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Abstract

We consider birth-and-death stochastic particle systems in contin-
uum which are under a self-regulation mechanism controlling configu-
rations of particles via a pairwise interaction between them. The latter
is reflected in a potential perturbation of the free generator. We show
that the ground state renormalization scheme in the considered model
leads to an invariant measure, a renormalized generator and resulting
equilibrium birth-and-death stochastic dynamics for the system. The
proof is based on the Gibbs type representation for related path space
measure. This measure has OS-positivity property and is constructed
via the cluster expansion method.

1 Introduction

We consider an infinite system of particles in continuum under a stochastic
evolution corresponding to a heuristic generator

H = L0 − αU. (1)

Here L0 is the generator of a non-interacting birth-and-death process (a
Glauber type dynamics), and U is an operator of multiplication by a func-
tion (equals to a sum of pair interactions over the configuration of points of
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the system), 0 < α � 1 is a coupling constant. The goal of the paper is to
construct and to study a process properly associated with operator (1). We
will use here an approach similar to used for the investigation of an infinite
system of quantum anharmonic oscillators [10] or the quantum Heisenberg
model [2]. Our approach is based on the Feynman-Kac formula:

etH(y1, y2) =

xt=y2∫
x0=y1

e−α
R t
0 U(xs)ds dP0

z (x), (2)

where the integration in (2) is over the distribution P0
z on a space of tra-

jectories x = {xs, s ∈ R1} of a Glauber type free stochastic dynamics with
the generator L0 (so-called Surgailis process, see [21]). A rigorous meaning
this formula has only under some regularity assumptions on the potential U .
The expression in the right hand side of (2) up to a multiplicative constant
coincides with a Gibbs reconstruction of the measure P0

z . The latter gives us
a hope to apply well known methods from statistical physics to the construc-
tion and investigation of semigroup (2). Let us note that the Feynman-Kac
formula is in common use for the study of models in quantum statistical
physics and quantum field theory, when P0

z is a measure on trajectories of a
free process, usually defined by a Schrödinger operator, see [6, 19].

We briefly describe now our constructions and state main results of the
paper. Initially, we consider truncated (over the space) potential UΛ, where
Λ ⊂ Rd is a bounded domain of the space Rd. It means that we consider a
system where particles interact only if they are inside of domain Λ. Then the
operator HΛ = L0 − αUΛ is defined correctly and it is unitary equivalent
up to an additive constant to the generator of a stationary Markov process

GΛ = {γt, t ∈ R1}, γt ∈ Γ

with values in a space Γ of locally finite configurations in Rd. The path space
measure of the process GΛ may be obtained as the limit when T →∞ of the
Gibbs reconstructions by the energy function

∫ T

−T
UΛ(γs)ds of the reference

measure corresponding to the Surgailis process [21] with the generator L0.
Then taking the thermodynamic limit as Λ ↗ Rd we get the limit path space
measure and the stochastic process G∞. We prove that the limit process
meets the condition of OS-positivity (Osterwalder-Schrader positivity, see,
e.g., [18]). Using that fact we can construct in canonical way corresponding
Hilbert space H and a semigroup of self-adjoint operators in H associated
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with the process G∞ and generated by an operator Ĥ. Thus through the
use of the operator Ĥ heuristic expression (1) gains rigorous meaning, and
Ĥ should be considered as a correct regularization of the operator (1). In
addition, we prove the existence of the spectral gap for the operator Ĥ us-
ing estimates on decay of correlations for the limit process G∞. The main
technique we use here is based on cluster expansion methods for point fields
developed in [12, 14, 9, 5].

Let us discuss possible interpretations of our results in individual based
models of spatial economics. In this case, a configuration should be con-
sidered as a set of economic units (points of the configuration) located in
the space. A pure birth Markov process corresponds to an economic growth
model in which the density of units is linearly growing in time. Assuming
additionally random life time of any unit (independent and exponentially
distributed for each existing one), we will arrive in the Surgailis process
mentioned above. The equilibrium measure of this process is Poisson one
and its Markov generator is a self-adjoint operator in corresponding Poisson
L2-space, see [21]. This generator admits a nice and easy spectral decompo-
sition that relates one to the Fock space number operator in quantum field
theory, see, e.g. [1]. Actually, the Surgailis process can also be considered
as a free Glauber type stochastic dynamics in continuum, see, e.g. [8]. In
a more realistic model, we should take into account a competition between
units. One way to include this notion is related with a modification of the
death rate in the generator s.t. the growing density of the configuration will
increase the intensity of death.

Another possibility is based on the consideration of a rate functional
which should play the role of a regulation mechanism in the economic society.
Namely, configurations of units with high rate must have less chances to
survive in the stochastic evolution of the system. This rate functional is
included as the potential U in the model considered in this paper. Main
question which appears here is the existence of an equilibrium state in such
economic models as well as the construction of related equilibrium stochastic
process of the economic development with described regulation based on
a local interaction between units. The results of the present paper give a
positive answer to this problem.
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2 The model and main results

2.1 Free Glauber dynamics (Surgailis process)

The configuration space Γ = Γ(Rd) of the model is the set of all locally finite
subsets of Rd: γ ⊂ Rd. The space Γ is naturally endowed with a topology,
namely the weakest topology on Γ with respect to which all maps Γ 3 γ 7→
〈f, γ〉 :=

∑
x∈γ f(x), f ∈ C0(Rd), are continuous (here, C0(Rd) is the space of

all continuous real-valued functions on Rd with compact support). We denote
by B(Γ) the Borel σ-algebra on Γ generated by this topology, and let πz be
the Poisson measure on (Γ, B(Γ)) with activity z, z > 0, see [7]. We define a
stationary Markov process on Γ with the invariant measure πz. A generator
of the corresponding stochastic semigroup S0

t acting in the functional space
L2(Γ, dπz) has a form

(L0F )(γ) =
∑
x∈γ

(F (γ \ x)− F (γ)) + z

∫
Rd

(F (γ ∪ x)− F (γ)) dx. (3)

The operator L0 is defined on local bounded functions F (γ), and the ex-
pression (3) can be extended to a self-adjoint operator in L2(Γ, dπz). The
corresponding process is a birth-and-death process on Γ, we also call it the
free Glauber dynamics or the Surgailis process, see [21]. The process can be
described as follows: each particle in the configuration can disappear after
an exponentially distributed life time and new particles can appear in the
configuration with intensity z uniformly over the space. We denote by P0

z a
distribution of the Surgailis process (on the trajectory space).

2.2 Glauber dynamics with interaction

The generator of the dynamics with interaction is given heuristically as fol-
lows:

(HF )(γ) = (L0F )(γ)− αU(γ)F (γ) (4)

where
U(γ) =

∑
{x,y}⊂γ

ϕ(x− y). (5)

Here ϕ(u) ≥ 0, u ∈ Rd is an even real-valued function (a potential) with a
fast decreasing on the infinity (we give the precise conditions on ϕ below),
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α > 0 is a small enough real constant.

Remark. We consider a non-negative potential ϕ only for simplification
of our reasoning below. Let us stress that all results and constructions of the
present paper are true for any general stable potential, see [17], with a fast
decreasing on the infinity.

We will introduce below a dynamics with the generator (4) as a limit of
dynamics given in bounded regions Λ ⊂ Rd. Namely, let us consider the
operator

(HΛF )(γ) = (L0F )(γ)− αUΛ(γ)F (γ), F ∈ L2(Γ, dπz) (6)

with
UΛ(γ) =

∑
{x,y}⊂γ∩Λ

ϕ(x− y). (7)

Theorem 1. Under assumptions (55) - (56) on the function ϕ and small
enough α we have for all bounded Λ ⊂ Rd:

1. the operator HΛ is selfadjoint and bounded from above;
2. a non-degenerate ground state of HΛ exists, i.e. a unique normalized

eigenvector ΨΛ of the operator HΛ such that ΨΛ(γ) > 0 exists, and corre-
sponding eigenvalue λ0

Λ is the same as the upper boundary of the spectrum of
HΛ.

Proof of the theorem see in Sect 6.

We apply below the general scheme of the ground state transformation
for potential perturbations of Markov generators, see e.g. [3]. Assign a new
measure on Γ in the following way:

dνΛ
z

dπz

(γ) = (ΨΛ(γ))2 . (8)

Define an unitary transformation

WΛ : L2(Γ, νΛ
z ) 7→ L2(Γ, πz) : (WΛF )(γ) = ΨΛ(γ)F (γ), F ∈ L2(Γ, νΛ

z ) (9)

and the operator H̃Λ in L2(Γ, νΛ
z )

H̃Λ = W−1
Λ (HΛ − λ0

ΛI)WΛ (10)
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which is unitary equivalent to HΛ − λ0
ΛI, where I is the identity operator

in L2(Γ, πz). It follows from (3) and (6) that operator H̃Λ has the following
form:

(H̃ΛF )(γ) =
∑
x∈γ

ΨΛ(γ\x)

ΨΛ(γ)
(F (γ\x)− F (γ)) +

z

∫
Rd

ΨΛ(γ ∪ y)

ΨΛ(γ)
(F (γ ∪ y)− F (γ)) dy.

Clear that
H̃Λ1 = 0, (11)

where 1 ∈ L2(Γ, νΛ
z ) is the constant function equals to 1. We denote by

SΛ
t = exp{tHΛ} and S̃Λ

t = exp{tH̃Λ} (12)

semigroups acting in the spaces L2(Γ, πz) and L2(Γ, νΛ
z ) correspondingly. We

have the following representation for the kernel of the semigroup etHΛ using
the Feynman-Kac formula

SΛ
t (γ1, γ2) = R(γ1, γ2) =

∫
γ(0)=γ1
γ(t)=γ2

exp

−α

t∫
0

UΛ(γ(τ))dτ

 dP0
z (γ), (13)

where P0
z is the distribution of the Surgailis process. It follows from repre-

sentation (13) and the strict positivity of ΨΛ that semigroups (12) improve
positivity, see [16]. Moreover, relation (11) implies that

exp{tH̃Λ} 1 = 1. (14)

Consequently, S̃Λ
t is the Markov semigroup and the associated process is a

Markov stationary process with the invariant measure νΛ
z . Thus, the follow-

ing theorem holds.

Theorem 2. Semigroup S̃Λ
t = exp{tH̃Λ} is the Markov semigroup. The

process
GΛ = {γt, t ∈ R1}, γt ∈ Γ (15)

associated with the semigroup S̃Λ
t is the stationary reversible Markov process

on Γ with the invariant measure νΛ
z .
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We denote by PΛ,z a distribution of the process GΛ. As any stationary
reversible Markov process, process (15) has property of OS-positivity. We
remind this notion and also some related facts, see [18]. Let x = {xt, t ∈ R1}
be a stationary reversible process on the space X and P be a distribution on
trajectories of the process. Introduce the time reflection transform ϑ in the
space of trajectories Ω = XR:

(ϑ x)t = x−t, x ∈ Ω. (16)

Since the process is reversible, ϑ preserves the distribution P . The unitary
representation for ϑ in the space L2(Ω,P) we denote θ:

(θf)(x) = f(ϑx), f ∈ L2(Ω,P), x ∈ Ω.

Let H+ ⊂ L2(Ω,P) be a subspace of functions on Ω depending on the process
”at present and in future”:

f ∈ H+ : f(x) = f({xt}, t ∈ [0,∞)).

Then the reversible process x called OS-positive if for any f ∈ H+ the
quadratic form

(θf, f)L2(Ω,P) ≡ (f, f)H+ = (f, f)+ ≥ 0. (17)

is non-negative. We notice that any Markov stationary reversible process is
always OS-positive since

(f, f)+ = ‖P (H0)f‖2, f ∈ H+,

where P (H0) is a projection to the space H0 of functions depending only on
values of the process x0 at zero time.

For the stationary reversible OS-positive process x we can construct a
semigroup which is similar to the stochastic semigroup for a Markov process.
If I0 ⊂ H+ is the kernel of the quadratic form (17):

I0 = {f ∈ H+ : (f, f)+ = 0},

then I0 is a closed subspace of H+ and we can consider a factor-space G =
H+/I0. The scalar product in G is defined by the following way

([f1], [f2])G = (f1, f2)+, (18)
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where [f ] ∈ G is the class of the element f ∈ H+. The space G is usually
called the physical space of the process x. We denote by Ut a unitary operator
of a time shift acting in L2(Ω,P) in the following way

(Utf)(x) = f(s−tx),

where sτ are shifts in the space of trajectories

(sτx)t = xt−τ .

