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1 Introduction

The phenomenon of self-organized criticality is widely studied in Physics from
different perspectives. (We refer to [1],[2], [19], [23], [9], [16], [18], [13], [8],

1



[14], [10],[17],[15] for various studies). Roughly speaking it is the property
of systems to have a critical point as attractor and to reach spontaneously a
critical state.

In [2] Bantay and Janosi beautifully explained that the continuum limit
of the sand pile model of Bak-Tang-Wiesenfeld in [1] (“BTW model”), which
was based on a cellular automaton algorithm, can be interpreted as a solution
of an anomalous (singular) diffusion equation of the type

dX(t) = ∆(H(X(t)− xc)dt, (1.1)

where H is the Heaviside function and xc is the critical value. In [12] (see
also [13]) Diaz-Guilera pointed out that for this and a similar model due to
Zhang [24] given by

dX(t) = (X(t)− xc)∆(H(X(t)− xc)dt, (1.2)

it is more realistic to consider equations (1.1) and (1.2) perturbed by (an
additive) noise to model a random amount of energy put into the system
varying all over the underlying domain. The resulting equations are then
stochastic partial differential equations (SPDE) of evolution type, however,
with very singular (non continuous) coefficients which mathematically can
only be treated as multi-valued functions.

The purpose of this paper is to analyze such type of equations within the
framework of multi-valued stochastic evolution equations with (1.1) and (1.2)
as the underlying motivating examples. To the best of our knowledge this is
the first time this is done in the presence of a stochastic force and in such
generality in a mathematically strict way. Let us introduce our framework.

Let O be an open bounded domain of Rd, d = 1, 2, 3, with smooth bound-
ary ∂O. We shall study here the nonlinear stochastic diffusion equation with
linear multiplicative noise,

dX(t)−∆Ψ(X(t))dt 3 σ(X(t))dW (t), in (0,∞)× O,

Ψ(X(t)) 3 0, on (0,∞)× ∂O,

X(0, x) = x on O,

(1.3)

where x is an initial datum and Ψ : R→ 2R is a maximal monotone (possibly
multivalued) graph with polynomial growth and random forcing term

σ(X)dW =
∞∑
k=1

µkXdβk ek, t ≥ 0,

2



which is linear in X. Here {ek} is an orthonormal basis in L2(O), {µk} is a
sequence of positive numbers and {βk} a sequence of independent standard
Brownian motions on a filtered probability space (Ω,F , {Ft}t≥0,P).

We note that the linear operator σ(X) is defined by

σ(X)h =
∞∑
k=1

µkX〈h, ek〉2ek, ∀ h ∈ L2(O),

where 〈·, ·〉2 is the scalar product in L2(O).
Apart from the self-organized criticality phenomena mentioned above,

equation (1.3) models the dynamics of flows in porous media and more gen-
erally the phase transition (including melting and solidification processes) in
the presence of a random forcing term σ(X)dW .

Existence for stochastic equations of the form (1.3) with additive and
multiplicative noise was studied in [6] under the main assumption that Ψ is
monotonically increasing, continuous and such that

Ψ(0) = 0, Ψ′(r) ≤ α1|r|m−1 + α2, ∀ r ∈ R,∫ r

0

Ψ(s)ds ≥ α3|r|m+1 + α4, ∀ r ∈ R,
(1.4)

where α1 ≥ 0, α3 > 0, α2, α4 ≥ 0 and m ≥ 1. (See also [7] and [22] for general
growth conditions on Ψ.)

Here we shall study equation (1.3) under the following assumptions.

Hypothesis 1.1 (i) Ψ is a maximal monotone multivalued function from
R into R such that 0 ∈ Ψ(0).

(ii) There exist C > 0 and m ≥ 1 such that

sup{|θ| : θ ∈ Ψ(r)} ≤ C(1 + |r|m), ∀ r ∈ R.

(iii) The sequence {µk} is such that

∞∑
k=1

µ2
kλ

2
k < +∞,

where λk are the eigenvalues of the Laplace operator −∆ in O with
Dirichlet boundary conditions.
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We recall that the domain of ∆ is H2(O) ∩H1
0 (O). A multivalued function

Ψ : R→ 2R is said to be maximal monotone if it is monotone, i.e.,

(v1 − v2)(u1 − u2) ≥ 0, ∀ vi ∈ Ψ(ui), ui ∈ R, i = 1, 2,

and the range R(I + Ψ) of I + Ψ is all of R.
Standard examples of maximal monotone functions (or graphs) are con-

tinuous and increasing functions, the subdifferential of the indicator function
IK of a closed interval K of the form [a, b] or (−∞, b), [0,+∞), i.e.

IK(r) =

{
0, if r ∈ K,
+∞, if r /∈ K

or for −∞ = a0 < a1 < · · · < aN+1 =∞ and for 0 ≤ i ≤ N − 1

Ψ(r) =

{
ϕi(r), for ai < r < ai+1,
(ϕi(ai+1 − 0), ϕi+1(ai+1 + 0)) , for r = ai+1,

where {ϕi}Ni=1 are monotonically non decreasing continuous functions on
(ai, ai+1) and such that limr→ai+1

ϕi(r) ≤ limr→ai+1
ϕi+1(r). Of course, any

linear combination of maximal monotone graphs is maximal monotone.
It should be noticed also that the subdifferential ∂j : R → 2R of a lower

semicontinuous convex function j : R→ (−∞,+∞], i.e.,

∂j(r) = {η ∈ R : j(r) ≤ η(r − r̄) + j(r̄), ∀ r̄ ∈ R}

is maximal monotone and conversely every maximal monotone function Ψ is
of the form ∂j where j is a lower semicontinuous convex function on R.

Since for x ∈ H−1(O)

|xek|2−1 ≤ C1|ek|2H2(O) |x|2−1 ≤ C1λ
2
k|x|2−1 (1.5)

and hence

‖σ(x)‖2
L2(L2(O),H−1(O)) =

∞∑
k=1

µ2
k|xek|2−1 ≤ C1

∞∑
k=1

µ2
kλ

2
k|x|2−1, (1.6)

it follows by (iii) that σ(x) ∈ L2(L2(O), H−1(O)) (the space of all Hilbert-
Schmidt operators from L2(O) into H−1(O)) and that it is Lipschitz con-
tinuous from H−1(O) into L2(L2(O), H−1(O)). Under these assumptions we
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shall prove that if x ∈ Lp(O), p ≥ max{2m, 4}, then there is a unique strong
solution to equation (1.3) which is nonnegative if so is the initial data x.

With respect to the situation considered in [5], [6], [7], in the present case
one does not assume that the range of Ψ is all of R. This general setting,
motivated by the diffusion models mentioned above, requires, however, a
different treatment of existence.

