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Abstract

It is shown that any convex combination of harmonic measures µU1
x , . . . , µUk

x ,
where U1, . . . , Uk are relatively compact open neighborhoods of a given point
x ∈ Rd, d ≥ 2, can be approximated by a sequence (µWn

x )n∈N of harmonic
measures such that each Wn is an open neighborhood of x in U1 ∪ · · · ∪ Uk.

This answers a question raised in connection with Jensen measures. More-
over, it implies that, for every Green domain X containing x, the extremal
representing measures for x with respect to the convex cone of potentials on X

(these measures are obtained by balayage of the Dirac measure at x on Borel
subsets of X) are dense in the compact convex set of all representing measures.

This is achieved approximating balayage on open sets by balayage on
unions of balls which are pairwise disjoint and very small with respect to
their mutual distances and then reducing the size of these balls in a suitable
manner.

These results, which are presented simultaneously for the classical poten-
tial theory and for the theory of Riesz potentials, can be sharpened if the com-
plements or the boundaries of the open sets have a capacity doubling property.
The methods developed for this purpose (continuous balayage on increasing
families of compact sets, approximation using scattered sets with small capac-
ity) finally lead to answers even in a very general potential-theoretic setting
covering a wide class of second order partial differential operators (uniformly
elliptic or in divergence form, or sums of squares of vector fields satisfying
Hörmander’s condition, for example, sub-Laplacians on stratified Lie alge-
bras).
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1 Introduction and main results

The original motivation for this paper is the following problem on harmonic measures
in classical potential theory.
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Question 1. Can every convex combination of harmonic measures µU1
x , . . . , µUk

x ,
where U1, . . . , Uk are relatively compact open neighborhoods of a given point x ∈ Rd,
d ≥ 2, be approximated by a sequence (µWn

x )n∈N of harmonic measures such that
each Wn is an open neighborhood of x in U1 ∪ · · · ∪ Uk?

Here approximation is understood in the sense of weak convergence of measures,
that is, pointwise convergence on continuous functions with compact support. In
a slightly less demanding form (where the sets Wn are not required to be contained
in the union of the sets U1, . . . , Uk) this problem has been raised in [32, p. 229] and
[14, p. 32] as being essential for the understanding of Jensen measures.

We consider only dimensions d ≥ 2, since the answer would of course be negative
on the real line. For every x ∈ Rd and r ≥ 0, let

U(x, r) := {y ∈ Rd : |y − x| < r} and B(x, r) := {y ∈ Rd : |y − x| ≤ r}.

It may help to illustrate Question 1 by a simple example. Let d = 2, U = U(0, 1),
V = U(0, R), R > 1, and λ ∈ (0, 1). Given n ∈ N, let

Cn := {(cos t, sin t) :
j

n
≤ t

2π
≤ j

n
+ γn, 0 ≤ j < n} and Wn := V \ Cn,

where, by continuity, we may choose γn ∈ (0, 1/n) in such a way that µWn
0 (Cn) = λ

and hence µWn
0 (∂V ) = 1 − λ (see Figure 1). Since µWn

0 is obviously invariant under
rotations by the angle 2π/n, we then obtain that

lim
n→∞

µWn
0 = λµU

0 + (1 − λ)µV
0 .

U

x

V

Wn

x

Figure 1. A simple example

Let us note that, by the minimum principle, γn < λ/n. Moreover, due to the
recurrence in the plane, γn is very small if R is very large. In fact, for every R > 1,
limn→∞ nγn = 0 (cf. Proposition 8.1).

But how can we approximate λµU
x + (1 − λ)µV

x if x ∈ U \ {0}? How to proceed
in R3, if x = 0, U = U(0, 1), and V = U(0, R), R > 1?

A problem which is closely related to Question 1 can be formulated in terms
of representing measures. Let X be an open set in Rd such that Rd \ X is non-
polar, if d = 2. Let K(X) denote the linear space of all continuous real functions
on X with compact support, let M(X) be the set of all (positive) Radon measures
on X, and let P(X) denote the set of all continuous real potentials on X. Given
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x ∈ X, let Mx(P(X)) denote the set of all representing measures µ for x, that is,
of all measures µ ∈ M(X) such that µ(p) ≤ p(x) for every p ∈ P(X). In terms
of Brownian motion (Xt), starting at x and killed upon leaving X, µ ∈ Mx(P(X))
if and only if there is a stopping time T such that µ is the distribution of XT (see
[16, 19, 17]).

The extreme points of the convex set Mx(P(X)) have been identified almost
forty years ago [31]:

(1.1)
(

Mx(P(X))
)

e
= {εA

x : A Borel in X}.

In other words, the extreme points of Mx(P(X)) are the measures εA
x , A Borel in X,

obtained by reducing (with respect to X) the Dirac measure εx at x on A. Viewed
probabilistically, εA

x is the distribution of the process, starting at x, at the first entry
time DA := inf{t ≥ 0: Xt ∈ A} (for the analytic definition of εA

x see Section 2).
We note that, for every open subset U of X containing x, the measure εUc

x is the
harmonic measure µU

x .
The convex set Mx(P(X)) is compact and metrizable with respect to the topol-

ogy of weak convergence (see, for example, [6, p. 336]). We recall that, by definition,
a sequence (µn) in M(X) converges weakly to µ ∈ M(X) if limn→∞ µn(f) = µ(f)
for every f ∈ K(X).

The following question is certainly very natural. It remained without any answer
even after knowing (1.1).

Question 2. Is the set
(

Mx(P(X))
)

e
of extreme points dense in Mx(P(X))?

Since the set Hx(X) of harmonic measures εUc

x , U relatively compact open in X,
x ∈ U , is dense in

(

Mx(P(X))
)

e
(see Lemma 2.3), the Krein-Milman theorem

implies that Mx(P(X)) is the closed convex hull of Hx(X). Therefore a positive
answer to Question 1 immediately yields a positive answer to Question 2.

Our basic idea consists in approximating balayage on arbitrary sets by balayage
on finite families of balls which are very small with respect to their mutual distances
and then reducing the size of these balls in a suitable way. This approach works as
well for the theory of Riesz potentials related to the fractional Laplacian −(−∆)α/2

on Rd, 0 < α < 2 ∧ d. Therefore we shall also cover the case of Riesz potentials
from the very beginning. We recall that classical potential theory of the Laplacian
is the limiting case α = 2. The reader, who is interested in the classical case only,
may neglect this generality and will hardly notice any difference in the presentation
except for the additional discussion of the “Poisson kernel” for a ball with respect
to Riesz potentials (which has a density with respect to Lebesgue measure on the
complement of the ball). So we shall deal simultaneously with the following two
situations (for a more general potential-theoretic setting see Section 10):

• Classical case: α = 2, X is a non-empty open set in Rd, d ≥ 2, such thatRd \X is non-polar, if d = 2.

• Riesz potentials: α < 2, X is a non-empty open set in Rd, d ≥ 1, d > α.
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Given Y ⊂ X, Y c := X\Y will always denote the complement of Y with respect to X.
Let B(X) denote the σ-algebra of all Borel sets in X and let M(P(X)) be the set of
all ν ∈ M(X) such that ν(p) < ∞ for some strictly positive p ∈ P(X). Obviously,
every finite measure on X and hence every ν ∈ M(X) with compact support is
contained in M(P(X)). For all ν ∈ M(P(X)) and A ∈ B(X), let νA denote the
measure obtained reducing ν on A with respect to X. It can be defined by

νA :=

∫

εA
x dν(x).

Let k ∈ N, k ≥ 2, and

Λk := {λ ∈ [0, 1]k :
k

∑

j=1

λj = 1}.

The following main results (Theorem 1.1, Corollaries 1.2 and 1.4) immediately yield
positive answers to both Question 1 and Question 2.

THEOREM 1.1. Let ν ∈ M(P(X)), A1, . . . , Ak ∈ B(X), and λ ∈ Λk. Further, let
A0 be a Borel subset of A1∩· · ·∩Ak and let (Vn) be a sequence of open neighborhoods
of (A1 ∪ · · · ∪ Ak) \ A0 in X. Then there exist finite unions Cn of pairwise disjoint
closed balls in Vn, n ∈ N, such that

lim
n→∞

νCn∪A0 =

k
∑

j=1

λjν
Aj .

In the classical case we have the following consequence (see Figure 2).

COROLLARY 1.2. Let α = 2 (classical case), let U, V be open sets in X, and
suppose that ν ∈ M(P(X)) is supported by U ∩ V . Then, for every λ ∈ (0, 1),
there exist finite unions Cn of pairwise disjoint closed balls in a (1/n)-neighborhood
of (∂U ∩ V ) ∪ (∂V ∩ U) in U ∪ V such that

(1.2) lim
n→∞

ν((U∪V )\Cn)c

= λνUc

+ (1 − λ)νV c

.

ν

U

V

ν
Cn

Figure 2. Approximation in the classical case
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REMARK 1.3. If, in addition, the sets ∂U ∩ V and ∂V ∩U have a weak capacity
doubling property (see Section 9 ), then we may choose compact sets Cn in the union
of ∂U ∩ V and ∂V ∩ U such that (1.2) holds (see Figure 3 and Corollary 9.7 ).

A related notion of regularity, the capacity density condition, has been widely
investigated and used in various situations [1, 2, 3, 35, 12, 18, 30, 29]. It is easily
verified that the capacity doubling property is weaker (see Proposition 14.2). In fact,
a result in [30] implies that it is much weaker than the capacity density condition:
there exists a Cantor set K which is not thin at any of its points such that no point
of K satisfies the capacity density condition, whereas K has the capacity doubling
property at every point in K (see Proposition 14.3 ).

ν

U
C

2U

n1

Figure 3. Approximation using the weak capacity doubling property

It is known that, for any measure ν ∈ M(P(X)), the set

Mν(P(X)) := {µ ∈ M(P(X)) : µ(p) ≤ ν(p) for every p ∈ P(X)}

of representing measures for ν is a metrizable compact convex set and that the set
(

Mν(P(X))
)

e
of its extreme points consists of all reduced measures νA, A ∈ B(X)

(see [31] or [6, VI.12.4]).

COROLLARY 1.4. For every ν ∈ M(P(X)), the set
(

Mν(P(X))
)

e
of extreme

points is dense in Mν(P(X)).

REMARK 1.5. Let us note that Corollary 1.4 has the following consequence re-
lated to Skorokhod stopping (see [33, 16, 19, 17, 5]). Let ν be a probability measure
on X and let (Xt) be Brownian motion or an α-stable process on X with initial dis-
tribution ν. Then, for every measure µ ∈ Mν(P(X)), there exists a sequence (Tn)
of hitting times at relatively compact open subsets Un of X such that the distribu-
tions P ν

XTn
converge weakly to µ as n→ ∞.

In fact, Theorem 1.1 implies a more general statement on representing measures.
Given a set W in X which is open or, more generally, is finely open and Borel, let
S(W ) denote the set of all continuous functions on X which are P(X)–bounded
(that is, bounded in modulus by some p ∈ P(X)) and (finely) superharmonic on W .
Of course, P(X) ⊂ S(W ). Let ν ∈ M(P(X)) such that ν is supported by W and
ν(p) <∞ for every p ∈ P(X). Let Mν(S(W )) denote the set of all µ ∈ M(P(X))
such that µ(s) ≤ ν(s) for every s ∈ S(W ). If W = X, then S(X) = P(X) and
therefore Mν(S(X)) = Mν(P(X)).
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If ν = εx, x ∈ X, it is known by [6, VII.9.5] that the extreme points of Mx(S(W ))
are the measures εA

x , where A ∈ B(X) contains W c (as customary, we write Mx

instead of Mεx). In fact, this holds for any ν ∈ M(P(X)) such that ν(p) < ∞ for
every p ∈ P(X). Then the set of extreme points of Mν(S(W )) consists of all νA,
A ∈ B(X), W c ⊂ A (see Section 13, where, in addition, various characterizations
of measures in Mν(S(W )) are given). So we obtain the following consequence of
Theorem 1.1.

COROLLARY 1.6. Let W be a finely open Borel set in X and let ν ∈ M(P(X))
such that ν(p) <∞ for every p ∈ P(X). Then

(

Mν(S(W ))
)

e
is dense in Mν(S(W )).

An important tool for the proof of Theorem 1.1 will be the use of families of
compact sets which are very small with respect to their mutual distances. Given
c > 1, we shall say that a family (Ki)i∈I of pairwise disjoint compact sets in X
is a c-Harnack family in X provided that, for each i ∈ I and all compact sets A
in the union of

⋃

j 6=iKj ,

εA
x ≤ c εA

y for all x, y ∈ Ki.

For every closed ball B with center x and radius r and every γ ∈ [0, 1], let
Bγ denote the downsized ball with center x and radius γr. For every c > 1, there
exists a ∈ (0, 1) such that, for every family (Bi)i∈I of pairwise disjoint closed balls
in X, the family (Ba

i )i∈I is a c-Harnack family (see Proposition 3.3).
The key to Theorem 1.1 is the following result on simultaneous dilations of closed

balls which may be of independent interest.

THEOREM 1.7. Let δ > 0 and let L1, . . . , Lk be pairwise disjoint sets such that
L1 ∪ · · · ∪ Lk is the union of a (1 + δ)-Harnack family of closed balls B1, . . . , Bm

in X.
Then, for every λ ∈ Λk and every measure ν ∈ M(P(X)) which does not charge

the centers of B1, . . . , Bm, there exist γ1, . . . , γm ∈ [0, 1] such that the union C of
the downsized balls Bγ1

1 , . . . , B
γm
m satisfies

νC(Bi) = (1 + δ)−1
k

∑

j=1

λjν
Lj (Bi) for every 1 ≤ i ≤ m.

Theorem 1.7 will be applied using balayage relative to an open subset W of X
and the fact that balayage on Borel sets can be approximated by balayage on (1+δ)-
Harnack families of balls (see Proposition 5.2).

To establish the result stated in Remark 1.3, that is, to obtain an approximation
using compact sets Cn contained in the boundaries of the open sets U, V , we can no
longer use balls. We have to enlarge our toolkit to deal with arbitrary compact sets
instead of balls.

