
Bogachev V.I.∗, Röckner M.∗∗, Shaposhnikov S.V.∗

Positive densities of transition probabilities

of diffusion processes1)

For diffusion processes in Rd with locally unbounded drift coeffi-
cients we obtain a sufficient condition for the strict positivity of
transition probabilities. To this end, we consider parabolic equa-
tions of the form L∗µ = 0 with respect to measures on Rd × (0, 1)
with the operator

Lu := ∂tu+ ∂xi
(aij∂xj

u) + bi∂xi
u.

It is shown that if the diffusion coefficient A = (aij) is sufficiently
regular and the drift coefficient b = (bi) satisfies the condition
exp(κ|b|2) ∈ L1

loc(µ), where the measure µ is nonnegative, then µ
has a continuous density %(x, t) which is strictly positive for t > τ
provided that it is not identically zero for t ≤ τ . Applications are
obtained to finite-dimensional projections of stationary distribu-
tions and transition probabilities of infinite-dimensional diffusions.

Keywords: density of transition probability, stationary distribution, parabolic equation,
infinite-dimensional diffusion.

1. Introduction

This work is devoted to obtaining sufficient conditions for the strict positivity of den-
sities of transition probabilities of finite-dimensional diffusion processes with singular
drift coefficients and to the existence of strictly positive continuous densities of finite-
dimensional projections of stationary distributions and transition probabilities of infinite-
dimensional diffusions. To this end, we consider equations of the form

L∗µ = 0 (1.1)

with respect to Borel measures µ on Rd or on Rd×(0, 1). Here L is an elliptic or parabolic
second order operator of the form

Lu(x) := ∂xi
(aij∂xj

u(x)) + bi(x)∂xi
u(x) (1.2)

or

Lu(x, t) := ∂tu(x, t) + ∂xi
(aij(x, t)∂xj

u(x, t)) + bi(x, t)∂xi
u(x, t), (1.3)

where the summation over repeated indices is taken, and the interpretation of our equation
is as follows.

We shall say that a Borel measure µ on Rd satisfies the weak elliptic equation (1.1)
if the functions aij belong to the local Sobolev class W 1,1

loc (Rd), the functions aij, ∂xi
aij,

and bi are Borel measurable and locally integrable with respect to |µ|, and, for every
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u ∈ C∞
0 (Rd), we have the equality∫

Rd

[aij∂xi
∂xj

u+ ∂xi
aij∂xj

u+ bi∂xi
u] dµ = 0. (1.4)

Similarly, a Borel measure µ on Rd × (0, 1) satisfies the weak parabolic equation (1.1)
if, for every compact interval J ⊂ (0, 1) and every ball U ⊂ Rd, the functions aij belong
to the class H1,1(U, J) defined below, the functions aij, ∂xi

aij and bi are Borel measurable
and locally integrable with respect to |µ|, and, for every function u ∈ C∞

0 (Rd× (0, 1)), we
have the equality∫

Rd×(0,1)

[∂tu+ aij∂xi
∂xj

u+ ∂xi
aij∂xj

u+ bi∂xi
u] dµ = 0. (1.5)

Similarly one defines equation (1.1) for the operator L with the extra term θ · u, where
the function θ is locally µ-integrable.

Throughout we assume that aij = aji and that the matrices A(x, t) = (aij(x, t)) are
positive. The vector field b = (b1, . . . , bd) is called the drift coefficient and A is called the
diffusion coefficient.

Under very broad assumptions, such equations are satisfied for stationary distributions
and transition probabilities of diffusion processes. If a diffusion process ξt in Rd is defined
by the stochastic differential equation in the Ito form

dξt =
√
A(ξt, t)dWt +

1

2
b(t, ξt)dt,

where Wt is a Wiener process in Rd, then the transition probabilities P (t, B) := P (ξt ∈ B)
of the process ξt (or P (s, z; t, B) := P (ξt ∈ B|ξs = z) with fixed s ∈ R1 z ∈ Rd) generate
the measure µ = P (t, dx)dt on Rd×(0, 1), which satisfies the parabolic equation L∗µ = 0 in
the sense of the identity analogous to (1.5) but with the operator L in the non-divergence
form

Lu(x, t) := ∂tu(x, t) + aij(x, t)∂xi
∂xj

u(x, t) + bi(x, t)∂xi
u(x, t), (1.6)

and in the case where the coefficients are independent of time and there is a stationary
distribution µ, this distribution satisfies the elliptic equation L∗µ = 0 in the sense of the
identity analogous to (1.4) also with the operator L in the non-divergence form

Lu(x) := aij∂xi
∂xj

u(x) + bi(x)∂xi
u(x). (1.7)

Equations with divergence-form operators of type (1.2) and (1.3) arise for stochastic
equations in the Stratonovich form. However, under our assumptions on aij, the non-
divergence form operator L can be obviously written as a divergence-form operator of
type (1.2) or (1.3) with the new drift with the components bj − ∂xi

aij. For this reason,
all results of this work are valid also for non-divergence form operators (1.6) and (1.7)
and, thereby, are applicable to stochastic equations in the Ito form, provided that the
corresponding conditions on the drift are fulfilled for the drift changed as indicated above.
We consider divergence-form operators for the only reason that this leads to some technical
convenience from the point of view of parabolic equations.

It is well-known that in the case of sufficiently regular coefficients A and b with non-
degenerate A the transition probabilities and stationary distributions possess continuous
strictly positive densities; the strict positivity is usually deduced from Harnack’s inequal-
ity. It has been shown in [1] that if the coefficients bi are locally Lebesgue integrable in
a sufficiently high power (greater than d in the elliptic case and greater than d + 2 in
the parabolic case) and the diffusion coefficient A is nondegenerate and sufficiently reg-
ular, then µ admits a continuous strictly positive density. However, there are important
applications where the integrability of b is given only with respect to µ; a typical appli-
cation concerned with finite-dimensional projections of infinite-dimensional diffusions is
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discussed below. Another typical example is a measure µ with a smooth density %, which
satisfies elliptic equation (1.1) with

A(x) = Id and b(x) =
∇%(x)
%(x)

,

where b(x) := 0 if %(x) = 0. Indeed, the corresponding integral relation is∫
Rd

[∆u(x)%(x) + (∇%(x),∇u(x))] dx = 0,

which is fulfilled for all u ∈ C∞
0 (Rd) due to the integration by parts formula. If % vanishes

(at some points or even on certain sets with nonempty interior), then b = ∇%/% may
be very singular from the Lebesgue measure point of view, but is locally integrable with
respect to µ. In this case the continuous density of µ may vanish even under very high
integrability of b with respect to µ. For example, the measure µ on the real line with
density % such that %(x) = exp(−x−2) if x > 0 and %(x) = 0 if x ≤ 0 satisfies equation
(1.1) with A = 1 and b(x) = 2x−3. Here b ∈ Lp(µ) for all p ∈ [1,+∞). However, in
the elliptic case, it has been shown in [2] that the µ-integrability of exp(κ|b|) for some
κ > 0 yields the strict positivity of the density of µ. Here we prove a parabolic analog
of this result, which states that under reasonable assumptions on the coefficient A, the
local µ-integrability of exp(κ|b|2) with some κ > 0 ensures the existence of a continuous
density % of µ such that %(x, t) > 0 for all t > τ if %(x, t) is not zero identically for t < τ .
In application to the densities of transition probabilities, this yields the strict positivity
everywhere for all t > 0. Unlike the elliptic case, one cannot replace |b|2 by |b|, which is
demonstrated by the following simple example. Set d = 1,

b(x, t) = −ε(t− a)−2eεx + 2ε−1(t− a)−1,

where ε, a ∈ (0, 1), and Lf(x, t) = ∂tf(x, t)+∂2
xf(x, t)+b(x, t)∂xf(x, t). Then the measure

µ = exp(−(t− a)−2eεx) dx dt

satisfies the equation L∗µ = 0 on R1×(0, 1), but at t = a its continuous density vanishes. It
is easily seen that exp(κ|b|) is integrable with respect to µ if ε < κ−1. As an application, in
the last section we obtain sufficient conditions on the coefficients of an infinite dimensional
diffusion ξt with a drift b(x, t) that guarantee that the finite dimensional projections of
stationary distributions and transition probabilities possess strictly positive densities. For
example, if the diffusion coefficient of the process ξt in R∞ is constant and nondegenerate
and b = (bi), then for the existence of strictly positive continuous densities of all finite-
dimensional projections of the transition probabilities Pt(x, · ) it suffices that the functions
exp(κ|bi|2) be integrable with respect to the measure Pt(x, · ) dt. For the diffusion in a
Banach space with the diffusion coefficient Id and a drift b it suffices to have the estimate
‖b(x, t)‖ ≤ C + C‖x‖.