It should be mentioned that several other physical problems with free
boundary and with phase transition can be put into this functional setting.
For instance if

Ψ(x) =


α1(x− a), for x < a
[0, ρ], for x = a
α2(x− a) + ρ, for x > a,

(1.7)

with a, ρ, α1, α2 ∈ (0,+∞), then (1.3) models the phase transition in porous
media or in heat conduction (Stefan problem). If Ψ(x) = ρ sign x where
ρ > 0 and

sign x =


x

|x|
, if x 6= 0

[−1, 1], if x = 0,

(1.8)

then (1.3) reduces to the nonlinear singular diffusion equation

dX(t)− ρ div (δ(X(t))∇X(t))dt = σ(X(t))dW (t),

where δ is the Dirac measure concentrated at the origin.
We already mentioned the Heavside step function

H(x) =


0, if x < 0
[0, 1], if x = 0
1, if x > 0.

Furthermore, Ψ(x) = |x|α sign x with 0 < α ≤ 1 also satisfy Hypothesis 1.1.
Typical examples considered in literature are Ψ(r) = (r − xc)

α where
α < 1 and the key result is that the density X(t) of the system converges
to the critical value. In the same category fall the stochastically perturbed
versions of equations (1.1) and (1.2), that is e.g. in the first case the highly
singular diffusion equation

dX(t)−∆(H + λ)(X(t)− xc)dt = σ(X(t)− xc)dW (t), (1.9)
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where λ ≥ 0. This is a diffusion problem with free boundary driven by a
random forcing term proportional to X(t)−xc where xc is the critical density
and X(t) is the density at the moment t.

Taking into account the numerical simulation in 1-D (see [2]), one might
expect that the time evolution of the system displays self-organized criticality,
i.e. the supercritical region {X(t) > xc} is absorbed asymptotically in time
by the critical one {X(t) = xc}.

A few of the previous works (see e.g. [11]) on self-organized criticality in
singular diffusion equations based on numerical tests brought attention on the
failure of the self-organized behavior in the presence of random fluctuations
(white noise perturbation).

Here we shall prove, however, for systems of the form (1.7)-(1.9) that the
self-organized criticality takes place with high probability under appropriate
assumptions on the parameters and more precisely that the supercritical
region “vanishes” into the critical one in finite time with high probability, at
least if µk = 0 for all k ≥ N + 1 for some N ∈ N. We emphasize that this
is in particular true when the noise is zero. In this case one gets an explicit
bound for the time when this happens (cf. Remark 4.4 below).

The plan of this paper is the following. The main results are presented
in Section 2 and are proven in Section 3. In Section 4 we prove a finite time
extinction type result for solutions to (1.3) which displays a self-organized
criticality behaviour.

The following notations will be used. Lp(O), p ≥ 1, is the usual space
of p-integrable functions with norm denoted by | · |p. The scalar product
in L2(O) and the duality induced by the pivot space L2(O) will be denoted
by 〈·, ·〉2. Hk(O) ⊂ L2(O), k = 1, 2, are the standard Sobolev spaces on
O, while H1

0 (O) is the subspace of H1(O) with zero trace on the boundary.
For p, q ∈ [1,+∞] by LqW ((0, T );Lp(Ω;H)) (H a Hilbert space) we shall
denote the space of all q-integrable processes u : [0, T ]→ Lp(Ω;H) which are
adapted to the filtration {Ft}t≥0.

By CW ([0, T ];L2(Ω;H)) we shall denote the space of all H-valued adapted
processes which are mean square continuous. L(H) denotes the space of
bounded linear operators equipped with the usual norm.

In the following by H we shall denote the distribution space

H = H−1(O) = (H1
0 (O))′
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endowed with the scalar product and norm defined by

〈u, v〉 =

∫
O

A−1u(ξ)v(ξ)dξ, |u|−1 = 〈u, u〉1/2,

where A = −∆ with D(A) = H2(O) ∩H1
0 (O).

In terms of A equation (1.3) can be formally rewritten as
dX(t) + AΨ(X(t))dt 3 σ(X(t))dW (t),

X(0, x) = x.
(1.10)

Its exact meaning will be precised later (see Definition 2.1 below).
It should be recalled, however, that the operator x → AΨ(x) with the

domain

{x ∈ L1(O) ∩H−1(O) : there is η ∈ H1
0 (O), η ∈ Ψ(x) a.e. in O}

is maximal monotone in H := H−1(O) (see e.g. [3]) and so the distribution
space H offers the natural functional setting for the porous media equa-
tion (1.3) or its abstract form (1.10). However, the general existence theory
of infinite dimensional stochastic equations in Hilbert space with nonlinear
maximal monotone operators (see [12], [21]) is not applicable in the present
case and so a direct approach must be used.

Fnally, in this paper we use the same letter C for several different positive
constants arising in chains of estimates.

2 Existence, uniqueness and positivity

Definition 2.1 Let x ∈ H. An H-valued continuous Ft-adapted process
X = X(t, x) is called a solution to (1.3) (equivalently (1.10)) on [0, T ] if

X ∈ Lp(Ω× (0, T )× O) ∩ L2(0, T ;L2(Ω, H)), p ≥ m,

and there exists η ∈ Lp/m(Ω× (0, T )× O) such that P-a.s.

〈X(t, x), ej〉2 = 〈x, ej〉2 +

∫ t

0

∫
O

η(s, ξ)∆ej(ξ)dξds

+
∞∑
k=1

µk

∫ t

0

〈X(s, x)ek, ej〉2dβk(s), ∀ j ∈ N, t ∈ [0, T ],

(2.1)
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η ∈ Ψ(X) a.e. in Ω× (0, T )× O. (2.2)

Below for simplicity we often write X(t) instead of X(t, x).
From the stochastic point of view the solution X given by Definition 2.1

is a strong one, but from the PDE point of view it is a solution in the sense
of distributions since the boundary condition Ψ(X) 3 0 on ∂O is satisfied in
a weak sense only.

Theorem 2.2 below is the main existence result.

Theorem 2.2 Assume that d = 1, 2, 3 and that Hypothesis 1.1 holds. Then
for each x ∈ Lp(O), p ≥ max{2m, 4} there is a unique solution X ∈
L∞W (0, T ;Lp(Ω; O)) to (1.3). Moreover, if x is nonnegative a.e. in O then
P-a.s.

X(t, x)(ξ) ≥ 0, for a.e. (t, ξ) ∈ (0,∞)× O.

As mentioned earlier, Theorem 2.2 was proven in [6] for a differentiable
Ψ satisfying conditions (1.4) and for p ≥ max{m + 1, 4}. It should be said,
however, that in contrast with what happens for coercive functions Ψ arising
in [6], here it seems no longer possible to extend the existence result to all
x ∈ H−1(O), x ≥ 0.