Clear, UtH+ ⊂ H+ for any t > 0. Then the permutation relation

θUt = U−tθ

together with the unitarity of Ut in L2(Ω,P) imply that the operators Ut, t >
0 are symmetrical with respect to the quadratic form (17):

(θUtf1, f2)L2(Ω,P) = (θf1, Utf2)L2(Ω,P), f1, f2 ∈ H+. (19)

Proposition 1. For any f ∈ H+ and t ≥ 0 the following inequality holds

(Utf, Utf)+ ≤ (f, f)+. (20)

Proof see in Attachment.
Inequality (20) implies that UtI0 ⊂ I0 for t > 0, consequently the semi-

group {Ut, t ≥ 0} in H+ generates the semigroup Ût, t ≥ 0 of operators in
G:

Ût[f ] = [Utf ], t > 0, f ∈ H+.

It follows from (19)-(20) that Ût is a selfadjoint contraction semigroup. In
addition, it is strongly-continuous by construction. This semigroup Ût is
called a tansfer-matrix of the process x. The Stone theorem, see e.g. [16],
implies that the operators Ût have the form:

Ût = eth,

where h is a non-positive selfadjoint operator in G. Note, that the element
e = [1] is a normalized ground state of the operator h with the eigenvalue 0.

Let F be a local function on the space of trajectories {γt, t ∈ R} of the
process, that means there exist a finite interval I ⊂ R1 and a bounded domain
Λ0 ⊂ Rd such that the function F depends only on {γt∩Λ0, t ∈ I}, i.e. on the
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part of trajectories {γt, t ∈ R} lying inside of a bounded domain Λ0×I = M
in Rd+1. The domain M = Λ0 × I is called the localization domain for F .
Remind that the weak convergence of the processes PΛ,z ⇒ P∞,z means that
for any local bounded function F the following holds as Λ ↗ Rd

〈F 〉PΛ,z
7→ 〈F 〉P∞,z , (21)

where 〈·〉PΛ,z
means the average over the distribution PΛ,z and the same for

〈·〉P∞,z .

Theorem 3. Under conditions of Theorem 1 distributions PΛ,z of the pro-
cesses (15) converge weakly as Λ ↗ Rd to the distribution P∞,z of a station-
ary reversible OS-positive process

G∞ = {γt, t ∈ R1} (22)

with values γt ∈ Γ. Moreover, the stationary distributions νΛ
z converge weakly

to the marginal distribution ν∞z of the process (22).

The weak convergence of measures on the space Γ of locally-finite con-
figurations is defined by the same way as in (21) with local functions F
depending on the part of the configuration γ ∈ Γ in a bounded domain
Λ0 ⊂ Rd : F (γ) = F (γ|Λ0).

Theorem 3 is a corollary of Theorem 4 below, a construction and investi-
gations of process (22) will be done in the proof of Theorem 4.

Remark. Using as above OS-positivity of the process (22) with the dis-
tribution P∞,z we can introduce the generator of its transfer-matrix h = Ĥ
acting in the corresponding physical space G. The generator can be treated
as a correctly defined limit Hamiltonian (up to an additive constant) associ-
ated to the formal Hamiltonian (4). The operator Ĥ can be considered as a
regularized limit for the operators ĤΛ.

Conjecture. Although we proved here only that the limit process has
the property of OS-positivity, we believe that the limit process should be
Markov.
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3 Euclidean representation

3.1 Path space measure for free Glauber dynamics

We denote by Υ a space of configurations

η = (γ, lγ) = {(x, lx) | x ∈ γ}

of a marked point field in the space Rd × R1 = Rd+1. Here γ ⊂ Rd+1 is a
locally-finite configuration of points in Rd+1:

x ∈ γ : x = (s, t) ∈ Rd+1, s ∈ Rd, t ∈ R1,

and lx ∈ (0,∞) is a value of the mark at the point x. The distribution
P0

z of the marked point field can be described by the following way: point
configurations γ form the Poisson field in Rd+1 with an intensity z > 0
(the corresponding distribution is denoted by Πz, see [7]), and under a fixed
point configuration γ the conditional distribution of marks is conditionally
independent and exponential:

Pr(l > u) = e−u, u ≥ 0. (23)

A configuration η ∈ Υ can be visually depicted as a configuration η of rods
ξ ∈ η lying in Rd+1 and directed along the positive direction of the time axis
t. Here x = x(ξ) = (s, t) ∈ Rd+1 is the origin of the rod, and l = l(ξ) is
the length of the rod. Let K be a space of all rods in Rd+1 lying along a
given (time) direction, then K is the same as Rd+1 ×R1

+, and the described
above configuration space Υ of rods could be identified with a subset of all
locally finite configurations Γ(Rd+1 × R1

+) of points in Rd+1 × R1
+. This

permits to introduce a topology and the Borel σ-algebra on Υ generated by
this topology.

We shall say that a configuration of rods η is locally finite if any bounded
subset of Rd+1 has an intersection only with a finite number of rods from this
configuration. Let us denote by Υ′ ⊂ Υ a set of locally finite configurations
composed of pairwise disjoint rods.

Lemma 1. The set Υ′ of locally finite configurations of pairwise disjoint rods
form a set of the full measure P0

z .

For the proof, see Attachment.

10



For any configuration η ∈ Υ′ and any τ ∈ R1 we consider a section
η ∩Yτ ⊂ Rd+1 of rods from the configuration η by the hyperplane Yτ = {x =
(s, t) : t = τ}. Then by Lemma 1 we have that the projection of the section
to the space Rd is a locally finite set γτ ∈ Γ(Rd). Thus, any configuration
of rods η ∈ Υ′ generates a curve γ = {γτ , τ ∈ R} in the space Γ(Rd),
and different curves correspond to different configurations of rods. Let a set
of these curves will be Σ. Then the distribution P0

z can be regarded as a
distribution on Σ, in this case call it P̂0

z . Thus, using Lemma 1 we get the
following

Lemma 2. The above curves γ = {γτ , τ ∈ R} ∈ Σ form the full measure set
of trajectories of the free Glauber dynamics from Sect. 2.1 with the generator
(3), and the distribution P̂0

z on Σ is the same as the distribution of the
Glauber dynamics.

In the representation for the trajectory γ = {γτ , τ ∈ R} in the form
of a rod configuration η the origin x = (s, t) of the rod ξ ∈ η, ξ = (x, lx)
marks the position s and the time t of the birth of a new particle in the point
configuration, and the length lx is the life time of the particle.

Remark. Reversibility of the free Glauber dynamics implies that the
above field of rods is also reversible in time. Indeed, ends of rods under
reflection in time come to origins of the reflected rods, but the point field
corresponding to the ends of all rods is also the Poisson field in Rd+1 with
the intensity z. This fact has been discussed earlier, see for instance [4].

3.2 Euclidean representation for dynamics of interact-
ing particles (ensemble of rods)

For any bounded Λ ⊂ Rd and any 0 < T < ∞ we consider a new probability
measure P̂Λ,T,z on Σ using Feynmann-Kac representation:

dP̂Λ,T,z

dP̂0
z

(γ) =
1

ZΛ,T

exp

{
−α

∫ T

−T

UΛ(γτ )dτ

}
, γ = {γτ , τ ∈ R} (24)

with the normalization factor

ZΛ,T =

∫
Σ

exp

{
−α

∫ T

−T

UΛ(γτ )dτ

}
dP̂0

z . (25)
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Since UΛ(γ) > 0 and
T∫
−T

UΛ(γτ ) dτ < ∞ on a set of the full measure, then

0 < ZΛ,T < ∞ and relation (24) is correctly defined.
We denote by PΛ,T,z a measure on the configuration space of rods which

is corresponding to P̂Λ,T,z. Then the probability density (24) is rewritten as

dPΛ,T,z

dP0
z

(η) =
1

ZΛ,T

exp

−α
∑

{ξj1
, ξj2

}⊂ηΛ,T

ΦT (ξj1 , ξj2)

 , (26)

where ηΛ,T ⊆ η is a subset of rods from configuration η which have intersec-
tion with Λ× [−T, T ] ⊂ Rd+1, and

ΦT (ξ1, ξ2) = ϕ(s1 − s2) ∆T (ξ1, ξ2), (27)

with ξi = ( (si, ti), li ), i = 1, 2, and

∆T (ξ1, ξ2) = |(t1, t1 + l1) ∩ (t2, t2 + l2) ∩ (−T, T )| (28)

is a length of the common part of the projections to the axis t of the rods ξ1

and ξ2 which are inside of [−T, T ]. We introduce the following notation

∆(ξ1, ξ2) = lim
T→∞

∆T (ξ1, ξ2) = |(t1, t1 + l1) ∩ (t2, t2 + l2)|. (29)

Thus the measure PΛ,T,z on the space Υ′ of rods is the Gibbs reconstruction
of the measure P0

z by means of the following pair interaction

UΛ,T (η) =
∑

{ξ1, ξ2}⊂ηΛ,T

ΦT (ξ1, ξ2)

For any M ⊂ Rd+1 we consider a set Gint
M of all rods intersecting M and a set

Gloc
M ⊂ Gint

M of all rods with origins in M . We say that a set of rods G ⊂ K is
bounded if there exists a bounded set M ⊂ Rd+1 such that G ⊆ Gint

M , and is
strictly bounded if G ⊆ Gloc

M . For any G ⊂ K let Υ′(G) ⊆ Υ′ be a set of all
locally finite configurations of pairwise disjoint rods from G. In the case of
bounded G the space Υ′(G) contains finite configurations η. For any G ⊂ K
we can represent configurations η ∈ Υ′ as

η = (ηG, ηG′), ηG ∈ Υ′(G), ηG′ ∈ Υ′(G′) with G′ = K \G.
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This representaion implies the following decomposition of Υ′ to the Cartesian
product

Υ′ = Υ′(G)×Υ′(G′).

We say that a function F = F (η) defined on Υ′ is local if there exists a
bounded set M ⊂ Rd+1 such that F depends only on ηGint

M
⊆ η : F (η) =

F (ηGint
M

). If a function F depends only on ηGloc
M
⊆ η : F (η) = F (ηGloc

M
) we

denote the function F strongly local. In any case, the set M ⊂ Rd+1 is
called the localization domain of the function F . Let us note, that each
local function on the space of trajectories Σ with the localization domain
Λ0 × I = M regarded as a function on the configuration space of rods Υ′

with the localization domain M .

Theorem 4. We assume that ϕ ≥ 0 is a non-negative integrable function
and α is a small enough. Then

1. the distributions PΛ,T,z converge weakly as T ↗∞ to the distribution
PΛ,∞,z = PΛ,z

PΛ,∞,z = w − lim
T→∞

PΛ,T,z, (30)

and the corresponding distribution P̂Λ,∞,z = P̂Λ,z on the space Σ is a distri-
bution of a stationary reversible Markov process on Γ

GΛ = {γt, t ∈ R1} (31)

with the invariant measure νΛ
z and associated stochastic semigroup S̃Λ

t gen-
erated by H̃Λ. Thus, process (31) is exactly the same as process (15) from
Theorem 2, that has been constructed by the different way.

2. There exists a weak limit

P∞,z = w − lim
Λ↗Rd

PΛ,∞,z = w − lim
T→∞, Λ↗Rd

PΛ,T,z. (32)

The corresponding distribution P̂∞,z on the space of trajectories Σ is a dis-
tribution of a stationary reversible OS-positive process

G∞ = {γt, t ∈ R1} (33)

with values γt ∈ Γ and the marginal distribution ν∞z = w−limΛ↗Rd νΛ
z . Thus,

the process (33) is the same as limit process (22) from theorem 3.
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Here as above the weak convergence of distributions means the convergence
of averages over corresponding distributions for any bounded local function
F defined on Υ′.

Remark As we have already mentioned above, all statements of Theorem
4 remain valid in the case of a stable integrable potential ϕ (not necessarily,
nonnegative), although corresponding reasonings in the proof require some
evident modifications.

We formulate next results on decay of correlations for the distributions
PΛ,z and the limit distribution P∞,z. We assume that for all large enough |u|
the potential ϕ meets one of the folowing estimates:

1) |ϕ(u)| <
c

(1 + |u|)2m
, m > d, 2) |ϕ(u)| < ce−k|u|,

with constants c > 0, m > d, k > 0, and introduce the following metrics in
the space Rd ×R1:

%((s1, t1), (s2, t2)) =


m ln(1 + |s1 − s2|) + 1

2
|t1 − t2|, in the case 1),

k
2
|s1 − s2|+ 1

2
|t1 − t2|, in the case 2)

(34)
with s1, s2 ∈ Rd, t1, t2 ∈ R1.

Theorem 5. For any strongly local bounded functions F1, F2 depending on
the process G∞ (or GΛ) with localization domains Mi = Λi × Ii, i = 1, 2
correspondingly the following estimate holds:∣∣〈F1 · F2〉P∞,z − 〈F1〉P∞,z〈F2〉P∞,z

∣∣ < C |M1|+|M2| (|M1|+ |M2|) e−d(M1,M2),
(35)

and the analogous one is true for the processes GΛ. Here C > 0 is a constant,
|Mi| are d+1-dimensional volumes of the domains Mi, and d(M1, M2) is the
distance between the domains in the metric (34):

d(M1, M2) = inf
(si,ti)∈Mi,i=1,2

%((s1, t1), (s2, t2)).

