^{n} f_{i}\left(\gamma\left(t_{i}\right)\right)\right\rangle_{\mathcal{P}_{\Lambda, \infty, z}}= \tag{133}\\
\lim _{T \rightarrow \infty} \frac{\int \prod_{i=0}^{n} f_{i}\left(\gamma\left(t_{i}\right)\right) \exp \left\{-\alpha \int_{-T}^{T} U_{\Lambda}(\gamma(\tau)) d \tau\right\} d \mathcal{P}_{z}^{0}}{Z_{\Lambda \times[-T, T]}} .
\end{gather*}
$$

Using the Feynman-Kac representation (13) for the kernel of the semigroup $e^{t H_{\Lambda}}$ and asymptotics (128) - (129) we can rewrite (133) as follows

$$
\begin{gather*}
\int_{\left(\Gamma^{0}(\Lambda)\right)^{n}} f_{n}\left(\gamma_{n}\right) \Psi_{\Lambda}\left(\gamma_{n}\right) R_{t_{n}-t_{n-1}}\left(\gamma_{n}, \gamma_{n-1}\right) e^{-\lambda_{\Lambda}^{0}\left(t_{n}-t_{n-1}\right)} \cdots \tag{134}\\
\ldots e^{-\lambda_{\Lambda}^{0}\left(t_{2}-t_{1}\right)} f_{1}\left(\gamma_{1}\right) R_{t_{1}-t_{0}}\left(\gamma_{1}, \gamma_{0}\right) e^{-\lambda_{\Lambda}^{0}\left(t_{1}-t_{0}\right)} \Psi_{\Lambda}\left(\gamma_{0}\right) f_{0}\left(\gamma_{0}\right) \prod_{i=0}^{n} d \pi_{z}\left(\gamma_{i}\right) .
\end{gather*}
$$

It follows from (10) and (8) that

$$
Q_{t}\left(\gamma_{1}, \gamma_{2}\right)=\frac{1}{\Psi_{\Lambda}\left(\gamma_{1}\right)} e^{-\lambda_{\Lambda}^{0} t} R_{t}\left(\gamma_{1}, \gamma_{2}\right) \frac{1}{\Psi_{\Lambda}\left(\gamma_{2}\right)}, \quad d \nu_{z}^{\Lambda}(\gamma)=\Psi_{\Lambda}^{2}(\gamma) d \pi_{z}(\gamma)
$$

and consequently, averages (131) and (134) are the same. Thus, all finite dimensional distributions for the measures $\mathcal{P}_{\Lambda, \infty, z}$ and $\hat{\mathcal{P}}_{\Lambda, \infty, z}$ coincide, and consequently, the measures are the same.

The first assertion of Theorem 4 is completely proved.

7.2 Second statement

Repeating arguments from the proof of Lemma 5 we get that for any bounded subset $G \subset K$ and bounded local function F_{G} the following limits exist and can be written as

$$
\begin{gather*}
\lim _{\Lambda \nearrow R^{d}}\left\langle F_{G}\right\rangle_{\mathcal{P}_{\Lambda, \infty, z}}=\left\langle F_{G}\right\rangle=f_{G}\left(F_{G}(\emptyset)+\right. \tag{135}\\
\left.\sum_{m=1}^{\infty} \frac{1}{m!} \int_{\left(\Upsilon^{0}(G) \backslash \emptyset\right)^{m}} \prod_{i=1}^{m} d \lambda^{G}\left(\eta_{i}\right) \int_{\left(\Upsilon^{0}(K \backslash G)\right)^{m}} \prod_{i=1}^{m} d \lambda^{K \backslash G}\left(\bar{\eta}_{i}\right) F_{G}\left(\cup \bar{\eta}_{i}\right) \prod_{i=1}^{m} K\left(\eta_{i} \cup \bar{\eta}_{i}\right)\right)
\end{gather*}
$$

with

$$
\begin{gather*}
f_{G}=\exp \left\{-\int_{\Upsilon^{0}(G) \backslash \emptyset} \int_{\Upsilon^{0}(K \backslash G)} K(\eta \cup \bar{\eta}) d \lambda^{G}(\eta) d \lambda^{K \backslash G}(\bar{\eta})\right\}= \tag{136}\\
=\exp \left\{-\int_{\eta \in \Upsilon^{0}(K): \eta \cap G \neq \emptyset} K(\eta) d \lambda_{z}(\eta)\right\} .
\end{gather*}
$$

By analogy with our reasoning in the proof of the first part of the theorem using corollary of Lemma 7 we get that limits (135) define a system of compatible probability distributions $\left\{\mathcal{P}_{\infty, z}^{G}\right\}$ on the space Υ^{\prime}, and thereby a limit distribution $\left\{\mathcal{P}_{\infty, z}\right\}$ on Υ^{\prime} is defined. The limit distribution is invariant with respect to the space translations in R^{d} and w.r.t reflections in time. Moreover, this distribution meets the property of OS positivity. Really, for any local bounded function F dependent on the process as $t \geq 0$ we have

$$
\begin{equation*}
(\theta F \cdot F)_{\mathcal{P}_{\infty, z}}=\lim _{\Lambda / R^{d}}(\theta F, F)_{\mathcal{P}_{\Lambda, \infty z}} \geq 0 \tag{137}
\end{equation*}
$$

since distributions $\mathcal{P}_{\Lambda, \infty, z}$ are the distributions of the Markov processes for any bounded $\Lambda \subset R^{d+1}$. Consequently, relation (137) is also valid for any function $F \in L_{2}\left(\Upsilon^{\prime}, \mathcal{P}_{\infty, z}\right)$ which is also dependent on the process values as $t \geq 0$. Thus we construct the limit measure $\mathcal{P}_{\infty, z}$ and establish properties of this measure. Theorem 4 is completely proved.

