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The main object of this paper is the Kolmogorov operator in [0, T ]×H, where H is a
separable Hilbert space with norm | · | and inner product 〈·, ·〉 and T > 0 is fixed, defined
by

L0u = Dtu + N(t)u,

N(t)u(t, x) =
1

2
Tr [CD2

xu(t, x)] + 〈x, A∗Dxu(t, x)〉+ 〈F (t, x), Dxu(t, x)〉.

Here A : D(A) ⊂ H → H is the infinitesimal generator of a C0 semigroup etA in H, A∗

is the adjoint of A, C is a positive linear operator on H and the mapping F : D(F ) ⊂
[0, T ]×H → H is such that F (t, ·) is quasi dissipative for all t ∈ [0, T ] (see the definitions
below). By Dt and Dx we denote the derivatives in t and x respectively. In order to
define the domain of L0 we introduce some functional spaces. We denote by EA(H) the
linear span of all real and imaginary parts of functions ei〈x,h〉 where h ∈ D(A∗). For any
ϕ ∈ C1([0, T ]) such that ϕ(T ) = 0 and any h ∈ C1([0, T ]; D(A∗)) let us consider the
function

uϕ,h(t, x) = ϕ(t)ei〈x,h(t)〉, t ∈ R, x ∈ H,

and denote by EA([0, T ] × H) the linear span of all real and imaginary parts of such
functions uϕ,h. The operator L0 is defined on the space D(L0) := EA([0, T ] × H). Let
P(H) be the set of all Borel probability measures on H and let L(H) be the space of
bounded linear operators on H.

First we shall assume that F is sufficiently regular and prove that, for any ν0 ∈ P(H),
there exists a unique family of probability measures (νt)t∈[0,T ] ⊂ P(H) such that

d

dt

∫
H

u(t, x) νt(dx) =

∫
H

L0u(t, x) νt(dx), u ∈ D(L0), t ∈ [0, T ]. (1)

This statement is an infinite dimensional analog of some results in [1]–[3]. Then we show
that L0 is essentially m-dissipative in the space L2([0, T ]×H; ν) where ν is the measure
in [0, T ] ×H defined by ν(dt, dx) = νt(dx)dt. In the case of irregular drifts we prove an
analogous result under the assumption that there exists a suitable family of probability
measures νt (see Condition (H2)). Finally, we apply the obtained results to reaction-
diffusion equations with time-dependent coefficients.

Let us list the assumptions on the linear operator A which we will assume throughout.

Condition (H1):
(i) There is ω > 0 such that 〈Ax, x〉 ≤ −ω|x|2, x ∈ D(A);
(ii) C ∈ L(H) is symmetric, nonnegative and such that the linear operator

Qt :=

∫ t

0

esACesA∗
ds

is of trace class for all t > 0;

(iii) etA(H) ⊂ Q
1/2
t (H) for all t > 0 and there is a bounded operator Λt such that

Q
−1/2
t Λt = etA and

γλ :=

∫ +∞

0

e−λt‖Λt‖dt < +∞.
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Let us note that assumption (iii) implies that the Ornstein–Uhlenbeck operator associ-
ated to L0 (i.e., corresponding to F = 0) is strong Feller. This assumption is not essential
but it allows to simplify several proofs. The Ornstein–Uhlenbeck operator is defined by

Uϕ(x) =
1

2
Tr [CD2

xϕ(x)] + 〈x, A∗Dxϕ(x)〉, ϕ ∈ EA(H).

In addition, we introduce the operator

V0u(t, x) = Dtu(t, x) + Uu(t, x), u ∈ EA([0, T ]×H),

and its maximal extension V .
Assume first that, in addition to Condition (H1), the mapping F : [0, T ] ×H → H is

continuous along with DxF and there exists K > 0 such that

|F (t, x)− F (t, y)| ≤ K|x− y|, x, y ∈ H, t ∈ [0, T ].