Corollary. The operator Ĥ has a spectral gap, i.e. there exists a gap be-
tween 0 and the spectrum of Ĥ in the orthogonal complement to the ground
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state e ∈ G. In particular, that implies the uniqueness of the ground state.

For computational convenience we modify the definition of the measure
PΛ,T,z. We call G0

Λ,T = Gint
Λ×(−T,T ) ⊂ K a set of rods which have an intersec-

tion with Λ× (−T, T ) ⊂ Rd+1, G±
Λ,T ⊂ K a set of rods entirely belonging to

the region Λ× (T, +∞) (in the case +) and correspondingly, entirely belong-
ing to the region Λ × (−∞,−T ) (in the case −), GΛ′,∞ ⊂ K a set of rods
lying inside Λ′× (−∞,∞) ⊂ Rd+1 with Λ′ = Rd\Λ. Obviously, these sets are
mutually disjoint and their union is the same as K. Then any configuration
η ∈ Υ′ is the sum of 4 mutually disjoint configurations

η = ηG0
Λ,T

∪ ηG+
Λ,T

∪ ηG−
Λ,T

∪ ηGΛ′,∞
, (36)

and the configuration space Υ′ is the Cartesian product of the spaces

Υ′ = Υ′(G0
Λ,T )×Υ′(G+

Λ,T )×Υ′(G−
Λ,T )×Υ′(GΛ′,∞). (37)

We denote by
P0

G0
Λ,T ,z, P

0
G+

Λ,T ,z
, P0

G−
Λ,T ,z

, P0
GΛ′,∞,z (38)

distributions on the spaces of corresponding configurations, i.e. restrictions
of the distribution P0

z to the sets

Υ′(G0
Λ,T ), Υ′(G+

Λ,T ), Υ′(G−
Λ,T ), Υ′(GΛ′,∞)

respectively.
We consider next a general random field Π(M, ζ, p). Here M ⊂ Rd+1 is

a domain in Rd+1, ζ = ζ(x), x ∈ M is a positive function defined on M ,
the function ζ(x) specifies an activity (non-homogeneous, in general) of the
Poisson field of the rods origins x ∈ M , p = {px(l) = Pr(lx > l), l >
0, x ∈ M} is a family of distribution functions marked by points x ∈ M
for the length of a rod with the origin at x ∈ M . Under fixed origins of the
rods their lengths have conditionally-independent distributions with densities
px(l).

Lemma 3. 1. All components ηG0
Λ,T

, ηG+
Λ,T

, ηG−
Λ,T

, ηGΛ′,∞
in decomposition

(36) are independent, i.e.

P0
z = P0

G0
Λ,T ,z × P0

G+
Λ,T ,z

× P0
G−

Λ,T ,z
× P0

GΛ′,∞,z. (39)
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2. Each distribution from (38) is a distribution of the form Π(M, ζ, p),
namely,
a) in the case P0

GΛ′,∞,z

M = Λ′ × (−∞, +∞), ζ(x) ≡ z, px(l) = e−l, l > 0, x ∈ M ; (40)

b) in the case P0
G+

Λ,T ,z

M = Λ× (T, +∞), ζ(x) ≡ z, px(l) = e−l, l > 0, x ∈ M ; (41)

c) in the case P0
G0

Λ,T ,z

M = Λ× (−∞, T ), ζ(x) =

{
z, x ∈ Λ× (−T, T )

ze−τ , x ∈ Λ× (−∞,−T )
, (42)

px(l) =

{
e−l, l > 0, x ∈ Λ× (−T, T )

eτe−l χ(τ,∞) + χ(0, τ), x ∈ Λ× (−∞,−T )
,

where τ = −T − t > 0 is a distance from x = (s, t) ∈ Λ× (−∞,−T ) to the
hyperplane Y−T = {x : t = −T}, χ(a, b) is the characteristic function of the
interval (a, b);
d) in the case P0

G−
Λ,T ,z

M = Λ× (−∞,−T ), ζ(x) = z(1− e−τ ), px(l) = e−l χ(0, τ), l > 0, x ∈ M.
(43)

Proof of Lemma 3. We consider a decomposition of a configuration
η ∈ Υ′ to four configurations

η = η̂Λ,0 ∪ η̂Λ,+ ∪ η̂Λ,− ∪ η̂Λ′ . (44)

Here η̂Λ′ is a configuration of rods which are entirely outside of the cylin-
der Λ × (−∞, +∞), η̂Λ,− is a configuration from rods with origins in Λ ×
(−∞,−T ), η̂Λ,0 is a configuration from rods with origins in Λ × (−T, T )
and η̂Λ,+ is a configuration of rods which are entirely inside of the region
Λ× (T, +∞).

Since any rod ξ ∈ η belongs to one of the sub-configurations

η̂Λ,0, η̂Λ,+, η̂Λ,−, η̂Λ′ ,

16



and it is determined only by the origin of the rod ξ, all these configurations
are configurations of a marked Poisson field in the corresponding volumes
Λ × (−T, T ), Λ × (T,∞), Λ × (−∞,−T ), Λ′ × (−∞,∞). That implies
independence of all configurations, and compareing (36) with (44) we have:

η̂Λ′ = ηGΛ′,∞
, η̂Λ,+ = ηG+

Λ,T
, η̂Λ,0 ∪ η̂Λ,− = ηG0

Λ,T
∪ ηG−

Λ,T
.

The configuration η̂Λ,− can be decomposed into two configurations

η̂Λ,− = η̆Λ,− ∪ η̆Λ,0,

where η̆Λ,− is a configuration of rods which are entirely inside of the region
Λ× (−∞,−T ), η̆Λ,0 is a configuration of rods with origins in Λ× (−∞,−T )
which have intersection with Λ×(−T, T ). Since the question about belonging
a rod ξ ∈ η̂Λ,− to one of the configurations η̆Λ,−, η̆Λ,0 depends on the length
of the rod, the configurations η̆Λ,− and η̆Λ,0 are independent, and the activity
of the rods origins equals to the product of z on the probability to reach (in
the case η̆Λ,0) or not to reach (in the case η̆Λ,−) the level −T . Distributions
for the length of the rods are also properly changed . Moreover,

η̆Λ,− = ηG−
Λ,T

, ηG0
Λ,T

= η̆Λ,0 ∪ η̂Λ,0.

Thus, configurations η̆Λ,− form a field (M, ζ, p) defined by (43) and the union
of configurations η̆Λ,0 ∪ η̂Λ,0 form again the field (M, ζ, p) defined by (42). �

Formula (26) implies that only the distribution P0
G0

Λ,T ,z
of the component

ηG0
Λ,T

is subjected to a reconstruction:

PΛ,T,z = PG0
Λ,T ,z × P0

G+
Λ,T ,z

× P0
G−

Λ,T ,z
× P0

GΛ′,∞,z, (45)

where PG0
Λ,T ,z is assigned by a probability density analogous to (26):

dPG0
Λ,T ,z

dP0
G0

Λ,T ,z

(ηG0
Λ,T

) =
1

ZΛ,T

exp

−α
∑

{ξj1
, ξj2

}⊂η
G0

Λ,T

ΦT (ξj1 , ξj2)

 . (46)

We denote by

Υ0 =
∞⋃

n=0

Υ0
n (47)
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a space of finite configurations of rods in Rd+1. Here Υ0
n is a set of all n rods

configurations, and Υ0
0 = {∅}. Then the Lebesgue-Poisson measure λζ,p wtih

intensity ζ = ζ(x) and distribution function p = {px(l)} for the length of rods
can be considered on the space Υ0. This measure on each Υ0

n, n = 0, 1, 2, . . .
is defined as follows∫

Υ0
n

f(η)dλζ,p =
1

n!

∫
Kn

f̃(ξ1, . . . , ξn)
n∏

i=1

(−dpxi
(li))

n∏
i=1

ζ(xi) dxi, (48)

where ξi = (xi, li) are rods, f(η) is a bounded function on Υ0 with a finite
support and f̃(ξ1, . . . , ξn) is a symmetrical extension of f(η) to the space Kn

of ordered sequences of rods (ξ1, . . . , ξn), ξi ∩ ξj = ∅, i 6= j. We will use the
notation λζ,p = λz in the case when ζ ≡ z, px(l) = e−l, l > 0,∀x. For any
G ⊂ K let Υ0(G) ⊂ Υ0 be a set of all finite configurations of rods from G,
and λG

ζ,p be a restriction of the measure λζ,p to the set Υ0(G). Then for any
two non-intersecting domains G1, G2 ⊂ K we have

Υ0(G1 ∪G2) = Υ0(G1)×Υ0(G2), λG1∪G2
ζ,p = λG1

ζ,p × λG2
ζ,p. (49)

Moreover, for any integrable functions F (η), φi(η), i = 1, . . . ,m defined on
the space Υ0 the following equality holds, see for example [12],∫

Υ0

(
F (η)

∑(η)

(η1,...,ηm)
φ1(η1) . . . φm(ηm)

)
dλζ,p(η) = (50)

∫
Υ0

. . .

∫
Υ0︸ ︷︷ ︸

m times

F (η1 ∪ . . . ∪ ηm)
m∏

i=1

φi(ηi)
m∏

i=1

dλζ,p(ηi).

Here the sum in the left-hand side of (50) is taken over all ordered sets
(η1, . . . , ηm) of m nonempty finite configurations ηi ∈ Υ0 such that ηi ∩ ηj =
∅, i 6= j , and ∪m

1 ηi = η.
In what follows we will take G ⊂ G0

Λ,T and will write for simplicity λG =
λG

ζ,p, where ζ(x), p = {px(l)} are defined by formulas (42). The measure
λG(Υ0(G)) for any bounded domain G ⊂ G0

Λ,T is equal to

λG(Υ0(G)) = exp

{∫
G

ζ(x) (−dpx(l)) dx

}
. (51)
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In the case G = G0
Λ,T ( = Gint

M , M = Λ× (−T, T ))∫
G0

Λ,T

ζ(x) (−dpx(l)) dx = (2T + 1)|Λ|z, (52)

where |Λ| is a d-dimensional volume of the domain Λ ⊂ Rd.
In the case G = Gloc

M=Λ×(−T,T )∫
Gloc

M

ζ(x) (−dpx(l)) dx = 2T |Λ|z.

Lemma 4. The probability measure P0
G0

Λ,T ,z
on Υ′

G0
Λ,T

defined by (42) is equal

to
P0

G0
Λ,T ,z = e−(2T+1)|Λ|z λG0

Λ,T . (53)

For the proof see Appendix.
Next we consider the probability density

p̂Λ,T,z(η) =
dPG0

Λ,T ,z

dλG0
Λ,T

(η) (54)

for PG0
Λ,T ,z with respect to the measure λG0

Λ,T (instead of the measure P0
G0

Λ,T ,z
).

Density (54) can be defined again by formula (46) where the new normalizing
factor ẐΛ,T is related with the normalizing factor from (46) by the following
way

ẐΛ,T = ZΛ,T e(2T+1)|Λ|z.

Let us note that for any bounded G ⊂ K the sets Υ′
G and Υ0(G) are

the same up to a set with zero λG measure, consequently the distributions
P0

G0
Λ,T ,z

and PG0
Λ,T ,z could be considered as distributions on Υ0(G0

Λ,T ).

4 Related cluster expansion

At the beginning of the section we formulate conditions on the potential ϕ(u)

Positivity: ϕ(u) ≥ 0; (55)
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boundedness and fast decreasing on the infinity:

a) ϕ(u) <
c

(1 + |u|)2m
, m > d, or b) ϕ(u) < c e−k|u| (56)

with an absolute constant c > 0. The last inequality (56) can be rewritten
as

ϕ(u) < C exp{−2%̂(0, u)}, (57)

where

%̂(s1, s2) =

{
m ln(1 + |s1 − s2|), in case a,
k
2
|s1 − s2|, in case b

(58)

is a metrics in Rd, s1, s2 ∈ Rd (see (34)).
Further we will follow constructions from the book [12]. The density (54)

p̂Λ,T,z(η), η ∈ Υ0(G0
Λ,T ) ≡ ΥΛ,T has the following representation

p̂Λ,T,z(η) =

{
Ẑ−1

Λ,T , η = ∅,
Ẑ−1

Λ,T

∑(η)
{η1,...,ηm}

∏m
i=1 KT (ηi), η 6= ∅,

(59)

where the sum
∑(η)

{η1,...,ηm} is taken over all partitions of the finite configura-
tion of rods η, i.e. over all unordered sets of mutually-disjoint configurations
η1, . . . , ηm, ηi ⊆ η, i = 1, . . . ,m, m = 1, 2, . . ., such that ∪ηi = η. We will
use further the following designation: {η1, . . . , ηm} for unordered sets and
(η1, . . . , ηm) for ordered sets of configurations.