In Section 7, we shall see that, for any compact set K in X not containing atoms
of the measure ν, there is an increasing family (Kt)0≤t≤1 of compact sets in K such
that νKt

, 0 ≤ t ≤ 1, varies continuously from 0 to νK (Proposition 7.1). This will
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allow us to obtain an analogue of Theorem 1.7, dealing with downsizing of disjoint
balls, for arbitrary Harnack families.

Assuming a capacity doubling property of the relevant part of the boundaries
and proving a Faraday cage result, we obtain the necessary approximation of the
balayage on U c and V c using Harnack families contained in ∂U ∩ V and ∂V ∩ U ,
respectively (Sections 8 and 9).

The methods developed in these three sections are general enough to be ap-
plied to harmonic spaces (Section 12). This will cover second order elliptic partial
differential operators of the form

d
∑

i,j=1

aij
∂2

∂xi∂xj
+

d
∑

i=1

bi
∂

∂xi
+ c or

d
∑

j=1

∂

∂xj

(

d
∑

i=1

aij
∂

∂xi
+ di

)

+

d
∑

i=1

bi
∂

∂xi
+ c,

and even degenerate operators
∑r

j=1X
2
j + Y , where the vector fields X1, . . . , Xr

satisfy Hörmander’s condition of hypoellipticity (see Examples 10.1). Additional
ingredients are intrinsic metrics on harmonic spaces related to Green functions (Sec-
tion 10) and corresponding scaling invariant Harnack’s inequalities obtained using
Moser’s trick (Section 11).

In the last Section, we discuss the relation between the capacity density condi-
tion, which has been studied extensively in the literature, and the weak capacity
doubling property we use in Section 9.

2 Some facts on reduced measures

In this section, we collect some basic facts we shall need. To begin with, let us recall
the analytic definition of reduced measures (see [6, Chapter VI] for further details).
For every open set U in X, let S+(U) denote the set of all superharmonic functions
v ≥ 0 on U . Given ν ∈ M(P(X)) and A ∈ B(X), let νA denote the measure
obtained reducing ν on A with respect to X, that is, for every v ∈ S+(X),

νA(v) :=

∫

v dνA =

∫

RA
v dν,

where RA
v is the infimum of all functions in S+(X) majorizing v on A.

We stress that in [6] such a reduced measure is denoted by
◦
νA, whereas there

νA denotes the swept measure defined by νA(v) =
∫

R̂A
v dν, v ∈ S+(X), using the

regularized function x 7→ R̂A
v (x) := lim infy→xR

A
v (y).

If A is open, then RA
v ∈ S+(X) for every v ∈ S+(X). Of course, νA(v) ≤ ν(v).

Moreover,

(2.1) νA =

∫

εA
x dν(x) = ν|A + (ν|Ac)A

and νA is supported by the closure of A. Further, by [6, VI.1.7],

(2.2) RAn
v ↑ RA

v ,
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whenever A1, A2, . . . are subsets of X such that An ↑ A.
Let Pν(X) denote the set of all q ∈ P(X) such that ν(q) <∞.

LEMMA 2.1. For all ν ∈ M(P(X)) and σ1, σ2, . . . , σ∞ ∈ Mν(P(X)) the following
holds. If limn→∞ σn = σ∞, then limn→∞ σn(p) = σ∞(p) for every p ∈ Pν(X). Con-
versely, there exists a sequence (qm) in Pν(X) such that limn→∞ σn = σ∞ provided
limn→∞ σn(qm) = σ∞(qm) for every m ∈ N.

Proof. Let p ∈ Pν(X). There exists a strictly positive q ∈ Pν(X) such that p/q
vanishes at infinity (see [6, p. 321]). Let ε > 0 and f := (p−εq)+. Then f ∈ K+(X)
and f ≤ p ≤ f + εq. So, for every n ∈ N ∪ {∞},

σn(f) ≤ σn(p) ≤ σn(f) + εσn(q) ≤ σn(f) + εν(q)

and therefore |σn(p) − σ∞(p)| < εν(q).
The converse follows from the separability of K(X) and a standard approximation

result (see [6, I.1.3]).

A potential p ∈ P(X) is called strict provided that ρ = ν, whenever ρ, ν ∈ M(X)
such that ρ(p) = ν(p) < ∞ and ρ(q) ≤ ν(q) for every q ∈ P(X). For every
ν ∈ M(P(X)), there exists a strict p ∈ Pν(X) (see [6, p. 321]). The following result
on convergence of reduced measures will be very useful.

LEMMA 2.2. Let ν ∈ M(P(X)) and let A,A1, A2, . . . ∈ B(X) such that

lim
n→∞

νAn∩A(p) = lim
n→∞

νAn∪A(p) = νA(p)

for some strict p ∈ Pν(X). Then limn→∞ νAn = νA .

Proof. Of course, limn→∞ νAn(p) = νA(p), since νAn∩A(p) ≤ νAn(p) ≤ νAn∪A(p) for
every n ∈ N. Since Mν(P(X)) is a metrizable compact set, we may assume without
loss of generality that the sequences (νAn∩A), (νAn), and (νAn∪A) are convergent. Let

ρ := lim
n→∞

νAn∩A, σ := lim
n→∞

νAn , τ := lim
n→∞

νAn∪A.

By our assumption and Lemma 2.1,

ρ(p) = σ(p) = τ(p) = νA(p) ≤ ν(p) <∞.

Let q ∈ P(X), m ∈ N, and qm := q ∧ (mp). Then ν(qm) ≤ mν(p) <∞,

νAn∩A(qm) ≤ νA(qm) ≤ νAn∪A(qm), νAn∩A(qm) ≤ νAn(qm) ≤ νAn∪A(qm).

Hence, by Lemma 2.1,

ρ(qm) ≤ νA(qm) ≤ τ(qm) and ρ(qm) ≤ σ(qm) ≤ τ(qm).

Letting m tend to infinity, we obtain that

ρ(q) ≤ νA(q) ≤ τ(q) and ρ(q) ≤ σ(q) ≤ τ(q).

Thus ρ = σ = τ = νA, since p is strict.
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LEMMA 2.3. For all ν ∈ M(P(X)) and A ∈ B(X), there exists a sequence (Kn)
of compact sets in A and a sequence (Vn) of open neighborhoods of A in X such that

(2.3) lim
n→∞

νKn = lim
n→∞

νVn = νA.

In particular, for all x ∈ X and A ∈ B(X), there exists a sequence (Un) of relatively
compact open neighborhoods of x in X such that

(2.4) lim
n→∞

εUc
n

x = εA
x .

Proof. The first part follows immediately from [6, VI.1.9].
So let x ∈ X and A ∈ B(X). By (2.3), it suffices to consider the case, where A

is compact. Let (Wn) be an increasing sequence of relatively compact open neigh-
borhoods of x in X such that

⋃

n∈NWn = X and let Un := Wn \ A, n ∈ N. Let
q ∈ P(X). For every n ∈ N,

RA
q ≤ RUc

n
q = RA∪W c

n
q ≤ RA

q +RW c
n

q ,

where limn→∞R
W c

n
q = 0, since the greatest harmonic minorant of q is 0. Evaluating

at x, we hence see that limn→∞ ε
Uc

n
x (q) = εA

x (q). So (2.4) holds.

LEMMA 2.4. Let Ã, A,B ∈ B(X) such that Ã ⊂ A, and let q ∈ P(X). Then

0 ≤ RA∪B
q − RÃ∪B

q ≤ RA
q − RÃ

q .

Proof. By Lemma 2.3, it suffices to show that, for all open sets Ũ , U, V and all
compact sets K̃,K, L in X such that K̃ ⊂ Ũ ⊂ U , K̃ ⊂ K ⊂ U , and L ⊂ V ,

(2.5) w := RŨ∪V
q +RU

q − RK∪L
q −RK̃

q ≥ 0.

If x ∈ K, then w(x) = RŨ∪V
q (x) + q(x) − q(x) − RK̃

q (x) ≥ 0. If x ∈ L, then

w(x) = q(x) + RU
q (x) − q(x) − RK̃

q (x) ≥ 0. So w ≥ 0 on K ∪ L. By [6, VI.2.6],
the function w is superharmonic on X \ (K ∪ L) and lower semicontinuous on X.
Therefore w ≥ 0 on X by the minimum principle.

If ν ∈ M(P(X)), x ∈ X, and r > 0 such that B(x, r) ⊂ X, then νU(x,r) = νB(x,r)

(see [6, pp. 276, 277]) and hence, by Lemma 2.4, for every A ∈ B(X),

(2.6) νA∪U(x,r) = νA∪B(x,r).

LEMMA 2.5. Let ν ∈ M(P(X)) and A,B ∈ B(X). Then

(2.7) νB = (νA∪B)B = νA∪B|B + (νA∪B|Bc)B.

Moreover, (νA)B(X) ≤ νB(X).
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Proof. Let ρ := νA∪B. By Lemma 2.3, there exists a sequence (Vn) of open neigh-
borhoods of B such that limn→∞ νVn = νB and limn→∞ ρVn = ρB. Let q ∈ P(X).
Trivially,

RB
q ≤ RA∪B

RVn
q

≤ RVn
q (n ∈ N).

Integrating with respect to ν we obtain that, for every n ∈ N,

νB(q) ≤ ρ(RVn
q ) ≤ νVn(q),

where ρ(RVn
q ) = ρVn(q). Letting n tend to ∞, we hence see that νB(q) = ρB(q)

which together with (2.1) proves (2.7).
To prove that (νA)B(X) ≤ νB(X) we may assume that B is relatively compact

(see (2.2)). Then we may suppose that all sets Vn are contained in a compact
neighborhood K of B. For every n ∈ N, (νA)B(X) = νA(RB

1 ) ≤ νA(RVn
1 ) ≤

ν(RVn
1 ) = νVn(X). Since the measures νVn are supported by K, we finally conclude

that (νA)B(X) ≤ νB(X).

In particular, formula (2.7) on iterated reduction of measures will be used again
and again. In the classical case and for ν = εx, A,B closed, and x ∈ (A ∪ B)c,
it is equivalent to the following property of the Perron-Wiener-Brelot solution to
the generalized Dirichlet problem for the open sets U := Bc and V := (A ∪ B)c.
If ϕ is a continuous P(X)-bounded function on the boundary ∂U , then the PWB-
solution h for U and ϕ coincides on V with the PWB-solution for V and the boundary
function ψ, where ψ = ϕ on ∂U ∩∂V and ψ = h on U ∩∂V (see [4, Theorem 6.3.6]).

Let us also note that the strong Markov property of the corresponding process
and a consideration of the entry times involved immediately would yield a proba-
bilistic proof of (2.7).

3 Harnack families of closed balls

We recall the following definition from the Introduction. Given c > 1, a family
(Ki)i∈I of pairwise disjoint compact sets in X is a c-Harnack family in X provided
that, for each i ∈ I and all compact sets A in

⋃

j 6=iKj ,

(3.1) εA
x ≤ c εA

y for all x, y ∈ Ki.

For later use of (3.1), let us observe the following.

LEMMA 3.1. Let A,B ∈ B(X) and c > 1 such that εA
x ≤ c εA

y for all x, y ∈ B.
Then, for all measures σ, τ which are supported by B,

(3.2) σ(B)τA ≤ cτ(B)σA.

Proof. Fixing y ∈ B and integrating the inequality εA
x ≤ c εA

y with respect to τ ,
we obtain that τA ≤ cτ(B)εA

y . Integrating next with respect to σ, (3.2) follows.

The following result is useful for the discussion of examples.
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LEMMA 3.2. Let c > 1 and let (Ki)i∈I be a family of compact sets in X such that
there exist pairwise disjoint open neighborhoods Vi of Ki, i ∈ I, which are relatively
compact in X and satisfy

(3.3) ε
V c

i
x ≤ c ε

V c
i

y for all x, y ∈ Ki.

Then (Ki)i∈I is a c-Harnack family in X.

Proof. Let i ∈ I and let A be a closed subset of
⋃

j 6=iKj . Defining σx := ε
V c

i
x we know

by (2.7) that

(3.4) εA
x = σA

x (x ∈ Ki).

Obviously, (3.1) follows from (3.3) and (3.4).

We recall that, for every a ∈ [0, 1] and every closed ball B in Rd having center xB

and radius rB, we denote by Ba the ball obtained by scaling of B with the factor a,
that is,

Ba := xB + a(B − xB).

PROPOSITION 3.3. Let c > 1 and a ∈ (0, 1) such that (1+a)d−α
2 ≤ c(1−a)d+ α

2 .
Let V be the interior of a closed ball B contained in X. Then εV c

x ≤ c εV c

y for
all x, y ∈ Ba.

In particular, for every family (Bi)i∈I of pairwise disjoint closed balls in X, the
downsized balls Ba

i , i ∈ I, form a c-Harnack family in X.

Proof. In the classical case α = 2, the harmonic measure εV c

x has the Poisson density

ρV
x (z) = rd−2

B (r2
B − |x− xB |2)|x− z|−d (z ∈ ∂B)

with respect to normalized surface measure on ∂B. For Riesz potentials (the case
0 < α < 2), εV c

x has a density ρV
x with respect to Lebesgue measure on Bc (see

[6, p. 192 and VI.2.9]). More precisely, there exists cα > 0 such that

ρV
x (z) = cα

(r2
B − |x− xB|2)α/2

(|z − xB|2 − r2
B)α/2

|z − x|−d (z ∈ Bc).

If a ∈ (0, 1) and x, y ∈ Ba, then in both cases

(3.5)
ρV

x (z)

ρV
y (z)

≤ 1

(1 − a2)α/2

(1 + a)d

(1 − a)d
=

(1 + a)d−α
2

(1 − a)d+ α
2

≤ c

and hence εV c

x ≤ c εV c

y . An application of Lemma 3.2 finishes the proof.
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4 Simultaneous dilation of disjoint balls

Let A be a union of disjoint closed balls B1, . . . , Bm in X and let us suppose that
ν is a measure in M(P(X)) which does not charge the set

MA := {xB1 , . . . , xBm}

of the centers of the balls B1, . . . , Bm. Moreover, we define

At := Bt1
1 ∪ · · · ∪ Btm

m , t = (t1, . . . , tm) ∈ [0, 1]m.