8 Proof of Theorem 5

Let us consider strongly local functions $F_{M_{i}}, i=1,2$ depending on the process \mathcal{G} (or \mathcal{G}_{Λ}) with bounded localization domain $M_{i} \subset R^{d+1}, i=1,2$. Denote by $G_{i}=G_{M_{i}}^{l o c} \subset K$ a set of rods starting at M_{i}. Then the functions $F_{M_{i}}$ can be considered as strongly local functions $F_{G_{i}}$ on the space Υ^{\prime} with the same localization domains $M_{i}, i=1,2$ correspondingly. We will use here the following formula for correlations (35), see [9]:

$$
\begin{gather*}
\left\langle F_{G_{1}} \cdot F_{G_{2}}\right\rangle_{\mathcal{P}_{\infty, z}}-\left\langle F_{G_{1}}\right\rangle_{\mathcal{P}_{\infty, z}}\left\langle F_{G_{2}}\right\rangle_{\mathcal{P}_{\infty, z}}= \tag{138}\\
f_{G_{1}} \cdot f_{G_{2}}\left(\left(e^{\hat{\Delta}\left(G_{1}, G_{2}\right)}-1\right)\left(F_{G_{1}}(\emptyset) F_{G_{2}}(\emptyset)+F_{G_{1}}(\emptyset) I_{2}+F_{G_{2}}(\emptyset) I_{1}+I_{1} I_{2}\right)+\right.
\end{gather*}
$$

$$
\left.e^{\hat{\Delta}\left(G_{1}, G_{2}\right)} I_{1,2}+F_{G_{1}}(\emptyset) \hat{I}_{2}+F_{G_{2}}(\emptyset) \hat{I}_{1}+I_{1} \hat{I}_{2}+I_{2} \hat{I}_{1}+\hat{I}_{1} \hat{I}_{2}\right) .
$$

Here $f_{G_{1}}, f_{G_{2}}$ are defined by (136),

$$
\begin{gathered}
\hat{\Delta}\left(G_{1}, G_{2}\right)=\int_{\eta: \eta \cap G_{1} \neq \emptyset, \eta \cap G_{2} \neq \emptyset} K(\eta) d \lambda_{z}(\eta) \\
I_{j}=\sum_{n=0}^{\infty} \frac{1}{n!} \int_{\left(\Upsilon^{0}\left(G_{j}\right) \backslash \emptyset \times \Upsilon^{0}\left(G_{3}\right)\right)^{n}} \prod_{i=1}^{n} d \lambda^{G_{j}}\left(\eta_{G_{j}}^{i}\right) d \lambda^{G_{3}}\left(\bar{\eta}_{G_{3}}^{i}\right) F_{G_{j}}\left(\cup \eta_{G_{j}}^{i}\right) \prod_{i=1}^{n} K\left(\eta_{G_{j}}^{i} \cup \bar{\eta}_{G_{3}}^{i}\right)
\end{gathered}
$$

with $G_{3}=K \backslash\left(G_{1} \cup G_{2}\right), j=1,2$;
$\hat{I}_{1}=\sum_{n=0}^{\infty} \frac{1}{n!} \int F_{G_{1}}\left(\cup \eta_{G_{1}}^{i}\right) \prod_{i=1}^{n} K\left(\eta_{G_{1}}^{i} \cup \eta_{G_{2}}^{i} \cup \eta_{G_{3}}^{i}\right) \prod_{i=1}^{n} d \lambda^{G_{1}}\left(\eta_{G_{1}}^{i}\right) d \lambda^{G_{2}}\left(\eta_{G_{2}}^{i}\right) d \lambda^{G_{3}}\left(\eta_{G_{3}}^{i}\right)$,
where the integration is taken over all sets from n triplets

$$
\left(\eta_{G_{1}}^{i}, \eta_{G_{2}}^{i}, \eta_{G_{3}}^{i}\right), \quad i=1, \ldots, n,
$$

such that $\eta_{G_{1}}^{i} \neq \emptyset$ for each $i=1, \ldots, n$, and at least in one of the triplets: $\eta_{G_{2}}^{i} \neq \emptyset$. We can define \hat{I}_{2} in the analogous way.