3 Proof of Theorem 2.2

We shall consider the approximating equation
dXλ(t) + A(Ψλ(Xλ(t)) + λXλ(t))dt = σ(Xλ(t))dW (t),

Xλ(0, x) = x,
(3.1)

where λ > 0 and

Ψλ(x) =
1

λ
(x− (1 + λΨ)−1(x)) ∈ Ψ((1 + λΨ)−1(x))

is the Yosida approximation of Ψ. We recall that Ψλ is Lipschitzian and
monotonically increasing and so x → Ψλ(x) + λx is strictly monotonically
increasing and bounded by C1(1 + |x|m) and (Ψλ(x) + λx)x ≥ λ|x|2 for all
x ∈ R. By [6, Theorem 2.2] (applied with m = 1), for each x ∈ H−1(O)
equation (3.1) has a unique solution

Xλ ∈ L2(Ω× (0, T )× O) ∩ L2
W (Ω, C([0, T ];H))
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in the sense of Definition 2.1. Here as usual C([0, T ];H) is equipped with
the supremum norm. Moreover, ( see e.g. [21, Theorem 4.2.5]) the following
Itô formula holds

E|Xλ(t)|2−1 + 2E
∫ t

0

∫
O

(Ψλ(Xλ(s)) + λXλ(s))Xλ(s)dξ ds

= |x|2−1 +
∞∑
k=1

µ2
k E
∫ t

0

|Xλ(s)ek|2−1ds.

(3.2)

We note that since

|Xλek|−1 ≤ C|ek|H2(O)|Xλ|−1 ≤ Cλk|Xλ|−1,

(cf. (1.5)) we have by Hypothesis 1.1(iii) (cf. (1.6))

∞∑
k=1

µ2
kE
∫ t

0

|Xλ(s)ek|2−1ds ≤ CE
∫ t

0

|Xλ(s)|2−1ds. (3.3)

Lemma 3.1 There exists a constant C > 0 such that for all p ≥ 2 and all
x ∈ Lp(O),

ess.supt∈[0,T ] E|Xλ(t, x)|pp ≤ exp

(
C
p− 1

2

)
|x|pp, ∀ λ > 0. (3.4)

Proof. We know from [6, Lemma 3.4] (with m = 1) that as ε→ 0
Xε
λ → Xλ strongly in L∞W (0, T ;L2(Ω;H)),

Xε
λ → Xλ in the weak∗ topology in L∞W (0, T ;Lp(Ω;Lp(O))),

(3.5)

where Xε
λ is the solution to the approximating equation

dXε
λ(t) + (Aλ)εX

ε
λ(t)dt = σ(Xε

λ(t))dW (t), t ≥ 0,

Xε
λ(0) = x,

(3.6)

where 
Aλx = A(Ψλ(x) + λx) = −∆(Ψλ(x) + λx),

D(Aλ) = {x ∈ H ∩ L1(O) : Ψλ(x) + λx ∈ H1
0 (O)},
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and (Aλ)ε is the Yosida approximation of Aλ,

(Aλ)ε =
1

ε
(I − (I + εAλ)

−1), ε > 0.

Furthermore, by [6, Lemma 3.2] we have that Xε
λ ∈ L2(Ω;C([0, T ];L2(O)).

As a matter of fact the results of [6] were proven for smooth nonlinear func-
tions while Ψλ is only t7.15z; but the extension to Lipschitzian functions
Ψ satisfying (1.4) is immediate. In fact, one might take a smoother ap-
proximation of Ψ, for instance the mollifier Ψλ ∗ ρλ (ρλ(r) = 1

λ
ρ(λ/r), ρ ∈

C∞0 (R), ρ ≥ 0,
∫
ρdr = 1) which still remains monotonically increasing and

has all properties of Ψλ.
Next we apply Itô’s formula (3.6) for the function ϕ(x) = 1

p
|x|pp. More

precisely, we first apply Itô’s formula to ϕγ(x) = 1
p
|(1 + γA)−1x|pp, γ > 0,

and then we let γ → 0. We have (for details see the proof in [6, Lemma 3.5]),

Eϕ(Xε
λ(t)) + E

∫ t

0

〈(Aλ)εXε
λ(s), |Xε

λ(s)|p−2Xε
λ(s)〉2ds

= ϕ(x) +
p− 1

2

∞∑
k=1

µ2
kE
∫ t

0

∫
O

|Xε
λ(s)|p−2|Xε

λ(s)ek|2dξ ds dξ

≤ ϕ(x) +
p− 1

2
CE

∫ t

0

∫
O

|Xε
λ(s)|pdξ ds,

(3.7)

since by Sobolev embedding |ek|∞ ≤ Cλk for all k ∈ N. If Y ε
λ is the solution

to the equation

Y ε
λ − ε∆(Ψλ(Y

ε
λ ) + λY ε

λ ) = Xε
λ, Ψλ(Y

ε
λ ) + λY ε

λ ∈ H1
0 (O),

then (see [6, (3.25)]) |Y ε
λ |p ≤ |Xε

λ|p and therefore

〈(Aλ)εXε
λ, |Xε

λ|p−2Xε
λ〉2 =

1

ε
〈Xε

λ − Y ε
λ , |Xε

λ|p−2Xε
λ〉2 ≥ 0.

Then by (3.7) it follows, via Gronwall’s lemma, that

E|Xε
λ(t)|pp ≤ |x|pp exp

(
C
p− 1

2

)
,
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where C is independent of x, λ and t. Now one obtains (3.4) by letting ε
tend to 0 and taking into account (3.5). �

From now on let us assume that p ≥ max{4, 2m} and x ∈ Lp(O). From
Lemma 3.1 it follows that for a subsequence {λ} → 0 we have

Xλ → X weakly in Lp(Ω× (0, T )× O),
and weak∗ in L∞(0, T ;Lp(Ω;Lp(O))),

Ψλ(Xλ)→ η weakly in Lp/m(Ω× (0, T )× O),

in particular in L2(Ω× (0, T )× O),

(3.8)

because by Hypothesis(ii),

|Ψλ(x)| ≤ |Ψ0(x)| ≤ C(1 + |x|m), ∀ x ∈ R.