LEMMA 4.1. The mapping t 7→ νAt is continuous on [0, 1]m.

Proof. Let p ∈ Pν(X) be strict. By (2.3), (2.2), and (2.6),

(4.1) νAt(p) = lim
t′↓t

νAt′ (p) = lim
t′↑t

νAt′ (p).

Since As ∪ At = As∨t and As ∩ At = As∧t, an application of Lemma 2.2 yields that
lims→t ν

As = νAt .

LEMMA 4.2. Let γ1, . . . , γm ∈ [0,∞) and

Γ := {t ∈ [0, 1]m : νAt(Bi) ≤ γi, 1 ≤ i ≤ m}.

Then there exists s ∈ Γ such that s ≥ t for every t ∈ Γ. Moreover, νAs(Bi) = γi for
every i ∈ {1, . . . , m} such that si < 1.

Proof. Let us note first that νAt(Bi) = νAt(Bti
i ) for every t ∈ Γ and for every

1 ≤ i ≤ m, since νAt is supported by the subset At of A.
0. Of course, (0, . . . , 0) ∈ Γ, since ν(MA) = 0.
1. If t, t̃ ∈ Γ, then t ∨ t̃ ∈ Γ. Indeed, let us fix 1 ≤ i ≤ m. We may assume

without loss of generality that ti ≥ t̃i. Since At ⊂ At∨t̃, we conclude by (2.7) that

νAt∨t̃(Bti∨t̃i
i ) = νAt∨t̃(Bti

i ) ≤ νAt(Bti
i ) ≤ γi.

By Lemma 4.1, for every f ∈ K(X), the mapping t 7→ νAt(f) is continuous. Since
the closed balls B1, . . . , Bm are disjoint, we obtain that the mapping

t 7→
(

νAt(B1), . . . , ν
At(Bm)

)

is continuous on [0, 1]m. Therefore Γ is closed.
2. Combining the previous two parts of the proof, we see that

s := (sup
t∈Γ

t1, . . . , sup
t∈Γ

tm) ∈ Γ.

Of course, s ≥ t for every t ∈ Γ.
To finish the proof, let us consider i ∈ {1, . . . , m} such that si < 1 and suppose

that νAs(Bi) < γi. Let us define s̃ := (s1, . . . , si−1, b, si+1, . . . , sm), where si < b ≤ 1.
By continuity, we may choose b in such a way that νAs̃(Bi) < γi. Since As ⊂ As̃,
we obtain by (2.7) that νAs̃(B

sj

j ) ≤ νAs(B
sj

j ) ≤ γj for every j ∈ {1, . . . , m}, j 6= i.
Thus s̃ ∈ Γ, s̃ ≤ s, b = s̃i ≤ si, a contradiction.
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Let us note the following simple consequence.

PROPOSITION 4.3. Let β1, . . . , βm be arbitrary numbers in [0, 1]. Then there
exist s1, . . . , sm ∈ [0, 1] such that the union C of the scaled balls Bs1

1 , . . . , B
sm
m satisfies

νC(Bi) = βiν
A(Bi) for every 1 ≤ i ≤ m.

Proof. It suffices to take γi := βiν
A(Bi), 1 ≤ i ≤ m, and to choose s = (s1, . . . , sm)

in [0, 1]m according to Lemma 4.2. Then νC(Bi) ≤ βiν
A(Bi) for all 1 ≤ i ≤ m.

Furthermore, equality holds whenever si < 1. If, however, i ∈ {1, . . . , m} such that
si = 1, then νC(Bi) ≥ νA(Bi) by (2.7) whence as well νC(Bi) ≥ βiν

A(Bi) (and
βi = 1 unless νA(Bi) = 0).

Here is the key to Theorem 1.1 (cf. Theorem 1.7).

THEOREM 4.4. Let δ > 0 and let L1, . . . , Lk be pairwise disjoint sets such that
L1 ∪ · · · ∪ Lk is the union of a (1 + δ)-Harnack family of closed balls B1, . . . , Bm

in X such that ν ∈ M(P(X)) does not charge the centers of B1, . . . , Bm. Moreover,
let λ ∈ Λk and β1, . . . , βm ∈ [0, (1 + δ)−1].

Then there exist s1, . . . , sm ∈ [0, 1] such that C := Bs1
1 ∪ · · · ∪ Bsm

m satisfies

(4.2) νC(Bi) = βi

k
∑

j=1

λjν
Lj (Bi) for every 1 ≤ i ≤ m.

Proof. Since the measures νLj are supported by Lj, the sum on the right side of (4.2)
reduces to the term λjν

Lj (Bi) if Bi ⊂ Lj . For every 1 ≤ j ≤ k, let Ij denote the set
of all 1 ≤ i ≤ m such that Bi ⊂ Lj . Of course, I1, . . . , Ik is a partition of {1, . . . , m}.
By Lemma 4.2, there exists s ∈ [0, 1]m such that C := Bs1

1 ∪ · · · ∪Bsm
m satisfies

(4.3) νC(Bi) ≤ βiλjν
Lj (Bi) for all i ∈ Ij , 1 ≤ j ≤ k,

with equality whenever si < 1. We claim that we have

(4.4) νC(Bi) ≥ λjν
Lj (Bi), if si = 1, i ∈ Ij, 1 ≤ j ≤ k,

and this will clearly finish the proof, since βi < 1 (in fact, it shows even that si cannot
be equal to 1 for i ∈ Ij , unless λjν

Lj (Bi) = 0).
Indeed, let us suppose, for example, that sn = 1 for some n ∈ I1 and let I ′1 :=

I1 \ {n}. Then B := Bn = Bsn
n , that is, B is a subset of C, and we get by (2.7) that

(4.5) νB = νC |B + (νC |C\B)B,

where

(4.6) νC |C\B =
∑

i∈I′1

νC |Bi
+

k
∑

j=2

∑

i∈Ij

νC |Bi
.
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Since βi ≤ (1 + δ)−1, (4.3), (3.1), and Lemma 3.1 imply that

(νC |Bi
)B ≤ (1 + δ)βiλ1(ν

L1 |Bi
)B ≤ λ1(ν

L1 |Bi
)B for all i ∈ I ′1.

Similarly, (νC |Bi
)B ≤ λj(ν

Lj |Bi
)B for all i ∈ Ij, 2 ≤ j ≤ k. Taking sums we see that

∑

i∈I′1

(νC |Bi
)B ≤ λ1(ν

L1 |L1\B)B and
∑

i∈Ij

(νC |Bi
)B ≤ λj(ν

Lj |Lj
)B

for every 2 ≤ j ≤ k. Therefore, by (4.5) and (4.6),

(4.7) νB(B) ≤ νC(B) + λ1(ν
L1 |L1\B)B(B) +

k
∑

j=2

λj(ν
Lj |Lj

)B(B),

where (νLj |Lj
)B(B) ≤ νB(B) by Lemma 2.5. Hence

λ1ν
B(B) ≤ νC(B) + λ1(ν

L1 |L1\B)B(B).

By (2.7), νB = νL1 |B + (νL1 |L1\B)B. Thus λ1ν
L1(B) ≤ νC(B) and the proof is

finished.

5 Approximation by balayage on small balls

Balayage on open sets can be approximated by balayage on subsets consisting of
finitely many balls having radii which are arbitrarily small with respect to their
mutual distances (see Proposition 5.2). Since this does not seem to be widely known,
we include a complete proof.

Let a ∈ (0, 1/2) (for example, a = 10−P , P being the largest known prime
number) and let Z denote the union of all closed balls B(z, a), z ∈ Zd. For every
n ∈ N, let Z(n) be the union of all B(z, a), z ∈ Zd ∩B(0, n− 1) (see Figure 4), and
let vn denote the equilibrium potential of Z(n) with respect to U(0, n), that is,

vn := inf{v ∈ S+(U(0, n)) : v ≥ 1 on Z(n)}.

We extend each vn by 0 on Rd.

Figure 4. The set Z(6)
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LEMMA 5.1. The sequence (vn) is locally uniformly increasing to 1.

Proof. Each vn is superharmonic on U(0, n), and the sequence (vn) is increasing.
Therefore v := supn∈N vn is superharmonic on Rd. Of course, v = 1 on Z.

If d = 2, we conclude immediately that v is identically 1 and that hence (vn)
converges locally uniformly to 1.

So let us consider the case d ≥ 3. We claim first that v attains a minimum
on Rd. Indeed, let T denote the translation by some y ∈ Zd with |y| = 1. Then
vn+1 ≥ vn ◦ T and vn+1 ◦ T ≥ vn. Therefore v ◦ T = v. So there exists x ∈ [0, 1]d

such that v(x) ≤ v on Rd. Thus v is constant, v ≡ 1 on Rd.

PROPOSITION 5.2. Let U,W be open sets in X, U ⊂ W , x0 ∈ Rd, a ∈ (0, 1/2).
For every n ∈ N, let An denote the (finite) union of all balls B(z, a/n) such that
z ∈ (1/n)(x0 + Zd) and B(z, 1/n) ⊂ U ∩B(0, n). Then, for every q ∈ P(X),

(5.1) lim
n→∞

RAn∪W c

q = RU∪W c

q .

Proof. It suffices to consider a strictly positive q ∈ P(X). Let K be a compact set
in U and 0 < ε < 1. We intend to show that

(5.2) RAn∪W c

q ≥ (1 − ε)RK∪W c

q ,

if n is sufficiently large. Since q is continuous and strictly positive, there exists
r ∈ (0, 1) such that r < dist(K,Rd \ U) and, for every x ∈ K, q > (1 − ε/2)q(x)
on B(x, r). By Lemma 5.1, there exists n0 ∈ N, n0 >

√
d, such that K ⊂ B(0, n0)

and

(5.3) vn0 > 1 − ε

2
on [−1, 1]d.

Now let x ∈ K and n ∈ N such that n0 < nr/2. Then B(x, r) ⊂ B(0, n), since
x ∈ K ⊂ B(0, n0) and n0 + r < n. There exists a point x̃ ∈ x0 + Zd such that
nx− x̃ ∈ [−1, 1]d. We define

Ũ :=
1

n
(x̃+ U(0, n0)), Z̃ :=

1

n
(x̃+ Z(n0)), ṽ := inf{v ∈ S+(Ũ) : v ≥ 1 on Z̃}.

By translation and scaling invariance, (5.3) implies that

(5.4) ṽ > 1 − ε

2
on the set

1

n
(x̃+ [−1, 1]d)

containing the point x. Moreover, |(1/n)x̃ − x| ≤
√
d/n < r/2 and n0/n < r/2.

Therefore Ũ ⊂ B(x, r) and hence Z̃ ⊂ B(x, r) ∩ An, since x̃ + Zd = x0 + Zd and
B(x, r) ⊂ U∩B(0, n). Defining c := (1−ε/2)q(x) and knowing that q > c on B(x, r),
we conclude that

RAn
q ≥ cR

An∩B(x,r)
1 ≥ cRZ̃

1 ≥ cṽ on Ũ .

In particular, by (5.4),

RAn
q (x) ≥ cṽ(x) > c(1 − ε

2
) > (1 − ε)q(x).
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Since, of course, RAn∪W c

q = q ≥ (1 − ε)q on W c, we arrive at the inequality

(5.5) RAn∪W c

q ≥ (1 − ε)RK∪W c

q .

If (Kl) is a sequence of compact sets which is increasing to U , then RKl∪W c

q ↑ RU∪W c

q

by (2.2). Thus (5.1) follows, since trivially RU∪W c

q ≥ RAn∪W c

q .

COROLLARY 5.3. Let U1, . . . , Uk be open sets in W , ν ∈ M(P(X)), q ∈ Pν(X),
and δ > 0.

Then there exist compact sets Lj in Uj, 1 ≤ j ≤ k, such that L1, . . . , Lk are
pairwise disjoint, L1 ∪ · · · ∪ Lk is the union of a (1 + δ)-Harnack family of closed
balls B1, . . . , Bm of radius r ≤ δ in W , the measure ν does not charge the centers
of B1, . . . , Bm, and

(5.6)
∣

∣νLj∪W c

(q) − νUj∪W c

(q)
∣

∣ < δ.

Proof. Taking c := 1 + δ, we choose a ∈ (0, 1) according to Proposition 3.3. More-
over, we fix x0 ∈ Rd such that ν does not charge any of the sets (1/m)x0 + Qd,
m ∈ N, and define

xj := x0 +
( j

k
, 0, . . . , 0

)

, 1 ≤ j ≤ k.

Let M ∈ N and, for every 1 ≤ j ≤ k, let Lj be the (disjoint) union of all balls
B(x, a/(3kM)), x ∈ (1/M)(xj + Zd), such that B(x, 1/(3kM)) ⊂ Uj . By Proposi-
tion 5.2, the inequalities (5.6) will hold and r := a/(3kM) will be at most δ provided
that M is sufficiently large.

By definition, the sets L1, . . . , Lk are pairwise disjoint. By Proposition 3.3, the
set L1 ∪ · · · ∪Lk is the union of a (1 + δ)-Harnack family of closed balls B1, . . . , Bm

in W . The measure ν does not charge the centers of B1, . . . , Bm, since they are
contained in the set (1/M)x0 +Qd.

6 Approximation of convex combinations

of reduced measures

To prove Theorem 1.1 we shall first settle a special case.

THEOREM 6.1. Let W be an open set in X, let U1, . . . , Uk be open sets in W ,
ν ∈ M(P(X)), and λ ∈ Λk. Then there exist finite unions Cn, n ∈ N, of pairwise
disjoint closed balls in U1 ∪ · · · ∪ Uk such that

lim
n→∞

νCn∪W c

=
k

∑

j=1

λjν
Uj∪W c

.

Proof. Let Q be a finite subset of Pν(X) and η ∈ (0, 1]. By Lemma 2.1, it suffices
to construct a finite union C of pairwise disjoint closed balls in U1 ∪ · · · ∪ Uk such
that, for every q ∈ Q,

(6.1)
∣

∣νC∪W c

(q) −
k

∑

j=1

λjν
Uj∪W c

(q)
∣

∣ < η
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(having chosen (qm) according to Lemma 2.1, then, for every n ∈ N, we may consider
Q = {q1, . . . , qn} and η = 1/n).