The cluster weight KT (η) is equal to

KT (η) =

{
1, |η| = 1,∑(η)

σ κT
σ , |η| ≥ 2

(60)

where |η| is the number of rods in the configuration η, the sum
∑(η)

σ is taken
over all connected graphs σ with the set of nodes V (σ) = {ξ1, . . . , ξs} = η,
and

κT
σ =

∏
〈ξi,ξj〉∈σ

(
e−α ΦT (ξi,ξj) − 1

)
, (61)

where the product is over all edges 〈ξi, ξj〉 of the graph σ.

Lemma 5. For any stable potential ϕ the cluster weight meets the following
bound as |η| ≥ 2

|KT (η)| ≤ e
αB

P
ξ∈η

l(ξ)∑(η)

T

∏
〈ξi,ξj〉∈T

(
1− e−α |ΦT (ξi,ξj)|

)
, (62)
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where the sum is taken over all trees with the vertex set V (T ) = η, l(ξ) is
the length of the rod ξ, B is a constant.

Under ϕ ≥ 0 (B =0) bound (62) can be rewritten as

|KT (η)| ≤
∑(η)

T

∏
〈ξi,ξj〉∈T

∣∣∣(e−α ΦT (ξi,ξj) − 1
)∣∣∣ . (63)

where the sum is taken over all trees with the same vertex set V (T ) = η as
above.

For the proof see attachment.

We formulated Lemma 5 for the general case of a stable potential because
bound (62) is the crucial point in the proof of Theorem 4. Further line of
the proof is well adapted to the general case, and we return here again to
the case of a non-negative potential ϕ ≥ 0 to make our reasoning more simple.

Then

ẐΛ,T = 1 +

∫
Υ0(G0

Λ,T )\∅

∑(η)

{η1,...,ηm}

m∏
i=1

KT (ηi)dλG0
Λ,T (η). (64)

Using equality (50), we have

ẐΛ,T = 1 +
∞∑

m=1

1

m!

(∫
Υ0(G0

Λ,T )\∅
KT (η) dλG0

Λ,T (η)

)m

= (65)

exp

{∫
Υ0(G0

Λ,T )\∅
KT (η) dλG0

Λ,T (η)

}
.

For any bounded set G ⊂ G0
Λ,T the space Υ0(G0

Λ,T ) can be written as

Υ0(G0
Λ,T ) = Υ0(G)×Υ0(G0

Λ,T \G). (66)

We denote a distribution on Υ0(G) generated by the distribution PG0
Λ,T ,z (46)

as PG
Λ,T,z.

Lemma 6. The probability density pG
Λ,T,z(η) =

dPG
Λ,T,z

dλG , η ∈ Υ0(G) is equal to

pG
Λ,T,z(η) = fG

Λ,T

{
1, η = ∅,∑(η)

{η1,...,ηm}
∏m

i=1 rG
Λ,T (ηi), η 6= ∅, (67)
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where the sum is taken over partitions of the configuration η, and

rG
Λ,T (η) =

∫
Υ0(G0

Λ,T \G)

KT (η ∪ η̄) dλG0
Λ,T \G(η̄), (68)

fG
Λ,T = exp

−
∫

Υ0(G)\∅

rG
Λ,T (η) dλG(η)

 = (69)

exp

−
∫

Υ0(G)\∅

dλG(η)

∫
Υ0(G0

Λ,T \G)

KT (η ∪ η̄) dλG0
Λ,T \G(η̄)

 .

Proof of Lemma 6 follows the same line as in [12].

It follows from (67) that the average of any bounded function F on Υ0(G)
with a bounded set G ⊂ G0

Λ,T equals to

〈F 〉PΛ,T,z
= 〈F 〉PG

Λ,T,z
= (70)

fG
Λ,T

F (∅) +

∫
Υ0(G)\{∅}

(
F (η)

∑(η)

{η1,...,ηm}

m∏
i=1

rG
Λ,T (ηi)

)
dλG(η)

 =

fG
Λ,T

F (∅) +
∞∑

m=1

1

m!

∫
Υ0(G)\{∅}

. . .

∫
Υ0(G)\{∅}

F

(
m⋃

i=1

ηi

)
m∏

i=1

rG
Λ,T (ηi)

m∏
i=1

dλG(ηi)

 =

fG
Λ,T

F (∅) +
∞∑

m=1

1

m!

∫
(Υ0(G)\{∅})m

∫
(Υ0(G0

Λ,T \G))m

F

(
m⋃

i=1

ηi

)
m∏

i=1

KT (ηi ∪ η̄i)

m∏
i=1

dλG(ηi)
m∏

i=1

dλG0
Λ,T \G(η̄i)

]
.

For any bounded set Λ ⊂ Rd we introduce a ”tube”

GΛ,∞ = Λ× {−∞,∞}×R1
+ ⊂ K

in the space of rods.
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Lemma 7. There exist the following limits as T →∞
1) for any bounded domain G ⊂ GΛ,∞:

λG
ζ,p → λG

z , (71)

where λG
ζ,p is the Lebesque-Poisson measure defined by (42), and λG

z is the

Lebesque-Poisson measure with parameters ζ(x) ≡ z and px(l) = e−l, see
(41);
2) for any finite configuration η ∈ Υ0

KT (η) → K(η), (72)

where K(η) is defined similarly to KT (η), see (60) - (61) with Φ(ξ1, ξ2) in-
stead of the function ΦT (ξ1, ξ2), see (27);
3) for any bounded domain G ⊂ GΛ,∞:

fG
Λ,∞ = lim

T→∞
fG

Λ,T =

exp

−
∫

Υ0(G)\{∅}

∫
Υ0(GΛ,∞\G)

K(η ∪ η̄) dλG
z (η) dλGΛ,∞\G(η̄)

 (73)

where fG
Λ,T is defined in (69);

4)
lim

T→∞
〈F 〉PG

Λ,T,z
= 〈F 〉PΛ,∞,z

(74)

for any bounded domain G ⊂ GΛ,∞ and a bounded local function F . Here

〈F 〉PΛ,∞,z
= fG

Λ,∞

F (∅) +
∞∑

m=1

1

m!

∫
(Υ0(G)\{∅})m

m∏
i=1

dλG(ηi)

∫
(Υ0(GΛ,∞\G))m

m∏
i=1

dλGΛ,∞\G(η̄i)F

(
m⋃

i=1

ηi

)
m∏

i=1

K(ηi ∪ η̄i)

 .

Proof. The statements of items 1) and 2) are clear.
3) The integral in (69) can be bounded from above by∣∣∣∣∣∣∣

∫
Υ0(G)\{∅}

dλG
z (η)

∫
Υ0(G0

Λ,T \G)

KT (η ∪ η̄) dλ
G0

Λ,T \G
z (η̄)

∣∣∣∣∣∣∣ <
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∫
Υ0(G)\{∅}

dλG
z (η)

∫
Υ0(GΛ,∞\G)

dλGΛ,∞\G
z (η̄)

(∑
ξ∈η

χG(ξ)

)
|KT (η ∪ η̄)| =

z

∫
G

dξ

∫
Υ0(G)

dλG
z (η)

∫
Υ0(GΛ,∞\G)

dλGΛ,∞\G
z (η̄) |KT (ξ ∪ η ∪ η̄)| =

z

∫
G

dξ

∫
Υ0(GΛ,∞)

dλGΛ,∞
z (η) |KT (ξ ∪ η)|. (75)

Here χG(ξ), ξ = (x, l) is the characteristic function of G, dξ = dx(−dp(l)) =
dx e−ldl and we used in (75) general formula (49) and equality (50).

Next using estimate∣∣∣e−αΦT (ξi,ξj) − 1
∣∣∣ ≤ ∣∣e−αΦ(ξi,ξj) − 1

∣∣
and estimate (63) we can continue

z

∫
G

dξ

∫
Υ0(GΛ,∞)

dλGΛ,∞
z (η) |KT (ξ ∪ η)| =

z |G| + z

∫
G

dξ0

∞∑
n=2

zn−1

(n− 1)!

∫
Kn−1

|KT (ξ0, ξ1, . . . , ξn−1)|dξ1 . . . dξn−1 <

z|G|+
∞∑

n=2

zn

(n− 1)!

∑
T :V (T )=

{ξ0,ξ1,...,ξn−1}

∫
G

dξ0

∫
Kn−1

dξ1 . . . dξn−1

∏
〈ξi,ξj〉∈T

∣∣∣e−αΦT (ξi,ξj) − 1
∣∣∣ ≤

z|G|+
∞∑

n=2

zn

(n− 1)!

∑
T :V (T )=

{ξ0,ξ1,...,ξn−1}

∫
G

dξ0

∫
Kn−1

dξ1 . . . dξn−1

∏
〈ξi,ξj〉∈T

∣∣e−αΦ(ξi,ξj) − 1
∣∣ ≤

z |G| +
∞∑

n=2

zn

(n− 1)!

∑
κ0,...,κn−1:

κ0+...+κn−1=2(n−1)

∑
T :V (T )={ξ0,...,ξn−1}
r(i)=κi, i=0,...,n−1

(76)

∫
G

dξ0

∫
Kn−1

n−1∏
i=1

dξi

∏
〈ξi,ξj〉∈T

∣∣e−αΦ(ξi,ξj) − 1
∣∣ .
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Here the summation in
∑

T :V (T )={ξ0,...,ξn−1}
r(i)=κi, i=0,...,n−1

is over trees T with a set of points

of the tree {ξ0, . . . , ξn−1} and vertex degrees r(i) = κi > 0, i = 0, . . . , n− 1.
We notice that any tree with n points has exactly n− 1 edges and the sum
of the vertex degrees equals to 2(n− 1).

The integration over variables ξ0, ξ1, . . . , ξn−1 will operate recurrently. On
the first step we will integrate over all ”end variables”, i.e. the variables ξi

associated with the end points of the tree T 0 = T exceptint the variable
ξ0. Then we pass on to a new tree T (1), which is constructed as a result of
eliminating of all integrated on the first step points together with correspond-
ing edges. If we continue this procedure we will integrate over all variables
ξ1, . . . , ξn−1 step by step, and ξ0 will be the last variable for integration.

Let us estimate a result of the first integration over the ”end variables”
for the following integral (under given tree T 0):

I(T 0) =

∫
G

dξ0

∫
Kn−1

n−1∏
i=1

dξi

∏
〈ξi,ξj〉∈T 0

∣∣e−αΦ(ξi,ξj) − 1
∣∣ . (77)

We will show next that for a fixed rod ξ ∈ K the integral

J(ξ) =

∫
K

∣∣∣e−αΦ(ξ,ξ̄) − 1
∣∣∣ dξ̄. (78)

meets the following estimate

J(ξ) < 4 α R l(ξ) (79)

with a length l(ξ) of the rod ξ, and R =
∫

Rd ϕ(u)du. We remind that
Φ(ξ, ξ̄) ≥ 0, α > 0, then putting ξ̄ = {(s̄, t̄), l̄} we have

J(ξ) < α

∫
K

ϕ(s− s̄) ∆(ξ, ξ̄) ds̄ dt̄ e−l̄ dl̄ < α R

∫
R1×R1

+

∆(ξ, ξ̄) dt̄ e−l̄ dl̄,

(80)
since ∆(ξ, ξ̄) doesn’t depend on s and s̄. We consider now 4 cases to get an
estimate on the integral in (80).

1. A projection of the rod ξ̄ to the time axis t is entirely covered by a
projection of the rod ξ, i.e. in the notation ξ = {(s, t), l} we have t < t̄ <
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t̄ + l̄ < t + l. In this case∫
R1×R1

+

∆(ξ, ξ̄) dt̄ e−l̄ dl̄ =

∫ l

0

l̄e−l̄dl̄

∫ l−l̄

0

dt̄ = (81)

∫ l

0

l̄(l − l̄)e−l̄dl̄ < l

∫ ∞

0

l̄e−l̄dl̄ = l.

2. In the projection to the axis t the rods ξ and ξ̄ are overlapping in such
way that t < t̄ < t + l < t̄ + l̄. Then∫

∆(ξ, ξ̄) dt̄ e−l̄ dl̄ =

∫ l

0

ue−udu

∫ ∞

0

e−mdm < l. (82)

We used here new variables

l̄ = u + m, u = ∆(ξ, ξ̄), t̄ = l − u.

3. The similar case: the projections of rods ξ and ξ̄ are overlapping in
such way that t̄ < t < t̄ + l̄ < t + l. Then we have the same estimate as (82).