(Ψ0 is the minimal section of Ψ). By(3.4) we have for λ→ 0

λXλ → 0 strongly in Lp(Ω× (0, T )× O). (3.9)

Clearly X and η are adapted processes. On the other hand, we have

d(Xλ(t)−Xµ(t))−∆(Ψλ(Xλ(t))−Ψµ(Xµ(t)) + λXλ(t)− µXµ(t))dt

= (σ(Xλ(t))− σ(Xµ(t)))dW (t)

and therefore once again applying Itô’s formula (cf. (3.2)) we obtain for
α > 0, t ∈ [0, T ],

1

2
|Xλ(t)−Xµ(t))|2−1e

−αt

+

∫ t

0

∫
O

[
(Ψλ(Xλ(s))−Ψµ(Xµ(s)) (λΨλ(Xλ(s))− µΨµ(Xµ(s)))

+(λXλ(s)− µXµ(s))(Xλ(s)−Xµ(s))
]
e−αsdξ ds

≤

(
C

∞∑
k=1

µ2
kλ

2
k −

1

2
α

)∫ t

0

|Xλ(s−Xµ(s))|2−1e
−αs ds+Mλ,µ(t), ∀ λ, µ > 0,

(3.10)
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where

Mλ,µ(t) :=

∫ t

0

e−αs〈Xλ(s)−Xµ(s), σ(Xλ(s)−Xµ(s))dW (s)〉2

is a real local valued martingale. To derive (3.10) we used that x = λΨλ(x)+
(1 + λΨ)−1(x) and thus for all x, y ∈ R

(Ψλ(x)−Ψµ(y))(x− y) = [Ψλ(x)−Ψµ(y)][(1 + λΨ)−1(x)− (1 + µΨ)−1(y)]

+[Ψλ(x)−Ψµ(y)][λΨλ(x)− µΨµ(y)],

and that the first summand on the right hand side is nonnegative because Ψ
is monotonically increasing and Ψλ(x) ∈ Ψ((1 + λΨ)−1(x)). Hence for α > 0
large enough we obtain for all λ, µ ∈ (0, 1) and t ∈ [0, T ]

1

2
|Xλ(t)−Xµ(t))|2−1e

−αt

≤ C max{λ, µ}
∫ t

0

∫
O

(
|Ψλ(Xλ(s))|2 + |Xλ(s)|2 + |Ψµ(Xµ(s))|2

+|Xµ(s)|2
)
e−αsdξ ds+Mλ,µ(t).

(3.11)

Hence by the Burkholder-Davis-Gundy inequality (for p = 1) we get for all
λ, µ ∈ (0, 1), r ∈ [0, T ],

1

2
E sup
t∈[0,r]

|Xλ(t)−Xµ(t))|2−1e
−αt

≤ C max{λ, µ}E
∫ r

0

∫
O

(
|Ψλ(Xλ(s))|2 + |Xλ(s)|2 + |Ψµ(Xµ(s))|2

+|Xµ(s)|2
)
e−αsdξ ds+ CE

(∫ r

0

|Xλ(s)−Xµ(s)|4−1e
−2αsds

)1/2

.

(3.12)
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But

E
(∫ r

0

|Xλ(s)−Xµ(s)|4−1e
−2αsds

)1/2

≤ E sup
s∈[0,r]

|Xλ(s)−Xµ(s))|−1e
−α

2
s

(∫ r

0

|Xλ(s)−Xµ(s)|2−1e
−αsds

)1/2

≤ 1

4
E sup
s∈[0,r]

|Xλ(s)−Xµ(s))|2−1e
−αs + CE

∫ r

0

|Xλ(s)−Xµ(s)|2−1e
−αsds.

(3.13)
Taking into account that by Hypothesis 1.1(ii)

|Ψλ(Xλ)| ≤ C(1 + |Xλ|m), ∀ λ > 0,

and that by (3.4) {Xλ} is bounded in Lp(Ω×(0, T )×O) for p ≥ max{4, 2m},
we infer by (3.12), (3.13) and Gronwall’s lemma that {Xλ} is a Cauchy net
in L2(Ω;C([0, T ];H)) Hence for λ→ 0

Xλ → X in L2(Ω;C([0, T ];H)). (3.14)

In order to complete the proof of the existence part of Theorem 2.2 it suffices
to show that

η(ω, t, ξ) ∈ Ψ(X(ω, t, ξ)) a.e in Ω× (0, T )× O. (3.15)

Since the operator

Lp(Ω×(0, T )×O)→ L
p
m (Ω×(0, T )×O) ⊂ L

p
p−1 (Ω×(0, T )×O), X → Ψ(X),

in the duality pair(
Lp(Ω× (0, T )× O), Lp(Ω× (0, T )× O)′ = L

p
p−1 (Ω× (0, T )× O)

)
,

is maximal monotone, it suffices to show that (see e.g. [3])

lim inf
λ→0

E
∫ T

0

∫
O

Ψλ(Xλ)Xλdξdt ≤ E
∫ T

0

∫
O

ηXdξdt. (3.16)
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To prove (3.16) we first note that by (3.2) we have

lim inf
λ→0

E
∫ T

0

∫
O

Ψλ(Xλ)Xλdξdt+
1

2
E|X(t)|2−1

=
1

2
|x|2−1 +

1

2

∞∑
k=1

µ2
k E
∫ t

0

|X(s)ek|2−1ds,

(3.17)

because by (1.5), |(Xλ − X)ek|−1 ≤ Cλk|Xλ − X|−1 and so by Hypothesis
1.1(iii)

lim
λ→0

∞∑
k=1

µ2
kE
∫ t

0

|Xλ(s)ek|2−1ds =
∞∑
k=1

µ2
kE
∫ t

0

|X(s)ek|2−1ds.

Next letting λ tend to zero in (3.1) and using (3.8) we see that P-a.s., for all
t ∈ [0, T ],

〈X(t), ej〉2 = 〈x, ej〉2 +

∫ t

0

〈η(s),∆ej〉2ds+
∞∑
k=1

µk

∫ t

0

〈X(s)ek, ej〉2dβk(s).

(3.18)
Note that by continuity the P-zero set does not depend on t ∈ [0, T ], since

∞∑
k=1

µk

∫ t

0

〈X(s)ek, ej〉2dβk(s) =

∫ t

0

〈ej, σ(X(s))dW (s)〉2.

In order to get (3.18) we have used the fact that by (3.14) we have

E
∣∣∣∣∫ t

0

〈Xλ(s)ek, ej〉2dβk(s)ds−
∫ t

0

〈X(s)ek, ej〉2dβk(s)ds
∣∣∣∣2

= E
∫ t

0

〈(Xλ(s)−X(s))ek, ej〉22ds ≤ Cλ2
jλ

2
kT |Xλ −X|2L2(Ω,C([0,T ];H))

and therefore

lim
λ→0

∞∑
k=1

µk

∫ t

0

〈Xλ(s)ek, ej〉2dβkds =
∞∑
k=1

µk

∫ t

0

〈X(s)ek, ej〉2dβkds.
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Therefore (3.18) follows and this yields, via Itô’s formula (applied to 〈X(t), ej〉22,
t ∈ [0, T ]) and summation over j that

1

2
E|X(t)|2−1 + E

∫ t

0

∫
O

ηXdξ ds

=
1

2
E|x|2−1 +

1

2

∞∑
k=1

µ2
k E
∫ t

0

|X(s)ek|2−1ds, ∀ t ∈ [0, T ].
(3.19)

Comparing (3.17) and (3.19) we get (3.16). Hence X is a solution to (1.3) as
claimed.