1. Let p denote the sum of all q ∈ Q. By Lemma 2.3, we may assume without
loss of generality that U := U1 ∪ · · · ∪Uk is relatively compact in W and that p ≥ 1
on U . Let ε := (6ν(p) + 1)−1η. There exists 0 < δ ≤ ε such that

(6.2) |q(y) − q(z)| < ε, whenever q ∈ Q and y, z ∈ U, |y − z| < δ.

By Corollary 5.3, there exist compact sets Lj in Uj , 1 ≤ j ≤ k, such that L1, . . . , Lk

are pairwise disjoint, L1 ∪ · · · ∪Lk is the union of a (1 + δ)-Harnack family of closed
balls B1, . . . , Bm of radius r ≤ δ in W , the measure ν does not charge the centers
of B1, . . . , Bm, and

∣

∣νLj∪W c

(p) − νUj∪W c

(p)
∣

∣ < δ.

Hence, for all q ∈ Q and 1 ≤ j ≤ k,

(6.3) 0 ≤ νUj∪W c

(q) − νLj∪W c

(q) ≤ νUj∪W c

(p) − νLj∪W c

(p) < δ.

Let

A := L1 ∪ · · · ∪ Lk and µ :=
k

∑

j=1

λjν
Lj∪W c

.

Obviously,

µ(p) =

k
∑

j=1

λjν
Lj∪W c

(p) ≤
k

∑

j=1

λjν(p) = ν(p).

We intend to apply Theorem 4.4 to W in place of X. To that end we have to
consider measures WνE obtained by reducing the measure ν on E ⊂W with respect
to W . By [6, VI.2.9]) and (2.1), WνE = νE∪W c|W for every subset E of W . So, by
Theorem 4.4, there exist s1, . . . , sm ∈ [0, 1] such that the union C of the scaled balls
Bs1

1 , . . . , B
sm
m ⊂ A satisfies

(6.4) νC∪W c

(Bi) = (1 + δ)−1µ(Bi) for every 1 ≤ i ≤ m.

2. We now fix q ∈ Q and consider ϕ :=
∑m

i=1 q(xBi
)1Bi

. By (6.4),

(6.5) νC∪W c

(ϕ) = (1 + δ)−1µ(ϕ).

By (6.2), |ϕ− 1Aq| ≤ ε1A ≤ εp. Therefore
∣

∣νC∪W c

(ϕ) − νC∪W c

(1Aq)
∣

∣ ≤ ενC∪W c

(p) ≤ ν(p)ε,(6.6)

|µ(ϕ) − µ(1Aq)| ≤ εµ(p) ≤ ν(p)ε.(6.7)

Combining (6.5), (6.6) and (6.7), we see that
∣

∣νC∪W c

(1Aq) − µ(1Aq)
∣

∣ ≤
∣

∣νC∪W c

(1Aq) − (1 + δ)−1µ(1Aq)
∣

∣ + δµ(1Aq) ≤ 3ν(p)ε.

In fact, since νC∪W c
and µ do not charge W \ A, we have shown that

(6.8)
∣

∣νC∪W c

(1W q) − µ(1W q)
∣

∣ < 3ν(p)ε.
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3. It may be surprising that (6.8), which merely indicates that νC∪W c
is a good

approximation for µ onW , also implies that νC∪W c
approximates µ as well onX\W .

We claim that

(6.9) ρ := νC∪W c|W c − µ|W c ≥ 0, and ρ(p) ≤ 3ν(p)δ.

Indeed, for every compact subset K of W , νW c
= νK∪W c|W c +(νK∪W c|W )W c

by (2.7).
Therefore

µ|W c + (µ|W )W c

= νW c

= νC∪W c|W c + (νC∪W c|W )W c

.

Defining σ := µ|W and τ := νC∪W c|W we hence see that

ρ = σW c − τW c

.

Let B ∈ {B1, . . . , Bm}. By (6.4), τ(B) = (1+ δ)−1σ(B). By (3.1), εW c

x ≤ (1+ δ)εW c

y

for all x, y ∈ B. Hence, by Lemma 3.1,

(1Bτ)
W c ≤ (1Bσ)W c ≤ (1 + δ)2(1Bτ)

W c ≤ (1 + 3δ)(1Bτ)
W c

.

Taking the sum we obtain that 0 ≤ ρ ≤ 3δτW c
, where τW c

(p) ≤ µW c
(p) ≤ µ(p) ≤

ν(p). Thus (6.9) holds and

(6.10)
∣

∣νC∪W c

(1W cq) − µ(1W cq)
∣

∣ = ρ(q) ≤ ρ(p) ≤ 3ν(p)δ.

4. Combining (6.8) and (6.10),

∣

∣νC∪W c

(q) −
k

∑

j=1

λjν
Lj∪W c

(q)
∣

∣ < 6ν(p)ε.

Together with (6.3), this estimate finally yields

∣

∣νC∪W c

(q) −
k

∑

j=1

λjν
Uj∪W c

(q)
∣

∣ < 6ν(p)ε+ δ ≤ η,

that is, (6.1) holds.

As a consequence we now obtain our main theorem (see Theorem 1.1).

COROLLARY 6.2. Let ν ∈ M(P(X)), let A1, . . . , Ak ∈ B(X), and λ ∈ Λk.
Moreover, let A0 be a Borel subset of A1 ∩ · · · ∩ Ak and let (Vn) be a sequence of
open neighborhoods of (A1 ∪ · · · ∪ Ak) \ A0 in X. Then there exist finite unions Cn

of pairwise disjoint closed balls in Vn, n ∈ N, such that

lim
n→∞

νCn∪A0 =
k

∑

j=1

λjν
Aj .
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Proof. Again, let η ∈ (0, 1], Q be a finite subset of Pν(X), and let p denote the sum
of all q ∈ Q. Moreover, let V be an open neighborhood of (A1 ∪ · · · ∪ Ak) \ A0.
By Lemma 2.3, there exists a closed set F in A0 such that

(6.11) νA0(p) − νF (p) < η

and there exist open neighborhoods Uj of Aj \ A0 in V \ F such that

(6.12) νUj(p) − νAj\A0(p) < η (1 ≤ j ≤ k).

By Lemma 2.4 and (6.11), for every E ∈ B(X), νA0∪E(p) − νF∪E(p) < η. Since
trivially νA0∪E(q)−νF∪E(q) ≥ 0 for every q ∈ Q, we hence obtain that, for all q ∈ Q
and E ∈ B(X),

(6.13) 0 ≤ νA0∪E(q) − νF∪E(q) < η.

In particular, for all q ∈ Q and 1 ≤ j ≤ k,

0 ≤ νAj (q) − νF∪(Aj\A0)(q) < η.

Similarly, by Lemma 2.4 and (6.12), for all q ∈ Q and 1 ≤ j ≤ k,

0 ≤ νF∪Uj(q) − νF∪(Aj\A0)(q) < η

and hence

(6.14)
∣

∣νAj (q) − νF∪Ui(q)
∣

∣ < η.

Applying Theorem 6.1 with W := F c (and using Lemma 2.1), we obtain a finite
union C of pairwise disjoint closed balls in U1 ∪ · · · ∪Uk such that, for every q ∈ Q,

(6.15)
∣

∣νC∪F (q) −
k

∑

j=1

λjν
Uj∪F (q)

∣

∣ < η.

In particular, C is contained in V \ F . Let us now fix q ∈ Q. By (6.13),
∣

∣νC∪A0(q) − νC∪F (q)
∣

∣ < η.

So we conclude, by (6.14) and (6.15), that

(6.16)
∣

∣νC∪A0(q) −
k

∑

j=1

λjν
Aj (q)

∣

∣ < 3η.

As before the proof is finished by Lemma 2.1.

To obtain Corollary 1.2 from Corollary 6.2, we take k = 2, A0 := (U ∪ V )c,
A1 := A0 ∪ (∂U ∩ V ), and A2 := A0 ∪ (∂V ∩ U). Indeed, then νA1 = νUc

by
Lemma 2.5, since A1 ⊂ U c and νUc

is supported by the subset ∂U of A1. Similarly,
νA2 = νV c

. Moreover, (A1 ∪A2) \A0 = (∂U ∩ V )∪ (∂V ∩U). Finally, having taken
Cn according to Corollary 6.2, it suffices to observe that Cn ∪A0 = ((U ∪ V ) \Cn)c.
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7 Continuous growth of balayage on compact sets

In this section we shall see that the choice of balls in the dilation result is not as
essential as it might seem. All we really needed was that, starting with a finite
union A of closed balls B1, . . . , Bm which are pairwise disjoint, there is an increasing
family (At)t∈[0,1]m of compact sets such that, for the given measure ν ∈ M(P(X)),
the mapping t 7→ νAt is continuous, νA(0,...,0) = 0, and νA(1,...,1) = νA.

We intend to prove that this can be achieved for finite unions A of arbitrary
compact sets K1, . . . , Km which are pairwise disjoint. The proof will show that such
a result holds in the general context of balayage spaces provided points are polar.

PROPOSITION 7.1. Let K be a compact set in X such that ν ∈ M(P(X)) does
not charge points in K. Then there exist compact sets Kt in K, 0 ≤ t ≤ 1, such
that K1 = K and the following holds:

(i) The family (Kt)0≤t≤1 is increasing and right continuous, that is, Ks ⊂ Kt

if s ≤ t, and each Kt, t ∈ [0, 1), is the intersection of all Ks, s > t.

(ii) The mapping t 7→ νKt
is continuous on [0, 1] and νK0

= 0.

Proof. Let p ∈ P(X) be a strict potential such that ν(p) ≤ 1 (see [6, p. 321]).
1. Firstly, we intend to show the following. Given any two compact sets L0

and L1 in K with L0 ⊂ L1, there exists a compact set L such that L0 ⊂ L ⊂ L1 and

(7.1) νL(p) =
1

2
νL0

(p) +
1

2
νL1

(p) =: γ.

To that end we shall recursively construct an increasing sequence (L0
n) and a de-

creasing sequence (L1
n) of compact sets in L1 such that L0 ⊂ L0

n ⊂ L1
n ⊂ L1 and

(7.2) νL0
n(p) ≤ γ ≤ νL1

n(p) ≤ νL0
n(p) + 2−(n−1), n = 1, 2, . . . .

Defining L0
1 := L0 and L1

1 := L1, (7.2) trivially holds for n = 1, since ν(p) ≤ 1.
Suppose that n ∈ N and that compact sets L0

n, L1
n satisfying L0

n ⊂ L1
n ⊂ K and

νL0
n(p) ≤ γ ≤ νL1

n(p) have been constructed.
Let us consider y ∈ L1

n. Since points are polar and ν({y}) = 0, we know that
ν{y} = 0. So, by Lemma 2.3, there exists ry > 0 such that

(7.3) νB(y,ry)∩L1
n(p) < 2−n.

There exist y1, . . . , ym ∈ L1
n such that L1

n is covered by the sets Aj := B(yj, ryj
)∩L1

n,
1 ≤ j ≤ m. We define

Ck := L0
n ∪

k
⋃

j=1

Aj (0 ≤ k ≤ m).

Then L0
n = C0 ⊂ C1 ⊂ · · · ⊂ Cm = L1

n. Since ν(L0
n) ≤ γ ≤ ν(L1

n) and, for every
0 ≤ k ≤ m,

νCk(p) ≤ νCk+1(p) ≤ νCk(p) + νAk(p) < νCk(p) + 2−n
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by ([6, VI.9.3]), there exists l ∈ {0, 1, . . . , m} such that

νCl(p) ≤ γ ≤ νCl+1(p) ≤ νCl(p) + 2−n.

The induction step is finished defining L0
n+1 := Cl and L1

n+1 := Cl+1.
By (7.2), the set L :=

⋂∞
n=1L

1
n has the desired properties.

2. We now begin our construction of the family (Kt)0≤t≤1 taking L0 := ∅ and
L1 := K. By part one, we obtain a compact set L1/2 such that L1/2 ⊂ K and
νL1/2

(p) = (1/2)νK(p). Continuing in an obvious way, we obtain compact sets Ls

in K, s ∈ D := {k2−n : n ∈ N, k = 0, 1, 2, . . . , 2n}, such that Ls ⊂ Ls̃ if s ≤ s̃, and
νLs

(p) = s · νK(p) for all s ∈ D. We finish the construction defining K1 := K and

Kt :=
⋂

s∈D,s>t

Ls (0 ≤ t < 1).

Then (Kt)0≤t≤1 is an increasing and right continuous family of compact sets and

(7.4) νKt

(p) = t · νK(p) for all 0 ≤ t ≤ 1.

In particular, t 7→ νKt
(p) is continuous on [0, 1]. Thus, by Lemma 2.2, the mapping

t 7→ νKt
is continuous on [0, 1].

COROLLARY 7.2. Let ν and (Kt)0≤t≤1 be as in Proposition 7.1. If, in addition,
ν(U) > 0 for every non-empty open subset U of Kc, then, for every µ ∈ M(P(X))
not charging K, the mapping t 7→ µKt

is continuous on [0, 1].

Proof. Let us fix µ ∈ M(P(X)) not charging K and let p ∈ P(X) be strict such
that (ν + µ)(p) ≤ 1. Let us fix 0 ≤ t ≤ 1 and let sn, s̃n ∈ [0, 1] such that sn ↓ t and
s̃n ↑ t. Of course, εK s̃n

y (p) ≤ εKt

y (p) ≤ εKsn

y (p) for all n ∈ N and y ∈ Kc. We define

hn := RKsn

p − RK s̃n

p .

Then hn ≥ 0, hn is harmonic on Kc (see [6, VI.2.6]), and ν(hn) = νKsn
(p)− νK s̃n

(p).
The sequence (hn) is decreasing to a harmonic function h ≥ 0 on Kc (see [6, III.3.1])
satisfying ν(h) = 0. Therefore h = 0 on Kc. This implies that, for every y ∈ Kc,
lims→t ε

Ks

y (p) = εKt

y (p), whence lims→t µ
Ks

(p) = µKt
(p), since µ is supported by Kc.

So, by Lemma 2.2, lims→t µ
Ks

= µKt
.

