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Abstract

We study a Markov random process describing a muscle molecular
motor behavior. Every motor is either bound up with a thin filament
or unbound. In the bound state the motor creates a force proportional
to its displacement from the neutral position. In both states the motor
spend an exponential time depending on the state. The thin filament
moves at its velocity proportional to average of all displacements of
all motors.

We assume that the time which a motor stays at the bound state
does not depend on its displacement. Then one can find an exact
solution of a non-linear equation appearing in the limit of infinite
number of the motors.
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1 Introduction

Recent progress in the molecular motors study brought a wave of new models
and methods in theoretical considerations. The tools involved into considera-
tions are spread from biochemistry and biophysics to mathematics and prob-
ability theory. As examples, we would like to mention works [1, 2, 3, 8, 6].
This list contains only some papers from different areas.

We concentrate here on mathematical aspects of the problem and, more
precisely, we describe a probabilistic model of the muscle motor which leads
to a non-linear Markov process. The latter notion was introduced by E.P.Mc-
Kean [7]. Comparing with the usual case, in a non-linear Markov process
transition probabilities are related to a non-linear equation. With respect
to the probability theory, non-linear Markov processes play main role in the
modelling. Because of non-linearity, the model appears to have many effects
atypical for usual Markov processes that gives possibilities either to explain
experimentally observed properties of the motors or to predict new ones.
Following Howard’ book [10] we shall distinguish two classes of the molecular
motors: processive motors and non-processive ones. The distinction between
these classes leads to different types of the models, however differences are
relative. Perhaps one can construct a general model yielding all features of
both sorts of motors. We consider here a model of non-processive motors
which concerns motors involved in the muscle activity.

2 Model

2.1 Informal description

Main components of a molecular motor complex are protein molecules called
the motors themselves which perform a motion along a molecule called fila-
ment (or microtubule) and playing a role of railway for the motors. At last,
there exists a cargo or back bond which play passive role of a relocatable
ingredient. As it can be extracted from the biochemical and biophysical lit-
erature, there are several kinds of the motor protein molecules involved in
slightly different types of movements.

In this work we study the motors producing muscle motions. Those motors
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are fixed by one of their end at a long protein molecule called the thick
filament. The thick filament is fastened in a cell. Thus the motors do not
move with respect to the cell they are located in. The second end of the
motors may be attached or not attached to a thin filament, another long
molecule in the cell disposed parallel to the thick filament. If both ends of
a motor are attached then the motor can cause a tension acting on the thin
filament if the end positions are not opposite each other. This tension is
the cause of the thin filament motion. The binding to and unbinding out
the thin filament of any motor are random. When binding a motor chooses
a point on the thin filament to attach randomly. The tension the motor
creates is defined by a displacement value between two ends of the motor.
Therefore all bounded motors create different tensions. It is common to take
the velocity of the thin filament moving proportional to the average of all
bounded filament tensions.

2.2 Formal description

The formalization of the muscle motor construction informally described
above can be done in the following way. We introduce a random process
of interacted particles. Every particle represent a motor. Therefore we lo-
cate the particles at points of Z.

Let us start with a random process ζk(t) describing the binding and unbinding
process the particle located at k ∈ Z. The state space is the two-point set
D = {0, 1}, where 0 means the unbinding and 1 means the binding particle
state. Then the infinitesimal operator of ζk(t) is the following 2× 2 matrix

LD
k =

(
−cb cb

cu −cu

)
,

where Pr
(
ζk(t) = 1

/
ζk(0) = 0

)
= cbt + o(t) and Pr

(
ζk(t) = 0

/
ζk(0) = 1

)
=

cut + o(t).

Then the probability Pk(t) of kh motor to be unbound at the time t satisfies
the equation

dPk(t)

dt
= −cbPk(t) + cu(1− Pk(t)), (1)

which gives in the steady state

Pk =
cu

cb + cu

. (2)
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The state space X of kh motor consists of pairs (z, ε) where z ∈ R if ε = 1
and z = 0 if ε = 0. As before the parameter ε indicates the bounded (if
ε = 1) and unbounded (if ε = 0) positions of the particle. We define a random
process ξk(t) describing binding and unbinding actions and the displacement
when binding, including the deterministic moving of a single particle. Let
b(x) be a distribution density such that