We note that in papers [3], [4], [5], and [6] upper and lower estimates of densities of
solutions can be found. The problems of existence of solutions to the equations of the
indicated type are considered in [7] and [8], and the uniqueness problems are addresses in
papers [9], [10], and [11].

For an arbitrary domain Ω ⊂ Rd let W p,1(Ω) denote the Sobolev space of functions
belonging to Lp(Ω) along with their generalized first order partial derivatives. This space
is equipped with the standard norm

‖f‖W p,1(Ω) := ‖f‖Lp(Ω) + ‖∇f‖Lp(Ω),

where ‖ · ‖Lp(Ω) denotes the Lp(Ω)-norm of scalar or vector functions. The closure of

C∞
0 (Ω) in W p,1(Ω) is denoted by the symbol W p,1

0 (Ω). Let W p,1
loc (Ω) and Lp

loc(Ω) denote
the spaces of functions belonging to W p,1(B) and Lp(B), respectively, for every ball B
with the closure in Ω.
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If µ is a Borel measure (possibly, signed) on a domain Ω in Rd or in Rd × (0, 1) and
|µ| is its variation, then Lp(µ) denotes the space Lp(|µ|) and Lp

loc(µ) denotes the set of all
functions f on Ω such that ζf ∈ Lp(µ) for all ζ ∈ C∞

0 (Ω).
Let J ⊂ R1 be an interval and let U be an open set in Rd. Let Hp,1(U, J) denote the

space of all measurable functions u on U×J such that u( · , t) ∈ W p,1(U) with finite norm

‖u‖Hp,1(U,J) =

(∫
J

‖u( · , t)‖p
W p,1(U) dt

)1/p

.

The space Hp,1
0 (U, J) is defined similarly by replacing W p,1(U) with W p,1

0 (U). The dual
of the space Hp,1

0 (U, J) is denoted by Hp′,−1(U, J), where p′ := p(p − 1)−1. In relation to
parabolic equations, it is useful to introduce also the following spaces. Let Hp,1(U, J) be
the space of all functions u ∈ Hp,1(U, J) with ∂tu ∈ Hp,−1(U, J) and finite norm

‖u‖Hp,1(U,J) = ‖∂tu‖Hp,−1(U,J) + ‖u‖Hp,1(U,J).

For functions u of (x, t) we write

∇u := ∇xu := (∂x1u, . . . , ∂xd
u).

Let |Ω| denote the Lebesgue volume of a set Ω. The norm of a vector v in Rd is denoted
by |v|.

An operator-valued mapping A on an open set is called locally uniformly nondegenerate
if the mapping A−1 is locally bounded.

2. Existence of densities

In this section, we give modifications of some results from [1] on the existence of con-
tinuous densities. The following result, which is Theorem 2.8 in [1], was obtained for
equations with the differential operator in the non-divergence form and with β2 = 0. For
the reader’s convenience, we indicate the necessary changes in the proof.

Let BR be an open ball of radius R in Rd.

Theorem 2.1. Let p > d, r ∈ (p′,∞), and let µ be a measure on BR with a density
% ∈ Lr

loc(BR). Let aij ∈ W p,1
loc (BR), β1 ∈ Lp

loc(BR), and β2 ∈ Lp
loc(µ), where A is locally

uniformly nondegenerate on BR. Assume that, for every ϕ ∈ C∞
0 (BR), we have∣∣∣∣∫

BR

aij∂xi
∂xj

ϕdµ

∣∣∣∣ ≤ ∫
BR

(
|ϕ|+ |∇xϕ|

)
(|β1%|+ |β2%|) dx.

Then % ∈ W p,1
loc (BR), hence % has a locally Hölder continuous version.

Proof. Since r > p′ we have pr > p+ r. Then

q = pr/(pr − p− r) > 1 and q′ = pr/(p+ r) > 1.

According to Hölder’s inequality we have β1% ∈ Lq′

loc(BR) The same is true for β2% since

|β2|q
′|%|q′ = |β2|pr/(p+r)|%|r/(p+r)|µ|(pr−r)/(p+r),

where |β2|pr/(p+r)|%|r/(p+r) ∈ Ls
loc(BR) and |%|(pr−r)/(p+r) ∈ Ls′

loc(BR) with s = (p + r)/r.

Hence |β1%|+|β2%| ∈ Lq′

loc(BR). Now the same reasoning as in Theorem 2.8 in [1] completes
the proof. �

Corollary 2.1. Let µ be a locally finite Borel measure on BR. Let A be locally nondegen-
erate on BR with aij ∈ W p,1

loc (BR), where p > d and continuous versions of aij are chosen,
∂xi
aij ∈ Lp

loc(µ), and let bi, c ∈ Lp
loc(µ). Suppose that∫

BR

[
(aij∂xi

∂xj
ϕ+ ∂xi

aij∂xj
ϕ+ bi∂xi

ϕ+ cϕ
]
dµ = 0, ∀ϕ ∈ C∞

0 (BR).

Then, µ has a density in W p,1
loc (BR) that is locally Hölder continuous.
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Proof. It suffices to take β1 = |∂xi
aij| and β2 = |b|+ |c| and apply Theorem 2.1. �

We extend these results to the parabolic case. Our strategy is essentially the same as
in the elliptic case, but due to some additional technicalities we include complete proofs.

Let ΩT = Ω × (0, T ), T > 0, and let A( · , · ) =
(
aij( · , · )

)d

i,j=1
be a Borel mapping on

ΩT with values in the space of nonnegative symmetric operators in Rd. Let ω0 ∈ Ω be a
fixed point and let BR ⊂ Ω be the ball of radius R centered at ω0. Set BR,T := BR×(0, T ).

We shall assume that the functions aij(x, t) are continuous in x uniformly in t. Note
that aij has a modification with this property provided that

sup
t
‖aij( · , t)‖W p,1(BR) <∞, where p > d. (2.1)

The following result is Theorem 3.7 in [1].

Theorem 2.2. Let d ≥ 2, p > d, q ∈ [p′,+∞). Let A be uniformly bounded and uniformly
nondegenerate and let (2.1) hold. Suppose that µ is a finite measure on BR,T such that,
for some N > 0, one has∣∣∣∣∫ [

∂tϕ+ aij∂xi
∂xj

ϕ
]
dµ

∣∣∣∣ ≤ N‖∇xϕ‖Lq(BR,T ), ∀ϕ ∈ C∞
0 (BR,T ). (2.2)

Then µ ∈ Hq′,1(BR′ , [t0, t1]) and µ ∈ Hq′,1(BR′ , [t0, t1]) if R′ < R and [t0, t1] ⊂ (0, T ).

Now we prove a modification of Theorem 3.8 in [1], which differs in that the integrability
condition on the coefficient β2 (which was absent in the cited theorem) is expressed in
terms of the measure µ and not in terms of Lebesgue measure.

Theorem 2.3. Let A be locally bounded and locally uniformly nondegenerate on BR,T

and let (2.1) be fulfilled, where we assume now that p > d + 2. Let µ be a finite Borel
measure on BR,T with a density % ∈ Lr(BR,T ) with some r > p′. Let β1 ∈ Lp

loc(BR,T ) and
β2 ∈ Lp

loc(µ). Suppose that for all ϕ ∈ C∞
0 (BR,T ) one has∣∣∣∣∫

BR,T

[∂tϕ+ aij∂xi
∂xj

ϕ] dµ

∣∣∣∣ ≤ ∫
BR,T

(|ϕ|+ |∇xϕ|)(|β1%|+ |β2%|) dx dt.

Then % has a version that is locally Hölder continuous on BR × (0, T ) and belongs to the
classes Hp,1(BR′ , [T0, T1]) and Hp,1(BR′ , [T0, T1]) for all R′ < R and [T0, T1] ⊂ (0, T ).