Now let K1, K2, . . . , Km be disjoint compact subsets of X such that ν does not
charge points ofK1∪· · ·∪Km. For each i ∈ {1, . . . , m}, we choose an increasing right
continuous family (Kti

i )0≤ti≤1 of compact sets in Ki such that K1
i = Ki, ν

K0
i = 0,

and ti 7→ νK
ti
i is continuous on [0, 1].

As we did earlier with finite unions of balls, we then define

(7.5) At := Kt1
1 ∪Kt2

2 ∪ · · · ∪Ktm
m , t = (t1, . . . , tm) ∈ [0, 1]m.

The continuity of t 7→ νAt will be an easy consequence of the following general result.
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LEMMA 7.3. Let (Bt)0≤t≤1 be an increasing family in B(X) such that the mapping
t 7→ νBt

is continuous on [0, 1]. Then, for every B ∈ B(X), the mapping t 7→ νBt∪B

is continuous on [0, 1].

Proof. Let us fix q ∈ Pν(X). By Lemma 2.1, the function t 7→ νBt
(q) is continuous

on [0, 1] and we only have to show that the function t 7→ νBt∪B(q) is continuous
as well. So let t ∈ [0, 1] and s, s̃ ∈ [0, 1] such that s̃ ≤ t ≤ s. Then trivially
νBs̃∪B(q) ≤ νBt∪B(q) ≤ νBs∪B(q). By Lemma 2.4,

νBs∪B(q) − νBs̃∪B(q) ≤ νBs

(q) − νBs̃

(q),

where the right side converges to 0 as s− s̃→ 0. Thus limτ→t ν
Bτ∪B(q) = νBt∪B(q).

PROPOSITION 7.4. The mapping t 7→ νAt is continuous on [0, 1]m.

Proof. Let q ∈ Pν(X). By Lemma 7.3, the function ϕ : t 7→ νAt(q) is separately
continuous on [0, 1]m. Moreover, ϕ is obviously increasing. Therefore ϕ is continuous
on [0, 1]m.

Proceeding almost word by word as in Section 4 we now obtain the following.

THEOREM 7.5. Let δ > 0 and let L1, . . . , Lk be pairwise disjoint sets such that
L := L1∪ . . . Lk is the union of a (1+δ)-Harnack family of compact sets K1, . . . , Km

in X and ν ∈ M(P(X)) does not charge points in L. Moreover, let β1, . . . , βm ∈
[0, (1 + δ)−1] and λ ∈ Λk. Then there exists a compact subset K of L such that

νK(Ki) = βi

k
∑

j=1

λjν
Lj (Ki) for every 1 ≤ i ≤ m.

8 A Faraday cage result

The following result is inspired by the proof of [13, Théorème 1]. It immediately
yields an alternative proof for Proposition 5.2, a proof which shows that a similar
approximation by balayage on disjoint compact pieces which are small with respect
to their mutual distances can be established under very general assumptions on the
potential theoretic setting.

Moreover, it will allow us to strengthen Corollary 1.2 provided the boundaries
of the open sets U and V have the weak capacity doubling property (see Section 9).

PROPOSITION 8.1. Let K be a compact set in X and let q be a continuous
potential on X which is harmonic outside K. Moreover, let ε, η ∈ (0, 1), and M > 1.
Then there exists ρ0 > 0 such that, for every 0 < ρ ≤ ρ0, the following holds:

If x1, . . . , xN ∈ K such that the balls B(xi, ρ/M) are pairwise disjoint, the set K
is covered by the balls B(xi, ρ), and A ∈ B(X) (see Figure 5 ) such that

(8.1) cap
(

A ∩B(xi,Mρ)
)

≥ η cap
(

K ∩ B(xi, ρ)
)

for every 1 ≤ i ≤ N,

then
RA

q ≥ (1 − ε) q.
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Figure 5. Illustration of (8.1)

Proof. We may assume without loss of generality that q ≥ 1 on a compact neigh-
borhood L of K in X. Let µ denote the Riesz measure for q, that is,

Gµ = q,

where G denotes the Green function for X. Let δ := ε/4 and let a ∈ (0, 1) such that
(1 + a)d−α

2 ≤ (1 + δ)(1 − a)d+ α
2 . We define

(8.2) c :=
(

(1 + a−1)M2
)d

and β :=
ηδ

c
.

There exists 0 < ρ0 < dist(K,Lc)/M such that

G1B(x,ρ0)µ ≤ β for every x ∈ K

(cf. [11, Proposition 7.1]).
Let us fix 0 < ρ ≤ ρ0 and consider A ∈ B(X) and x1, . . . , xN ∈ K such that the

assumptions of the Proposition are satisfied.
There exist measures µi, 1 ≤ i ≤ N , such that

∑N
i=1 µi = µ and each measure µi

is supported by B(xi, ρ), 1 ≤ i ≤ N . Then certainly

(8.3) Gµi ≤ β for every 1 ≤ i ≤ N.

Let J denote the set of all 1 ≤ i ≤ N such that µi 6= 0 and let i ∈ J . By (8.3),

cap
(

K ∩ B(xi, ρ)
)

≥ ‖µi‖
β

.

Hence (8.1) implies that

cap
(

A ∩B(xi,Mρ)
)

≥ η‖µi‖
β

.

So there exists a compact set Li in A ∩ B(xi,Mρ) such that

(8.4) cap(Li) >
η‖µi‖

2β
.

Let νi denote the equilibrium measure for Li, that is, the Riesz measure for R̂Li
1 ,

and

µ̃i :=
‖µi‖

cap(Li)
νi =

‖µi‖
‖νi‖

νi.
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Then, by (8.4),

(8.5) Gµ̃i =
‖µi‖

cap(Li)
Gνi ≤ ‖µi‖

cap(Li)
<

2β

η
.

By Proposition 3.3, for all x, y ∈ B(xi,Mρ) and z /∈ Vi := B(xi,Mρ/a),

G(x, z) = ε
V c

i
x (G(·, z)) ≤ (1 + δ)ε

V c
i

y (G(·, z)) = (1 + δ)G(y, z).

Since ‖µ̃i‖ = ‖µi‖ and the measures µ̃i, µi are supported by B(xi,Mρ), we conclude
that, outside B(xi,Mρ/a),

Gµ̃i ≤ (1 + δ)Gµi and Gµi ≤ (1 + δ)Gµ̃i.

Defining
Ji := {j ∈ J : B(xj ,Mρ/a) ∩B(xi,Mρ) 6= ∅}

we hence know that, for every j ∈ J \ Ji and for all x ∈ B(xi,Mρ),

(8.6) Gµ̃j (x) ≤ (1 + δ)Gµj (x) and Gµj (x) ≤ (1 + δ)Gµ̃j (x).

It is easily verified that B(xj , ρ/M) ⊂ B(xi, (1 + a−1)Mρ) for every j ∈ Ji. Since
the balls B(x1, ρ/M), . . . , B(xN , ρ/M) are disjoint by assumption, the sum of the
volumes of the balls B(xj , ρ/M), j ∈ Ji, is certainly bounded by the volume of the
ball B(xi, (1 + a−1)Mρ). Therefore Ji has less than c elements (see (8.2)).

Let us define
µ̃ :=

∑

j∈J

µ̃j .

Of course, µ =
∑

j∈J µj. So, by (8.5), (8.3), and (8.6), the inequalities

Gµ̃ ≤ (1 + δ)Gµ +
2β

η
c ≤ (1 + 2δ)q,(8.7)

Gµ ≤ (1 + δ)Gµ̃ + βc ≤ (1 + δ)Gµ̃ + δGµ(8.8)

hold on each B(xi,Mρ), i ∈ J , and hence on X, by the minimum principle. By
definition, µ̃ is supported by a compact set in A. So, by (8.7) and the domination
principle,

RA
q ≥ (1 + 2δ)−1Gµ̃.

Since

Gµ̃ ≥ 1 − δ

1 + δ
q ≥ (1 − 2δ)q

by (8.8) and (1−2δ)/(1+2δ) ≥ 1−4δ ≥ 1−ε, we finally see that RA
q ≥ (1−ε)q.
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9 Approximation using a capacity doubling

property

Given γ ∈ (0, 1) and an open set U in X, let us say that a set A is a γ-ball set
in U , if A is compact and if there exist pairwise disjoint closed balls B1, . . . , Bm

contained in U such that A ⊂ Bγ
1 ∪ · · · ∪Bγ

m. We know that, for every δ > 0, there
exists γ > 0 such that every γ-ball set is the union of a (1 + δ)-Harnack family
(see Proposition 3.3).

We recall that the base b(A) of a subset A of X is the set of all points x ∈ X
such that R̂A

p (x) = p(x) for every p ∈ P(X). It is a Gδ-set, the fine closure of A
is A ∪ b(A), and the set A \ b(A) is polar whence b(A \ b(A)) = ∅. Moreover, the
mapping b : A 7→ b(A) is additive (see [6, Section VI] for details). Therefore

b(A) = b(A ∩ b(A)) ∪ b(A \ b(A)) = b(A ∩ b(A)).

This shows that b(A) is the fine closure of A ∩ b(A) and hence, assuming that
A ∈ B(X), νb(A) = νA∩b(A) for every ν ∈ M(P(X)). In particular, if ν does not
charge the (polar) set A \ b(A), then

(9.1) νb(A) = νA,

since, for every p ∈ P(X),

ν(RA
p ) ≤ ν(RA\b(A)

p ) + ν(RA∩b(A)
p ) = ν(RA∩b(A)

p ) ≤ ν(RA
p ).

Finally, let us recollect that a set A ⊂ X is called subbasic, if A ⊂ b(A), that is,
if b(A) is the fine closure of A.

For every A ∈ B(X), let D(A) denote the set of all points x ∈ A ∩ b(A) such
that, for some c > 0 and r0 > 0,

(9.2) cap(A ∩ U(x, 2r)) ≤ c cap(A ∩ U(x, r)) for every 0 < r ≤ r0.

Let us note that then, for every γ ∈ (0, 1), there exists η > 0 such that

(9.3) cap(A ∩ B(x, γr)) ≥ η cap(A ∩ B(x, r)) for every 0 < r ≤ r0.

Indeed, assume that (9.2) holds and let 0 < r ≤ r0. Taking k ∈ N such that 2−k < γ,
and then ρ ∈ (r, 2r0) such that 2−kρ < γr, we obtain that

cap(A ∩ B(x, γr)) ≥ cap(A ∩ U(x, 2−kρ))

≥ c−k cap(A ∩ U(x, ρ)) ≥ c−k cap(A ∩B(x, r)).

We shall say that A ∈ B(X) has the weak capacity doubling property if D(A) is finely
dense in b(A). In applications of this property, we shall use the subsets Dn(A),
n ∈ N, consisting of all x ∈ A ∩ b(A) such that

(9.4) cap(A ∩ U(x, 2r)) ≤ n cap(A ∩ U(x, r)) for every 0 < r ≤ 1/n.

Clearly, the sequence (Dn(A)) is increasing to D(A).
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LEMMA 9.1. For every A ∈ B(X), the sets Dn(A), n ∈ N, are Borel sets. In par-
ticular, D(A) ∈ B(X).

Proof. Let us define

f(x, r) := cap(A ∩ U(x, r)) (x ∈ X, r > 0).

For every x ∈ X, the function r 7→ f(x, r) is left continuous, since U(x, s) ↑ U(x, r)
as s ↑ r. Therefore

Dn(A) =
⋂

0<r≤1/n, r∈Q{x ∈ A ∩ b(A) : f(x, 2r) ≤ nf(x, r)} (n ∈ N).

We know that A ∩ b(A) ∈ B(X). So the proof will be finished, if we show that the
functions x 7→ f(x, r), r > 0, are lower semicontinuous. To that end let us fix r > 0
and a ∈ R such that f(x, r) > a. By the left continuity of s 7→ f(x, s), there exists
0 < s < r such that f(x, s) > a. If y ∈ U(x, r−s), then U(x, s) ⊂ U(y, r) and hence
f(y, r) ≥ f(x, s) > a.

LEMMA 9.2. Let A ∈ B(X) have the weak capacity doubling property. Then D(A)
is subbasic. In particular, b(D(A)) = b(A).

Proof. By definition of the weak capacity doubling property, b(A) = D(A)∪b(D(A)).
Since bb = b and b is additive, we hence obtain that

D(A) ⊂ b(A) = b(b(A)) = b(D(A)) ∪ b(b(D(A))) = b(D(A)).

PROPOSITION 9.3. Let A ∈ B(X) have the weak capacity doubling property, let
L be a compact subset of D(A), and let V be an open neighborhood of L. Moreover,
let ε ∈ (0, 1), ν ∈ M(P(X)), and p ∈ P(X) such that ν(p) ≤ 1.

Then there exists an ε-ball set Ã in V such that Ã ⊂ A, the measure ν does not
charge points of Ã, and νÃ(p) > νL(p) − 2ε.

Proof. Knowing that D(A)∩V is subbasic, we conclude from [6, VI.6.12] that there
exists a compact set L̃ in D(A) ∩ V with L ⊂ b(L̃). By [6, VI.4.16], there exists

q̃ ∈ P(X) such that RL
p ≤ q̃ ≤ R

b(L̃)
p and R

b(L̃)
q̃ = q̃. In particular, q̃ is harmonic

outside L̃. Since L̃ ∩ Dn(A) ↑ L̃ as n → ∞, there exist n ∈ N and q, q′ ∈ P(X)
such that q + q′ = q̃, q is harmonic outside a compact subset K of L̃ ∩Dn(A), and
ν(q′) < ε (see [6, II.6.17]).

By (9.3), there exists η > 0 such that, for every x ∈ K and r ∈ (0, 1/n],

(9.5) cap(A ∩ B(x,
εr

3
)) ≥ 2η cap(A ∩B(x, r)).

Taking M := 3 we choose ρ0 ≤ (1/n) ∧ dist(K,Rd \ V ) according to Proposi-
tion 8.1 and fix ρ ∈ (0, ρ0). There exist points x1, . . . , xN in K such that the balls
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B(x1, ρ/3), . . . , B(xN , ρ/3) are pairwise disjoint and the balls B(x1, ρ), . . . , B(xN , ρ)
cover K (see [34, Lemma 7.3]).