It is known (see, e.g., [4]) that, under this assumption, for any s ≥ 0, there exists a
unique mild solution X(·, s, x) of the stochastic differential equation

dX = (AX + F (t,X))dt +
√

C dW (t), X(s) = x ∈ H, (2)

where W (t), t ≥ 0, is a cylindrical Wiener process in H defined on a filtered probability
space (Ω,F ,Ft, P). A mild solution X(t, s, x) of (2) is an adapted stochastic process
X ∈ C([s, T ]; L2(Ω,F , P)) such that

X(t, s, x) = e(t−s)Ax +

∫ t

s

e(t−r)AF (r, X(r, s, x))dr + WA(t, s), t ≥ s,

where WA(t, s) is the stochastic convolution:

WA(t, s) =

∫ t

s

e(t−r)A
√

C dW (r), t ≥ s.

In view of Condition (H1)-(ii), WA(t, s) is a Gaussian random element in H with mean 0
and covariance operator Qs,t given by

Qs,tx =

∫ t

s

esACesA∗
xds, t ≥ s, x ∈ H.

We define the transition evolution operator

Ps,tϕ(x) = E[ϕ(X(t, s, x))], t ≥ s, ϕ ∈ Cb(H),

where Cu(H) is the Banach space of all uniformly continuous and bounded functions
ϕ : H → R endowed with the usual supremum norm

‖ϕ‖0 = sup
x∈H

|ϕ(x)|.

The spaces Ck
u(H), k ∈ N, are defined similarly.

We denote by C∗
u(H) the topological dual of Cu(H). For any 0 ≤ s < t ≤ T , let P ∗

s,t be
the adjoint operator of Ps,t. It is easy to see that if ν ∈ P(H) we have P ∗

s,tν ∈ P(H) and∫
H

ϕ(x)(P ∗
s,tν)(dx) =

∫
H

Ps,tϕ(x)ν(dx), ∀ ϕ ∈ Cu(H).

In the case under consideration we have the following existence and uniqueness results
and moment estimates.

Proposition 1. Let ν0 ∈ P(H). Then νt = P ∗
0,tν0 satisfies (1).

Proposition 2. Let (ζt)t∈[0,T ] be a solution of (1) such that

sup
t∈[0,T ]

∫
H

|x|2ζt(dx) < +∞.

Then ζt = P ∗
0,tν0 for all t ∈ [0, T ].
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Proposition 3. Let ν0 ∈ P(H) and let νt = P ∗
0,tν0, t ∈ [0, T ]. Then for any m ∈ N there

exists cm > 0 such that∫
H

|x|2mνt(dx) ≤ cm

(
1 +

∫
H

|x|2mν(dx)

)
, t ≥ 0.

We recall that a mapping T : D(T ) ⊂ E → E, where E is a Hilbert space, is called
dissipative if 〈T (x)−T (y), x−y〉 ≤ 0 for all x, y ∈ D(T ). If, in addition, (I−T )(D(T )) =
E, then T is called m-dissipative. The mapping T is called quasi dissipative if T − KI
is dissipative for some K > 0. If T − KI is m-dissipative, then T is called m-quasi
dissipative.

It is readily verified that L0 is dissipative in L2([0, T ]×H, ν), hence it is closable. Let
us denote its closure by L2.

Theorem 1. The operator L2 is m-dissipative in the space L2([0, T ]×H; ν).

Let us turn to the case of irregular drifts. Suppose we are given a family {F (t, ·)}t∈[0,T ]

of m-quasi dissipative mappings F (t, ·) : D(F (t, ·)) ⊂ H → H, where D(F (t, ·)) are Borel
sets in H. For simplicity we shall assume that these mappings are m-dissipative. We are
concerned with the Kolmogorov operator

L0u(t, x) := Dtu(t, x) + Uu(t, x) + 〈F0(t, ·), Dxu(t, x)〉, u ∈ D(L0),

where D(L0) = EA([0, T ] × H) and U is the Ornstein–Uhlenbeck operator. Our goal
is to prove that the closure of L0 is m-dissipative in the space L2([0, T ] × H, ν), where
ν(dt, dx) = νt(dx)dt and (νt)t∈[0,T ] is a given family of Borel measures on H such that

d

dt

∫
H

u(t, x)νt(dx) =

∫
H

L0u(t, x)νt(dx), ∀ u ∈ D(L0). (3)

In addition to Condition (H1) we shall assume also

Condition (H2):
(i) There is a family {F (t, ·)}t∈[0,T ] of m-quasi dissipative mappings in H such that

0 ∈ D(F (t, ·)) and F0(t, 0) = 0 for all t ∈ R;
(ii) there is a family (νt)t∈[0,T ] of Borel probability measures on H such that∫

H

|x|2 ν0(dx) < +∞

and ∫ T

0

∫
H

(|x|4 + |F0(t, x)|2 + |x|4|F0(t, x)|2) νt(dx) dt < +∞;

(iii) for all u ∈ D(L0) we have L0u ∈ L2([0, T ]×H, ν) and (3) is fulfilled;
(iv) νt(D(F (t, ·)) = 1, ∀ t ∈ [0, T ].