Proof. We modify the proof of Theorem 3.8 in [1]. Let us fix a number R′ < R and a
closed interval [T0, T1] ⊂ (0, T ). It follows by Hölder’s inequality with the exponents θ/s
and θ/(θ − s) applied to the product

|β2|θ|%|θ = |β2|θ|%|θ/p|%|θ−θ/p,

that β2% ∈ Lθ
loc(BR,T ) if (pθ−θ)(p−θ)−1 = r, i.e. θ = pr(p+r−1)−1. Set s := pr(p+r)−1.

Then θ > s, hence β2% ∈ Ls
loc(BR,T ). In addition, |β1%| ∈ Ls

loc(BR,T ) also by Hölder’s
inequality and our assumptions on β1 and %. We have q := s′ > p′. Hence (2.2) holds
with q = s′ > p′. This follows Hölder’s inequality with the exponents q and q′ = s taking
into account the fact that for any ϕ ∈ C∞

0 (BR,T ) the integral of (|ϕ| + |∇ϕ|)q over BR,T

is estimated by C‖∇xϕ‖q
Lq(BR,T ) with some number C independent of ϕ.

By Theorem 2.2 we obtain the inclusions % ∈ Hs,1(BR1 , [t0, t1]) and % ∈ Hs,1(BR1 , [t0, t1])
for every interval [t0, t1] ⊂ (0, T ) and every R1 < R. In particular, we can take any
t0 ∈ (0, T0), t1 ∈ (T1, T ), R1 ∈ (R′, R).

Let us recall an embedding theorem for the spacesHp,1(Rd, [0, T ]). A proof can be found,
e.g., in [12, Corollary 7.6] or in [13, Theorem 7.2] (where the restriction p > 2 was only
needed in the case of stochastic Sobolev spaces). Let q > p > 1 and (d+2)(1/p−1/q) < 1.
Then there is a number N(d, p, q, T ) such that, for each u ∈ Hp,1(Rd, [0, T ]), one has the
inequality

‖u‖Lq(Rd×[0,T ]) ≤ N(d, p, q, T )‖u‖Hp,1(Rd,[0,T ]). (2.3)
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It is readily verified that the same is true for a ball instead of Rd. According to (2.3), we
obtain that % ∈ Lr1(BR1 × [t0, t1]) for each r1 with

1

r1
>

1

s
− 1

d+ 2
.

1

r1
>
p+ r

pr
− 1

d+ 2
=

(d+ 2)(p+ r)− pr

pr(d+ 2)
,

which can be written as

r1 < r
p(d+ 2)

(d+ 2)(p+ r)− pr
,

provided that (d+ 2)(p+ r)− pr > 0; if (d+ 2)(p+ r)− pr ≤ 0, then we can take for r1
any number r1 > 1.

One can choose r1 sufficiently close to rp(d + 2)((d + 2)(p + r) − pr)−1 in such a way
that

r1
r

=
p(d+ 2)

(d+ 2)(p+ r)− pr
=

p

p+ r − pr
d+2

=
p

p− r( p
d+2

− 1)
≥ p

p− p
d+2

+ 1
> 1.

Therefore, repeating the above procedure finitely many times we arrive at the situation
with (d+ 2)(p+ r)− pr ≤ 0, when

% ∈ Lr(BR0 × [τ0, τ1]) for all r ∈ (1,+∞),

where 0 < τ0 < T0, T1 < τ1 < T , R′ < R0 < R.

Hence % ∈ Hs,1(BR0 , [τ0, τ1]) and % ∈ Hs,1(BR0 , [τ0, τ1]) for each s < p. Let us choose
s > d + 2, α > 0, and κ > 0 such that κ > α > 1/s and s(1− 2κ) > d, which is possible
since p > d + 2. By [12, Theorem 7.2] combined with the Sobolev embedding theorem,
for some γ > 0 the function % belongs to the class Cα−1/s

(
[τ0, τ1], C

γ(BR0)
)

consisting of
all (α− 1/s)-Hölder continuous mappings on [τ0, τ1] with values in the space Cγ(BR0) of
γ-Hölder functions on BR0 . Thus, the function % has a Hölder continuous version. �

Corollary 2.2. Let p > d+2 and let A be locally uniformly bounded and locally uniformly
nondegenerate on ΩT and let (2.1) be fulfilled with some p > d+ 2 for every ball BR with
compact closure in Ω. Assume that µ is a locally finite signed Borel measure on ΩT such
that bi, c ∈ Lp

loc(µ) and∫
ΩT

[∂tϕ+ aij∂xi
∂xj

ϕ+ ∂xi
aij∂xj

ϕ+ bi∂xi
ϕ+ cϕ] dµ = 0, ∀ϕ ∈ C∞

0 (ΩT ).

Then µ has a locally Hölder continuous density that belongs to the spaces Hp,1(U, J) and
Hp,1(U, J) for every interval J and every open set U such that U ×J has compact closure
in ΩT .

Proof. By [1, Corollary 3.2], the measure µ has a density in Lr
loc(ΩT ) with any r < (d+2)′,

in particular, with some r > p′. Hence Theorem 2.3 applies with β1 = |∂xi
aij| and

β2 = |b|+ |c|. The corollary is proven. �

3. The strict positivity of densities

The previous results give existence and Sobolev regularity of densities of solutions of
the weak elliptic and parabolic equations. The next theorems give sufficient conditions
for the strict positivity of densities of solutions. Below we consider only nonnegative
measures. To begin with, we recall a similar result in the elliptic case. It was obtained in
[2].
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Theorem 3.1. Let µ be a nonzero locally finite nonnegative Borel measure on Rd. Let A
be locally uniformly nondegenerate with aij ∈ W p,1

loc (Rd), where p > d. Assume that, for
every compact set K, there is a number κ = κ(K) > 0 such that the function exp(κ|b|)
is integrable on K with respect to µ. Suppose that Θ ∈ Lp

loc(µ) and that there exists a
measurable function Ψ ≥ 0 such that Θ ≥ −Ψ and exp(Ψ) ∈ L1

loc(µ). Assume that µ
satisfies the equation L∗µ = 0 on Rd, where

Lu(x) := ∂xi
(aij(x)∂xj

u(x)) + bi(x)∂xi
u(x) + Θ(x)u(x).

Then, the measure µ has a strictly positive continuous density %.

Note that the existence of a continuous density follows immediately from Corollary 2.1.

Remark 3.1. If it is known that a nonzero nonnegative measure µ has a locally bounded
density % ∈ W 2,1

loc (Rd), then we can treat the inequality L∗µ ≤ 0 in place of equation (1.1),
where

Lu(x) := ∂xi
(aij(x)∂xj

u(x)) + bi(x)∂xi
u(x)−Ψ(x)u(x).

The inequality is understood as follows:∫
Rd

Lϕ(x) dµ ≤ 0

for every ϕ ∈ C∞
0 (Rd) such that ϕ ≥ 0. Assume that A is locally uniformly nondegenerate

with aij ∈ W p,1
loc (Rd), where p > d, Ψ ≥ 0 and exp(Ψ) ∈ L1

loc(µ). Let b satisfy the same
local exponential integrability condition as in the theorem. Then, % has a version that is
locally strictly separated from zero.

Let us consider the parabolic case. Let µ be a locally finite nonnegative Borel measure
on Rd × (0, 1) satisfying equation (1.1).

We assume that the mapping A(x, t) =
(
aij(x, t)

)
1≤i,j≤d

with values in the spaces

of positive symmetric matrices and the vector field b(x, t) = (bi(x, t))1≤i≤d satisfy the
following conditions:

(C1) for some p > d + 2, the functions aij belong to Hp,1(U, J) for every ball U and
every interval J with compact closure in (0, 1);

(C2) for every compact set K ⊂ Rd× (0, 1) there exist numbers m(K),M(K) > 0 such
that for all (x, t) ∈ K and all y ∈ Rd we have

m(K)|y|2 ≤
∑

1≤i,j≤d

aij(x, t)yiyj ≤M(K)|y|2;

(C3) for every compact set K ⊂ Rd × (0, 1) there exists a number κ(K) > 0 such that
the function exp

(
κ(K)|b|2

)
is integrable with respect to the measure µ on K.