Let 1 ≤ i ≤ N . Since countable sets in X have zero capacity and since there
are at most countably many points y ∈ X such that ν({y}) > 0, we may choose
a compact subset Ai in A ∩ B(xi, ερ/3) such that ν does not charge points of Ai,
the capacity of Ai is at least (1/2) cap(A ∩B(xi, ερ/3)), and hence, by (9.5),

cap(Ai) ≥ η cap(A ∩ B(xi, ρ)) ≥ η cap(K ∩ B(xi, ρ)).

Let Ã := A1∪· · ·∪AN . By construction, Ã is a ε-ball set in V , Ã ⊂ A, the measure ν
does not charge points of Ã, and

cap(Ã ∩B(xi, 3ρ)) ≥ cap(Ai) ≥ η cap(K ∩B(xi, ρ)) for all 1 ≤ i ≤ N.

Thus RÃ
q ≥ (1 − ε)q by Proposition 8.1 and hence

νÃ(p) ≥ νÃ(q) ≥ (1 − ε)ν(q) > ν(q̃) − 2ε ≥ νL(p) − 2ε.

COROLLARY 9.4. Let A1, A2 ∈ B(X) such that A′
1 := A1 \A2 and A′

2 := A2 \A1

have the capacity doubling property. Moreover, let us suppose that ν ∈ M(P(X))
does not charge the sets A′

j \ b(A′
j), j = 1, 2, and let V be an open neighborhood

of A′
1 ∪ A′

2.
Then there exist compact sets A1,n in A′

1 and A2,n in A′
2, respectively, such that

each union A1,n ∪ A2,n, n ∈ N, is a (1/n)-ball set in V , the measure ν does not
charge points in A1,n ∪ A2,n, and

lim
n→∞

νAj,n∪(A1∩A2) = νAj , j ∈ {1, 2}.

Proof. Let us fix a strict potential p ∈ P(X) such that ν(p) ≤ 1, and let ε ∈
(0, 1). By (9.1) and the weak capacity doubling property, νD(A′

j) = νA′

j and hence,
by Lemma 2.3, there exists compact sets Lj in D(A′

j) such that

(9.6) νLj (p) > νA′

j (p) − ε, j ∈ {1, 2}.
Let V1 and V2 be disjoint open neighborhoods of L1 and L2 in V , respectively. For the
moment, let us fix j ∈ {1, 2}. By Proposition 9.3, there exists an ε-ball set Ãj in Vj

such that Ãj ⊂ Aj , the measure ν does not charge points in Ãj , and

(9.7) νÃj (p) > νLj (p) − 2ε.

Let A0 := A1∩A2. Then Aj = A′
j∪A0 and therefore, by (9.6), (9.7), and Lemma 2.4,

0 ≤ νAj (p) − νÃj∪A0(p) ≤ νA′

j (p) − νÃj (p) < 3ε.

Obviously, Ã1 ∪ Ã2 is an ε-ball set in V , since V1 and V2 are disjoint subsets of V .
Taking ε = 1/n, n ∈ N, we obtain sets Aj,n in Aj \ A0 such that

0 ≤ νAj (p) − νAj,n∪A0(p) <
3

n
, j ∈ {1, 2},

the unions A1,n ∪ A2,n are (1/n)-ball sets in V , and the measure ν does not charge
points of A1,n ∪A2,n. Lemma 2.2 finishes the proof.
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Using Corollary 9.4, Theorem 7.5, and proceeding as in the proof of Theorem 6.1
and Corollary 6.2, we obtain the following result.

THEOREM 9.5. Let A1, A2 ∈ B(X) such that A′
1 := A1\A2 and A′

2 := A2\A1 have
the weak capacity doubling property. Moreover, let us suppose that ν ∈ M(P(X))
does not charge the sets A′

j \ b(A′
j), j = 1, 2.

Then, for every λ ∈ (0, 1), there exist (1/n)-ball sets Cn ⊂ A′
1 ∪ A′

2 and closed
sets Fn ⊂ A1 ∩A2, n ∈ N, such that

(9.8) lim
n→∞

νCn∪Fn = λνA1 + (1 − λ)νA2 .

If A0 := A1 ∩ A2 is closed, then the sets Fn can be replaced by A0.

COROLLARY 9.6. Let U, V be open sets in X such that U \ V and V \ U have
the weak capacity doubling property. Moreover, let us suppose that ν is supported
by U ∩ V , let W := U ∪ V , and λ ∈ (0, 1).

Then there exist (1/n)-ball sets Cn in W , n ∈ N, such that Cn ⊂ (U \V )∪(V \U)
and

lim
n→∞

ν(W\Cn)c

= λνUc

+ (1 − λ)νV c

.

COROLLARY 9.7. Let α = 2 (classical case) and let U, V be open sets in X such
that ∂U ∩V and ∂V ∩U have the weak capacity doubling property. Moreover, let us
suppose that ν is supported by U ∩ V , let W := U ∪ V , and λ ∈ (0, 1).

Then there exist (1/n)-ball sets Cn in W , n ∈ N, such that each Cn is contained
in (∂U ∩ V ) ∪ (∂V ∩ U) and

lim
n→∞

ν(W\Cn)c

= λνUc

+ (1 − λ)νV c

.

Proof. Let A1 := (∂U ∩ V ) ∪ W c and A2 := (∂V ∩ U) ∪ W c. Then νA1 = νUc

and νA2 = νV c
(see the end of Section 6). Moreover, A′

1 := A1 \ A2 = ∂U ∩ V ,
A′

2 := A2 \ A1 = ∂V ∩ U , and A1 ∩ A2 = W c. Thus the result follows immediately
from Theorem 9.5.

10 Intrinsic metric on Brelot spaces

Let X be a locally compact space with countable base which is not compact. More-
over, we assume that X is connected and locally connected.

Given a harmonic sheaf H on X such that (X,H) is a P-harmonic space, let
us say that a Borel measurable function G : X × X → [0,∞] is a Green function
for (X,H) provided the following conditions are satisfied:

(i) For every y ∈ X, G(·, y) is a potential on X which is harmonic on X \ {y}.

(ii) For every continuous real potential p on X which is harmonic outside a com-
pact set, there exists a measure µ on X such that p =

∫

G(·, y) dµ(y).
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We observe that G determines the harmonic sheaf H uniquely, since continuous real
potentials determine the harmonic kernels and hence harmonic functions.

In the following let H be a harmonic sheaf on X and G : X ×X → [0,∞] such
that (X,H) is a P-harmonic Brelot space and G is a Green function for (X,H),
G > 0, and G(x, x) = ∞ for all x ∈ X. We define the adjoint ∗G of G by

∗G(x, y) := G(y, x) (x, y ∈ X)

and suppose that ∗G is a Green function for some Brelot space (X, ∗H). Notions
related to (X, ∗H) will be distinguished from those related to (X,H) by adding
an asterisk (for example, ∗-harmonic function and µ∗A).

It may be of interest to note that, in view of the axiom of proportionality
(cf. [10, Satz 3.2]), G is almost uniquely determined by the harmonic sheaves H
and ∗H (see [22, Remarks 2.1]). Indeed, suppose that G̃ has the same properties
as G and let x0 ∈ X. Then there exists a function ϕ : X → (0,∞) such that
G̃(·, y) = ϕ(y)G(·, y) for all y ∈ X. Moreover, ∗G̃(·, x0) = a ∗G(·, x0) for some a > 0,
that is, G̃(x0, ·) = aG(x0, ·). Therefore ϕ(y) = a for all y ∈ X and hence G̃ = aG.

Let
ρ := G−1 + ∗G−1.

We assume, in addition, that G and ∗G are locally comparable and that the triangle
property holds locally, that is, X can be covered by open sets V having the following
property (see [22, p. 102]). There exists c > 0 such that, for all points x, y, z ∈ V ,

(10.1) G(x, y) ≤ c ∗G(x, y) and min(G(x, y), G(y, z)) ≤ cG(x, z).

or, equivalently, there exists c > 0 such that, for all x, y, z ∈ V ,

(10.2) ρ(x, y) ≤ cG(x, y)−1 and ρ(x, y) ≤ c (ρ(x, z) + ρ(z, y)).

Let L be an arbitrary compact subset of X. By [22, Lemma 2.2], there exists
c > 0 such that (10.2) holds for all x, y, z ∈ L. By [23, Proposition 14.5], there
exists a metric d on L and γ > 0 such that ρ ≈ dγ on L × L, that is, there exists
c > 0 such that

c−1d(x, y)γ ≤ ρ(x, y) ≤ c d(x, y)γ (x, y ∈ L).

Consequently,

(10.3) G ≈ d−γ on L× L.

Let us note that the topology induced by such an intrinsic metric d is the original
topology of L. Indeed, for every y ∈ L, the sets L ∩ {G(·, y) > a}, a > 0, form
a fundamental system of neighborhoods of y in L and c−1d−γ ≤ G ≤ c d−γ on L×L
implies that, for every r > 0,

L ∩ {G(·, y) > c r−γ} ⊂ {d(·, y) < r} ⊂ L ∩ {G(·, y) > c−1r−γ}.
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We recall from [24, Theorem 31.1] that, for all x, y ∈ X and A ⊂ X,

(10.4) RA
G(·,y)(x) = R∗A

G(x,·)(y) =

∫

G(x, z) dε∗Ay = Gε∗A
y (x).

Moreover, let us note that the fine topologies for (X,H) and (X, ∗H) coincide (see
[22, p. 103]) and hence, by [27, Theorem 2.4], the axiom of domination is satisfied
for both (X,H) and (X, ∗H) (cf. [15, Section 9.2] for the definition). Hence all
semipolar sets are polar (see [15, Corollary 9.2.3]). In particular, for every set A
in X, the set A \ b(A) is polar.

EXAMPLES 10.1. Various classes of linear partial differential operators of second
order on open subsets X of Rd lead to Green functions and Brelot spaces satisfying
our assumptions:

1. If

L =
d

∑

i,j=1

aij
∂2

∂xi∂xj

+
d

∑

i=1

bi
∂

∂xi

+ c

such that the functions aij , bi, c are Hölder continuous and the quadratic forms
ξ 7→ ∑

aij(x)ξiξj, x ∈ X, are positive definite, then

H(U) := {u ∈ C2(U) : Lu = 0}

yields a Brelot space (X,H) ([24, 7]). See [28] for the case where the coefficients
are only assumed to be continuous.

2. If

L =
d

∑

j=1

∂

∂xj

(

d
∑

i=1

aij
∂

∂xi

+ di

)

+
d

∑

i=1

bi
∂

∂xi

+ c

such that the functions aij are measurable, bounded and the matrix (aij(x))
is uniformly elliptic, then (under mild restrictions on the functions bi, di, c,
see [25]) we obtain a Brelot space defining a harmonic function u on an open
subset U of X to be (a continuous version of) a weak solution of Lu = 0,
that is, such that u ∈ H1

loc(U) and, for all ϕ ∈ D(U),
∫

U

[

∑

j

(

∑

i

aij
∂u

∂xi
+ dju

) ∂ϕ

∂xj
+

(

∑

i

bi
∂u

∂xi
+ cu

)

ϕ
]

dλ = 0.

3. If

L =

r
∑

j=1

X2
j + Y

with smooth vector fields X1, . . . , Xr, Y such that Hörmander’s condition for
hypoellipticity (full rank of the Lie algebra generated by X1, . . . , Xr) is satis-
fied, then we get a Brelot space (see [9, 8, 26, 6]) defining

H(U) := {u ∈ C2(U) : Lu = 0}.
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In these examples, we have Green functions G which are (at least locally) equiv-
alent to the classical Green function (cases (1) and (2)) or rather different, but still
equivalent to some negative power of a metric (case (3)). In particular, in all these
examples, G and its adjoint ∗G are locally comparable and satisfy locally the triangle
property (see (10.1)). Details may be found in [21, 22].

11 Scaling invariant Harnack’s inequalities

In this section, we shall see that, even in our general setting of Brelot spaces, Har-
nack’s inequalities hold which locally are scaling invariant with respect to an intrinsic
metric and which will help us to construct suitable (1 + δ)-Harnack families for any
given δ ∈ (0, 1).

Let V be a relatively compact open subset of X and let d be a metric on V and
γ > 0 such that G ≈ d−γ on V × V . For all x ∈ V and r ≥ 0, let U(x, r), B(x, r)
denote the set of all y ∈ V with d(x, y) < r, d(x, y) ≤ r, respectively.

PROPOSITION 11.1. There exist β ∈ (0, 1/3) and c > 0 such that, for all points
y1, y2 ∈ U(x, βr) and z ∈ U(x, 3βr) \ U(x, 2βr),

(11.1) GU(x,r)(z, y1) ≤ cGU(x,r)(z, y2),

whenever x ∈ V and r > 0 with B(x, r) ⊂ V .

Proof. Let c1 ≥ 1 such that c−1
1 d−γ ≤ G ≤ c1d

−γ on V × V and let h be a harmonic
function on V which is bounded and bounded away from 0 (for example, h = 1,
if constants are harmonic, or h := G(·, x1)|V , x1 ∈ X \ V ). Let c2 ≥ 1 such that
c−1
2 ≤ h ≤ c2. We define

β :=
1

6(c1c2)2/γ
and c :=

c21
4−γ − 5−γ

.

For later use, let us note that 5(c1c2)
2/γβ = 1 − (c1c2)

2/γβ ≤ 1 − β and hence

(11.2) (1 − β)−γ ≤ (c1c2)
−2(5β)−γ.

Let us fix x ∈ V and r > 0 such that B(x, r) ⊂ V . Obviously,

(11.3) HU(x,r)1 ≤ c2HU(x,r)h = c2h ≤ c22.

If 0 < t < s ≤ 1, y ∈ U(x, tr), and z ∈ ∂U(x, sr), then (s− t)r ≤ d(y, z) ≤ (s+ t)r
and therefore

(11.4) c−1
1 (s+ t)−γr−γ ≤ G(z, y) ≤ c1(s− t)−γr−γ.

Let us now fix y ∈ U(x, βr). By (11.4), G(·, y) ≤ c1(1 − β)−γr−γ on ∂U(x, r) and
hence, by (11.3) and (11.2),

HU(x,r)G(·, y) ≤ c22c1(1 − β)−γr−γ ≤ c−1
1 (5βr)−γ on U(x, r).
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Finally, let z ∈ U(x, 3βr) \U(x, 2βr). Applying (11.4) with t = β and 2β ≤ s < 3β,
we obtain that

c−1
1 (4βr)−γ ≤ G(z, y) ≤ c1(βr)

−γ.