Further,

$$
\begin{gathered}
I_{1,2}=\sum_{n=0}^{\infty} \frac{1}{n!} \int F_{G_{1}}\left(\cup \eta_{G_{1}}^{i}\right) F_{G_{2}}\left(\cup \eta_{G_{2}}^{i}\right) \\
\prod_{i=1}^{n} K\left(\eta_{G_{1}}^{i} \cup \eta_{G_{2}}^{i} \cup \eta_{G_{3}}^{i}\right) \prod_{i=1}^{n} d \lambda^{G_{1}}\left(\eta_{G_{1}}^{i}\right) d \lambda^{G_{2}}\left(\eta_{G_{2}}^{i}\right) d \lambda^{G_{3}}\left(\eta_{G_{3}}^{i}\right) .
\end{gathered}
$$

Here the integration is over all sets from n triplets

$$
\left(\eta_{G_{1}}^{i}, \eta_{G_{2}}^{i}, \eta_{G_{3}}^{i}\right), \quad i=1, \ldots, n,
$$

such that at least in one of the triplets: $\eta_{G_{1}}^{i} \neq \emptyset$ and $\eta_{G_{2}}^{i} \neq \emptyset$.
Let us estimate $\hat{\Delta}\left(G_{1}, G_{2}\right)$ in the case when φ meets condition a) in (56), the case $(56$, b) can be studied in the same way. We can rewrite (63) as follows

$$
\begin{equation*}
|K(\eta)| \leq \sum_{\mathcal{T}} \prod_{\left\langle\xi_{i}, \xi_{j}\right\rangle \in \mathcal{T}}\left(\frac{1}{1+\left|s_{i}-s_{j}\right|^{2 m}}\right)^{\frac{1}{2}} \prod_{i \in V(\mathcal{T})} e^{-\frac{1}{2} l_{i}} \tag{140}
\end{equation*}
$$

$$
\prod_{\left\langle\xi_{i}, \xi_{j}\right\rangle \in \mathcal{T}}\left(1+\left|s_{i}-s_{j}\right|^{2 m}\right)^{\frac{1}{2}} \prod_{i \in V(\mathcal{T})} e^{\frac{1}{2} l_{i}} \prod_{\left\langle\xi_{i}, \xi_{j}\right\rangle \in \mathcal{T}}\left|e^{-\alpha \Phi\left(\xi_{i}, \xi_{j}\right)}-1\right|
$$

with $\xi_{i}=\left(\left(s_{i}, t_{i}\right), l_{i}\right), i=1, \ldots, n$. Then we have for any tree \mathcal{T} in (140)

$$
\begin{aligned}
& \prod_{\left\langle\xi_{i}, \xi_{j}\right\rangle \in \mathcal{T}}\left(\frac{1}{1+\left|s_{i}-s_{j}\right|^{2 m}}\right)^{\frac{1}{2}} \prod_{i \in V(\mathcal{T})} e^{-\frac{1}{2} l_{i}}< \\
& e^{-\sum_{\left\langle\xi_{i}, \xi_{j}\right\rangle \in \mathcal{T}} m \ln \left(1+\left|s_{i}-s_{j}\right|\right)-\frac{1}{2}} \sum_{i \in V(\mathcal{T})} l_{i}
\end{aligned} e^{-\operatorname{diam} \tilde{\eta}}, ~ l
$$

where $\tilde{\eta}=\cup \tilde{\xi}_{i} \subset R^{d+1}$ is a subset of R^{d+1} which is a union of all rods from configuration η, and the diameter of $\tilde{\eta}$ is calculated in the metrics (58, a). Thus,

$$
|K(\eta)|<e^{-\operatorname{diam} \tilde{\eta}} \sum_{\mathcal{T}} \prod_{\left\langle\xi_{i}, \xi_{j}\right\rangle \in \mathcal{T}}\left(\left(1+\left|s_{i}-s_{j}\right|^{2 m}\right)^{\frac{1}{2}}\left|e^{-\alpha \Phi\left(\xi_{i}, \xi_{j}\right)}-1\right|\right) \prod_{i \in V(\mathcal{T})} e^{\frac{1}{2} l_{i}} .
$$

Using bounds (55) - (56) on the potential φ we can apply here the above reasoning and finally get the following estimate

$$
\begin{equation*}
\int_{\substack{\eta: \eta G_{1} \neq \emptyset, \eta \cap G_{2} \neq \emptyset}} K(\eta) d \lambda_{z}(\eta)<e^{-\operatorname{dist}\left(M_{1}, M_{2}\right)} \max \left\{v_{z}\left(G_{1}\right), v_{z}\left(G_{2}\right)\right\} \hat{C}(\alpha, z) \tag{141}
\end{equation*}
$$

where

$$
v_{z}(G)=\int_{G} z\left(-d p_{x}(l)\right) d x
$$

and a constant $\hat{C}(\alpha, z)$ doesn't depend on G_{1} and G_{2}. Thus, we have

$$
\begin{equation*}
\left|e^{\hat{\Delta}\left(G_{1}, G_{2}\right)}-1\right|<\hat{C} e^{-\operatorname{dist}\left(M_{1}, M_{2}\right)} \max \left\{v_{z}\left(G_{1}\right), v_{z}\left(G_{2}\right)\right\} e^{\hat{C} \max \left\{v_{z}\left(G_{1}\right), v_{z}\left(G_{2}\right)\right\}} \tag{142}
\end{equation*}
$$