Let K(r) = K(x, r) denote the cube of edge length r centered at x whose edges are
parallel to the coordinate axes. First we obtain some a priori estimates.

For all q ∈ (−∞, 1] and s > 0 we set

hq(s) := − 1

s| ln s|2q−1
.

Then hq(s) = H ′
q(s), where Hq(s) := (2− 2q)−1| ln s|2−2q if q < 1 and H1(s) := ln | ln s|.

Lemma 3.1. For any τ ∈ (0, e−2) we have
(i) h2

q(τ)/h
′
q(τ) ≤ | ln τ |2−2q,

(ii) τ 2h′q(τ)| lnh′q(τ)| ≤ 3(1 + |q|)| ln τ |2−2q.

Proof. According to the equality h′q(s) = (| ln s|+ 1− 2q)s−2| ln s|−2q we have

h2
q(τ)

h′q(τ)
=

τ 2| ln τ |2q

τ 2| ln τ |4q−2(| ln τ | − 2q + 1)
=

| ln τ |2−2q

| ln τ | − 2q + 1
.
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Note that if τ ∈ (0, e−2) and q ≤ 1 then | ln τ | − 2q + 1 ≥ 1. This yields (i). Let us verify
inequality (ii). One has

τ 2h′q(τ)| lnh′q(τ)| ≤
τ 2(| ln τ | − 2q + 1)(| ln τ |+ 2q ln | ln τ |+ | ln || ln τ |+ 2q − 1|)

τ 2| ln τ |2q
.

Hence we obtain
τ 2h′q(τ)| lnh′q(τ)| ≤ 3(1 + |q|)| ln τ |2−2q,

which completes the proof. �

Let Ω be an arbitrary domain in Rd and let [T0, T1] ⊂ (0, 1). According to Corollary

2.2, the measure µ has a density % ∈ L∞(Ω × [T0, T1]). Multiplying % by
(
2‖%‖L∞

)−1
e−2

we shall assume that
‖%‖L∞ ≤ 2−1e−2.

Set %k := %+ k−1, where k > 2e2. We observe that k−1 ≤ %k ≤ e−2.

Lemma 3.2. Let η ∈ C1
0(Ω × [T0, T1]), T0 < τ1 < τ2 < T1, and 0 < γ < κ, where

κ = κ(Ω × [T0, T1]) is the number from Condition (C3). Then, the following estimates
hold.

If q = 1 and η(t, x) = η0(x) whenever t ∈ [τ1, τ2], then∫
Ω

[
ln | ln %k(x, τ2)|η2

0(x)− ln | ln %k(x, τ1)|η2
0(x)

]
dx+

m

3

∫ τ2

τ1

∫
Ω

|∇ ln | ln %k| |2η2
0 dx dt

≤ C
[
(1 + γ−1)

∫ τ2

τ1

∫
Ω

(η2
0 + |∇η0|2) dx dt+ γ−1‖%‖L∞

∫ τ2

τ1

∫
Ω

eγ|b|2%η2
0 dx dt

]
. (3.1)

If q < 1, then

1

2− 2q

∫
Ω

[
| ln %k(x, τ2)|2−2qη2(x, τ2)− | ln %k(x, τ1)|2−2qη2(x, τ1)

]
dx

+
m

3(1− q)2

∫ τ2

τ1

∫
Ω

|∇| ln %k|1−q|2η2 dx dt ≤ 2

∫ τ2

τ1

∫
Ω

|η||ηt|| ln %k|2−2q dx dt

+ C
[
(1 + γ−1)(1 + |q|)

∫ τ2

τ1

∫
Ω

(η2 + |∇η|2)| ln %k|2−2q dx dt

+ γ−1‖%‖L∞

∫ τ2

τ1

∫
Ω

eγ|b|2%η2 dx dt
]
. (3.2)

In these estimates m = m(Ω × [T0, T1]) is the number from Condition (C2) and C is a
number which depends only on d, m(Ω× [T0, T1]), and M(Ω× [T0, T1]).

Proof. For every function ϕ ∈ H2,1
0 (Ω, (0, 1)) one has the following identity:∫ 1

0

∫
Ω

[
−∂tϕ%+ (A∇%,∇ϕ)

]
dx dt =

∫ 1

0

∫
B

(b,∇ϕ)% dx dt. (3.3)

Let ωr(s) := r−1ω(sr−1), where 0 ≤ ω ≤ 1, ω ∈ C1
0(R1), suppω ⊂ [1/2, 3/4] and∫ 1

0

ω(s) ds = 1.

Set also

%r(x, t) :=

∫ 1

0

ωr(t− s)%(x, s) ds, t > r.

Then the function %r is continuously differentiable in t. According to (3.3), the function
%r satisfies the integral equality∫ 1

0

∫
Ω

ψ∂t%r + ((A∇%) ∗ ωr,∇ψ) dx dt =

∫ 1

0

∫
Ω

((b%) ∗ ωr,∇ψ) dx dt (3.4)
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for every function ψ ∈ H2,1
0 (Ω, (0, 1)) such that ψ = 0 if t ∈ (0, r]. Note that the

convolution (b%)∗ωr is well-defined because by Fubini’s theorem b(x, ·)%(x, ·) ∈ L1[δ, 1−δ]
for almost all x and all δ > 0.

Let k > 0 be fixed and let α0 > 0 be chosen in such a way that [T0, T1] ⊂ [α0, 1 − α0]
and η(x, t) = 0 whenever t 6∈ [α0, 1− α0]. Further we consider r < α0. Set

%r,k := %r + k−1, ψ := I[τ1,τ2]hq(%r,k)η
2,

where I[τ1,τ2] denotes the indicator function of the interval [τ1, τ2]. Substituting such ψ in
(3.4) and using the Newton–Leibniz formula, we find∫

Ω

[
Hq(%r,k(x, τ2))η

2(x, τ2)−Hq(%r,k(x, τ1))η
2(x, τ1)

]
dx

+

∫ τ2

τ1

∫
Ω

((A∇%) ∗ ωr,∇%r,k)h
′
q(%r,k)η

2 dx dt = I(r, k) + J(r, k) + L(r, k) +N(r, k),

where

I(r, k) = −2

∫ τ2

τ1

∫
Ω

((A∇%) ∗ ωr,∇η)hq(%r,k)η dx dt,

J(r, k) =

∫ τ2

τ1

∫
Ω

((b%) ∗ ωr,∇%r,k)h
′
q(%r,k)η

2 dx dt,

L(r, k) = 2

∫ τ2

τ1

∫
Ω

((b%) ∗ ωr,∇η)hq(%r,k)η dx dt,

N(r, k) = 2

∫ τ2

τ1

∫
Ω

Hq(%r,k)η∂tη dx dt.

The function |H(%r,k)| on the support of η is bounded by some number uniformly in
r ≤ α0. Hence, according to the Lebesgue dominated convergence theorem, as r → 0 we
have ∫

Ω

Hq(%r,k(x, τi))η
2(x, τi) dx→

∫
Ω

Hq(%k(x, τi))η
2(x, τi) dx, i = 1, 2,∫ τ2

τ1

∫
Ω

Hq(%r,k)η∂tη dx dt→
∫ τ2

τ1

∫
Ω

Hq(%k)η∂tη dx dt.

Note that |h′q(%r,k)| ≤ C(k) for some number C(k) and all r ∈ (0, 1). The functions A∇%,
b%, and ∇%r,k belong to L2(Ω× [T0, T1]) if r < α0. Hence, as r → 0, we obtain

‖(A∇%) ∗ ωr − A∇%‖L2(Ω×[T0,T1]) → 0, ‖(b%) ∗ ωr − b%‖L2(Ω×[T0,T1]) → 0,

‖∇%r,k −∇%r,k‖L2(Ω×[T0,T1]) → 0.