Since GU(x,r)(z, y) = G(z, y) −
(

HU(x,r)G(·, y)
)

(z), we see that

(4−γ − 5−γ)c−1
1 (βr)−γ ≤ GU(x,r)(z, y) ≤ c1(βr)

−γ.

Thus (11.1) follows by our definition of c.

PROPOSITION 11.2. There exist β ∈ (0, 1/3) and c > 0 such that, for all x ∈ V
and r > 0 with B(x, r) ⊂ V and all harmonic functions h ≥ 0 on U(x, r),

h(y1) ≤ c h(y2) for all y1, y2 ∈ U(x, βr).

Proof. Applying Proposition 11.1 to ∗G, we obtain β ∈ (0, 1/3) and c > 0 such that,
for all y1, y2 ∈ U(x, βr) and z ∈ U(x, 3βr) \ U(x, 2βr),

(11.5) GU(x,r)(y1, z) ≤ cGU(x,r)(y2, z),

whenever x ∈ V and r > 0 with B(x, r) ⊂ V .
Let us fix x ∈ V and r > 0 such that B(x, r) ⊂ V and let h ≥ 0 be a harmonic

function on U(x, r). We may choose a continuous function 0 ≤ ϕ ≤ 1 on U(x, r)
such that ϕ = 1 on U(x, 2βr) and the support L of ϕ is contained in U(x, 3βr). Let
p denote the smallest superharmonic function on U(x, r) majorizing ϕh. Then p is
a continuous potential on U(x, r) and p = h on U(x, 2βr). Moreover, p is harmonic
on U(x, r) \ L. So there exists a measure µ on L \ U(x, 2βr) such that

p :=

∫

GU(x,r)(·, z) dµ(z).

By integration with respect to µ, we see by (11.5) that, for all y1, y2 ∈ U(x, βr),

h(y1) = p(y1) ≤ c p(y2) = c h(y2).

By Moser’s trick, leading from scaling invariant Harnack’s inequalities to Hölder
continuity, Proposition 11.2 can be improved considerably.

PROPOSITION 11.3. For every δ > 0, there exists γ ∈ (0, 1) such that, for all
x ∈ V and r > 0 with B(x, r) ⊂ V and all harmonic functions h ≥ 0 on U(x, r),

(11.6) h(y1) ≤ (1 + δ)h(y2) for all y1, y2 ∈ U(x, γr).

Proof. We choose β ∈ (0, 1/3) and c > 0 according to Proposition 11.2, and fix
δ ∈ (0, 1).

1. Let us first suppose that 1 ∈ H(V ). We define C := c2

c−1
, η := ln c

c−1
/ln 1

β
and

choose γ > 0 such that Cγη ≤ δ/3.
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Let x ∈ V , r > 0 with B(x, r) ⊂ V , and let h ≥ 0 be a harmonic function
on U(x, r). Then, by [22, Proposition 7.1],

(11.7) |h(y) − h(x)| ≤ C

(

d(x, y)

r

)η

h(x) for every y ∈ U(x, βr).

In particular,

(1 − δ
3
)h(x) ≤ h(y) ≤ (1 + δ

3
)h(x) for every y ∈ U(x, γr)

and hence
h(y1) ≤ (1 + δ)h(y2) for all y1, y2 ∈ U(x, γr),

since (1 + δ
3
)/(1 − δ

3
) ≤ 1 + δ.

2. Let us now consider the general case. Let h0 be a strictly positive harmonic
function on a neighborhood of V and let r0 > 0 such that d(x, y) ≤ r0 for all
x, y ∈ V . There exists ε > 0 such that

(11.8) h0(y1) ≤ (1 + δ
3
)h0(y2), whenever y1, y2 ∈ V such that d(y1, y2) < εr0.

By Proposition 11.2, we know that

h(x)

h0(x)
≤ c2

h(y)

h0(y)
for all x, y ∈ U(x, βr).

Using [22, Proposition 7.1] and proceeding similarly as in part one, we may now
choose γ ∈ (0, ε/2) such that, for all y1, y2 ∈ B(x, γr),

h(y1)

h0(y1)
≤ (1 +

δ

3
)
h(y2)

h0(y2)
,

where h0(y1) ≤ (1 + δ
3
)h0(y2) by (11.8), and hence

h(y1) ≤ (1 + δ
3
)2h(y2) ≤ (1 + δ)h(y2).

COROLLARY 11.4. For every δ > 0, there exists a ∈ (0, 1) such that the following
holds. If x1, . . . , xm ∈ V and r1, . . . , rm ∈ (0,∞) such that B(x1, r1), . . . , B(xm, rm)
are pairwise disjoint subsets of V , then (B(xi, ari))1≤i≤m is a (1+δ)-Harnack family
in V .

Proof. Proposition 11.3 and Lemma 3.2.

12 General convexity properties of reduced mea-

sures

In addition to the hypotheses made at the beginning of Section 10, let us assume
that the following doubling property related to the Green function G holds:
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(DG) For every compact set K in X, there exist m0 ∈ N and a0 > 0 such that, for
all a ≥ a0 and x ∈ K, the set {G(·, x) > a} contains at most m0 pairwise
disjoint sets of the form {G(·, y) > 2a}, y ∈ K.

Let K be a compact set in X and V a relatively compact open neighborhood
of K. Let d be a metric on V and c, γ ∈ (0,∞) such that c−1d−γ ≤ G ≤ cd−γ

on V × V . It is easily verified that (DG) is equivalent to the following property:

(DB) There exist m0 ∈ N and r0 > 0 such that, for every 0 < r ≤ r0 and for
every x ∈ K, the set B(x, 2r) contains at most m0 pairwise disjoint sets of the
form B(y, r), y ∈ K.

Clearly, (DB) holds if there exist c̃ > 0 and a finite measure µ on V such that K is
contained in the support of µ and µ(B(x, 2r)) ≤ c̃µ(B(x, r)) for all x ∈ K and
0 < r ≤ r0. Indeed, then, for every y ∈ K such that B(y, r) ⊂ B(x, 2r), we have
B(x, 2r) ⊂ B(y, 4r), hence µ(B(x, 2r)) ≤ c̃2µ(B(y, r)), and therefore (DB) holds
with some m0 ≤ c̃2.

In particular, (DB) and (DG) are satisfied in the examples considered at the end
of Section 10.

For simplicity, let us assume in the following that the constant 1 is both su-
perharmonic and ∗-superharmonic. Let cap denote the capacity associated with G,
that is, for every A ∈ B(X),

cap(A) = sup{µ(A) : µ ∈ M(X), Gµ ≤ 1}.

Of course, we expect the following estimates.

LEMMA 12.1. There exist c1 > 0 and r0 > 0 such that, for all x ∈ K and
0 < r ≤ r0,

(12.1) c−1
1 rγ ≤ cap(B(x, r)) ≤ c1r

γ .

Proof. Let us fix functions g ≥ 1, h ≥ 1 which are harmonic, ∗-harmonic, respec-
tively, on a neighborhood of V . Let b ∈ R be an upper bound for g and h on V , and
let c1 := b2c. Finally, we choose r0 > 0 such that, for every y ∈ K, both G(·, y) and
G(y, ·) are strictly smaller than (bc)−1r−γ

0 on ∂V and hence on V c by the minimum
principle.

Now let us fix y ∈ K, 0 < r ≤ r0. To obtain the first inequality in (12.1),
we consider U := {G(·, y) > cr−γg}. Then U ⊂ B(x, r), the set U is regular, and

RUc

G(·,y) = Gε∗Uc
y by (10.4). Of course, RUc

G(·,y) ≤ cr−γg ≤ bcr−γ on V , and hence

on X by the minimum principle. So the measure ν := (bc)−1rγε∗U
c

y satisfies Gν ≤ 1.
Moreover, ν is supported by ∂U ⊂ B(x, r) and

ν(B(x, r)) ≥ (bc)−1rγε∗U
c

y (b−1h) = c−1
1 rγh(y) ≥ c−1

1 rγ .

Therefore cap(B(x, r)) ≥ c−1
1 rγ.
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Next let Ũ := {G(y, ·) > (bc)−1r−γh}. Then B(x, r) ⊂ Ũ , Ũ is ∗-regular, and

R∗Ũc

G(y,·) = ∗GεŨc
y . Let σ := bcrγεŨc

y . Then ∗Gσ ≥ h ≥ 1 on Ũ and σ(X) ≤ σ(g) =

bcrγg(y) ≤ c1r
γ. If µ is any measure on B(x, r) such that Gµ ≤ 1, then

µ(B(x, r)) ≤
∫

∗Gσ dµ =

∫

Gµ dσ ≤ σ(X) ≤ c1r
γ.

Thus cap(B(x, r)) ≤ c1r
γ finishing the proof.

PROPOSITION 12.2. Let a, ε ∈ (0, 1), M > 1, and let q be a continuous potential
on X which is harmonic outside K. Then there exists ρ0 > 0 such that, for every
0 < ρ ≤ ρ0, the following holds:

If A := B(x1, aρ) ∪ · · · ∪ B(xN , aρ), where x1, . . . , xN ∈ K such that the d-balls
B(xi, ρ) are pairwise disjoint and the d-balls B(xi, 3ρ) cover K, then

RA
q ≥ (1 − ε) q.

Proof. It suffices to note that, by Lemma 12.1,

cap(A ∩B(xi, 9ρ)) ≥ cap(B(xi, aρ)) ≥ c−1
1 (aρ)−γ ≥ c−2

1 (3a)−γ cap(K ∩B(xi, 3ρ))

and to proceed as in the proof of Proposition 8.1 (with M = 3 and 3ρ in place of ρ).

PROPOSITION 12.3. Let U1, U2 be open sets in X, q ∈ P(X) with ν(q) ≤ 1, and
δ > 0. Then there exist m1, m2 ∈ N and a (1 + δ)-Harnack family (Ki)1≤i≤m1+m2

in the union W := U1 ∪ U2 such that the compact sets L1 := K1 ∪ · · · ∪ Km1 and
L2 := Km1+1 ∪ · · · ∪Km1+m2 satisfy

νLj∪W c

(q) > νUc
j (q) − δ, j ∈ {1, 2}.

Proof. Each of the sets U2 \ U1 and U1 \ U2 is a countable union of compact sets.
So, by (2.2), there exist compact sets L0

1 ⊂ U2 \ U1 and L0
2 ⊂ U1 \ U2 such that

(12.2) νL0
j∪W c

(q) > νUc
j (q) − δ

2
, j ∈ {1, 2}.

Let V1 and V2 be disjoint relatively compact open neighborhoods of L0
1 and L0

2

in W , respectively. Applying the previous considerations to V := V1 ∪ V2 and the
compact subsets L0

1, L
0
2, respectively, and arguing as in the proofs of Proposition 9.3

and Corollary 9.4 as well as Corollary 11.4, we obtain m1, m2 ∈ N and a family
(Ki)1≤i≤m1+m2 having the desired properties.

Using Proposition 12.3, Theorem 7.5, and proceeding as in the proofs of Propo-
sition 6.1 and Corollary 6.2, we obtain the following result.

THEOREM 12.4. Let ν ∈ M(P(X)), A1, A2 ∈ B(X), and λ ∈ (0, 1). Moreover,
let (Vm) be a sequence of open neighborhoods of (A1 ∪ A2) \ (A1 ∩ A2). Then there
exist compact sets Cm in Vm, m ∈ N, such that

lim
m→∞

ν(A1∩A2)∪Cm = λνA1 + (1 − λ)νA2 .
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In particular, Question 1 raised in the Introduction has a positive answer in this
general setting as well. Moreover, we obtain analogues of Corollary 1.4 and Corol-
lary 1.6 (see the Section 13 for a discussion of Mν(P(X)) in the context of balayage
spaces). Generalizing the definition of the weak capacity doubling property, we
finally see the following.

THEOREM 12.5. Let U, V be open sets in X such that ∂U ∩ V and ∂V ∩U have
the weak capacity doubling property. Moreover, let us suppose that ν is supported
by U ∩ V , let W := U ∪ V , and λ ∈ (0, 1).

Then there exist compact sets Cn in (∂U ∩ V ) ∪ (∂V ∩ U), n ∈ N, such that

lim
n→∞

ν(W\Cn)c

= λνUc

+ (1 − λ)νV c

.

13 Appendix: Representing measures

To cover all situations discussed before (classical case, Riesz potentials, Brelot
spaces) let us assume that (X,W) is a balayage space satisfying the axiom of polar-
ity (see [6]). Let W be an open set in X or, more generally, let W be a finely open
Borel set in X. Let S(W ) denote the set of all continuous functions on X which are
P(X)-bounded (that is, bounded in modulus by some p ∈ P(X)) and finely super-
harmonic on W . Moreover, let H(W ) be the set of all continuous P(X)-bounded
functions on X which are finely harmonic on W , that is, H(W ) = S(W )∩(−S(W )).
If W is open, then S(W ), H(W ) is simply the set of all continuous P(X)-bounded
functions on X which are superharmonic on W , harmonic on W , respectively (see
[20, Theorem 9.8]). We fix ν ∈ M(P(X)) such that ν(p) <∞ for every p ∈ P(X),
and define

Mν(S(W )) := {µ ∈ M(P(X)) : µ(s) ≤ ν(s) for every s ∈ S(W )}.

Given σ, τ ∈ M(X), let us write σ ≺ τ if σ(p) ≤ τ(p) for every p ∈ P(X).

THEOREM 13.1.

Mν(S(W )) = {µ ∈ Mν(P(X)) : µ(h) = ν(h) for every h ∈ H(W )}
= {µ ∈ Mν(P(X)) : µW c

= νW c}
= {µ ∈ M(P(X)) : νW c ≺ µ ≺ ν}.

Moreover, Mν(S(W )) is a closed face of Mν(P(X)) and

(

Mν(S(W ))
)

e
= {νA : A ∈ B(X), W c ⊂ A}.