We estimate next I_{1} :
$\left|I_{1}\right|=\max \left|F_{G_{1}}\right| \sum_{n=0}^{\infty} \frac{1}{n!}\left(\int_{\Upsilon^{0}\left(G_{1}\right) \backslash \emptyset \times \Upsilon^{0}\left(G_{3}\right)} d \lambda^{G_{1}}\left(\eta_{G_{1}}\right) d \lambda^{G_{3}}\left(\eta_{G_{3}}\right)\left|K\left(\eta_{G_{1}} \cup \eta_{G_{3}}\right)\right|\right)^{n}<$

$$
\max \left|F_{G_{1}}\right| \sum_{n=0}^{\infty} \frac{1}{n!}\left(\int_{\eta: \eta \cap G_{1} \neq \emptyset}|K(\eta)| d \lambda(\eta)\right)^{n}<\max \left|F_{G_{1}}\right| \exp \left\{\hat{C} v_{z}\left(G_{1}\right)\right\}
$$

with a constant \hat{C}. In the same way we can obtain the upper bound on I_{2}.
Let us estimate now \hat{I}_{1} :

$$
\begin{align*}
& \left|\hat{I}_{1}\right|<\max \left|F_{G_{1}}\right| \sum_{n=0}^{\infty} \frac{1}{n!} \int_{\eta_{G_{1}} \neq \emptyset, \eta_{G_{2}} \neq \emptyset} K\left(\eta_{G_{1}} \cup \eta_{G_{2}} \cup \eta_{G_{3}}\right) \tag{143}\\
& d \lambda^{G_{1}}\left(\eta_{G_{1}}\right) d \lambda^{G_{2}}\left(\eta_{G_{2}}\right) d \lambda^{G_{3}}\left(\eta_{G_{3}}\right)\left(\int_{\eta: \eta \cap G_{1} \neq \emptyset} K(\eta) d \lambda(\eta)\right)^{n-1} .
\end{align*}
$$

The first integral in (143) can be estimated in the same manner as above, and we get

$$
\left|\hat{I}_{1}\right|<e^{-\operatorname{dist}\left(M_{1}, M_{2}\right)} \max \left\{v_{z}\left(G_{1}\right), v_{z}\left(G_{2}\right)\right\} \max \left|F_{G_{1}}\right| e^{\hat{C} v_{z}\left(G_{1}\right)}
$$

The analogous estimate is valid also for \hat{I}_{2} and $I_{1,2}$. Finally representation (136) implies

$$
\left|f_{G}\right|<\exp \left\{\int_{\eta: \eta G G \neq \emptyset}|K(\eta)| d \lambda_{z}(\eta)\right\}<\exp \left\{\hat{C} v_{z}(G)\right\} .
$$

Since $v_{z}(G)=z|M|$ in the case $G=G_{M}^{l o c}$, then after substitution all above estimates to (138) we get the main estimate (35) of Theorem 4.

8.1 Proof of Corollary from Theorem 5

We study here the generator h of the time translations in the physical space \mathcal{H} and prove that the operator h has a spectral gap. Let $\mu=\sup \sigma\left(\left.h\right|_{\mathcal{H}^{\perp}}\right)$ be the supremum of a spectrum of the restriction of the operator h to the invariant subspace \mathcal{H}^{\perp} containing vectors from \mathcal{H} orthogonal to vector e. We denote by $\hat{\mathcal{H}} \subset \mathcal{H}$ a dense set in \mathcal{H} such that classes of elements from $\hat{\mathcal{H}}$
contain strongly local bounded functions on $\hat{\Upsilon}$. For any $\varepsilon>0$ there exists an element $\varphi \in \hat{\mathcal{H}}$ such that

$$
\begin{equation*}
\text { 1) }(\varphi, e)=0, \quad \text { 2) }(\varphi, \varphi)=1, \quad \text { 3) } \sigma_{\varphi}(\mu-\varepsilon, \mu)>\frac{1}{2} \tag{144}
\end{equation*}
$$

where $\sigma_{\varphi}(\Delta)=\left(E_{h}(\Delta) \varphi, \varphi\right)_{\mathcal{H}}$ is the spectral measure of the element φ, and $E_{h}(\Delta)$ is the resolution of identity of the operator h. Condition 3) implies that

$$
\begin{equation*}
\left(e^{t h} \varphi, \varphi\right)_{\mathcal{H}}=\int_{-\infty}^{\mu} e^{\lambda t} d \sigma_{\varphi}(\lambda)>\frac{1}{2} e^{(\mu-\varepsilon) t} \tag{145}
\end{equation*}
$$