To prove uniqueness we take two solutions X(1) and X(2) with correspond-
ing η(1) and η(2). Repeating the argument above we obtain

1

2
E|X(1)(t)−X(2)(t)|2−1

+E
∫ t

0

∫
O

(η(1)(s)− η(2)(s))(X(1)(s)−X(2)(s))dξds

=
1

2

∞∑
k=1

µ2
k E
∫ t

0

|(X(1)(s)−X(2)(s))ek|2−1 ds, ∀ t ∈ [0, T ].

Since, because Ψ is monotone, the second term on the left is positive, by
(1.5), Hpothesis 1.1(iii) this implies X(1) = X(2) by Gronwall’s lemma.

Finally, if x ≥ 0 a.e. in O we know by [6, Theorem 2.2] that Xλ ≥ 0
P-a.s. and so by (3.14) it follows that X ≥ 0, a.e in Ω× (0, T )×O as desired.
This completes the proof of Theorem 2.2. �

Remark 3.2 Theorem 2.2 extends to any dimension d ≥ 1 if one modifies
condition (iii) in Hypothesis 1.1 as in [6, Condition 4.1], i.e., one assumes

∞∑
k=1

µ2
k(|ek|∞ + λk|ek|

L
4d
d+6

(O))
2 < +∞.

Remark 3.3 The existence part of Theorem 2.2 remains true for stochastic
porous media equations with additive noise, i.e.

dX −∆Ψ(X)dt =
√
Q dW (t),

15



where Ψ satisfies Hypothesis 1.1 and

√
Q dW (t) =

∞∑
k=1

µkekdβk(t)

with
∞∑
k=1

λ−1
k µ2

k < +∞.

The proof is exactly the same and so, it will be omitted.

Proposition 3.4 Let Xλ, λ ∈ (0, 1), be as above, x ∈ L4(O). Assume that
Ψ satisfies Hypothesis 1.1 with m = 1 and for some δ > 0,

(x̃− ỹ)(x− y) ≥ δ(x− y)2, ∀ (x, x̃), (y, ỹ) ∈ Ψ. (3.20)

Then Xλ, X ∈ L2
W (0, T ;L2(Ω, H1

0 (O))) and

lim
λ→0

E|Xλ −X|2L2(0,T ;L2(O)) = 0. (3.21)

Proof. A simple calculation reveals that

(Ψλ(x)−Ψλ(y))(x− y) ≥ δ

2
|x− y|2, ∀ x, y ∈ R

for λ sufficiently small. Then Ψ̃λ defined byΨ̃λ(r) := Ψλ(r) − δ
2
r, r ∈ R, is

increasing and so by Itô’s formula we have

E|Xλ(t)|22 +
δ

2
E
∫ t

0

|Xλ(s)|2H1
0 (O)ds ≤ C. (3.22)

As a matter of fact, we shall apply Itô’s formula not directly to equation (3.1)
but to equation (3.6) (cf. the proof of Lemma 3.1 to obtain (3.7)). Thus we
get

1

2
E|Xε

λ(t)|22 + E
∫ t

0

〈(Aλ)εXε
λ(s), X

ε
λ(s)〉2ds ≤

1

2
|x|22 + CE

∫ t

0

|Xε
λ(s)|22ds.

Next we have

〈(Aλ)εXε
λ, X

ε
λ〉2 = 〈Aλ(1 + εAλ)

−1Xε
λ, (1 + εAλ)

−1Xε
λ〉2 + ε|(Aλ)εXε

λ|22.

16



Taking into account that Aλ = ∆(Ψλ + λI) and that r → Ψλ(r) − δr/2 is
monotonically increasing we get

〈(Aλ)εXε
λ, X

ε
λ〉2 ≥

δ

2

∫
O

|∇(1 + εAλ)
−1Xε

λ|2dξ + ε|(Aλ)εXε
λ|22.

Hence

E
∫ t

0

|(1 + εAλ)
−1Xε

λ(s)|2H1
0 (O)ds ≤ C

and letting ε → 0 we get (3.22) and the first assertion (taking also into
account (3.5)).

To prove the second part we note that

d(Xλ −Xµ)−∆[Ψ̃λ(Xλ)− Ψ̃µ(Xµ) + λXλ − µXµ +
1

2
δ (Xλ −Xµ)]dt

= (σ(Xλ)− σ(Xµ))dW.

Hence exactly the same arguments to derive (3.11) lead to

1

2
|Xλ(t)−Xµ(t)|2−1e

−αt +
δ

2

∫ t

0

|Xλ(s)−Xµ(s)|22e−αsds

≤ C max{λ, µ}
∫ t

0

(
|Ψλ(Xλ(s))|22 + |Ψµ(Xµ(s))|22

+|Xλ(s)|22 + |Xµ(s)|22
)
e−αsds+Mλ,µ(t),

for α large enough and λ, µ ∈ (0, 1), t ∈ [0, T ]. Since m = 1, we have
|Ψλ(x)| ≤ C(1 + |x|) for all x ∈ R, λ ∈ (0, 1), hence taking expectation we
get

δ

2
E
∫ t

0

|Xλ(s)−Xµ(s)|22ds ≤ C max{λ, µ}E
∫ t

0

(|Xλ(s)|2 + |Xµ(s)|2)ds.

By Lemma 3.1 with p = 2 and (3.8) this implies (3.21). �

Besides Hypothesis 1.1, we shall now assume the following

(iv) Ψ(r) = ρ sign r + Ψ̃(r), for r ∈ R, where ρ > 0, Ψ̃ : R → R is

Lipschitz, Ψ̃ ∈ C1(R \ {0}) and for some δ > 0 it satisfies Ψ̃′(r) ≥ δ
for all r ∈ R \ {0}.

17



Here the signum is defined by (1.8).
Below we shall use an approximation to Ψ which is slightly different from

Ψλ defined before. Namely, below we consider

Ψλ(r) := ρ (sign)λ(r) + Ψ̃(r), r ∈ R,

where (sign)λ is the Yosida approximation of the sign, i.e.

(sign)λ(r) :=


1 if r > λ
r
λ

if r ∈ [−λ, λ]
−1 if r < −λ.

We shall use the symbol Ψλ also for this approximation and denote also by Xλ

the corresponding solution of (3.1). This approximation in the special case
of condition (iv) is much more convenient. We emphasize that all previous
results remain true for this modified approximation. The proofs are the same
and some parts even simplify. We therefore shall use all previous results for
Ψλ and Xλ as above without further notice.

The following technical result will be used in Section 4 (cf. Lemma 4.1)
in a crucial way.

Proposition 3.5 The solutions Xλ to (3.1) and X to (1.3) satisfy all con-
ditions of Proposition 3.4 and in addition

E
∫ T

0

∫
O

|∇(sign)λ(Xλ)|2dξdt ≤ C, ∀ λ > 0

and consequently η ∈ L2
W (0, T ;L2(Ω;H1

0 (O)).