Proof. We replace the measure εx in the proof of [6, VII.9.5] by ν. Since semi-polar
sets are polar, we know that β(W c) = b(W c) and µβ(W c) = µb(W c) = µW c

for every
µ ∈ M(P(X)) (see [6, VI.6.1, VI.6.6]). Therefore we obtain the first three identities,
the fact that Mν(S(W )) is a closed face of Mν(P(X)), and that every measure νA,
where A ∈ B(X) and W c ⊂ A, is contained in

(

Mν(S(W ))
)

e
.
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Conversely, let µ ∈
(

Mν(S(W ))
)

e
. Of course, µ ∈

(

Mν(P(X))
)

e
, since the set

Mν(S(W )) is a closed face of Mν(P(X)). So there exists A ∈ B(X) such that
µ = νA. We intend to show that µ = νA∪W c

. This will finish the proof, since
A ∪W c ∈ B(X).

By the characterization of Mν(S(W )) given above, νW c ≺ νA. By Lemma 2.3,
this implies that, for every p ∈ P(X),

νW c

(p) = νW c

(RW c

p ) = inf
Uopen ⊃W c

νW c

(RU
p ) ≤ inf

Uopen ⊃W c
νA(RU

p ) = νA(RW c

p ),

that is,

(13.1) νW c ≺ νA|W c + (νA|W )W c

(see the proof of [6, VI.9.9]). In addition,

(13.2) νA∪W c

+ νA|W c + (νA|W )W c ≺ νA + νW c

.

Indeed, if ν(A) = 0, this follows from [6, VI.9.8]. And if ν(Ac) = 0, then νA∪W c
=

νA = ν and (13.2) reduces to the trivial statement ν + νW c ≺ ν + νW c
. The general

case follows decomposing ν into 1Acν and 1Aν.
Combining (13.1) and (13.2), we see that νA∪W c ≺ νA. Since νA ≺ νA∪W c

holds trivially, we conclude that µ = νA = νA∪W c
as claimed above, and the proof

is finished.

14 Appendix: Weak capacity density condition

Let us consider again the classical case or the case of Riesz potentials as described
in the Introduction. For every open subset U of Rd, let capU denote the Green
capacity with respect to U where, as before, we simply write cap instead of capX .

For every A ∈ B(X), let C(A) denote the set of all points x ∈ A∩ b(A) for which
there exist ε > 0 and r0 > 0 such that U(x, 2r0) ⊂ X and

(14.1) capU(x,2r)(A ∩ B(x, r)) ≥ ε capU(x,2r)(B(x, r)) for every 0 < r ≤ r0.

Of course, C(A) contains the interior of A.
Generalizing the usual definition of the capacity density condition, given for the

complement or the boundary of an open set (see, for example, [1, 2, 3, 35, 12, 18,
30, 29]), we say that A ∈ B(X) satisfies the capacity density condition, if there exist
ε > 0 and 0 < r0 ≤ (1/2)dist(A,Rd \X) such that, for every x ∈ A, (14.1) holds.

Let us say that A satisfies the weak capacity density condition, if the set C(A)
is finely dense in b(A). We shall prove that C(A) is a subset of D(A) defined in
Section 9 and hence any A ∈ B(X) satisfying the weak capacity density condition
has the weak capacity doubling property.

To that end let us discuss the relation between capU(x,2r) and cap. Trivially,

capU(x,2r) ≥ cap, since, given any two open sets U, V in X (or in Rd, if d − α > 0)
such that U ⊂ V , then GU ≤ GV on U × U and hence

(14.2) capU(B) ≥ capV (B) for every Borel set B in U.
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If d − α > 0, there exists a constant κ > 0 such that, for all x ∈ X and r > 0
with U(x, 2r) ⊂ X, GU(x,2r) ≥ κGRd on B(x, r) ×B(x, r) and hence

(14.3) capRd(B) ≥ κ capU(x,2r)(B) for every Borel set B in B(x, r).

Let us now consider the case d = α = 2. Then

capU(x,R)(B(x, r)) = (ln(R/r))−1 (x ∈ R2, 0 < r < R <∞).

In particular,

(14.4) capU(x,2r)(B(x, r)) = (ln 2)−1

and, if for example X = U(0, 1), there is no constant c > 0 such that cap(B(0, r)) ≥
c capU(0,2r)(B(0, r)) for every 0 < r < 1/2.

Nevertheless the following result holds also in the case d = α = 2.

LEMMA 14.1. There exists κ > 0 such that the following holds. If x ∈ X and
r > 0 such that U(x, 2r) ⊂ X, and if ε > 0 and A ∈ B(X) such that

(14.5) capU(x,2r)(A ∩ B(x, r)) ≥ ε capU(x,2r)(B(x, r)),

then cap(A ∩ B(x, r)) ≥ εκ cap(B(x, r)) .

Proof. Because of (14.2) and (14.3) it remains to consider the case d = α = 2.
In this case, we define

κ := inf{GU(0,1)(x, y) : x, y ∈ B(0, 1/2)}.

Let ε > 0, x ∈ X, and r > 0 such that B(x, 2r) ⊂ X and (14.5) holds. Let
ν denote the equilibrium measure for A ∩ B(x, r) with respect to U(x, 2r), that is,
U(x,2r)R̂

A∩B(x,r)
1 = Gν

U(x,2r). Then, by translation and scaling invariance,

U(x,2r)R̂
A∩B(x,r)
1 ≥ κ‖ν‖ on B(x, r),

where ‖ν‖ ≥ ε/ ln 2 ≥ ε by (14.5) and (14.4). So R̂
A∩B(x,r)
1 ≥ κε on B(x, r) and

therefore cap(A ∩B(x, r)) ≥ εκ cap(B(x, r)) .

PROPOSITION 14.2. For every A ∈ B(X), the set C(A) is contained in D(A).
In particular, A ∈ B(X) has the weak capacity doubling property, if A satisfies the
weak capacity density condition.

Proof. Let η := capU(0,8)(B(0, 1))/capU(0,8)(B(0, 4)). Let x ∈ X and r > 0 such
that U(x, 8r) ⊂ X. Then capU(x,8r)(B(x, r)) = η capU(x,8r)(B(x, 4r)). Finally let
A ∈ B(X) and ε > 0 such that

capU(x,2r)(A ∩ B(x, r)) ≥ ε capU(x,2r)(B(x, r)).

Then, by Lemma 14.1,

cap(B(x, r)) ≥ ηκ cap(B(x, 4r)) and cap(A ∩ B(x, r)) ≥ εκ cap(B(x, r)).
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Therefore

cap(A ∩ U(x, 4r)) ≤ cap(B(x, 4r)) ≤ (ηκ)−1 cap(B(x, r))

≤ (εηκ2)−1 cap(A ∩B(x, r)) ≤ (εηκ2)−1 cap(A ∩ U(x, 2r)).

The following proposition shows that the weak capacity doubling is much weaker
than the capacity density condition.

PROPOSITION 14.3. Let X = Rd and d − α > 0. Then there exists a Cantor
set K and c > 0 such that, for all x ∈ K and 0 < r < 1/e,

(14.6) c−1rd−α/| ln r| ≤ cap(K ∩ B(x, r)) ≤ crd−α/| ln r|.

In particular, b(K) = K, C(K) = ∅, and D(K) = K.

Proof. The first part is a special case of [30, Corollary 1] taking N = d, s = d − α,
and q = 1.

Let us fix x ∈ K. Then, in particular,

∫ 1/e

0

cap(K ∩B(x, r))

rd−α

dr

r
≥ c−1

∫ 1/e

0

1

ln(1/r)

dr

r
= ∞

and therefore x ∈ b(K) by Wiener’s criterion. Moreover, for every 0 < r < 1/e,

cap(K ∩ B(x, r))

cap(B(x, r))
≤ c

ln(1/r)

and hence x /∈ C(K), since limr→0(ln(1/r))−1 = 0. Finally, for every 0 < r < 1/e,

cap(K ∩ B(x, r))

cap(K ∩B(x, r/2))
≤ c22d−α ln(2/r)

ln(1/r)
≤ c22d+1−α,

since ln 2 ≤ 1 ≤ ln(1/r). Thus x ∈ D(K). In fact, this shows that even K = Dn(K),
if n ∈ N is large enough.

Let us observe that, for d− α > 0 and relatively compact open sets V in X, the
capacity density property for V c is equivalent to a uniform regularity of V , which
for the Laplacian has been studied in [3]. As shown there, it is closely related to the
existence of strong barriers. The proof for the equivalence of the capacity density
condition and the uniform regularity given in [3] can be adapted to our more general
situation including Riesz potentials.

PROPOSITION 14.4. Let X = Rd, d−α > 0, and let V be a non-empty relatively
compact open set in Rd. Then the following properties are equivalent:

1. V c satisfies the capacity density condition.
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2. There exists γ > 0 such that, for all z ∈ ∂V and r > 0,

(14.7) cap(V c ∩B(z, r)) ≥ γ rd−α.

3. There exists γ > 0 such that (14.7) holds for all z ∈ V c and r > 0.

4. The set V is uniformly regular (with respect to −(−∆)α/2), that is, there exists
δ > 0 such that, for all z ∈ ∂V and r > 0,

(14.8) ε(V ∩U(z,r))c

x

(

V c ∩ U(z, r)
)

≥ δ for every x ∈ V ∩ B(z, r/2).

If α = 2, the minimum principle shows that (14.8) holds if and only if

ε(V ∩U(z,r))c

x

(

V c ∩ U(z, r)
)

≥ δ for every x ∈ V ∩ ∂B(z, r/2).

Proof of Proposition 14.4. (1) ⇔ (2): By (14.3), (2) implies (1) and (1) implies
that (14.7) holds for all z ∈ ∂V and 0 < r ≤ r0. Let z ∈ ∂V and let R be the
diameter of V . Assuming that cap(V c ∩B(z, r0)) ≥ γrd−α

0 we obtain that, for every
r0 ≤ r ≤ R,

cap(V c ∩ B(z, r)) ≥ cap(V c ∩ B(z, r0)) ≥ γrd−α
0 ≥ γ

(r0
R

)d−α
rd−α.

Finally, for every r > R, cap(V c ∩B(z, r)) ≥ cap(∂B(z, r)) = rd−α.
(2) ⇔ (3): Trivially, (3) implies (2). So let us assume that (2) holds and let us

fix z ∈ U c. If B(z, r/2) ⊂ U c, then obviously

cap(U c ∩B(z, r)) ≥ cap(B(z, r/2)) = 2α−drd−α.

So let us assume that B(z, r/2)∩U 6= ∅. Then there exists a point z′ ∈ ∂U∩B(z, r/2)
and B(z′, r/2) is contained in B(z, r). So, by (14.7),

cap(U c ∩ B(z, r)) ≥ cap(U c ∩ B(z′, r/2)) ≥ γ2α−drd−α.

(4) ⇒ (2): Let V be uniformly regular, z ∈ ∂V , r > 0, and E := V c ∩ B(z, r).
Then, for every x ∈ V ∩ B(z, r/2),

RE
1 (x) ≥ ε(V ∩U(z,r))c

x (V c ∩ U(z, r)) ≥ δ

Of course, RE
1 = 1 ≥ δ on the subset B(z, r/2) \ V of E. So we see that RE

1 ≥
δR

B(z,r/2)
1 , hence R̂E

1 ≥ δR̂
B(z,r/2)
1 and

cap(E) ≥ δ cap(B(z, r/2)) = δ2α−drd−α.

(2) ⇒ (4): Suppose that (14.7) holds, let γ̃ := 3α−dγ, and M ≥ 4 such that
Mα−d < γ̃/2. By Harnack’s inequalities, there exists c > 0 such that h ≥ c on
B(0,M/2) \ U(0, 2) for every function h ∈ H+(U(0,M) \ B(0, 1)) satisfying h ≥ 1
on ∂U(0, 2).
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Let us now fix z ∈ ∂V and r > 0. We define W := U(z, r), ρ := r/M , and
F := V c ∩ B(z, ρ). Let µ denote the equilibrium measure of F . Then ‖µ‖ ≥ γρd−α

and therefore
R̂F

1 = Gµ ≥ 3α−dγ = γ̃ on B(z, 2ρ).

Since F ⊂ B(z, ρ), we obviously have

(14.9) RF
1 (y) ≤ ρd−α

|y − z|d−α
≤ 1

Md−α
<
γ̃

2
, whenever |y − z| ≥Mρ = r.

Defining νy := εF∪W c

y , y ∈ X, we obtain that, for every y ∈ B(z, 2ρ) \ F ,

γ̃ ≤ RF
1 (y) = νy(R

F
1 ) ≤ νy(F ) +

γ̃

2
,

since νy is supported by F ∪W c, RF
1 ≤ 1, ‖νy‖ ≤ 1, and RF

1 ≤ γ̃/2 on W c. Therefore
νy(F ) ≥ γ̃/2 for every y ∈ B(z, 2ρ) \ F .

Since the function y 7→ εF∪W c

y (F ) is harmonic on U(z,Mρ)\B(z, ρ), we conclude
by scaling invariance and Harnack’s inequalities that

εF∪W c

y (F ) ≥ c
γ̃

2
=: δ for all y ∈ B(z, r/2) \ F.

Fixing x ∈ V ∩ B(z, r/2) and defining ν̃x := ε
(V ∩W )c

x = εF̃∪W c

x , where F̃ := W \ V ,
we know by (2.7) that νx(W

c) ≥ ν̃x(W
c) and thus finally

ν̃x(F̃ ) = 1 − ν̃x(W
c) ≥ 1 − νx(W

c) = νx(F ) ≥ δ.

Finally, let us restrict our attention to classical case α = 2 and let V be a bounded
domain in Rd, d ≥ 2. If V is regular, then the boundary ∂V satisfies the capac-
ity density condition, if and only if, for some β > 0, the Dirichlet solution to any
β-Hölder continuous boundary function is β-Hölder continuous on V and the corre-
sponding operator is bounded. In the plane case, ∂V satisfies the capacity density
condition, if and only if V is uniformly perfect, that is, if there exist r0 > 0 and
c ∈ (0, 1) such that, for all z ∈ ∂V and 0 < r ≤ r0,

∂V ∩
(

B(z, r) \ U(z, cr)
)

6= ∅

(see [2] for details).
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