The terms ∫ τ2

τ1

∫
Ω

((A∇%) ∗ ωr,∇%r,k)h
′
q(%r,k)η

2 dx dt

and I(r, k), J(r, k), L(r, k) converge as r → 0. Thus we have∫
Ω

[
Hq(%k(x, τ2))η

2(x, τ2)−Hq(%k(x, τ1))η
2(x, τ1)

]
dx

+

∫ τ2

τ1

∫
Ω

(A∇%,∇%)h′q(%k)η
2 dx dt = I(k) + J(k) + L(k) +N(k), (3.5)

where

I(k) = −2

∫ τ2

τ1

∫
Ω

(A∇%,∇η)hq(%k)η dx dt, J(k) =

∫ τ2

τ1

∫
Ω

(b%,∇%)h′q(%k)η
2 dx dt,

L(k) = 2

∫ τ2

τ1

∫
Ω

(b%,∇η)hq(%k)η dx dt,N(k) = 2

∫ τ2

τ1

∫
Ω

Hq(%k)ηηt dx dt.
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Let us estimate every term on the right-hand side in (3.5) separately. Let ε > 0. Then

I(k) ≤ ε

∫ τ2

τ1

∫
Ω

|∇%|2h′q(%k)η
2 dx dt+ ε−1M2

∫ τ2

τ1

∫
Ω

|∇η|2
h2

q(%k)

h′q(%k)
dx dt.

According to the first assertion of Lemma 3.1 one has

h2
q(%k)

h′q(%k)
≤ | ln %k|2−2q.

Hence

I(k) ≤ ε

∫ τ2

τ1

∫
Ω

|∇%|2h′q(%)η2 dx dt+ ε−1M2

∫ τ2

τ1

∫
Ω

|∇η|2| ln %k|2−2q dx.

Let us estimate J(k). One has

J(k) ≤
∫ τ2

τ1

∫
Ω

|∇η|2
h2

q(%k)

h′q(%k)
dx dt+

∫ τ2

τ1

∫
Ω

|b|2%2h′q(%k)η
2 dx dt.

The first term on the right is estimated as above. Let us consider the second term. Note
that for all α > 0, β > 0, γ > 0 the inequality

αβ ≤ γ−1
(
eγβ + α lnα

)
.

holds. Applying this inequality with α = h′q(%k) and β = |b|2 and taking into account
that % < %k, we obtain

|b|2%2h′q(%k) ≤ γ−1eγ|b|2%2 + γ−1%2
kh

′
q(%k)| lnh′(%k)|.

According to the second assertion of Lemma 3.1, one has

%2
kh

′
q(%k)| lnh′q(%k)| ≤ 3(1 + |q|)| ln %k|2−2q.

Therefore,∫ τ2

τ1

∫
Ω

|b|2%2h′q(%k)η
2 dx dt ≤ γ−1‖%‖L∞

∫ τ2

τ1

∫
Ω

eγ|b|2%η2 dx dt

+ 3γ−1(1 + |q|)
∫ τ2

τ1

∫
Ω

| ln %k|2−2qη2 dx dt.

Thus

J(k) ≤ 3(1 + γ−1)(1 + |q|)
∫ τ2

τ1

∫
Ω

(η2 + |∇η|2)| ln %k|2−2q dx dt

+ γ−1‖%‖L∞

∫ τ2

τ1

∫
Ω

eγ|b|2%η2 dx dt.

Let us estimate L. One has

L(k) ≤ ε

∫ τ2

τ1

∫
Ω

|∇%|2h′q(%k)η
2 dx dt+ 4ε−1

∫
Ω

|b|2%2h′q(%k)η
2 dx dt.

Estimating the second term on the right as above we obtain

L(k) ≤ ε

∫ τ2

τ1

∫
Ω

|∇%|2h′q(%k)η
2 dx dt+ 4ε−1γ−1‖%‖L∞

∫ τ2

τ1

∫
Ω

eγ|b|%η2 dx dt

+ 12ε−1γ−1(1 + |q|)
∫ τ2

τ1

∫
Ω

| ln %k|2−2qη2 dx dt.

Note that ∫ τ2

τ1

∫
Ω

(A∇%,∇%)h′q(%k)η
2 dx ≥ m

∫ τ2

τ1

∫
Ω

|∇%)|2h′q(%k)η
2 dx.
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Since h′q(%k) = (| ln %k| − 2q + 1)(%2
k| ln %k|2q)−1, 0 < %k < e−2 and q ≤ 1, we have the

inequality

h′q(%k) ≥
1

%2
k| ln %k|2q

.

Hence ∫ τ2

τ1

∫
Ω

(A∇%,∇%)h′q(%k)η
2 dx dt ≥ m

∫ τ2

τ1

∫
Ω

|∇%|2

%2
k| ln %k|2q

η2 dx dt.

Summing the above estimates and letting ε := m/3, we arrive at the estimate∫
Ω

(
Hq(%k)η

2
)∣∣τ2

τ1
dx+ 3−1m

∫ τ2

τ1

∫
Ω

|∇%|2

%2
k| ln %k|2q

η2 dx dt

≤ 2

∫ τ2

τ1

∫
Ω

Hq(%k)ηηt dx dt

+ C
[
(1 + γ−1)(1 + |q|)

∫ τ2

τ1

∫
Ω

(η2 + |∇η|2)| ln %k|2−2q dx dt

+ γ−1‖%‖L∞

∫ τ2

τ1

∫
Ω

eγ|b|2%η2 dx dt
]

In the case q = 1, when η(x, t) = η0(x) for all t ∈ [τ1, τ2], one has ∂tη = 0 on [τ1, τ2] and
N(k) = 0. The proof is complete. �

The following two lemmas can be found in [14], [15] or [16].
Let V 2(U × J) be the space of functions u ∈ H2,1(U × J) with finite norm

‖u‖V 2 = ‖u‖H2,1(U×J) + sup
t∈J

‖u(·, t)‖L2(U).

Lemma 3.3. Let d > 2. Suppose that v ∈ V 2(Ω × J) and that for almost all t ∈ J the
function x→ v(x, t) has compact support in Ω. Then

‖v‖L2(d+2)/d(Ω×J) ≤ C‖v‖V 2(Ω×J),

where C depends only on d and the volume |Ω| of the set Ω.

Let us fix a cube K(r) = K(y, r) and define the function ψK as follows:

ψK(x) = Πd
i=1χi(xi), x = (x1, . . . , xd), (3.6)

where χi ∈ C1([yi− 2r, yi +2r]), χi(xi) = 1 if |xi− yi| ≤ r and χi(xi) = 0 if |xi− yi| ≥ 2r.
Let also 0 ≤ ψK ≤ 1 and |∇ψK | ≤ cr−1 for some positive number c.

Lemma 3.4. Assume that v ∈ V 2(K(R) × (T0, T1)) and that for every function ψ ∈
C1

0(K(R)) the function

t 7→
∫

K(R)

v(x, t)ψ2(x) dx

is absolutely continuous. Suppose that there exist a nonnegative function g ∈ L1(T0, T1)
and constants A1, A2 > 0 such that for each cube K(r) ⊂ K(R) and almost all t ∈ (T0, T1)
we have

d

dt

∫
K(2r)

v(x, t)ψ2
K(x) dx+ A1

∫
K(2r)

|∇v|2ψ2
K dx dt ≤ A2g(t)|K(r)|1−2/d.

Then, whenever T0 < s1 < s2 < t1 < t2 < T1, there exist numbers λ > 0 and σ > 0
depending on s1, s2, t1, t2, d, A1, A2, and ‖g‖L1(T0,T1) such that∫ s2

s1

∫
K(R)

e−λv dx dt

∫ t2

t1

∫
K(R)

eλv dx dt ≤ σ.
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Let us fix a cubeK(R) = K(y,R) and numbers s1 < s2 < t1 < t2 such that s1, s2, t1, t2 ∈
[T0, T1], where [T0, T1] ⊂ (0, 1).

Set Q− := K(R)× [s1, s2] and Q+ := K(R)× [t1, t2].
The next theorem is the main result of this work.

Theorem 3.2. Let µ = % dx dt be a solution of equation (1.1), where the coefficients aij, bi

satisfy conditions (C1), (C2), and (C3). Suppose that ess sup(x,t)∈Q− %(x, t) > 0. Then

| ln %| ∈ L∞(Q+).