The problem of existence of measures νt as above is studied in our separate paper.
Let us assume that Conditions (H1) and (H2) hold.

Proposition 4. For all u ∈ D(L0) we have∫ T

0

∫
H

L0u(t, x) u(t, x) νt(dx) dt =− 1

2

∫ T

0

∫
H

|C1/2Dxu(t, x)|2 νt(dx) dt

−
∫

H

u2(0, x) ν0(dx).

In particular, L0 is dissipative in L2([0, T ]×H, ν).

Since L0 is dissipative, it is closable in L2([0, T ] × H, ν). We shall denote its closure
with domain D(L2) by L2.

Now we can state the main result of this note.



4

Theorem 2. Under Conditions (H1) and (H2), the operator L2 is m-dissipative in the
space L2([0, +∞)×H, ν).

Now we apply our result to the reaction-diffusion equation. Let us consider a stochastic
heat equation perturbed by a time dependent polynomial drift of odd degree d > 1 of the
form λξ − p(t, ξ), ξ ∈ R, t ∈ [0, T ], where λ ∈ R is given and ∂ξp(t, ξ) ≥ 0 for all ξ ∈ R
and t ∈ [0, T ]. We set H = L2(O), where O = (0, 1)n, n ∈ N, and denote by ∂O the
boundary of O. Let us consider the following stochastic partial differential equation on
O:

dX(t, s, ξ) = [∆ξX(t, s, ξ) + λX(t, s, ξ)− p(t,X(t, s, ξ))]dt + BdW (t, ξ), t ≥ s,

(4)

X(t, s, ξ) = 0, t ≥ s, ξ ∈ ∂O, X(s, s, ξ) = x(ξ), ξ ∈ O, x ∈ H,

where ∆ξ is the Laplace operator, B ∈ L(H), and W is a cylindrical Wiener process in
H defined on a probability space (Ω,F , P). We choose W of the form

W (t, ξ) =
∞∑

k=1

ek(ξ)βk(t), ξ ∈ O, t ≥ 0,

where (ek) is a complete orthonormal system in H and (βk) is a sequence of independent
standard Brownian motions on a probability space (Ω,F , P).

In order to write problem (4) as a stochastic differential equation in the Hilbert space H
we denote by A the realization of the Laplace operator with Dirichlet boundary conditions,
i.e.,

Ax = ∆ξx, x ∈ D(A), D(A) = H2(O) ∩H1
0 (O).

The operator A is self-adjoint and possesses a complete orthonormal system of eigenfunc-
tions, namely

ek(ξ) = (2/π)n/2 sin(πk1ξ1) · · · (sin πknξn), ξ = (ξ1, ..., ξn) ∈ Rn,

where k = (k1, . . . , kn), ki ∈ N.
For any x ∈ H we set xk = 〈x, ek〉, k ∈ Nn. Notice that

Aek = −π2|k|2ek, k ∈ Nn, |k|2 = k2
1 + · · ·+ k2

n.

Therefore, we have

‖etA‖ ≤ e−π2t, t ≥ 0.

Concerning the operator B, we shall assume for simplicity that B = (−A)−γ/2 with
n/2 − 1 < γ < 1 (which implies n < 4). Now it is easy to check that Condition (H1) is
fulfilled. In fact we have

Qtx =

∫ t

0

esABB∗esA∗x ds =

∫ t

0

(−A)−γe2tAx dt

= (−A)−(1+γ)(1− e2tA)x, t ≥ 0, x ∈ H.

Then

Tr [(−A)−(1+γ)] = π−2(1+γ)
∑
k∈Nn

|k|−2(1+γ) < +∞,

since γ > n
2
− 1.