∫
xb(x)dx > 0. The infinitesimal

operator of the process defining the behaviour of kth particle is

Lkf(x, ε) = cb

[∫
b(z)f(z, 1− ε)dz − f(x, ε)

]
(1− ε)− (3)

κx
d

dx
f(x, ε)ε + cu [f(k, 1− ε)− f(0, ε)] ε,

Now a constant cb > 0 is the rate of the particle to jump to a point of R×{1}
from the state (0, 0), that is Pr

(
ζk(t) ∈ R× {1}

/
ζk = (0, 0)

)
= cbt + o(t). A

constant cu > 0 is the rate of the particle to jump to (0, 0) from any point
in R× {1}. That means that the rate of unbinding does not depend on the
point x ∈ R where the particle was attached at the unbinding moment. The
function b(x) is the probability density of the particle to bind at the point x
if the particle was at (0, 0). Here x is the displacement of the particle with
respect to its neutral position. Constant κ is positive. It is the tension of
the single motor molecule. It can be seen from (5) that when the particle
is on R, that is ε = 1, then it is moving to the point 0 with the velocity
proportional to x.

For the density pk(x, t) of the particle to be on R we obtain the following
differential equation (see [12])

∂pk(x, t)

∂t
= cbb(x)Pk(t) + κ

∂

∂x

[
xpk(x, t)

]
− cupk(x, t), (4)

where Pk(t) = 1−
∫

pk(x, t)dx. The probability Pk(t) to be unbound satisfies
(1).

Next we introduce the interaction between the particles. We cannot express
the interaction in a Hamiltonian form. Instead we introduce a deterministic
dynamic of all bound particles such that particles dynamic is highly corre-
lated each to other. Moreover all particles are moving with the same velocity.
To be more precise consider all particles in the interval [−N, N ] ⊂ Z and the
configuration space ΩN = X[−N,N ] of all particles in [−N, N ]. The space ΩN
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is a disjoint union of the sets Ωε−N ,...εN
=

∏
i Rεi . We can consider any prob-

ability distribution on ΩN as a collection of measures on spaces Ωε−N ,...εN
.

The generator of the process involving all particles from [−N, N ] is

L[−N,N ]f
(
(xk, εk), k = −N, ..., N

)
=

cb

N∑
k=−N

[∫
b(z)f

(
..., (xk−1, εk−1), (z, 1− εk), (xk+1, εk+1), ...

)
dz−

f
(
(xk, εk), k = −N, ..., N

)]
(1− εk)− (5)

+ cu

N∑
k=−N

[
f
(
..., (xk−1, εk−1), (k, 1− εk)(xk+1, εk+1), ...

)
−f

(
(xk, εk), k = −N, ..., N

)]
εk−

vN

N∑
k=−N

∂

∂xk

f
(
(xk, εk), k = −N, ..., N

)
εk,

where vN = κ 1
2N+1

∑N
k=−N xkεk − F . The term F in above formula means

the velocity which an external force adds to the common velocity v̂N =
1

2N+1

∑N
k=−N xkεk of all particles.

Further, we use the following notations. Let (ε−N , ..., εN) be fixed. Then
M0 = {i : −N ≤ i ≤ N, εi = 0} and M1 = (M0)c = {i : −N ≤ i ≤ N, εi =
1}.
From now we shall denote the vector ((xk, εk), k = −N, ..., N) by X.

For a configuration X = ((xk, εk), k = −N, ..., N) and i ∈ M1 define the
configuration uiX for which the pair (xi, 1) is substituted by (0, 0); for i ∈ M0

and x ∈ R define bx
i X as the configuration for which (0, εi = 0) is substituted

by (x, 1).

Let pN(X, t) be the measure density of all bound particles to be at the given
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points at the time moment t. Then pN(X, t) satisfies the equation

∂pN(X, t)

∂t
+

N∑
i=−N

∂

∂xi

[
εivNpN(X, t)

]
=

cb

N∑
i=−N

εib(xi)p
N(uiX, t) + cu

N∑
i=−N

(1− εi)

∫
pN(bx

i X, t)dx− (6)[
cu

N∑
i=−N

εi + cb

N∑
i=−N

(1− εi)

]
pN(X, t).

Let pN
k (x, t) be the probability density of the k-th particle to be at the point

x at the time moment t.