Proof. Let Kn := K(R + 2−nR), τn = t1 − (t1 − s2)
−12−n−1, where n ≥ 0. Set κ :=

κ(K(R)× [T0, T1]), m := m(K(R)× [T0, T1]).
1. We show that for some λ > 0 the functions | ln %k|λ, where %k = % + k−1, have

integrals uniformly bounded in k. Set f(%k) = ln | ln %k|. According to Lemma 3.2 with
q = 1, whenever T0 < s < t < T1 we have the estimate∫

K0

[
f(%k(x, t))η

2(x)− f(%k(x, s))η
2(x)

]
dx+

m

3

∫ t

s

∫
K0

|∇f(%k)|2η2 dx dτ

≤ C
[
(1 + γ−1)

∫ t

s

∫
K0

(η2 + |∇η|2) dx dτ + γ−1‖%‖L∞

∫ t

s

∫
K0

eγ|b|2%η2 dx dτ
]

(3.7)

whenever η ∈ C∞
0 (K0 × (T0, T1)) and η(x, τ) = η0(x) if τ ∈ [s, t]. Let dγ = κ. According

to Hölder’s inequality∫
K0

eγ|b|%η2 dx ≤
(∫

K0

eκ|b|%η2 dx
)1/d(∫

K0

%η2 dx
)(d−1)/d

.

Set

g(t) := 1 +
(∫

K0

eκ|b(x,t)|%(x, t) dx
)1/d

.

Applying Hölder’s inequality it is easily seen that g ∈ L1(T0, T1). According to equality
(3.5) the function

t 7→
∫

K0

f(%k(x, t))η
2
0(x) dx

is absolutely continuous on every inner subinterval in [T0, T1]. For an arbitrary cube K(r)
such that K(2r) ⊂ K0, we take η such that for all τ ∈ [s, t] one has η(x, τ) = η0(x) :=
ψK(x), where the function ψK is defined by (3.6). By (3.7) there exist numbers A1, A2

such that

d

dt

∫
K(2r)

f(%k(x, t))ψ
2
K(x) dx+ A1

∫
K(2r)

|∇f(%k(x, t))|ψ2
K(x) dx ≤ A2g(t)|K(r)|1−2/d.

This follows by the fact that (3.7) holds for all pairs s, t with s < t. Thus the assumptions
of Lemma 3.4 are fulfilled, hence there exist numbers λ, σ > 0 independent of k such that∫ s2

s1

∫
K0

e−λf(%k) dx dt

∫ t2

τ0

∫
K0

eλf(%k) dx dt ≤ σ.

Since ess sup(x,t)∈Q−%(x, t) > 0, the first multiplier on the left does not vanish. Taking
into account the estimate 0 < f(%k) < f(%), we obtain that there exists a number C1 > 0
independent of k such that∫ t2

τ0

∫
K0

eλf(%k) dx dt ≤ σ
(∫ s2

s1

∫
K0

e−λf(%) dx dt
)−1

≤ C1.

Since f(%k) = ln | ln %k|, we have∫ t2

τ0

∫
K0

| ln %k|λ dx dt ≤ C1.
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2. Let us show that the norms ‖ ln %‖Lp are uniformly bounded in p ∈ [1,+∞). Set
f(%k) := | ln %k|1−q. Let η ∈ C1

0(K0 × (T0, T1)). By Lemma 3.2 with γ = κ, whenever
τ0 < s < t < t2 we have

1

2− 2q

∫
K0

[
f(%k)

2η2(x, t)− f(%k)
2η2(x, s)

]
dx

+
m

3(1− q)2

∫ t

s

∫
K0

|∇(f(%k))|2η2 dx dτ ≤ 2

∫ t

s

∫
K0

|η||∂tη|f(%k)
2 dx dτ

+ C
[
(1 + δ−1)(1 + |q|)

∫ t

s

∫
K0

(η2 + |∇η|2)f(%k)
2 dx dτ

+ δ−1‖%‖L∞

∫ t

s

∫
K0

eκ|b|2%η2 dx dτ
]
. (3.8)

Set

Λ :=

∫ T1

T0

∫
K0

eκ|b|2% dx dt.

Let ηn be a continuously differentiable function such that

ηn(x, t) = 1 if (x, t) ∈ Kn+1 × (τn+1, t2), ηn(x, t) = 0 if (x, t) 6∈ Kn × (τn, T1),

and |η(x, t)| ≤ 1, |∂tηn(x, t)| ≤ c12
n, |∇xηn(x, t)| ≤ c22

n, where c1, c2 are some positive
numbers. Then, according to (3.8) we have

‖∇(f(%k))‖2
L2(Kn+1×(τn+1,t2)) ≤ C2(1 + |q|)34n

(
‖f(%k)‖2

L2(Kn×(τn,t2)) + Λ
)
,

sup
t∈(τn+1,t2)

‖f(%k(·, t))‖2
L2(Kn+1) ≤ C2(1 + |q|)24n

(
‖f(%k)‖2

L2(Kn×(τn,t2)) + Λ
)
,

where the number C2 is independent of n and k. Hence by Lemma 3.3 there exists a
number C3 independent of n and k such that

‖f(%k)‖2
L2(d+2)/d(Kn+1×(τn+1,t2)) ≤ C3(1 + |q|)34n

(
‖f(%k)‖2

L2(Kn×(τn,t2)) + Λ
)
.

Let p0 = λ, s = (d + 2)d−1 > 1, pn = snλ. Then pn+1 = spn and pn → ∞. Substituting
the numbers qn = 1− pn/2 in place of q in f(%k) = | ln %k|1−q, we find

‖ ln %k‖pn

Lpn+1 (Kn+1×(τn+1,t2)) ≤ C3(1 + pn)34n
(
‖ ln %k‖Lpn (Kn×(τn,t2)))

pn + Λ
)
.

For every fixed n, beginning with n = 0, we apply Fatou’s theorem as k →∞. This yields
a number C4 > 1 independent of n such that

‖ ln %‖pn

Lpn+1 (Kn+1×(τn+1,t2)) ≤ Cn
4

(
‖ ln %‖pn

Lpn (Kn×(τn,t2)) + 1
)
.

Let Zn = max{‖ ln %‖Lpn (Kn×(τn,t2)), 1}. Then Zn+1 ≤ (2C4)
λ−1ns−n

Zn, whence it follows
that

Zn ≤ (2C4)
λ−1

∑
n ns−n

Z0.

Thus, the sequence {Zn} is bounded and there exists a number C5 independent of n
such that ‖ ln %‖Lpn (Kn×(τn,t2)) ≤ C5. Hence | ln %| ∈ L∞(K0 × (t1, t2)). The theorem is
proven. �

Corollary 3.1. Let µ = % dx dt be a solution of equation (1.1), where the coefficients aij

and bi satisfy conditions (C1), (C2), and (C3). Let 0 < τ < 1 and

esssup(x,t)∈Rd×(0,τ)%(x, t) > 0.

Then, the measure µ has a continuous density % that is strictly positive on Rd × (τ, 1).
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Let us note that the condition esssup(x,t)∈Rd×(0,τ)%(x, t) > 0 is trivially satisfied if,
for every t > 0, the function x 7→ %(x, t) is a probability density, which is the case
in applications to transition probabilities. However, in the general case, this condition
cannot be replaced by the hypothesis that the measure µ is nonnegative and not identically
zero on Rd×(0, τ) (as in the elliptic case). This is seen from the following simple example.
Let d = 1 and a ∈ (0, 1). Let %(x, t) = exp((a − t)−1 expx) if t > a and %(x, t) = 0 if
t ≤ a. Then the measure µ with density % on R1 × (0, 1) satisfies the equation L∗µ = 0
with a11(x) = e−x and b = 0 (which has the form ∂t% = ∂x(a

11∂x%) in terms of %), but
this solution is zero when t ≤ a.

Remark 3.2. Theorem 3.1 and Corollary 3.1 remain true with similar proofs if the
operator L has the form

Lu(x, t) := ∂tu(x, t) + ∂xi
(aij(x, t)∂xj

u(x, t)) + bi(x, t)∂xi
u(x, t) + Θ(x, t)u(x, t),

where aij and bi satisfy conditions (C1), (C2), and (C3), Θ ∈ Lp
loc(µ) and there exists a

measurable function Ψ ≥ 0 such that Θ ≥ −Ψ and exp(Ψ) ∈ L1
loc(µ).