Let $\Phi \in \mathcal{H}_{+}$is a strongly local bounded function (not a constant) such that the class $[\Phi]$ of Φ is the same as φ. Then conditions (144) is rewritten as

$$
\begin{equation*}
\text { 1) }\langle\Phi\rangle_{\mathcal{P}_{\infty, z}}=0, \quad \text { 2) }\langle\theta \Phi \cdot \Phi\rangle_{\mathcal{P}_{\infty, z}}=1, \quad \text { 3) }\left\langle\theta U_{t} \Phi \cdot \Phi\right\rangle_{\mathcal{P}_{\infty, z}}>\frac{1}{2} e^{(\mu-\varepsilon) t} \text {. } \tag{146}
\end{equation*}
$$

Localization domain $M_{1} \neq \emptyset$ of the function Φ is in the right half-space $R_{+}^{d+1}=R^{d} \times R_{+}^{1}$ and localization domain M_{2} of the function $\theta U_{t} \Phi$ is in the left half-space $R_{-}^{d+1}=R^{d} \times R_{-}^{1}$. Moreover the distance in the metrics (34) between M_{1} and M_{2} is not less then $\frac{t}{2}$. Then using the result of Theorem 4 we have

$$
\begin{equation*}
\left(\theta U_{t} \Phi, \Phi\right)_{\mathcal{H}}=\left\langle\theta U_{t} \Phi \cdot \Phi\right\rangle_{\mathcal{P}_{\infty, z}}<c_{1} e^{-\frac{t}{2}} \tag{147}
\end{equation*}
$$

with a constant c_{1} doesn't depending on t. Comparing (145) with (147) it is easy to see that

$$
\begin{equation*}
(\mu-\varepsilon) t<-\frac{1}{2} t+c_{2} \tag{148}
\end{equation*}
$$

with an absolute constant c_{2}. Since inequality (148) holds for any $\varepsilon>0$ and any $t>0$, we get $\mu \leq-\frac{1}{2}$. That means that the operator h has a spectral gap and the unique ground state.

9 Attachment

9.1 Proof of Lemma 1

Let $M \subset R^{d+1}$ be a bounded set. Without loss of generality we can take $M=\Lambda \times I$, where $\Lambda \subset R^{d}$ is a bounded domain in R^{d} and $I=\left[T_{1}, T_{2}\right] \subset R^{1}$
is a segment. Then for a.e. configurations η of rods a number of rods with origins inside of M is finite. For the proof, it remained to show that the mean value of a number of rods from η with origins $x=(s, t)$ at the "past" to M (i.e. with $t<T_{1}$) intersecting M is also finite.

We denote $G_{M_{n}}^{(n)} \subset K$ a set of rods beginning at $M_{n}=\Lambda \times I_{n}$ where $I_{n}=\left(T_{1}-(n+1), T_{1}-n\right)$ with a lenght not less then n, and let $G_{M_{n}}^{M} \subset K$ be a set of rods with origins in M_{n} intersecting M. It is clear that $G_{M_{n}}^{M} \subset G_{M_{n}}^{(n)}$ and $\Upsilon\left(G_{M_{n}}^{M}\right) \subset \Upsilon\left(G_{M_{n}}^{(n)}\right)$. On the other hand, the probability that a $\operatorname{rod} \xi \in G_{M_{n}}^{l o c}$ belongs to a configuration $\eta_{n} \in \Upsilon\left(G_{M_{n}}^{(n)}\right)$ equals to e^{-n}, consequently the set of origins of rods from $\Upsilon\left(G_{M_{n}}^{(n)}\right)$ forms a Poisson field in M_{n} with intensity $z e^{-n}$. We denote $\eta_{n}^{M} \subseteq \eta_{n}$ a sub-configuration of η_{n} such that $\eta_{n}^{M} \in \Upsilon\left(G_{M_{n}}^{M}\right)$. Averaging over \mathcal{P}_{z}^{0} we get

$$
\langle | \eta_{n}^{M}| \rangle_{\mathcal{P}_{z}^{0}}<\langle | \eta_{n}| \rangle_{\mathcal{P}_{z}^{0}}=z|\Lambda| e^{-n} .
$$

Thus the mean value of a number of rods intersecting M with beginnings at the "past" of M can be bounded from above by

$$
z|\Lambda| \sum_{n=0}^{\infty} e^{-n}<\infty
$$

That means that configurations with infinite number of rods intersecting M form a set of zero measure. Since the space R^{d+1} can be covered by a countable family of bounded sets of the form $M=\Lambda \times I$, then almost all configurations of rods are locally finite.

Lemma is proved.