4. A projection of the rod ξ to the time axis t is entirely covered by a
projection of the rod ξ̄, i.e. t̄ < t < t + l < t̄ + l̄. In this case∫

∆(ξ, ξ̄) dt̄ e−l̄ dl̄ < l e−l

∫ ∞

0

e−m1dm1

∫ ∞

0

e−m2dm2 < l. (83)

Thus, (80) - (83) immediately imply (79). For any node i of the reminder
tree, i.e. for nodes of a new tree T 1, we denote by K(1)(i) the number of
bonds of the tree T 0 incident to the node i and eliminated on the first step.
The above estimates imply the following bound on the integral I(T 0)

I(T 0) <

∫
G

dξ0

∫
Kn1−1

∏
〈ξi,ξj〉∈T (1)

∣∣e−αΦ(ξi,ξj) − 1
∣∣ (84)

∏
i∈V (T (1))

(4Rαli)
K(1)(i)

∏
i∈V (T (1))

i6=0

dξi,

where n1 is a number of nodes of the tree T (1). We notice that for end nodes
i ∈ V (T (1)) of the tree T (1), i.e. nodes eliminated on the second step of our
procedure, we have

K(1)(i) = κi − 1,

26



where κi is the degree of the node i in the original tree T (0). Thus, to continue
the estimation of integral I(T 0) after the second step we have to find a bound
for the following integral

Jκ(ξ) =

∫ ∣∣∣e−αΦ(ξ,ξ̄) − 1
∣∣∣ (4Rαl̄)κ−1dξ̄ < (85)

(4Rα)κ−1Rα

∫
∆(ξ, ξ̄) l̄κ−1 e−l̄ dt̄ dl̄.

Let us consider again 4 cases as above.
1. In the first case∫

∆(ξ, ξ̄)l̄κ−1 e−l̄ dt̄ dl̄ =

∫ l

0

l̄κ(l − l̄)e−l̄dl̄ < l

∫ ∞

0

l̄κe−l̄dl̄ = l κ! (86)

2-3. Using the same change of variables as above

l̄ = u + m, u = ∆(ξ, ξ̄), t̄ = l − u,

we have∫
∆(ξ, ξ̄) l̄κ−1 e−l̄ dt̄ dl̄ =

∫ l

0

ue−u

∫ ∞

0

(m + u)κ−1e−m dm du < (87)

l

∫ ∞

0

∫ ∞

0

(m + u)κ−1e−m−u dm du = l

∫ ∞

0

vκe−v dv = l κ!

4. Here∫
∆(ξ, ξ̄) l̄κ−1 e−l̄ dt̄ dl̄ = l

∫ ∞

0

∫ ∞

0

(m1 + m2 + l)κ−1e−m1−m2−l dm1 dm2 <

(88)

l

∫ ∞

0

sκ−1e−s ds

∫ s−l

0

dm1 < l

∫ ∞

0

sκe−s ds = l κ!

where s = m1 + m2 + l.
Thus

Jκ(ξ) < (4Rα)κ l κ!, l = l(ξ), (89)

and consequently,

I(T 0) ≤
∫
G

dξ0

∫
Kn2−1

∏
〈ξi,ξj〉∈T (2)

∣∣e−αΦ(ξi,ξj) − 1
∣∣ (90)
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∏
i∈V (T (2))

(4Rαli)
K(2)(i)

∏
j∈V (T (1)\T (2))

κj! (4Rα)κj−1
∏

i∈V (T (2))
i6=0

dξi.

Here K(2)(i) is a number of bonds incident to the node i ∈ V (T (2)) and
eliminated on the second step, V (T (1))\V (T (2)) is a set of nodes of the tree
T (1) eliminated on the second step.

If we continue this procedure in the same way we get eventually the
following estimate with the last node ξ0

I(T 0) ≤
∫
G

lκ0 dξ0 (4Rα)κ0

∏
i∈V (T (0))

i6=0

(
κi! (4Rα)κi−1

)
< (91)

(4Rα)n−1

∫
G

lκ0 dξ0

∏
i∈V (T (0))

i6=0

κi!.

Here we used that
∑

i∈V (T (0)) κi = 2n− 2.
Let us estimate now ∫

G

lκ0 dξ0.

We denote by M ⊂ Rd+1 a bounded closed subset of Rd+1 such that all rods
from G have some intersection with M . And let GM , G ⊆ GM ⊂ K be a
set of all rods from K intersecting M . We suppose that set M has no ”time
holes”, i.e. each stright line parallel to the time axis intersects M at a point
or in a segment.

Let Λ ⊂ Rd be a projection of M to the space Rd. Then the following
bound holds ∫

G

lκ0 dξ0 ≤
∫

GM

lκ0 dξ0 = (κ + 1)! |Λ| + κ! |M |, (92)

where |Λ| is a d-dimensional volume of Λ, and |M | is a d + 1-dimensional
volume of M . Indeed, we can represent GM as a union of two nonoverlapping
sets

GM = G0 ∪G1,
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where G0 is a set of all rods with origins in M , and G1 is a set of rods with
origins outside of M (in the ”past” of M). Then

∫
G0

lκ0 dξ0 ≤
∫
M

dx

∞∫
0

lκ e−l dl = κ! |M | (93)

and ∫
G1

lκ0 dξ0 = |Λ|
∞∫

0

∞∫
0

(r + s)κ e−(r+s) dr ds = (κ + 1)! |Λ|. (94)

Thus, estimate (91) together with (92) and bound κ + 1 ≤ n implies

I(T 0) ≤
∏

i∈V (T (0))

κi! (4Rα)n−1(|M |+ n|Λ|). (95)

The number of all trees T with n vertecis and fixed vertex degrees {κi, i ∈
V (T )} is equal, see [12, 15, 20],

(n− 2)!∏
i∈V (T )

(κi − 1)!
<

2n (n− 2)!∏
i∈V (T )

κi!
.

The number of ordered set {κi} from n integer positive numbers such that

κ1 + . . . + κn = 2n− 2,

can be estimated from above by Cn
2n−3 < 22n−3. Substituting these bounds

to (76) we get for small enough α

z

∫
G

dξ

∫
Υ0(GΛ,∞)

dλGΛ,∞
z (η) |K(ξ ∪ η)| ≤ z |G| +

∞∑
n=2

zn(n− 2)!

(n− 1)!
(4Rα)n−123n−3(|M |+ n|Λ|) < (|M |+ |Λ|) C(α, z), (96)

where C(α, z) is a constant doesn’t depending on G. Finally, relations (72),
(75), (96) and dominated convergence theorem imply (73).
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Let us consider now the last statement of the Lemma. The expressions
under the integral in the square brackets at two last lines in formula (70)
converge as T →∞ to the expressions

F (∪m
i=1ηi)

m∏
i=1

K(ηi ∪ η̄i).

Consequently, the integral in the square brackets in expression (70) is ma-
jorized by the following sum

max
η
|F (η)|

∞∑
m=1

1

m!

∫
(Υ0(G)\{∅})m

∫
(Υ0(G0

Λ,∞\G))m

m∏
i=1

K(ηi ∪ η̄i) (97)

m∏
i=1

dλG(ηi)
m∏

i=1

dλG0
Λ,∞\G(η̄i) <

max
η
|F (η)|

∞∑
m=1

1

m!

∫
G

∫
Υ0(GΛ,∞)

K(ξ ∪ η) dλGΛ,∞(η) dξ


m

<

max
η
|F (η)| exp{(|M |+ |Λ|) C(α, z)}.

Thus Lemma 7 is proved completely.

Corollary. Formulae (67) - (69) imply that 〈F 〉 is the average of the
function F over a probability distribution PG

Λ,∞,z on the set Υ0(G), where
the probability density with respect to the measure λG

z is given by

pG
Λ,∞,z(η) =

{
fG

Λ,∞, η = ∅,
fG

Λ,∞
∑(η)

{η1,...,ηs}
∏
i

rG
Λ,∞(ηi), η 6= ∅, (98)

with

rG
Λ,∞(η) =

∫
Υ0(GΛ,∞\G)

K(η ∪ η̄) dλGΛ,∞\G
z (η̄),

fG
Λ,∞ = exp

−
∫

Υ0(G)

rG
Λ,∞(η) dλG

z (η)

 .
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Let G0 ⊂ K is a set of rods intersecting hyperplane Y0 = {(s, t) ∈ Rd+1 :
t = 0}. We can introduce in G0 new coordinates ξ = (s, l−, l+), where
s = ξ ∩ Y0 ∈ Λ ⊂ Rd is the point of intersection of the rod ξ with the
hyperplane Y0, l− = |t|, l+ = l − |t| are lengths of two parts of the rod ξ
lying to the left and to the right of the point s respectively. Then

dξ = ds e−l−dl− e−l+dl+,

and the space Υ0(G0) can be considered as a space of finite configurations
of pairs η = {(ξ−, ξ+)i}i of rods with corresponding lengths l−, l+. These
pairs are situated on the different sides of the hyperplane Y0 and have the
common end s ∈ Λ lying on Y0. The measure λG0

z on Υ0(G0) can be written
as

dλG0
z (η) = dµΛ

z (γ)
∏
s∈γ

e−l−(s)dl−(s)
∏
s∈γ

e−l+(s)dl+(s), η ∈ Υ0(G0), (99)

where γ = γ(η) = {si} is a configuration of points of intersection of the rods
ξ ∈ η with the hyperplane Y0, dµΛ

z (γ) is d-dimensional Lebesgue-Poisson
measure with activity z on the set of finite configurations in Λ; l−(s), l+(s)
are lengths of the corresponding parts of the rod ξ ”attached” at point s ∈ γ.

We denote by ΠG0
Λ,∞ a probability distribution on the set Γ0(Λ) of finite

configurations inside Λ induced by the distribution PG0
Λ,∞ on Υ0(G0). From

(99) it is seen that the density

ω̃Λ,∞,z(γ) =
dΠG0

Λ,∞

dµΛ
z

of this distribution with respect to d-dimensional Lebesgue-Poisson measure
µΛ

z on Γ0(Λ) is equal to

ω̃Λ,∞,z(γ) =

∫
pG0

Λ,∞(γ, {l−(s), s ∈ γ}, {l+(s), s ∈ γ}) (100)

∏
s∈γ

e−l−(s)dl−(s)
∏
s∈γ

e−l+(s)dl+(s),
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where pG0
Λ,∞(γ, {l−(s), s ∈ γ}, {l+(s), s ∈ γ}) is the same density pG

Λ,∞,z(η)
as in formula (98) rewritten in the new variables. Formulas (98) and (100)
imply that

ω̃Λ,∞,z(γ) = ϕΛ ×

 1, γ = ∅,∑(γ)
{γ1,...,γm}

m∏
i=1

%Λ(γi), γ 6= ∅, (101)

where
∑(γ)

{γ1,...,γm} is the same as above sum over all partitions of the config-
uration γ,

ϕΛ = exp

−
∫

Γ0(Λ)

%Λ(γ) dµΛ
z (γ)

 ,

and %Λ(γ) is defined as

%Λ(γ) =

∫
rG0
Λ,∞(γ, {l−(s)}, {l+(s)})

∏
s∈γ

e−l−(s)dl−(s)
∏
s∈γ

e−l+(s)dl+(s).

(102)

5 Representation for ground state ΨΛ

We find now another representation for the probability distribution ΠG0
Λ,∞ on

the set Γ0(Λ). Let us consider the trajectory space Υ̂(GΛ,T ), then the density
ω̂G0

Λ,T of the distribution ΠG0
Λ,T on the space of configurations γ̂ = γt=0 ⊂ Λ

with respect to the Poisson measure πz on Γ0(Λ) can be written as

ω̂G0
Λ,T (γ̂) =

ZΛ,(−T,0)(γ̂) ZΛ,(0,T )(γ̂)

ZΛ,(−T,T )

, (103)

where partition function ZΛ,(−T,T ) = ZΛ,T is defined by (25), and

ZΛ,(0,T )(γ̂) =

∫
Υ+

Λ (γ̂)

e
−α

TR
0

UΛ(γ(t))dt
dP0,+

Λ,z ({γ(t), t > 0}|γ̂), (104)

ZΛ,(−T,0)(γ̂) =

∫
Υ−

Λ (γ̂)

e
−α

0R
−T

UΛ(γ(t))dt

dP0,−
Λ,z ({γ(t), t < 0}|γ̂), (105)
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with ZΛ,(−T,0)(γ̂) = ZΛ,(0,T )(γ̂) and

ZΛ,(−T,T ) =

∫
Γ0(Λ)

ZΛ,(−T,0)(γ̂) ZΛ,(0,T )(γ̂) dπz(γ̂). (106)

Here Υ+
Λ(γ̂) is the space of trajectories {γ(t), t > 0} of the free Glauber

dynamics considered in a ”semi-tube” of future Λ× (0,∞) with condition

γ(t = 0) = γ̂. (107)

The space Υ−
Λ(γ̂) is defined by the analogous way. Conditional distributions

P0,±
Λ,z (· | γ̂) are generated by the distribution P0

Λ,z on the space of trajectories
of the free Glauber dynamics under condition (107), and the conditional
distributions are given on the spaces Υ±

Λ(γ̂) respectively; πz is the stationary
distribution on Γ0(Λ) of the free Glauber dynamics considered in the domain
Λ× (−∞,∞), i.e. the Poisson measure on Γ(Λ) with the intensity z.