We are interested in the behavior of the motor system for the large number
of motors which formally corresponds to the limit N →∞. In this limit we
can substitute vN by its expectation value

v =
κ

2N + 1

N∑
i=−N

∫
xpN

k (x, t)dx− F (7)

Plugging in v into (6) we get the nonlinear equation corresponding to non-
linear Markov process describing interacting motors.

Let us denote by

νX(dx) =
1

2N + 1

N∑
i=−N

εiδxi
(dx)

the random measure describing the motor distribution on the thin filament.
The expectation of this random measure is called the first correlation measure
and its density is called the first correlation function, n(x, t). It is evident
that

n(x, t) =
1

2N + 1

N∑
k=−N

pN
k (x, t). (8)

For the non-linear Markov process defined above the first correlation function
n(x, t) satisfies the equation

∂n(x, t)

∂t
+ v

∂n(x, t)

∂x
= cbb(x)(1−N(t))− cun(x, t), (9)
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where N(t) =
∫

n(x, t)dx and v as above is

v = −κ
∫

xn(x, t)dx + F (10)

It follows from (9) that N(t) and v(t) satisfy the equations

Ṅ = cb(1−N)− cuN (11)

v̇ = −κ(vN + cb(1−N)m1) + cu(F − v),

where m1 =
∫

xb(x)dx. Evidently for t → ∞ N and v tend to their limit
values

N =
cb

cb + cu

, (12)

v = −κNm1 − F

1 + κ N
cu

= −κcbm1 − F (cb + cu)

cb + cu + κ cb

cu

Let us study the dependence of v on cu and cb. It is clear that v → 0 as
cu → 0, and v → F as cu →∞. If κm1 − F > 0 then dv

dcu
< 0 at cu = 0 and

hence there exists a value co
u where v is negative and maximal in absolute

value |v| = vo. It is achieved at

co
u =

√
F 2

m2
1

+ cb
κm1 − F

m1

− F

m1

(13)

If there is no the external force F = 0 then co
u =

√
cbκ and

vo =

√
cbm1

2
√

κ +
√

cb

. (14)

In the case F > 0 the velocity becomes positive for large the unbound inten-
sity cu > cb(κm1−F )

F
.

Recall that all above values was obtained under the condition of small ex-
ternal force F < κm1. If F > κm1 then the velocity is positive at any
cu.
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Let us consider more general case when the returning force depends on x
non-linearly, so instead of (10) we have

v =

∫
ϕ(x)n(x, t)dx + F, (15)

where ϕ(x) is some non-linear function.

Now we substitute the expression (15) in the equation (9). The expression
for the time derivative of v is

v̇ =

∫
ϕṅdx = −v

∫
ϕ

∂n

∂x
dx + cb(1−N(t))

∫
ϕb(x)dx− cu(v − F ). (16)

Integrating by parts we obtain from the first term v
∫

ϕ
′
(x)n(x, t)dx. Insert-

ing the new variable w =
∫

ϕ
′
(x)n(x, t)dx we have ẇ =

∫
ϕ
′
(x)ṅ(x, t)dx

and using (9) again we get an expression for ẇ containing the integral∫
ϕ
′′
(x)n(x, t)dx.

If ϕ(x) is a polynomial then repeating this procedure we finally obtain a
finite system of ordinary differential equations.

The similar substitution is valid if ϕ(x) is any trigonometric polynomial or
more generally any linear combination of quasi-polynomials (i.e. usual poly-
nomials multiplied by sinusoidal and exponential functions [13]). Consider
the simplest case ϕ(x) = −κ sin(αx). Denoting w =

∫
cos(αx)n(x, t)dx and

mc =
∫

cos(αx)b(x)dx, ms =
∫

sin(αx)b(x)dx we have

Ṅ =cb(1−N)− cuN

v̇ =− καvw − κcb(1−N)ms + cu(F − v) (17)

ẇ =
αv(v − F )

κ
+ cb(1−N)mc − cuw.

For any stationary point of this system the value N is given by (12) as
before, and v and w can be found from v̇ = ẇ = 0. It is interesting to find
the number of the stationary points of (17). Also it is interesting to study
the limit cycles for this system if they exist.

For the case ϕ(x) = −κ sinh(αx) the equation for N, v, w are similar to (17)

with the only difference in the sign before the term αv(v−F )
κ .
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