9.2 Proof of Proposition 1

Let us consider a quadratic form for any $F \in \mathcal{H}_{+}$and $t>0$:

$$
q_{F}(t)=\left(F, U_{t} F\right)_{+} .
$$

Using Caugchi-Buniakovskyi-Schwarz inequality n times and equality $\left(U_{t} F, F\right)_{+}=$ $\left(F, U_{t} F\right)_{+}$we get

$$
\begin{align*}
& q_{F}(t) \leq(F, F)_{+}^{\frac{1}{2}}\left(U_{t} F, U_{t} F\right)_{+}^{\frac{1}{2}}=(F, F)_{+}^{\frac{1}{2}}\left(F, U_{2 t} F\right)_{+}^{\frac{1}{2}} \leq \tag{149}\\
& \quad(F, F)_{+}^{\frac{1}{2}+\frac{1}{4}}\left(F, U_{4 t} F\right)_{+}^{\frac{1}{4}} \leq \ldots \leq(F, F)_{+}^{1-\frac{1}{2^{n}}}\left(F, U_{2^{n}} F\right)_{+}^{\frac{1}{2^{n}}}
\end{align*}
$$

For any $t>0$ and any n

$$
\left(F, U_{2^{n} t} F\right)_{+}=\left(\theta F, U_{2^{n} t} F\right)_{L_{2}(\Omega, \mathcal{P})} \leq\|F\|_{L_{2}}^{2} .
$$

Since $q_{F}(t)$ doesn't depend on n, we take a limit in (149) as $n \rightarrow \infty$ and obtain for any t

$$
q_{F}(t) \leq(F, F)_{+} .
$$

Finally,

$$
\left(U_{t} F, U_{t} F\right)_{+}=\left(F, U_{2 t} F\right)_{+}=q_{F}(2 t) \leq(F, F)_{+}
$$

9.3 Proof of Lemma 4

Note, that by virtue of (51)-(52) the measure in the right hand side of (53) is the probabilistic one. Under decomposition $G_{\Lambda, T}^{0}=G_{1} \cup G_{2}$ on two nonitersecting sets this measure by (49) could be written as a product of two probabilistic measures:

$$
\lambda^{G_{1}} e^{-S\left(G_{1}\right)} \times \lambda^{G_{2}} e^{-S\left(G_{2}\right)}
$$

with $S(G)=\int_{G} \xi(x) p_{x}(l) d l d x$. For the probability that the number of rods $\left|\eta_{G_{i}}\right|$ in the configuration $\eta_{G_{i}} \subset \Upsilon^{0}\left(G_{i}\right)$ equals k, we get:

$$
\operatorname{Pr}\left(\left|\eta_{G_{i}}\right|=k\right)=\frac{1}{k!}\left(S\left(G_{i}\right)\right)^{k} e^{-S\left(G_{i}\right)},
$$

i.e. the probability has a Poisson form. That means that the measure in (53) is the distribution of the Poisson field of the form $\Pi\left(M, \zeta,\left\{p_{x}\right\}\right)$, where $M, \zeta,\left\{p_{x}\right\}$ are the same as in formula (42).

9.4 Proof of Lemma 5

Let us start with the case when $\varphi \geq 0$. Inequality (63) is evident for a set of nodes $\eta=\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$. We assume that (63) holds for all sets $\eta^{(m)}=$ $\left\{\xi_{1}, \ldots, \xi_{m}\right\}$ of nodes with $2 \leq m \leq n$, and prove the statement of the Lemma for a vertex set $V(\sigma)=\eta^{(n+1)}=\left\{\xi_{0}, \ldots, \xi_{n}\right\}$ using the induction assumption.

We note first that κ_{σ}^{T} defined by (61) can be rewritten for any given connected graph σ with a vertex set $V(\sigma)=\eta^{(n+1)}$ as

$$
\begin{equation*}
\kappa_{\sigma}^{T}=\prod_{i=1}^{k} \kappa_{\sigma_{i}}^{T} \prod_{\xi_{j} \in m_{i}}\left(e^{-\alpha \Phi^{T}\left(\xi_{0}, \xi_{j}\right)}-1\right) . \tag{150}
\end{equation*}
$$

Here $\sigma_{i}, i=1, \ldots, k$ are connected subgraphs of the graph σ with a vertex set $V\left(\sigma_{i}\right) \subseteq \eta^{(n)}=\left\{\xi_{1}, \ldots, \xi_{n}\right\}$, such that $\sigma_{1}, \ldots, \sigma_{k}$ form a decomposition of the rest of σ after removing all edges incident to the node ξ_{0}, and $m_{i} \subseteq V\left(\sigma_{i}\right)$ is a subset of $V\left(\sigma_{i}\right)$ governing a subset of incident to ξ_{0} edges with ends from $V\left(\sigma_{i}\right)$.

Then using (150) we have

$$
\begin{gather*}
\sum_{\sigma}^{\left(\eta^{(n+1)}\right)} \kappa_{\sigma}^{T}=\sum_{k=1}^{n} \sum_{\left\{\eta_{1}, \ldots, \eta_{k}\right\}}^{\left(\eta^{(n)}\right)} \prod_{i=1}^{k}\left(\sum_{\sigma_{i}: V\left(\sigma_{i}\right)=\eta_{i}} \kappa_{\sigma_{i}}^{T}\right. \\
\left.\sum_{m_{i} \subseteq \eta_{i}, m_{i} \neq \emptyset} \prod_{\xi_{j} \in m_{i}}\left(e^{-\alpha \Phi^{T}\left(\xi_{0}, \xi_{j}\right)}-1\right)\right) \leq \\
\sum_{k=1}^{n} \sum_{\left\{\eta_{1}, \ldots, \eta_{k}\right\}}^{\left(\eta^{(n)}\right)} \prod_{i=1}^{k}\left(\sum_{\mathcal{T}_{i}: V\left(\mathcal{T}_{i}\right)=\eta_{i}} \prod_{\left\langle\xi_{\alpha}, \xi_{\beta}\right\rangle \in \mathcal{T}_{i}}\left|e^{-\alpha \Phi^{T}\left(\xi_{\alpha}, \xi_{\beta}\right)}-1\right| \sum_{\xi_{j} \in \eta_{i}}\left|e^{-\alpha \Phi^{T}\left(\xi_{0}, \xi_{j}\right)}-1\right|\right), \tag{151}
\end{gather*}
$$