As before we rewrite expressions (104) - (105) for partition functions
using the ensemble of rods. Any configuration from Υ+

Λ,T can be decomposed
into a pair of configurations of rods (η̃γ̂, η), where η̃γ̂ = {ξs, s ∈ γ̂} is a
configuration of rods ξs attached to a corresponding point s ∈ γ̂ of the point
configuration γ̂ ⊂ Λ, and η is a configuration of ”free” rods with origins from
Λ × (0, T ) ⊂ Rd+1. Similarly, the space of configurations Υ+

Λ,∞ = Υ+
Λ can

be represented as a space of pairs of rods (η̃γ̂, η), where η̃γ̂ = {ξs, s ∈ γ̂}
is defined as above, and a ”free” configuration η of rods with origins from
Λ×(0,∞) can be again decomposed into a pair of configurations with origins
in Λ×(0, T ) and in Λ× [T,∞) respectively. Thus, the distribution P0,+

Λ,z (· | γ̂)

on Υ+
Λ,∞ is represented as a product

P0,+
Λ,z (· | γ̂) = P0,+

Λ,T (· | γ̂)× P0,+
Λ,[T,∞)(· | γ̂),

and

dP0,+
Λ,T ((η̃γ̂, η) | γ̂) = dλ

G+
Λ,T

z (η)
∏
s∈γ̂

e−l(s)dl(s) e−|Λ|Tz,

where G+
Λ,T is the set of rods with origins in Λ× (0, T ). Then we get

ZΛ,(0,T )(γ̂) =

∫ ∏
s∈γ̂

e−l(s)dl(s)

∫
dλ

G+
Λ,T

z (η) e
−α

P
{ξi,ξj}⊂η̃γ̂∪η

ΦT (ξi,ξj)

e−|Λ|Tz.

(108)
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Using the same reasoning as above the exponent in (108) can be rewritten
as

e
−α

P
{ξi,ξj}⊂η̃γ̂∪η

ΦT (ξi,ξj)

=
∑
m

∑η̃γ̂∪η

{(η̃1,η1),...,(η̃m,ηm)}

m∏
i=1

KT (η̃i ∪ ηi) = (109)

∑
m

∑
r≤m

∑η̃γ̂

{η̃1,...,η̃r}

∑η

(η1,η2)

∑η1

(η
(1)
1 ,...,η

(1)
r )

r∏
i=1

KT (η̃i ∪ η
(1)
i )

∑η2

{η(2)
1 ,...,η

(2)
m−r}

m−r∏
j=1

KT (η
(2)
j ).

Here the sum
∑η̃γ̂

{η̃1,...,η̃r} is taken over all unordered partition of η̃γ̂, the sum∑η
(η1,η2) is the sum over ordered decomposition of η into two configurations

η1 ∪ η2, the sum
∑η1

(η
(1)
1 ,...,η

(1)
r )

is taken over all ordered partitions of η1 into r

sub-configurations η
(1)
i (which can be empty), and the last sum

∑η2

{η(2)
1 ,...,η

(2)
m−r}

is defined by the similar way.
Using decomposition (109) we have

ZΛ×[0,T ](γ̂) =
∑
m

∑(γ̂)

{γ̂1,...,γ̂m}

m∏
i=1

(∫
KT (η̃γ̂i

∪ η) dλ
G+

Λ,T
z (η)

∏
s∈γ̂i

e−ls dls

)
(110)

exp

{∫
Υ0(Λ,T )

KT (η) dλ
G+

Λ,T
z (η) − z|Λ|T

}
=

∑
m

∑(γ̂)

{γ̂1,...,γ̂m}

m∏
i=1

%̂Λ,T (γ̂i) exp

{∫
Υ0(Λ,T )

KT (η) dλ
G+

Λ,T
z (η) − z|Λ|T

}
,

where

%̂Λ,T (γ̂) =

∫
Υ0(Λ,T )×R

|γ̂|
+

KT (η̃γ̂ ∪ η) dλ
G+

Λ,T
z (η)

∏
s∈γ̂

e−ls d ls (111)

with η̃γ̂ = {(s, ls), s ∈ γ̂}. Then (106), (110) together with

dπz(γ̂) = dµΛ
z (γ̂) e−z|Λ|
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imply that

ZΛ×(−T,T ) = exp

2

∫
Υ0(Λ,T )

KT (η) dλ
G+

Λ,T
z (η)− 2|Λ|Tz − |Λ|z

 (112)

∫ (∑
m

∑(γ̂)

{γ̂1,...,γ̂m}

m∏
i=1

%̂Λ,T (γ̂i)

)2

dµΛ
z (γ̂).

Thus using (103) we get the following expression for the density ω̂G0
Λ,∞(γ̂)

ω̂G0
Λ,∞(γ̂) = lim

T→∞

ZΛ×(0,T )(γ̂) ZΛ×(−T,0)(γ̂)

ZΛ×(−T,T )

= (113)

(∑
m

∑(γ̂)
{γ̂1,...,γ̂m}

m∏
i=1

%̂Λ,∞(γ̂i)

)2

ez|Λ|

∫ (∑
m

∑(γ̂)
{γ̂1,...,γ̂m}

m∏
i=1

%̂Λ,∞(γ̂i)

)2

dµΛ
z (γ̂)

with

%̂Λ,∞(γ̂) = lim
T→∞

%̂Λ,T (γ̂) =

∫
Υ0(Λ,∞)×R

|γ̂|
+

K(η̃γ̂ ∪ η) dλ
G+

Λ,∞
z (η)

∏
s∈γ̂

e−ls d ls.

(114)
Thus, we get

dΠG0
Λ,∞(γ̂) = ω̂G0

Λ,∞(γ̂) dµΛ
z (γ̂) e−z|Λ|.

On the other hand, as follows from the Feynman-Kac formula, we have
for semigroup exp{tHΛ}

ZΛ×(−T,T ) =

∫
ΥΛ,∞

exp

−α

T∫
−T

UΛ(γ(t)) dt

 dP0
z (σ) = (e2THΛ1, 1)µΛ

z
e−z|Λ|,

(115)
where (·, ·)µΛ

z
is the scalar product in L2(Γ

0(Λ), µΛ
z ). Similar to (115) we get

ZΛ×(0,T )(γ̂) = ZΛ×(−T,0)(γ̂) = (eTHΛ 1)(γ̂). (116)

35



Thus (113) implies that

ΨΛ(γ̂) ≡ lim
T→∞

(eTHΛ 1)(γ̂)

‖eTHΛ 1‖L2(Γ0(Λ),µΛ
z )

= lim
T→∞

ZΛ×(0,T )(γ̂)

(ZΛ×(−T,T ))1/2
(117)

exists and equals to

ΨΛ(γ̂) =

∑
m

∑(γ̂)
{γ̂1,...,γ̂m}

m∏
i=1

%̂Λ,∞(γ̂i) e
1
2
z|Λ|

( ∫
Γ0(Λ)

(∑
m

∑(γ̂)
{γ̂1,...,γ̂m}

m∏
i=1

%̂Λ,∞(γ̂i)

)2

dµΛ
z (γ̂)

)1/2
. (118)

Consequently, (113) and (118) imply that ω̂G0
Λ,∞(γ̂) = Ψ2

Λ(γ̂), and finally we

have ΠG0
Λ,∞ = νΛ

z , where the measure νΛ
z was defined by formula (8).

6 Proof of Theorem 1

Using decomposition L2(Γ, dπz) = L2(Γ
0(Λ), dπΛ

z ) ⊗ L2(Γ
0(Λ′), dπΛ′

z ) and
equality dπΛ

z = dµΛ
z e−z|Λ| we can reduce the problem of self-adjointness

for the operator HΛ on L2(Γ, dπz) to the same problem for the operator H ′
Λ

on HΛ = L2(Γ
0(Λ), µΛ

z ) acting as follows

(H ′
Λ Φ)n(s1, . . . , sn) =

n∑
i=1

Φn−1(s1, . . . , s̆i . . . sn) − (119)

(α UΛ(s1, . . . , sn)+n+z|Λ|) Φn(s1, . . . , sn)+z

∫
Λ

Φn+1(s1, . . . , sn, s) ds, n ≥ 1,

(H ′
Λ Φ)0 = −zΦ0 + z

∫
Λ

Φ1(s) ds, n = 0.

Here s̆i means that the variable si is omitted,

Φ = (Φ0, Φ1(s1), . . . Φn(s1, . . . , sn), . . .) ∈ L2(Γ
0(Λ)), (120)

Φn(s1, . . . , sn) is the value of Φ(γ) on the stratum Γ0
n(Λ) ⊂ Γ0(Λ) of n-

points configurations γ = (s1, . . . , sn), si 6= sj, and UΛ(s1, . . . , sn) ≥ 0.
The operator H ′

Λ is a symmetrical operator on the set Dfin ⊂ HΛ of finite
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vectors, i.e. vectors with Φn = 0 for all n > N = N(Φ). Thus, H ′
Λ is a

closable operator. For the closure, we will use the same notation H ′
Λ.

To complete the proof of the self-adjointness we should check that for
large enough ξ > 0 the range Ran (H ′

Λ − ξE) = HΛ, or what is equivalent
that the equation

(H ′
Λ − ξE) F = G (121)

is solvable for large enough ξ > 0 and all G ∈ HΛ. We can rewrite H ′
Λ as

H ′
Λ = T + R separating the diagonal (over number of variables si) part T

of H ′
Λ. Then positivity of T implies that (121) is equivalent to the equation

(T − ξE)(E + (T − ξE)−1R) F = G. (122)

If
‖(T − ξE)−1R)‖ < 1, (123)

then the solution of equation (122) can be found as

F = (E + (T − ξE)−1R)−1 (T − ξE)−1 G.

Thus, we should prove inequality (123).
Denote by HΛ,n ⊂ HΛ a subspace of sequences (120) with Φk = 0, k 6= n,

then the norm in HΛ,n is defined as

‖Φn‖2
HΛ,n

=
zn

n!

∫
Λn

Φ2
n(s1, . . . , sn)ds1 . . . dsn.

For any n ≥ 1 we have∥∥∥∥ ∑n
i=1 Φn−1(s1, . . . , s̆i . . . sn)

(α UΛ(s1, . . . , sn) + n + z|Λ|+ ξ)

∥∥∥∥
HΛ,n

<

√
nz|Λ| ‖Φn−1‖HΛ,n−1

n + z|Λ|+ ξ
.

Consequently,∥∥∥∥ ∑n
i=1 Φn−1(s1, . . . , s̆i . . . sn)

(α UΛ(s1, . . . , sn) + n + z|Λ|+ ξ)

∥∥∥∥2

HΛ,n

<
nz|Λ|

(n + z|Λ|+ ξ)2
‖Φn−1‖2

HΛ,n−1
<

max
n

nz|Λ|
(n + z|Λ|+ ξ)2

‖Φn−1‖2
HΛ,n−1

. (124)
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Similarly, we get∥∥∥∥∥∥
z
∫
Λ

Φn+1(s1, . . . , sn, s)ds

(α UΛ(s1, . . . , sn) + n + z|Λ|+ ξ)

∥∥∥∥∥∥
2

HΛ,n

<
(n + 1)z|Λ|

(n + z|Λ|+ ξ)2
‖Φn+1‖2

HΛ,n+1
<

max
n

(n + 1)z|Λ|
(n + z|Λ|+ ξ)2

‖Φn+1‖2
HΛ,n+1

. (125)

Finally (119), (124), (125) imply that

‖(T − ξE)−1R‖ < 2

√
max

n

(n + 1)z|Λ|
(n + z|Λ|+ ξ)2

< 1

for all large enough ξ. The first statement of Theorem 1 is proved.

We will use the following proposition in the proof of the second statement
of the theorem.

Proposition [11]. Let H be a bounded from above self-adjoint operator
in a Hilbert space L2(Ω, µ), where (Ω, µ) is a space with a finite measure µ,
the semigroup exp{tH} meets the condition of improving positivity (see [16]),
and the limit

lim
T→∞

eTH 1

‖eTH 1‖
= Ψ (126)

exists, such that (Ψ, 1) > 0. Then Ψ is a unique ground state of the operator
H and Ψ > 0.