Remark 3.3. If it is known that the measure µ has a locally bounded density % ∈
H2,1

loc(Rd, (0, 1)) then we can treat the inequality L∗µ ≤ 0 in place of equation (1.1), where

Lu(x, t) := ∂tu(x, t) + ∂xi
(aij(x, t)∂xj

u(x, t)) + bi(x, t)∂xi
u(x, t)−Ψ(x, t)u(x, t).

The inequality is understood as follows:∫ 1

0

∫
Rd

Lϕ(x, t) dµ ≤ 0

for every nonnegative function ϕ ∈ C∞
0 (Rd × (0, 1)). Assume that aij and bi satisfy

conditions (C1), (C2), and (C3), Ψ ≥ 0 and exp(Ψ) ∈ L1
loc(µ). Then % has a version that

is strictly positive whenever t > τ , where esssup(x,t)∈Rd×(0,τ)%(x, t) > 0.

We emphasize once again that the obtained results are applicable to equations with
non-divergence form operators, one just needs to impose the corresponding exponential
integrability assumptions on the new drift with the components bj − ∂xi

aij.
Let us observe that our results show that the local exponential integrability of the drift

(with the square in the parabolic case) with respect to the solution yields that in fact
the drift is locally exponentially integrable with respect to Lebesgue measure (due to
the continuity and strict positivity of the density of the solution). As we have already
noted, this phenomenon does happen in the case of power integrability. Although the
exponential integrability is not necessary, it cannot be substantially weakened even in the
one-dimensional case. In paper [17], the following question was investigated. Suppose we
are given a probability measure µ on [0,+∞) with an absolutely continuous density % and
let ψ be a positive convex function on [0,+∞). When does the integrability of ψ(|%′/%|)
with respect to µ yield that %(x) > 0 almost everywhere on [0,+∞)? This question is
directly related to our problem in the elliptic case since the measure µ satisfies equation
(1.1) with A(x) = 1 and b(x) = −%′(x)/%(x), i.e., one is concerned precisely with the
µ-integrability of ψ(|b|) in this very special case. It turns out that a sufficient condition
for the validity of the aforementioned implication is the non-integrability at the infinity
of the function x−2 lnψ(x). Moreover, this non-integrability is also necessary in order
that for every absolutely continuous probability density % the µ-integrability of ψ(|%′/%|)
imply the positivity of % almost everywhere. For example, one can take for ψ the functions
exp(κx) with κ > 0 (as we did) and even exp(x/ lnx), but not exp(x/| lnx|2).

4. Applications

The obtained results enable us to establish the existence of strictly positive continuous
densities of finite-dimensional projections of stationary distributions and transition prob-
abilities of infinite-dimensional diffusions. We begin with the elliptic case. Let R∞ be the



15

space of infinite real sequences with the product topology. Suppose we are given Borel
functions Bi on R∞ and numbers αi > 0. We consider the infinite-dimensional elliptic
operator

Lϕ :=
∞∑
i=1

[αi∂
ϕ
xi

+Bi∂xi
ϕ]

defined on smooth functions of finitely many variables. We shall say that a Borel proba-
bility measure µ on R∞ satisfies the weak elliptic equation

L∗µ = 0 (4.1)

if for each i ≥ 1 one has Bi ∈ L1(µ) and∫
R∞

∞∑
i=1

[αi∂
2
xi
ϕ+Bi∂xi

ϕ] dµ = 0 (4.2)

for all functions ϕ on R∞ of the form ϕ(x) = ϕ0(x1, . . . , xn), ϕ0 ∈ C∞
0 (Rn). The series

above is in fact a finite sum for such ϕ. Measures satisfying equation (4.1) are called in-
finitesimally invariant for the operator L because, under broad assumptions, this equation
is fulfilled for true invariant measures of the diffusion generated by L (certainly, provided
that this diffusion exists and has stationary distributions). An advantage of consideration
of infinitesimally invariant measures is that the equation may make sense and possess
solutions under assumptions much weaker than those needed for the existence of the asso-
ciated diffusion. This concerns even the finite-dimensional case. Moreover, the existence
of solutions of the elliptic equation often enables one to construct the diffusion (these
matters are studied in papers [19], [20], and [21]).

Let us fix d and consider the projection P : R∞ → Rd, P (x) = (x1, x2, . . . , xd). Let
µP = µ ◦ P−1 be the corresponding finite-dimensional projection of the measure µ. Since
Bi ∈ L1(µ) there exists the conditional expectation BP of the mapping P ◦B with respect
to the measure µ and the σ-field σP generated by P . Then one has BP (x) = b(Px) for
some Borel mapping b : Rd → Rd. Clearly, |b| ∈ L1(µP ) since |BP | ∈ L1(µ). The measure
µP satisfies the equation L∗Pµ = 0, where the operator LP has the form

LPu :=
d∑

i=1

αi∂
2
xi
u+ (b,∇u).

Theorem 4.1. Suppose that a Borel probability measure µ satisfies equation (4.1) and
there exist numbers κi > 0 such that exp(κi|Bi|) ∈ L1(µ) for each i ≥ 1. Then, for any
projection P : R∞ → Rd, the measure µP on Rd has a continuous strictly positive density.

Proof. Let κ = min(κ1, . . . , κd). Due to Jensen’s inequality exp(κ|b|) ∈ L1(µP ) since
exp(κ|Bi|) ∈ L1(µ). Hence we can apply Theorem 3.1. �

In [18], by using the method of Lyapunov functions sufficient conditions were obtained
ensuring the exponential integrability with respect to the measure µ satisfying equation
(4.1). These conditions employ certain coercivity of the drift. Let us give typical examples.

Example 4.1. Let qn > 0,
∑∞

n=1 qn < ∞ and let X be the Hilbert space of sequences
x = (xn) with ‖x‖2

0 :=
∑∞

n=1 qnx
2
n < ∞. Suppose that we are given functions Bn on X,

n ∈ N, continuous on balls in the weak topology, and that for some numbers Cn > 0 one
has the estimates

|Bn(x)| ≤ Cn + Cn‖x‖2
0.

Assume that there is a number C > 0 for which
∞∑

n=1

qnxnB
n(x) ≤ C − C‖x‖2

0
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for all x of the form x = (x1, . . . , xn, 0, . . .). By Theorem 5.3 of [18], there exists a Borel
probability measure µ on X which satisfies equation (4.1) with αi ≡ 1, and the function
exp(ε‖x‖2

0) is integrable with respect to µ for some ε > 0. Then exp(εn|Bn|) ∈ L1(µ)
with εn < εC−1

n , which yields the existence of continuous strictly positive densities of finite
dimensional projections of the measure µ generated by the projections x 7→ (x1, . . . , xd).

If for some r > 1 we have the estimates

|Bn(x)| ≤ Cn + Cn‖x‖r
0,

then it suffices to require the inequality

∞∑
n=1

qnxnB
n(x) ≤ C − C‖x‖r

0

on finite sequences.

Similar assertions are valid for finite dimensional projections of infinitesimally invariant
measures for stochastic equations of Burgers and Navier–Stokes types, constructed in
Section 7 of paper [18] under the assumption of at most quadratic growth of nonlinearities.
For example, let us consider the stochastic Burgers-type equation

du(t, x) =
√

2dW (t, x) +
[
Hu(t, x)− ψ

(
u(t, x)

)
∂xu(t, x) + f(x)

]
dt

in the space X = L2[0, 1], where H is the Laplace operator with zero boundary conditions
and the eigenbasis {ηn} with the eigenvalues λn, W is the Wiener process in X of the
form W (t) =

∑∞
n=1 αnwn(t)ηn, {wn} is a sequence of independent real Wiener processes,

αn > 0,
∑∞

n=1 α
2
n < ∞, ψ is a Borel function such that |ψ(s)| ≤ C + C|s|, f ∈ L∞[0, 1].

Set

Ψ(y) :=

∫ y

0

ψ(s) ds,

Bn(u) = λnun +
(
Ψ(u), η′n

)
2
+ (f, ηn)2, un := (u, ηn)2.