Now, setting X(t, s) = X(t, s, ·) and W (t) = W (t, ·), we can write problem (4) as

dX(t, s) = [AX(t, s) + F (t,X(t, s))]dt + (−A)−γ/2dW (t), t ≥ s, X(s, s) = x, (5)

where F is the mapping

F : D(F ) = [0, T ]× L2d(O) ⊂ [0, T ]×H → H, x(ξ) 7→ λξ − p(t, x(ξ)).
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It is convenient, following [4], to introduce two different notions of solution of (5). For
this purpose, for any s ∈ [0, T ), we consider the space

CW ([s, T ]; L2(Ω,F , P; H)) := CW ([s, T ]; H))

consisting of all continuous mappings F : [s, T ] → L2(Ω,F , P; H) adapted to W ; endowed
with the norm

‖F‖CW ([s,T ];H)) =

(
sup

t∈[s,T ]

E
(
|F (t)|2

))1/2

CW ([s, T ]; H)) is a Banach space.

Definition 1. (i) Let x ∈ L2d(O). We say that a mapping X( ·, s, x) ∈ CW ([s, T ]; H) is
a mild solution of problem (5) if X(t, s, x) ∈ L2d(O) for all t ∈ [s, T ] and the following
integral equality holds:

X(t, s, x) = e(t−s)Ax +

∫ t

s

e(t−r)AF (r, X(r, s, x)) dr + WA(s, t), t ≥ 0,

where WA(s, t) is the stochastic convolution

WA(s, t) =

∫ t

s

e(t−r)A(−A)−γ/2 dW (s), t ≥ 0.

(ii) Let x ∈ H and s ∈ [0, T ]. We say that X( ·, s, x) ∈ CW ([s, T ]; H) is a generalized
solution of problem (5) if there exists a sequence (xn) ⊂ L2d(O) such that

lim
n→∞

xn = x in H,

mild solutions X( ·, s, xn) exist and

lim
n→∞

X( ·, s, xn) = X( ·, s, x) in CW ([s, T ]; H).

We shall denote by X(t, s, x) mild and generalized solutions of (5).

Theorem 3. The following statements are true.
(i) If x ∈ L2d(O), problem (5) has a unique mild solution X(·, s, x). Moreover for any

m ∈ N, there is cm,p,T > 0 such that

E
(
|X(t, s, x)|2m

L2d(O)

)
≤ cm,p,T

(
1 + |x|2m

L2d(O)

)
, 0 ≤ s ≤ t ≤ T.

(ii) If x ∈ H, problem (4) has a unique generalized solution X(·, s, x).

For any 0 ≤ s ≤ t ≤ T , let us consider the transition evolution operator

Ps,tϕ(x) = E[ϕ(X(t, s, x))], ϕ ∈ Cu(H),

where X(t, s, x) is a generalized solution of (5). Then, given ν0 ∈ P(H), set

νt = P ∗
0,tν0, t ∈ [0, T ]. (6)

Corollary 1. Let m ∈ N and assume that ν0 ∈ P(H) satisfies∫
H

|x|2m
L2d(O)ν0(dx) < +∞.

Then we have ∫
H

|x|2m
L2d(O)νt(dx) ≤ cm,p,T

∫
H

|x|2m
L2d(O)ν0(dx).

Theorem 4. Assume that ν0 ∈ P(H) satisfies∫
H

(
|x|4 + |F (0, x)|2 + |x|4|F0(0, x)|4

)
ν0(dx) < +∞.

Then the operator L0 associated with (5) is closable and its closure is m-dissipative in
L2([0, +∞)×H, ν), where ν(dt, dx) = νt(dx)dt and νt is defined by (6).
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On the dissipativity of Kolmogorov operators see also [5]–[7].
This work has been supported by the RFBR projects 07-01-00536, 05-01-02941-JF,

06-01-39003 GFEN, the DFG Grant 436 RUS 113/343/0(R), the ARC Discovery Grant
DP0663153 (Sydney), the programme SFB 701 at the University of Bielefeld, and the
research programme “Equazioni di Kolmogorov” of the Italian “Ministero della Ricerca
Scientifica e Tecnologica”.

References
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