Proof. We set

gλ(r) :=

∫ r

0

(sign)λ(s)ds, r ∈ R,

and choose ϕλ ∈ C2(R) such that

(i) ϕλ(0) = 0.

(ii) ϕ′λ(r) = r
λ

for |r| ≤ λ, ϕ′λ(r) = 1 + λ for r ≥ 2λ, ϕ′λ(r) = −1 − λ for
r ≤ −2λ.

(iii) 0 ≤ ϕ′′λ(r) ≤ C
λ

for all r ∈ R.
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It is easily seen that such a function exists and can be constructed simply by
smoothing the function (sign)λ. Let us denote the resulting function by fλ.
Then define

ϕλ(r) :=

∫ r

0

fλ(s)ds, r ∈ R

As mentioned above the arguments of the previous proofs extends to the
present situation in order to prove that {Xλ} is convergent to the solution
X to (1.3).

Now we shall apply Itô’s formula to equation (3.1) (or, more exactly, to
(3.6) and then let ε→ 0 as in the proof of Proposition 3.4) with Ψλ defined
as above and to the function

∫
O
ϕλ(Xλ)dξ.

Arguing as in the proof of Lemma 3.1 to obtain (3.7), we get (recall that
Xλ(t) ∈ H1

0 (O)),

E
∫

O

ϕλ(Xλ(t))dξ − E
∫ t

0

〈∆(sign)λ(Xλ(s)) + ∆Ψ̃(Xλ(s)), ϕ
′
λ(Xλ(s))〉2 ds

≤
∫

O

ϕλ(x)dξ + C
∞∑
k=1

µ2
kE
∫ t

0

∫
O

ϕ′′λ(Xλ(s))|Xλ(s)ek|2dξds

≤
∫

O

ϕλ(x)dξ + 4λC
∞∑
k=1

µ2
kλ

2
kE
∫ t

0

∫
O

1λ(s, ξ)|ek|2dξds,

where 1λ is the characteristic function of the set {(s, ξ) : 0 ≤ |Xλ(s, ξ)| ≤
2λ}.

Concerning the first line we note that, since ϕ′λ and Ψ̃ are monotonically
increasing while as seen earlier Xλ(t) ∈ H1

0 (O), we have by the Green formula
that

〈∆Ψ̃(Xλ), ϕ
′
λ(Xλ)〉2 = −

∫
O

Ψ̃′(Xλ)ϕ
′′
λ(Xλ)|∇Xλ|2dξ ≤ 0.

This yields

E
∫ T

0

∫
O

〈∇(sign)λ(Xλ),∇ϕ′λ(Xλ)〉2 dξds ≤ C, ∀ λ ∈ (0, 1).

Taking into account that

−〈∆(sign)λ(Xλ), ϕ
′
λ(Xλ)〉2 = 〈∇(sign)λ(Xλ),∇ϕ′λ(Xλ)〉2 ≥ 0, a.e.
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and that ∇ϕ′λ(Xλ) = 1
λ
∇Xλ on {(s, ξ) : |Xλ(s, ξ)| < λ} we get

E
∫ T

0

∫
O

|∇(sign)λ(Xλ)|2dξds ≤ C, ∀ λ ∈ (0, 1),

because ∇(sign)λ(Xλ) = 1
λ
∇(Xλ) if |Xλ)| < λ and ∇(sign)λ(Xλ) = 0 if

|Xλ)| ≥ λ.
Then we get the desired estimate and since also by (3.22)

E
∫ T

0

∫
O

|∇Ψ̃(Xλ)|2dξds ≤ C, ∀ λ ∈ (0, 1)

and (sign)λ(Xλ) + Ψ̃(Xλ) → η weakly in L2(Ω × (0, T ) × O) as λ → 0 we
infer that η ∈ L2

W (0, T ;L2(Ω;H1
0 (O)) as claimed. �

4 Extinction in finite time and self-organized

criticality

In this section we shall prove a finite extinction property for solutions of
(1.3) in 1-D for a special density dependent diffusion coefficient function Ψ.
However, Lemma 4.1 below can be proved without restriction on dimension.
So, for the moment we remain in our general framework.

For simplicity we choose the Wiener process

W (t) =
N∑
k=1

µkekβk(t), t ≥ 0, (4.1)

where N ∈ N.
Besides Hypothesis 1.1, we shall assume Hypothesis (iv) (see page 16),

i.e.

(iv) Ψ(r) = ρ sign r + Ψ̃(r), for r ∈ R, where ρ > 0, Ψ̃ : R → R is

Lipschitzian, Ψ̃ ∈ C1(R\{0}) and for some δ > 0 it satisfies Ψ̃′(r) ≥ δ
for all r ∈ R \ {0}.

Here the signum is defined by (1.8).
Now let τ be the stopping time

τ = inf{t ≥ 0 : |X(t, x)|−1 = 0},
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where X(t, x), t ≥ 0, is the solution to (1.3) given by Theorem 2.2 for x ∈
Lp(O), p ≥ max{4, 2m}.
Lemma 4.1 Under assumptions (i)-(iv) we have

X(t, x) = 0, for t ≥ τ, P-a.s..

Proof. Set A = −∆, D(A) = H2(O) ∩ H1
0 (O). Define µ : [0, T ] × Ω →

C2
b (O; R) by

µ(t) := −
N∑
k=1

µkekβk(t), t ∈ [0, T ],

and µ̃ : [0, T ]→ C2
b (O; R) by

µ̃ :=
N∑
k=1

µ2
ke

2
k.

Define
Y (t) = eµ(t)X(t), t ≥ 0.

Let D(A) be equipped with the graph norm of A and let D(A)′ be its dual
space, hence

D(A) ⊂ H1
0 (O) ⊂ L2(O) ⊂ H−1(O) ⊂ D(A)′. (4.2)

It is easy to see that for all ω ∈ Ω, t ∈ [0, T ] the function eµ(t,ω) is a multiplier
both in D(A) and in H, hence eµ(t,ω)∆z ∈ D(A)′ is well defined for all
z ∈ L2(O) and Y (t) ∈ H.

Claim. We have

Y (t) = x+

∫ t

0

eµ(s)∆η(s)ds− 1

2

∫ t

0

µ̃Y (s)ds, t ∈ [0, T ], (4.3)

where the fist integral on the right hand side is a Bochner integral in D(A)′,
the second by (3.8) is one in Lp(O) ⊂ L2(O). In particular a posteriori the
first integal is in H, continuous in H as a function of t ∈ [0, T ], P-a.s.

Proof of the Claim. Let ϕ ∈ D(A). As before we shall use 〈·, ·〉2 also for
the extended dualizations with pivot space L2(O) as the ones in (4.2).Then
for t ∈ [0, T ]

〈ϕ, eµ(t)X(t)〉2 =
∞∑
j=1

〈ej, eµ(t)ϕ〉2 〈ej, X(t)〉2
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Furthermore, we have by Itô’s formula for all ξ ∈ O

eµ(t,ξ) = 1 +

∫ t

0

eµ(s,ξ)dµ(s, ξ) +
1

2

∫ t

0

eµ(s,ξ)µ̃(ξ)ds.