where in (151) the internal sum is taken over all trees \mathcal{T}_{i} with vertex set η_{i}. In the last bound we applied the induction assumption, the identity

$$
\sum_{m \subseteq \eta, m \neq \emptyset} \prod_{\xi \in m}\left(e^{-\alpha \Phi^{T}\left(\xi_{0}, \xi\right)}-1\right)=e^{-\alpha \sum_{\xi \in \eta} \Phi^{T}\left(\xi_{0}, \xi\right)}-1
$$

and the following inequlity

$$
\begin{equation*}
\left|e^{-\alpha \sum_{\xi \in \eta} \Phi^{T}\left(\xi_{0}, \xi\right)}-1\right| \leq \sum_{\xi \in \eta}\left|e^{-\alpha \Phi^{T}\left(\xi_{0}, \xi\right)}-1\right| \tag{152}
\end{equation*}
$$

which is valid for $\Phi^{T} \geq 0$.
Connecting all possible trees from $\mathcal{T}_{i}, i=1, \ldots, k$ with all possible edges $\left(\xi_{0}, \xi_{j}\right), \xi_{j} \in \eta_{i}$ from the last sum in (151) we obtain all possible trees \mathcal{T} with $V(\mathcal{T})=\eta^{(n+1)}$, consequently the sum in (151) is the same as

$$
\sum_{\mathcal{T}}^{\left(\eta^{(n+1)}\right)} \prod_{\left\langle\xi_{i}, \xi_{j}\right\rangle \in \mathcal{T}}\left|\left(e^{-\alpha \Phi^{T}\left(\xi_{i}, \xi_{j}\right)}-1\right)\right|
$$

If φ is a general stable potential, then the Ruelle condition for n -points configuration γ_{n}

$$
U\left(\gamma_{n}\right) \equiv \sum_{\{x, y\} \subset \gamma_{n}} \varphi(x-y) \geq-\frac{1}{2} B n
$$

can be rewritten as a corresponding condition on rod configurations $\eta \in$ $\Upsilon^{0}\left(G_{\Lambda, T}^{0}\right)$:

$$
\sum_{\left\{\xi, \xi^{\prime}\right\} \subset \eta} \Phi\left(\xi, \xi^{\prime}\right) \geq-\frac{1}{2} B \sum_{\xi \in \eta} l(\xi),
$$

where $l(\xi)$ is the length of the $\operatorname{rod} \xi$. This estimate implies existence of such $\xi_{0} \in \eta$ that

$$
\begin{equation*}
\sum_{\xi \in \eta \backslash \xi_{0}} \Phi\left(\xi_{0}, \xi\right) \geq-B l\left(\xi_{0}\right) \tag{153}
\end{equation*}
$$

We take in the configuration $\eta^{(n+1)}$ such rod $\xi_{0} \in \eta^{(n+1)}$ which was indicated in inequality (153), and prove the modification of inequality (152). Let us consider a decomposition of η into two sub-configurations: $\eta=\eta_{+} \cup \eta_{-}$ with

$$
\eta_{+}=\left\{\xi \in \eta: \Phi^{T}\left(\xi_{0}, \xi\right) \geq 0\right\}, \quad \eta_{-}=\left\{\xi \in \eta: \Phi^{T}\left(\xi_{0}, \xi\right)<0\right\}
$$

Then using inequalities (153) and (152) (the last one holds for $\Phi^{T} \geq 0$) we have

$$
\begin{gather*}
\left|e^{-\alpha \sum_{\xi \in \eta^{2}} \Phi^{T}\left(\xi_{0}, \xi\right)}-1\right| \leq \\
\left|e^{-\alpha \sum_{\xi \in \eta_{+}+\eta_{-}} \Phi^{T}\left(\xi_{0}, \xi\right)}-e^{-\alpha \sum_{\xi \in \eta_{+}} \Phi^{T}\left(\xi_{0}, \xi\right)}\right|+\left|e^{-\alpha \sum_{\xi \in \eta_{+}} \Phi^{T}\left(\xi_{0}, \xi\right)}-1\right| \leq \\
e^{-\alpha \sum_{\xi \in \eta} \Phi^{T}\left(\xi_{0}, \xi\right)}\left|1-e^{\alpha \sum_{\xi \in \eta_{-}} \Phi^{T}\left(\xi_{0}, \xi\right)}\right|+\left|e^{-\alpha \sum_{\xi \in \eta_{+}} \Phi^{T}\left(\xi_{0}, \xi\right)}-1\right| \leq \\
e^{\alpha B l\left(\xi_{0}\right)} \sum_{\xi \in \eta_{-}}\left|1-e^{\alpha \Phi^{T}\left(\xi_{0}, \xi\right)}\right|+\sum_{\xi \in \eta_{+}}\left|e^{-\alpha \Phi^{T}\left(\xi_{0}, \xi\right)}-1\right| \leq \\
e^{\alpha B l\left(\xi_{0}\right)} \sum_{\xi \in \eta}\left(1-e^{-\alpha\left|\Phi^{T}\left(\xi_{0}, \xi\right)\right|}\right) . \tag{154}
\end{gather*}
$$