In our case we see from (117) - (118) that (126) holds and

(ΨΛ(γ̂), 1)L2(Γ0(Λ),µΛ
z ) =

exp

{ ∫
Γ0(Λ)

%̂Λ,∞(γ̂) dµΛ
z (γ̂) + 1

2
z|Λ|

}
( ∫

Γ0(Λ)

(∑
m

∑(γ̂)
{γ̂1,...,γ̂m}

m∏
i=1

%̂Λ,∞(γ̂i)

)2

dµΛ
z (γ̂)

)1/2
> 0

consequently, the operator HΛ has a unique ground state ΨΛ(γ) > 0. Thus,
the second state of Theorem 1 is proved.
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7 Proof of Theorem 4

7.1 First statement

As follows from representation (98) probability measures {PG
Λ,∞,z, G ⊂ GΛ,∞}

constructed in Lemma 7 form an consistent family of measures, i.e. for any
two bounded sets G1 ⊂ G2 ⊂ GΛ,∞ we have:

PG2
Λ,∞,z|Υ0(G1) = PG1

Λ,∞,z.

That implies, see [13], that a probability measure P̃Λ,∞,z exists on Υ(GΛ,∞),
such that for any local function FG with G ⊆ Gint

M ⊂ GΛ,∞ (with some
bounded set M ⊂ Λ× (−∞,∞)) :

lim
T→∞

〈FG〉PΛ,T,z
= 〈FG〉PG

Λ,∞,z
= 〈FG〉P̃Λ,∞,z

.

If we consider a measure on the space Υ of the following form

PΛ,∞,z = P̃Λ,∞,z × P0
Λ′,∞,z (127)

where P0
Λ′,∞,z is the distribution of the free dynamics on Λ′, we get (30).

We will show next that a distribution P̂Λ,∞,z of the process associated with
the semigroup S̃Λ

t = exp{tH̃Λ} (i.e. the Markov process GΛ from Theorem
2) is the same as the distribution PΛ,∞,z (127).

Lemma 8. The following asymptotics hold as T →∞

ZΛ,T (γ) = eλ0
ΛT ΨΛ(γ)(ΨΛ(γ), 1)πz + δ) (128)

with ‖δ‖L2(Γ0(Λ),πz) = o(1),

ZΛ×(−T,T ) = e2λ0
ΛT
(
(ΨΛ(γ), 1)2

πz
+ o(1)

)
, (129)

where λ0
Λ is the eigenvalue corresponding to the ground state ΨΛ, see Theorem

1.

Proof. Let H⊥ ⊂ L2(Γ
0(Λ), πz) be the orthogonal complement to the

vector ΨΛ, and H⊥
Λ be a restriction of the operator HΛ to the space H⊥.

Then formula (115) implies

(eTHΛ 1)(γ) = eλ0
ΛT ΨΛ(γ) (ΨΛ(γ), 1)πz + eH⊥

Λ T 1⊥(γ),
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where 1⊥ is the projection of the vector 1 to the space H⊥. We estimate now
the norm of the second term:

‖eH⊥
Λ T 1⊥‖2 =

λ0
Λ∫

−∞

e2λT dσ1⊥(λ) =

e2λ0
ΛT

 λ0
Λ−a∫

−∞

e2(λ−λ0
Λ)T dσ1⊥(λ) +

λ0
Λ∫

λ0
Λ−a

e2(λ−λ0
Λ)T dσ1⊥(λ)

 . (130)

Here σ1⊥(∆) is the spectral measure of the operator H⊥
Λ on the vector 1⊥.

Then the first term in the bracket in (130) is less then e−2aT and the sec-
ond term is estimated from above by σ1⊥(λ0

Λ − a, λ0
Λ). Since the ground

state is unique, then the measure σ1⊥(λ) is continuous at the point λ = λ0
Λ.

Consequently, taking a = 1√
T

we get that both terms in (130) tend to 0 as
T →∞.

Using the same reasoning and formula (115) we obtain asymptotics (129).
Lemma is proved completely.

We remaind that P̂Λ,∞,z is a distribution on the space of trajectories of
the process

GΛ = {γ(t), t ∈ R1}

associated with Markov semigroup exp{tH̃Λ}. For any finite time intervals
t0 < t1 < . . . < tn and any bounded functions f0, f1, . . . , fn on Γ0(Λ) the
average over P̂Λ,∞,z can be written as〈

n∏
i=0

fi(γ(ti))

〉
P̂Λ,∞,z

= (131)

∫
(Γ0(Λ))n

fn(γn)Qtn−tn−1(γn, γn−1) . . . f1(γ1)Qt1−t0(γ1, γ0)f0(γ0)
n∏

i=0

dνΛ
z (γi),

where Qt(γ, γ′) is the kernel of the operator exp{tH̃Λ} in the space L2(Γ
0(Λ), νΛ

z ):(
exp{tH̃Λ} f

)
(γ) =

∫
Γ0(Λ)

Qt(γ, γ′)f(γ′)dνΛ
z (γ′). (132)
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On the other hand, the average over PΛ,∞,z, see (127), is calculated as the
limit 〈

n∏
i=0

fi(γ(ti))

〉
PΛ,∞,z

= (133)

lim
T→∞

∫ ∏n
i=0 fi(γ(ti)) exp

{
−α

T∫
−T

UΛ(γ(τ))dτ

}
dP0

z

ZΛ×[−T,T ]

.

Using the Feynman-Kac representation (13) for the kernel of the semigroup
etHΛ and asymptotics (128) - (129) we can rewrite (133) as follows∫

(Γ0(Λ))n

fn(γn) ΨΛ(γn) Rtn−tn−1(γn, γn−1) e−λ0
Λ(tn−tn−1) . . . (134)

. . . e−λ0
Λ(t2−t1)f1(γ1) Rt1−t0(γ1, γ0) e−λ0

Λ(t1−t0) ΨΛ(γ0) f0(γ0)
n∏

i=0

dπz(γi).

It follows from (10) and (8) that

Qt(γ1, γ2) =
1

ΨΛ(γ1)
e−λ0

Λt Rt(γ1, γ2)
1

ΨΛ(γ2)
, dνΛ

z (γ) = Ψ2
Λ(γ)dπz(γ),

and consequently, averages (131) and (134) are the same. Thus, all finite
dimensional distributions for the measures PΛ,∞,z and P̂Λ,∞,z coincide, and
consequently, the measures are the same.

The first assertion of Theorem 4 is completely proved.

7.2 Second statement

Repeating arguments from the proof of Lemma 5 we get that for any bounded
subset G ⊂ K and bounded local function FG the following limits exist and
can be written as

lim
Λ↗Rd

〈FG〉PΛ,∞,z
= 〈FG〉 = fG (FG(∅) + (135)

∞∑
m=1

1

m!

∫
(Υ0(G)\∅)m

m∏
i=1

dλG(ηi)

∫
(Υ0(K\G))m

m∏
i=1

dλK\G(η̄i) FG(∪η̄i)
m∏

i=1

K(ηi ∪ η̄i)
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with

fG = exp

 −
∫

Υ0(G)\∅

∫
Υ0(K\G)

K(η ∪ η̄) dλG(η) dλK\G(η̄)

 = (136)

= exp

 −
∫

η∈Υ0(K): η∩G6=∅

K(η) dλz(η)

 .

By analogy with our reasoning in the proof of the first part of the theorem
using corollary of Lemma 7 we get that limits (135) define a system of com-
patible probability distributions {PG

∞,z} on the space Υ′, and thereby a limit
distribution {P∞,z} on Υ′ is defined. The limit distribution is invariant with
respect to the space translations in Rd and w.r.t reflections in time. More-
over, this distribution meets the property of OS positivity. Really, for any
local bounded function F dependent on the process as t ≥ 0 we have

(θF · F )P∞,z = lim
Λ↗Rd

(θF, F )PΛ,∞z
≥ 0, (137)

since distributions PΛ,∞,z are the distributions of the Markov processes for
any bounded Λ ⊂ Rd+1. Consequently, relation (137) is also valid for any
function F ∈ L2(Υ

′,P∞,z) which is also dependent on the process values as
t ≥ 0. Thus we construct the limit measure P∞,z and establish properties of
this measure. Theorem 4 is completely proved.

8 Proof of Theorem 5

Let us consider strongly local functions FMi
, i = 1, 2 depending on the

process G (or GΛ) with bounded localization domain Mi ⊂ Rd+1, i = 1, 2.
Denote by Gi = Gloc

Mi
⊂ K a set of rods starting at Mi. Then the functions

FMi
can be considered as strongly local functions FGi

on the space Υ′ with
the same localization domains Mi, i = 1, 2 correspondingly. We will use here
the following formula for correlations (35), see [9]:

〈FG1 · FG2〉P∞,z − 〈FG1〉P∞,z 〈FG2〉P∞,z = (138)

fG1 ·fG2

((
e∆̂(G1,G2) − 1

)
(FG1(∅) FG2(∅) + FG1(∅) I2 + FG2(∅) I1 + I1 I2) +
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e∆̂(G1,G2) I1,2 + FG1(∅) Î2 + FG2(∅) Î1 + I1 Î2 + I2 Î1 + Î1 Î2

)
.

Here fG1 , fG2 are defined by (136),

∆̂(G1, G2) =

∫
η:η∩G1 6=∅, η∩G2 6=∅

K(η) dλz(η), (139)

Ij =
∞∑

n=0

1

n!

∫
(Υ0(Gj)\∅×Υ0(G3))n

n∏
i=1

dλGj(ηi
Gj

) dλG3(η̄i
G3

) FGj
(∪ηi

Gj
)

n∏
i=1

K(ηi
Gj
∪η̄i

G3
)

with G3 = K\(G1 ∪G2), j = 1, 2;

Î1 =
∞∑

n=0

1

n!

∫
FG1(∪ηi

G1
)

n∏
i=1

K(ηi
G1
∪ηi

G2
∪ηi

G3
)

n∏
i=1

dλG1(ηi
G1

) dλG2(ηi
G2

) dλG3(ηi
G3

),

where the integration is taken over all sets from n triplets(
ηi

G1
, ηi

G2
, ηi

G3

)
, i = 1, . . . , n,

such that ηi
G1
6= ∅ for each i = 1, . . . , n, and at least in one of the triplets:

ηi
G2
6= ∅. We can define Î2 in the analogous way.
Further,

I1,2 =
∞∑

n=0

1

n!

∫
FG1(∪ηi

G1
) FG2(∪ηi

G2
)

n∏
i=1

K(ηi
G1
∪ ηi

G2
∪ ηi

G3
)

n∏
i=1

dλG1(ηi
G1

) dλG2(ηi
G2

) dλG3(ηi
G3

).

Here the integration is over all sets from n triplets(
ηi

G1
, ηi

G2
, ηi

G3

)
, i = 1, . . . , n,

such that at least in one of the triplets: ηi
G1
6= ∅ and ηi

G2
6= ∅.

Let us estimate ∆̂(G1, G2) in the case when ϕ meets condition a) in (56),
the case (56, b) can be studied in the same way. We can rewrite (63) as
follows

|K(η)| ≤
∑
T

∏
〈ξi,ξj〉∈T

(
1

1 + |si − sj|2m

) 1
2 ∏

i∈V (T )

e−
1
2
li (140)
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∏
〈ξi,ξj〉∈T

(
1 + |si − sj|2m

) 1
2

∏
i∈V (T )

e
1
2
li
∏

〈ξi,ξj〉∈T

∣∣e−α Φ(ξi,ξj) − 1
∣∣ ,

with ξi = ((si, ti), li), i = 1, . . . , n. Then we have for any tree T in (140)

∏
〈ξi,ξj〉∈T

(
1

1 + |si − sj|2m

) 1
2 ∏

i∈V (T )

e−
1
2
li <

e
−

P
〈ξi,ξj〉∈T

m ln(1+|si−sj |)− 1
2

P
i∈V (T )

li

< e−diam η̃,

where η̃ = ∪ ξ̃i ⊂ Rd+1 is a subset of Rd+1 which is a union of all rods from
configuration η, and the diameter of η̃ is calculated in the metrics (58, a).
Thus,

|K(η)| < e−diam η̃
∑
T

∏
〈ξi,ξj〉∈T

((
1 + |si − sj|2m

) 1
2
∣∣e−α Φ(ξi,ξj) − 1

∣∣) ∏
i∈V (T )

e
1
2
li .

Using bounds (55) - (56) on the potential ϕ we can apply here the above
reasoning and finally get the following estimate∫

η:η∩G1 6=∅,
η∩G2 6=∅

K(η) dλz(η) < e−dist(M1,M2) max{υz(G1), υz(G2)} Ĉ(α, z), (141)

where

υz(G) =

∫
G

z (−dpx(l))dx,

and a constant Ĉ(α, z) doesn’t depend on G1 and G2. Thus, we have∣∣∣e∆̂(G1,G2) − 1
∣∣∣ < Ĉ e−dist(M1,M2) max{υz(G1), υz(G2)} eĈ max{υz(G1),υz(G2)}.