Now fix j ∈ N. Then by the stochastic Fubini Theorem

〈ej, eµ(t)ϕ〉2 = 〈ej, ϕ〉2 −
N∑
k=1

µk

∫ t

0

〈ej, ekeµ(s)ϕ〉2dβk(s)

+
1

2

∫ t

0

〈ej, µ̃eµ(s)ϕ〉2ds, t ∈ [0, T ].

By Itô’s product rule and (3.18) we hence obtain

〈ej, eµ(t)ϕ〉2 〈ej, X(t)〉2 = 〈ej, ϕ〉2 〈ej, x〉2

+

∫ t

0

〈ej, eµ(s)ϕ〉2 〈∆ej, η(s)〉2 ds

+
N∑
k=1

µk

∫ t

0

〈ej, eµ(s)ϕ〉2 〈ej, X(s)ek〉2 dβk(s)

+
1

2

∫ t

0

〈ej, X(s)〉2 〈ej, µ̃ eµ(s)ϕ〉2 ds

−
N∑
k=1

µk

∫ t

0

〈ej, X(s)〉2 〈ej, ekeµ(s)ϕ〉2 dβk(s)

−
N∑
k=1

µ2
k

∫ t

0

〈ej, ekeµ(s)ϕ〉2 〈ej, X(s)ek〉2 dβk(s).

After summing over j ∈ N the two stochastic terms cancel and the claim
follows since ϕ ∈ D(A) was arbitrary.

Below we work for P-a.s. ω ∈ Ω, ω fixed. Hence all constants C appearing
below may depend on ω.
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Consider the solution Xλ ∈ L2
W (0, T ;L2(Ω, H1

0 (O))) to equation (3.1).
By Proposition 3.4 we have

lim
λ→0

E|Xλ −X|2L2(0,T ;L2(O)) = 0

and Ψλ(Xλ) ∈ L2
W (0, T ;L2(Ω, H1

0 (O))) because Ψλ is Lipschitz.
On the other hand,we have as in (4.3) for Yλ = eµXλ

dYλ(t)

dt
= eµ(t)∆ηλ(t)−

1

2
µ̃(t)Yλ(t), ∀ t ≥ 0 (4.4)

where
ηλ(t) = Ψλ(Xλ(t)) ∈ H1

0 (O).

It follows by (3.21) that

lim
λ→0

E|Yλ − Y |2L2(0,T ;L2(O)) = 0 (4.5)

and therefore for some sequence λn → 0

lim
n→∞

|Yλn − Y |L2(0,T ;L2(O)) = 0 a.e. on Ω. (4.6)

Below we simple write λ instead of λn. Next we have by (4.4) that〈
dYλ(t)

dt
, Yλ(t)

〉
2

=
〈
ηλ(t),∆(eµ(t)Yλ(t))

〉
2
−1

2
〈µ̃(t)Yλ(t), Yλ(t)〉2 a.e. t ∈ [0, T ].

(4.7)
Also we have (for simplicity we take ρ = 1)

〈ηλ(t),∆(eµ(t)Yλ(t))〉2

= 〈(sign)λ (e−µ(t)Yλ(t)) + Ψ̃(e−µ(t)Yλ(t)),∆(eµ(t)Yλ(t))〉2

= −
∫

O

(∇(sign)λ (e−µ(t)Yλ(t)),∇(eµ(t)Yλ(t)))dξ

−
∫

O

Ψ̃′(e−µ(t)Yλ(t))(∇(e−µ(t)Yλ(t)),∇(eµ(t)Yλ(t)))dξ

= −1

λ

∫
O

(|∇Yλ(t)|2 − |Yλ(t)|2 |∇µ(t)|2)1λ(t, ξ)dξ

−
∫

O

Ψ̃′(e−µ(t)Yλ(t))(|∇Yλ(t)|2 − |Yλ(t)|2 |∇µ(t)|2)dξ,
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because for y ∈ H1
0 (O)

∇ (sign)λ (y) =


0, on {y /∈ (−λ, λ)},

1
λ
∇y, on {y ∈ (−λ, λ)}.

(Here 1λ is the characteristic function of {(ξ, t) ∈ O×[0, T ] : |e−µ(t,ξ)Yλ(t, ξ))| <
λ} and (·, ·) is the euclidean scalar product in Rn.) Since Ψ̃′ ≥ δ and

Ψ̃′ ∈ L∞(R), µ ∈ C([0, T ]× O) this yields

〈ηλ(t),∆(eµ(t)Yλ(t))〉2 ≤ C
(
|Yλ(t)|22 + λ

)
. (4.8)

Hence (4.7) and Gronwall’s lemma imply

|Yλ(t)|22 ≤ eC(t−s) (|Yλ(s)|22 + CλT
)

a.e. t > s.

Now taking into account (4.6) and letting λ→ 0 we get

|Y (t)|22 ≤ eC(t−s)|Y (s)|22 a.e. t > s. (4.9)

If Y (·) is L2(O)-continuous then (4.9) holds for all s, t ∈ [0, T ], t ≥ s. Taking
in (4.9) s = τ ∧ T we get Y (t) = 0 for all t ≥ τ ∧ T and since T > 0 was
arbitrary for all t ≥ τ as claimed. So, we have to prove that Y is L2(O)-
continuous on [0, T ]. For this we recall that by Proposition 3.5 we have

eµ η ∈ L2(0, T ;H1
0 (O)), P-a.s.. (4.10)

Then by equation (4.3) we have dY
dt
∈ L2(0, T ;H−1(O)) and so, since Y ∈

L2(0, T ;H1
0 (O)) P-a.s. by Proposition 3.4, by a well known interpolation

result (see e.g. [3]), we conclude that Y ∈ C([0, T ];L2(O)). This concludes
the proof of Lemma 4.1. �

For proving our extinction result we need O ⊂ R, i.e. d = 1. To be more

specific let O = (0, π). Then ek(ξ) =
√

2
π

sin kξ, ξ ∈ [0, π], λk = k2 and

L1(0, π) ⊂ H continuously, so

γ = inf

{
|x|L1

|x|−1

: x ∈ L1(0, π)

}
> 0. (4.11)
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Theorem 4.2 Let x ∈ Lp(0, π), p ≥ max{2m, 4}, be such that

|x|−1 < C−1
N ργ,

where

CN :=
π

4

N∑
k=1

(1 + k)2µ2
k. (4.12)

Then, for each n ∈ N,

P(τ ≤ n) ≥ 1− |x|−1

ργ

(∫ n

0

e−CNsds

)−1

, (4.13)

where by Lemma 4.1 we have

τ(ω) = sup{t ≥ 0 : |X(t, x)|−1 > 0}.