Repeating above reasoning under the induction assumption and revised estimate (154) we obtain estimate (62) in the general case of a stable potential φ.

Lemma is proved.

Acknowledgements.

The authors gratefully acknowledge the financial support of the SFB 701, Bielefeld University. R.M. and E.Zh. acknowledge the partial financial support of the RFBR grant 05-01-00449 and the CRDF grant RUM1-2693-MO05.

References

[1] S. Albeverio, Yu.G. Kondratiev, M. Rockner, Analysis and geometry on configuration spaces, J. Funct. Anal. 154, 1998, p. 444-500.
[2] N. Angelescu, R.A. Minlos, V.A. Zagrebnov, The one-particle branch of the energy spectrum of weakly interacting quantum lattice fields with values on the two-dimensional sphere, J. Math. Phys., Vol. 41, p. 2-23, 2000.
[3] Berezansky, Yu.M., Kondratiev, Yu.G.: Spectral methods in infinite dimensional analysis, Vol. 1,2, Kluwer Academic Publisher, Dordrecht Boston - London (1995)
[4] J.L. Doob, Stochastic processes, John Wiley and Sons, 1967.
[5] M. Duneau, D. Jagolnitzer, B. Souillard, Decrease properties of truncated correlation functions and analyticity properties for classical lattices and continuous systems, Comm. Math. Phys., 31, 1973, p. 191-208.
[6] D. Glimm, A. Jaffe, Quantum Physics. A functional integral point of view, Springer-Verlag, 1981.
[7] O. Kalenberg, Random measures. New York: Academic Press, 1983.
[8] Yu. Kondratiev, E. Lytvynov: Glauber dynamics of continuous particle systems, Ann. Inst. H. Poincare - PR 41, 2005, p. 685-702.
[9] Yu.G. Kondratiev, R.A. Minlos, M. Rockner, G.V. Shchepanuk, Exponential mixing for classical continuous systems, Canadian Math. Society, Conference proceedings, Vol. 20, 2000, p. 243-253.
[10] Yu.G. Kondratiev, R.A. Minlos, E.A. Zhizhina, Lower branches of the spectrum of Hamiltonians for infinite quantum system with compact spin, Trans. of Moscow Mathem. Society 1998, Vol.60, p. 259-302.
[11] J. Lorinczi, R.A. Minlos, H. Spohn, The infrared behaviour in Nelson's model of a quantum particle coupled to a massless scalar field, Ann. Henri Poincare 3, 2002, p. 269-295.
[12] V.A. Malyshev, R.A. Minlos, Gibbs random fields, Kluwer Academic Publishers, 1991.
[13] R.A. Minlos, Limiting Gibbs distribution, Functs. Analis i ego priloshenia, 1 (2), 1967, p. 60-73.
[14] R.A. Minlos, S.K. Pogosyan, Estimates on the Ursell functions, group functions and their derivatives, Teoretich. i matematich. fisika, 31 (2), 1977, p. 199-213.
[15] O. Ore, Theory of graphs, AMS Colloquium Publ. 38, 1962.
[16] M. Reed, B. Simon, Methods of modern mathematical physics, Vol. 1-4, Acad. press, 1978.
[17] Ruelle, D.: Statistical Mechanics. Rigorous Results, Benjamins, Amsterdam, 1969.
[18] B. Simon, The $P(\varphi)_{2}$ Euclidean Quantum Field Theory, Princeton University Press, 1974.
[19] B. Simon, Functional integration and quantum physics, Acad. Press, 1979.
[20] B. Simon, The statistical mechanics of lattice gas, Vol.1, Princeton University Press, 1993.
[21] I. D. Surgailis, On multiple Poisson stochastic integrals and associated Markov semigroups, Probability and mathematical statistics, 3 (1984), 217-239. II. D. Surgailis, On Poisson multiple stochastic integrals and
associated equilibrium Markov processes, in Theory and Applic. of Random Fields, (Bangalore, 1982), Lecture Notes in Control and Inform. Sci., 49, Springer, (1983), 233-248.

[^0]: *Department of Mathematics, Bielefeld University, 33615 Bielefeld; kondrat@mathematik.uni-bielefeld.de
 ${ }^{\dagger}$ Institute for Information Transmission Problems, Bolshoy Karetny per. 19, 127994 Moscow; minl@iitp.ru (R.Minlos), ejj@iitp.ru (E.Zhizhina)