(142)
We estimate next I1:

|I1| = max |FG1|
∞∑

n=0

1

n!

 ∫
Υ0(G1)\∅×Υ0(G3)

dλG1(ηG1) dλG3(ηG3) |K(ηG1 ∪ ηG3)|


n

<
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max |FG1|
∞∑

n=0

1

n!

 ∫
η:η∩G1 6=∅

|K(η)| dλ(η)


n

< max |FG1| exp{Ĉυz(G1)}

with a constant Ĉ. In the same way we can obtain the upper bound on I2.
Let us estimate now Î1:

|Î1| < max |FG1|
∞∑

n=0

1

n!

∫
ηG1

6=∅, ηG2
6=∅

K(ηG1 ∪ ηG2 ∪ ηG3) (143)

dλG1(ηG1) dλG2(ηG2) dλG3(ηG3)

 ∫
η:η∩G1 6=∅

K(η) dλ(η)


n−1

.

The first integral in (143) can be estimated in the same manner as above,
and we get

|Î1| < e−dist(M1,M2) max{υz(G1), υz(G2)} max |FG1| eĈυz(G1).

The analogous estimate is valid also for Î2 and I1,2. Finally representation
(136) implies

|fG| < exp


∫

η:η∩G6=∅

|K(η)| dλz(η)

 < exp{Ĉ υz(G)}.

Since υz(G) = z|M | in the case G = Gloc
M , then after substitution all above

estimates to (138) we get the main estimate (35) of Theorem 4.

8.1 Proof of Corollary from Theorem 5

We study here the generator h of the time translations in the physical space
H and prove that the operator h has a spectral gap. Let µ = sup σ (h|H⊥)
be the supremum of a spectrum of the restriction of the operator h to the
invariant subspace H⊥ containing vectors from H orthogonal to vector e.
We denote by Ĥ ⊂ H a dense set in H such that classes of elements from Ĥ

45



contain strongly local bounded functions on Υ̂. For any ε > 0 there exists
an element ϕ ∈ Ĥ such that

1) (ϕ, e) = 0, 2) (ϕ, ϕ) = 1, 3) σϕ(µ− ε, µ) >
1

2
, (144)

where σϕ(∆) = (Eh(∆)ϕ, ϕ)H is the spectral measure of the element ϕ, and
Eh(∆) is the resolution of identity of the operator h. Condition 3) implies
that

(ethϕ, ϕ)H =

µ∫
−∞

eλt dσϕ(λ) >
1

2
e(µ−ε)t. (145)

Let Φ ∈ H+ is a strongly local bounded function (not a constant) such that
the class [Φ] of Φ is the same as ϕ. Then conditions (144) is rewritten as

1) 〈Φ〉P∞,z = 0, 2) 〈θ Φ·Φ〉P∞,z = 1, 3) 〈θ Ut Φ·Φ〉P∞,z >
1

2
e(µ−ε)t. (146)

Localization domain M1 6= ∅ of the function Φ is in the right half-space
Rd+1

+ = Rd ×R1
+ and localization domain M2 of the function θ UtΦ is in the

left half-space Rd+1
− = Rd × R1

−. Moreover the distance in the metrics (34)
between M1 and M2 is not less then t

2
. Then using the result of Theorem 4

we have
(θ Ut Φ, Φ)H = 〈θ Ut Φ · Φ〉P∞,z < c1 e−

t
2 , (147)

with a constant c1 doesn’t depending on t. Comparing (145) with (147) it is
easy to see that

(µ− ε) t < −1

2
t + c2 (148)

with an absolute constant c2. Since inequality (148) holds for any ε > 0 and
any t > 0, we get µ ≤ −1

2
. That means that the operator h has a spectral

gap and the unique ground state.

9 Attachment

9.1 Proof of Lemma 1

Let M ⊂ Rd+1 be a bounded set. Without loss of generality we can take
M = Λ× I, where Λ ⊂ Rd is a bounded domain in Rd and I = [T1, T2] ⊂ R1
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is a segment. Then for a.e. configurations η of rods a number of rods with
origins inside of M is finite. For the proof, it remained to show that the
mean value of a number of rods from η with origins x = (s, t) at the ”past”
to M (i.e. with t < T1) intersecting M is also finite.

We denote G
(n)
Mn

⊂ K a set of rods beginning at Mn = Λ × In where
In = (T1−(n+1), T1−n) with a lenght not less then n, and let GM

Mn
⊂ K be a

set of rods with origins in Mn intersecting M . It is clear that GM
Mn

⊂ G
(n)
Mn

and

Υ(GM
Mn

) ⊂ Υ(G
(n)
Mn

). On the other hand, the probability that a rod ξ ∈ Gloc
Mn

belongs to a configuration ηn ∈ Υ(G
(n)
Mn

) equals to e−n, consequently the set

of origins of rods from Υ(G
(n)
Mn

) forms a Poisson field in Mn with intensity
ze−n. We denote ηM

n ⊆ ηn a sub-configuration of ηn such that ηM
n ∈ Υ(GM

Mn
).

Averaging over P0
z we get

〈|ηM
n |〉P0

z
< 〈|ηn|〉P0

z
= z|Λ|e−n.

Thus the mean value of a number of rods intersecting M with beginnings at
the ”past” of M can be bounded from above by

z|Λ|
∞∑

n=0

e−n < ∞.

That means that configurations with infinite number of rods intersecting
M form a set of zero measure. Since the space Rd+1 can be covered by a
countable family of bounded sets of the form M = Λ × I, then almost all
configurations of rods are locally finite.

Lemma is proved.

9.2 Proof of Proposition 1

Let us consider a quadratic form for any F ∈ H+ and t > 0:

qF (t) = (F, Ut F )+.

Using Caugchi-Buniakovskyi-Schwarz inequality n times and equality (UtF, F )+ =
(F, UtF )+ we get

qF (t) ≤ (F, F )
1
2
+ (UtF, UtF )

1
2
+ = (F, F )

1
2
+ (F, U2tF )

1
2
+ ≤ (149)

(F, F )
1
2
+ 1

4
+ (F, U4tF )

1
4
+ ≤ . . . ≤ (F, F )

1− 1
2n

+ (F, U2ntF )
1

2n

+ .
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For any t > 0 and any n

(F, U2ntF )+ = (θF, U2ntF )L2(Ω,P) ≤ ‖F‖2
L2

.

Since qF (t) doesn’t depend on n, we take a limit in (149) as n → ∞ and
obtain for any t

qF (t) ≤ (F, F )+.

Finally,
(UtF, UtF )+ = (F, U2tF )+ = qF (2t) ≤ (F, F )+.

9.3 Proof of Lemma 4

Note, that by virtue of (51)-(52) the measure in the right hand side of (53)
is the probabilistic one. Under decomposition G0

Λ,T = G1 ∪ G2 on two non-
itersecting sets this measure by (49) could be written as a product of two
probabilistic measures:

λG1 e−S(G1) × λG2 e−S(G2)

with S(G) =
∫
G

ξ(x) px(l) dl dx. For the probability that the number of rods

|ηGi
| in the configuration ηGi

⊂ Υ0(Gi) equals k, we get:

Pr(|ηGi
| = k) =

1

k!
(S(Gi))

ke−S(Gi),

i.e. the probability has a Poisson form. That means that the measure in
(53) is the distribution of the Poisson field of the form Π(M, ζ, {px}), where
M, ζ, {px} are the same as in formula (42).

9.4 Proof of Lemma 5

Let us start with the case when ϕ ≥ 0. Inequality (63) is evident for a
set of nodes η = {ξ1, ξ2, ξ3}. We assume that (63) holds for all sets η(m) =
{ξ1, . . . , ξm} of nodes with 2 ≤ m ≤ n, and prove the statement of the Lemma
for a vertex set V (σ) = η(n+1) = {ξ0, . . . , ξn} using the induction assumption.

We note first that κT
σ defined by (61) can be rewritten for any given

connected graph σ with a vertex set V (σ) = η(n+1) as

κT
σ =

k∏
i=1

κT
σi

∏
ξj∈mi

(
e−α ΦT (ξ0,ξj) − 1

)
. (150)
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Here σi, i = 1, . . . , k are connected subgraphs of the graph σ with a vertex
set V (σi) ⊆ η(n) = {ξ1, . . . , ξn}, such that σ1, . . . , σk form a decomposition of
the rest of σ after removing all edges incident to the node ξ0, and mi ⊆ V (σi)
is a subset of V (σi) governing a subset of incident to ξ0 edges with ends from
V (σi).

Then using (150) we have

∑(η(n+1))

σ
κT

σ =
n∑

k=1

∑(η(n))

{η1,...,ηk}

k∏
i=1

 ∑
σi: V (σi)=ηi

κT
σi

∑
mi⊆ηi,mi 6=∅

∏
ξj∈mi

(
e−α ΦT (ξ0,ξj) − 1

) ≤

n∑
k=1

∑(η(n))

{η1,...,ηk}

k∏
i=1

 ∑
Ti: V (Ti)=ηi

∏
〈ξα,ξβ〉∈Ti

∣∣∣e−αΦT (ξα,ξβ) − 1
∣∣∣ ∑

ξj∈ηi

∣∣∣e−α ΦT (ξ0,ξj) − 1
∣∣∣
 ,

(151)
where in (151) the internal sum is taken over all trees Ti with vertex set ηi.
In the last bound we applied the induction assumption, the identity∑

m⊆η,m 6=∅

∏
ξ∈m

(
e−α ΦT (ξ0,ξ) − 1

)
= e

−α
P
ξ∈η

ΦT (ξ0,ξ)

− 1

and the following inequlity∣∣∣∣e−α
P
ξ∈η

ΦT (ξ0,ξ)

− 1

∣∣∣∣ ≤ ∑
ξ∈η

∣∣∣e−αΦT (ξ0,ξ) − 1
∣∣∣ (152)

which is valid for ΦT ≥ 0.
Connecting all possible trees from Ti, i = 1, . . . , k with all possible edges

(ξ0, ξj), ξj ∈ ηi from the last sum in (151) we obtain all possible trees T with
V (T ) = η(n+1), consequently the sum in (151) is the same as∑(η(n+1))

T

∏
〈ξi,ξj〉∈T

∣∣∣(e−αΦT (ξi,ξj) − 1
)∣∣∣ .
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If ϕ is a general stable potential, then the Ruelle condition for n-points
configuration γn

U(γn) ≡
∑

{x,y}⊂γn

ϕ(x− y) ≥ −1

2
Bn

can be rewritten as a corresponding condition on rod configurations η ∈
Υ0(G0

Λ,T ): ∑
{ξ,ξ′}⊂η

Φ(ξ, ξ′) ≥ −1

2
B
∑
ξ∈η

l(ξ),

where l(ξ) is the length of the rod ξ. This estimate implies existence of such
ξ0 ∈ η that ∑

ξ∈η\ξ0

Φ(ξ0, ξ) ≥ −B l(ξ0). (153)

We take in the configuration η(n+1) such rod ξ0 ∈ η(n+1) which was indi-
cated in inequality (153), and prove the modification of inequality (152). Let
us consider a decomposition of η into two sub-configurations: η = η+ ∪ η−
with

η+ = {ξ ∈ η : ΦT (ξ0, ξ) ≥ 0}, η− = {ξ ∈ η : ΦT (ξ0, ξ) < 0}.

Then using inequalities (153) and (152) (the last one holds for ΦT ≥ 0) we
have ∣∣∣∣e−α

P
ξ∈η

ΦT (ξ0,ξ)

− 1

∣∣∣∣ ≤∣∣∣∣∣e−α
P

ξ∈η+∪η−
ΦT (ξ0,ξ)

− e
−α

P
ξ∈η+

ΦT (ξ0,ξ)
∣∣∣∣∣ +

∣∣∣∣∣e−α
P

ξ∈η+

ΦT (ξ0,ξ)

− 1

∣∣∣∣∣ ≤
e
−α

P
ξ∈η

ΦT (ξ0,ξ)

∣∣∣∣∣1− e
α

P
ξ∈η−

ΦT (ξ0,ξ)
∣∣∣∣∣ +

∣∣∣∣∣e−α
P

ξ∈η+

ΦT (ξ0,ξ)

− 1

∣∣∣∣∣ ≤
eαBl(ξ0)

∑
ξ∈η−

∣∣∣1− eαΦT (ξ0,ξ)
∣∣∣ +

∑
ξ∈η+

∣∣∣e−αΦT (ξ0,ξ) − 1
∣∣∣ ≤

eαBl(ξ0)
∑
ξ∈η

(
1− e−α|ΦT (ξ0,ξ)|

)
. (154)
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Repeating above reasoning under the induction assumption and revised esti-
mate (154) we obtain estimate (62) in the general case of a stable potential
ϕ.

Lemma is proved.
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