Proof. By condition (iv) we see that

rΨ(r) ≥ ρ|r|, ∀ r ∈ R. (4.14)

Consider the solution Xλ ∈ L2
W (0, T ;L2(Ω;H1

0 (0, π))) to equation (3.1).
Then by first applying Krylov-Rozovskii’s Itô formula (cf.[20, Theorem I.3.1]
or e.g. [21, Theorem 4.2.5]) and then the classical Itô formula to the real
valued semi-martingale |Xλ(t)|2−1, t ∈ [0, T ], and the function

ϕε(r) = (r + ε2)1/2, r ∈ R,

we find

dϕε(|Xλ(t)|2−1) + (|Xλ(t)|2−1 + ε2)−1/2〈Xλ(t),Ψλ(Xλ(t))〉2dt

=
1

2

N∑
k=1

µ2
k

|Xλ(t)ek|2−1(|Xλ(t)|2−1 + ε2)− |〈Xλ(t)ek, Xλ(t)〉−1|2)

(|Xλ(t)|2−1 + ε2)3/2
dt

+〈σ(Xλ(t))dW (t), ϕ′ε(|Xλ(t)|2−1)Xλ(t)〉

≤ 1

2

N∑
k=1

µ2
k

|Xλ(t)ek|2−1

(|Xλ(t)|2−1 + ε2)1/2
dt+ 〈σ(Xλ(t))dW (t), ϕ′ε(|Xλ(t)|2−1)Xλ(t)〉

≤ CN
|Xλ(t)|2−1

(|Xλ(t)|2−1 + ε2)1/2
dt+ 2〈σ(Xλ(t))dW (t), ϕ′ε(|Xλ(t)|2−1)Xλ(t)〉.

(4.15)
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Here CN is given by (4.12) and

σ(Xλ(t))dW (t) =
N∑
k=1

µkXλ(t)ekdβk(t).

Integrating over t and letting λ→ 0 we see that the right hand side of (4.15)
converges to the right hand side of (4.16) below in L2(Ω;C([0, T ];H)). But
by (3.5),(3.8), (3.12), (3.13) and by Proposition 3.4 the same is true for the
left hand side with limit

ϕε(|X(t)|2−1)− ϕε(|x|2−1) +

∫ t

0

∫
O

X(s)

(|X(s)|2−1 + ε)1/2
η(s)dξds.

Taking into account (2.2) and (4.14) we altogether obtain

dϕε(|X(t)|2−1) + ρ
|X(t)|L1(0,π)

(|X(t)|2−1 + ε2)1/2
dt

≤ CN
|X(t)|2−1

(|X(t)|2−1 + ε2)1/2
dt+ 2〈σ(X(t))dW (t), ϕ′ε(|X(t)|2−1)X(t)〉.

Consequently by Lemma 4.1 for all t ≥ 0

ϕε(|X(t)|2−1) + γρ

∫ t∧τ

0

|X(s)|−1

(|X(s)|2−1 + ε2)1/2
ds

≤ ϕε(|x|2−1) + CN

∫ t∧τ

0

|X(s)|2−1

(|X(s)|2−1 + ε2)1/2
ds

+2

∫ t∧τ

0

〈σ(X(s))dW (s), ϕ′ε(|X(s)|2−1)X(s)〉, P-a.s.,

(4.16)

where γ is defined by (4.4).
Clearly, we have

lim
ε→0

∫ t∧τ

0

|X(s)|−1

(|X(s)|2−1 + ε2)1/2
ds = t ∧ τ, P-a.s..
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Now, letting ε tend to zero we get

|X(t)|−1 + γρ(t ∧ τ) ≤ |x|−1 + CN

∫ t

0

|X(s)|−1ds

+

∫ t

0

1[0,τ ](s)〈σ(X(s))dW (s), X(s)|X(s)|−1
−1〉 P-a.s.

(4.17)

Hence by a standard comparison result

|X(t)|−1 + ργ

∫ t

0

eCN (t−s)1[0,τ ](s)ds ≤ eCN t|x|−1

+

∫ t

0

eCN (t−s)1[0,τ ](s)〈σ(X(s))dW (s), X(s)|X(s)|−1
−1〉.

Taking expectation and multiplying by (ργ)−1e−CN t, we obtain∫ t

0

e−CNsP(τ > s)ds ≤ |x|−1

ργ
.

Writing P(τ > s) = 1− P(τ ≤ s) we deduce that

P(τ ≤ t) ≥ 1− |x|−1

ργ

(∫ t

0

e−CNsds

)−1

and (4.13) follows. �
In particular Theorem 4.2 applies to self-organized criticality stochastic

models (1.9)

dX(t)−∆(ρ sign (X(t)− xc) + Ψ̃(X(t)− xc))dt

3 σ(X(t)− xc)
N∑
k=1

µkekdβk, t ≥ 0,

ρ sign (X(t)− xc) + Ψ̃(X(t)− xc) 3 0, on ∂[0, π],

X(0, x) = x.

(4.18)

Here the function Ψ̃ is as in assumption (iv) and xc ∈ R.
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Corollary 4.3 Assume that

|x− xc|−1 < ργC−1
N ,

where CN is as in (4.12) and γ as in (4.11). Then for each n ∈ N

P(τc ≤ n) ≥ 1− |x− xc|−1

ργ

(∫ n

0

e−CNsds

)−1

, (4.19)

where

τc = inf{t ≥ 0 : |X(t)− xc|−1 = 0} = sup{t ≥ 0 : |X(t)− xc|−1 > 0}.

and X = X(t, x) is the solution to (4.18) in the sense of Definition 2.1.

We note that equation (1.9) reduces to (4.18) by shifting the Heavside
function with xc.

Remark 4.4 One must notice that if x > xc, i.e. if the initial state is
in the supercritical region then by the positivity result in Theorem 2.2 we
have X(t) ≥ xc, P-a.s. for all t ≥ 0. This means that the state remains
in the supercritical-critical region for all the time. However, by (4.19) if
CN |x|−1

ργ
is small, it reaches the critical state xc with high probability in a

finite time i.e. the supercritical-critical region is completely absorbed by the
critical one in a finite time. In contrast, if CN |x|−1

ργ
is not small, i.e., if the

magnitude of the random fluctuations induced by the noise is large compared
with the initial state x then the above conclusion might fail because the
random perturbations can push the density X(t) over the singularity xc.

So, in general we cannot expect τc < ∞, P-a.s. However, by (4.19) we
see that

P(τc <∞) = lim
n→∞

P(τc ≤ n) ≥ 1− |x− xc|−1

ργCN
.
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[6] V. Barbu, G. Da Prato and M. Röckner, Existence and uniqueness of
nonnegative solutions to the stochastic porous media equation, Indiana
University Math. Journal, 57, 187-212, 2008.
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