Then stationary distributions of the indicated stochastic process satisfy the equation
L∗µ = 0 with the operator

Lϕ =
∞∑

n=1

[αn∂
2
ηn
ϕ+Bn∂ηnϕ]

defined on the functions of the form ϕ(u) = ϕ0(u1, . . . , un), ϕ0 ∈ C∞
0 (Rn), where ∂η

denotes the partial derivative along a vector η. As shown in [18], there exists a Borel
probability measure µ on X satisfying the equation L∗µ = 0 in the above sense. Moreover,
the function exp(ε‖x‖2

2) is integrable with respect to µ for some ε > 0 (this follows from
the results in [18]). Therefore, here the condition exp(εn|Bn|) ∈ L1(µ) is fulfilled as well.
Similarly one considers the stochastic Navier–Stokes type equation

du(t, x) =
√

2dW (t, x) +
[
Hu(t, x)−

(
u(t, x) · ∇

)
u(t, x) + F

(
x, u(t, x)

)
+∇p(t, x)

]
dt

with the Laplace operator H on a domain in Rd and a bounded continuous mapping F
(in the classical case F does not depend on u). Here the functions Bn have the form

Bn(u) = (Hu, ηn)2 +
d∑

j=1

(∂ju, u
jηn)2 +

(
F ( · , u), ηn

)
2
.

The corresponding measure µ is constructed on the space L2(D,Rd) of vector-functions.
We note that in papers [23], [24], in the absence of the nonlinearity F , a number of
fine results was obtained about densities of finite-dimensional projections of stationary
distributions of the indicated infinite-dimensional process.
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Finally, yet another close example is related to the stochastic reaction-diffusion equation

du(t, x) =
[
∂2

xu(t, x) + F
(
u(t, x)

)]
dt+

√
2dW (t),

where the function F on the real line is such that |F (s)| ≤ C+Cs2, sF (s) ≤ C+ εs2 and
ε > 0 is sufficiently small (see Section 7 in [18]).

Let us consider the parabolic case. The analog of (4.2) for a measure µ on R∞ × (0, 1)
is the identity ∫

R∞×(0,1)

(
∂tϕ+

∞∑
i=1

[∂2
xi
ϕ+Bi∂xi

ϕ]
)
dµ = 0 (4.3)

for all functions ϕ of the form ϕ(x, t) = ϕ0(x1, . . . , xn, t), ϕ0 ∈ C∞
0 (Rn× (0, 1)), where we

also require the µ-integrability of the coefficients Bi : R∞ × (0, 1) → R1. Equation (4.1)
is understood in the sense of this identity.

Theorem 4.2. Let a Borel probability measure µ on R∞ × (0, 1) satisfy equation (4.1)
and let there exist numbers κi > 0 such that exp(κi|Bi|2) ∈ L1(µ) for each i ≥ 1. Then,
for every projection P : (x, t) 7→ (x1, . . . , xd, t), R∞× (0, 1) → Rd× (0, 1), the measure µP

on Rd × (0, 1) has a continuous strictly positive density.

The proof is similar to the justification of the previous theorem. The same considera-
tions apply to the following more general situation. Suppose that X is a locally convex
space and, for each n, we are given a Borel function Bn on X×(0, 1). Let aij be real num-
bers such that the matrices (aij)i,j≤d are positive. Let li be continuous linear functionals
on X and let hj be vectors in X such that li(hj) = δij. Let us consider the operator

Lϕ := ∂tϕ+
∑
i,j≥1

aij∂hi
∂hj

ϕ+
∑
i≥1

Bi∂hi
ϕ

defined on functions of the form ϕ(x, t) = ϕ0(l1(x), . . . , ln(x), t), ϕ0 ∈ C∞
0 (Rn × (0, 1)).

Then, for a Borel probability measure µ on X × (0, 1) such that Bi ∈ L1(µ) for all i,
the equation L∗µ = 0 is defined in the same sense as above. For a fixed number d, let
bi denote the conditional expectation of Bi with respect to the measure µ and the σ-
algebra generated by l1, . . . , ld. Let π(x, t) := (l1(x), . . . , ld(x), t), (x, t) ∈ X × (0, 1), and
let µπ := µ ◦ π−1. Then, the measure µπ on Rd × (0, 1) satisfies the parabolic equation
L∗πµπ = 0 with the operator Lπ having the diffusion matrix (aij)i,j≤d and drift bπ = (bi).
Therefore, we arrive at the following assertion.

Theorem 4.3. Suppose that for each i there exists a number κi > 0 such that one has
exp(κi|Bi|2) ∈ L1(µ). Then the measure µπ has a continuous strictly positive density on
Rd × (0, 1).

It should be noted that in the previous results we dealt with finite-dimensional projec-
tions determined by the functionals of the form mentioned in the hypotheses (yet, in the
case of R∞, any continuous linear functional is a finite linear combination of coordinate
functionals). In some cases, as in the next example, one can pass from special functionals
to general ones.

Example 4.2. Let a diffusion process ξt in a separable Banach space X be defined by
the stochastic differential equation

dξt = dWt + b(ξt, t)dt,

where Wt is some Wiener process in X (see §7.2 in [22]) such that the distribution of W1 is
positive on all balls and b : X×[0, 1] → X is a Borel mapping such that ‖b(x, t)−b(y, t)‖ ≤
C‖x− y‖ and ‖b(x, t)‖ ≤ C +C‖x‖, where C is a constant. This equation is understood
as the integral one

ξt(ω) = ξ0(ω) +Wt(ω) +

∫ t

0

b(ξs(ω), s) ds.
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It has a unique solution, which is constructed by means of the contracting mapping
theorem. Suppose that for some ε0 > 0 the function exp(ε0‖x‖2) is integrable with
respect to the distribution of ξ0 (which is fulfilled, e.g., if ξ0 is a non-random point). By
using the Gronwall lemma, we obtain

‖ξt(ω)‖ ≤ [‖ξ0(ω)‖+ ‖Wt(ω)‖+ C]eCt, t ∈ [0, 1].

Due to Fernique’s theorem (see §2.6 in [22]), for some ε1 > 0 the random variables
exp(ε1‖Wt‖2) with t ∈ [0, 1] have uniformly bounded expectations. Hence there ex-
ists ε2 > 0 such that the random variables exp(ε2‖ξt‖2) with t ∈ [0, 1] have uniformly
bounded expectations as well. This means that the function exp(ε2‖x‖2) is integrable
with respect to the measure P (t, · ) dt on X × [0, 1], which yields also the integrability
of exp(C−2ε2‖b‖2) with respect to that measure. Suppose that l1, . . . , ld ∈ X∗ and the
mapping π = (l1, . . . , ld) : X → Rd is surjective. Set Pt(B) := P (ξt ∈ B) and consider the
measure µ := Pt dt on X × (0, 1). As above, there exist Borel functions bi on Rd × (0, 1)
such that bi ◦ π coincides with the conditional expectation of li ◦ b with respect to the
measure µ and the σ-algebra generated by π. It is readily verified that the measure
µπ := µ ◦ π−1 on Rd × (0, 1) satisfies equation (1.1) with the drift bπ := (b1, . . . , bd) and
certain constant coefficients aij. By using that the distribution of W1 is not concentrated
on a proper closed subspace one can show that the matrix (aij) is strictly positive. There-
fore, according to Theorem 3.2, the measure µπ has a strictly positive continuous density.
The same can be obtained directly from Theorem 4.3. Indeed, one can show that there
exist functionals fi ∈ X∗ such that fi(Wt) are independent Wiener processes and the
functionals l1, . . . , ld are linear combinations of f1, . . . , fd. To this end we denote by γ the
distribution of W1 in X, apply the standard orthogonalization procedure to the elements
l1, . . . , ld of L2(γ) and complement the obtained functionals f1, . . . , fd to an orthonor-
mal basis of the Euclidean space X∗ equipped with the inner product from L2(γ) (see
§7.2 in [22] on infinite-dimensional Wiener processes). Actually, we construct another

Wiener process W̃t of the form W̃t =
∑∞

i=1w
i
tei, where {ei} is an orthonormal basis in

the Cameron–Martin space of γ and wi
t are independent real Wiener processes, such that

the process W̃t has the same finite-dimensional distributions as Wt and fi(ej) = δij. Then
Theorem 4.3 applies to the projections of µ generated by the functionals fi. It remains to
observe that there is an invertible operator S on Rd such that S◦(f1, . . . , fd) = (l1, . . . , ld).

It would be interesting to study finite-dimensional projections of the measure µ in
Theorem 4.3 corresponding to arbitrary continuous finite-dimensional operators, not nec-
essarily generated by the functionals li.
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