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Abstract. We obtain eigenvalue asymptotics for Jacobi matrices of various Jaynes-Cummings
type.

1. The results

We consider a type of Jacobi matrices with unbounded entries related to some problems
of quantum optics. See [1–4].

Let N
∗ = {1, 2, . . . } be the set of positive integers and let l2 denote the Hilbert space of

square summable complex sequences x = (xn)n∈N∗ . Let c00 be the subspace of sequences for
which {n ∈ N

∗ | xn 6= 0} is finite. We fix a real valued sequence (βn)n∈N∗ and consider a
linear operator J acting on (xn)n∈N∗ ∈ c00 according to the formula

(1.1) (Jx)n =

{

nxn + βnxn+1 + βn−1xn−1 n ≥ 2,

x1 + β1x2 n = 1.

Then it is easy to establish the following elementary fact.

Proposition 1. Assume that there exists ρ > 0 such that

(1.2) βn = O(n1−ρ).

Then the closure of the operator defined by (1.1) is a self-adjoint operator J , its spectrum is

discrete and bounded from below. Let (λn(J))n∈N∗ denote the sequence of eigenvalues of J

repeated according to their multiplicities and ordered so that λn(J) ≤ λn+1(J) for all n ∈ N
∗.

Then the following estimate

(1.3) λn(J) = n + O(n1−ρ)

holds as n → ∞.

The aim of this paper is to obtain sharper estimates of the asymptotic behaviour of
(λn(J))n∈N∗ which can be deduced from additional assumptions made on the sequence (βn)n∈N∗ .
Our first result is

Theorem 1. Assume that (1.2) holds with a certain ρ > 0 and

(1.4) βn+1 − βn = O(n−ρ′)

holds with a certain ρ′ > 0. Then one has the estimate

(1.5) λn(J) = n + O(n1−ρ−ρ′)
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Our second theorem depends on the behaviour of the sequence

(1.6) γn =

{

β2
n−1 − β2

n n ≥ 2,

−β2
1 n = 1.

Theorem 2. Assume that (βn)n∈N∗ satisfies the hypotheses of Theorem 1. Let (γn)n∈N∗ be

the sequence given by (1.6). If

(1.7) γn+1 − γn = O(n−ρ1)

holds with a certain ρ1 > 0, then one has

(1.8) λn(J) = n + γn + O(n1−ρ−ρ1).

Remark. If it is possible to evaluate βn = b(n) by means of a function b ∈ C∞((0,+∞))
satisfying the estimates

{

b(λ) = O(λ1−ρ),

b′(λ) = O(λ−ρ),

then

βn+1 − βn =

∫ 1

0
b′(n + s)ds = O(n−ρ),

i.e., (1.4) holds with ρ = ρ′, and (1.5) takes the form

λn(J) = n + O(n1−2ρ).

If moreover

b′′(λ) = O(λ−1−ρ),

then

γn+1 − γn = −

∫ 1

0
ds

∫ 1

0
b2′′(n + s − s′)ds′

− 2

∫ 1

0
ds

∫ 1

0
(bb′′ + b′2)(n + s − s′)ds′,

= O(n−2ρ),

i.e., (1.7) holds with ρ1 = 2ρ, and (1.8) takes the form

λn(J) = n + γn + O(n1−3ρ).

2. Proof of Proposition 1

Let B(l2) denote the algebra of bounded operators in l2. Let (ek)k∈N∗ be the canonical
basis of l2, i.e. ek = (δk,n)n∈N∗ where

δk,n =

{

1 if k = n,

0 if k 6= n.

We denote by Λ the self-adjoint operator on l2 satisfying

(2.1) Λen = nen for n ∈ N
∗.
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Proof of Proposition 1. The estimate (1.2) allows us to find a constant C > 0 such that

(2.2) −CΛ1−ρ ≤ J − Λ ≤ CΛ1−ρ

holds in the sense of quadratic forms and it follows straightforwardly that Λ and J are both
bounded from below and essentially self-adjoint on c00.

Next we choose λ > 0 large enough and we observe that the operator

Qλ = (J + λ)−1 − (Λ + λ)−1 = −(J + λ)−1(J − Λ)(Λ + λ)−1

satisfies QλΛρ ∈ B(l2). However Λ−ρ is compact on l2, hence Qλ is compact as well and the
essential spectrum σess(J) = σess(Λ) = ∅. Moreover (2.2) gives

(2.3) Λ − CΛ1−ρ ≤ J ≤ Λ + CΛ1−ρ

and the min-max principle ensures

(2.4) λn(Λ − CΛ1−ρ) ≤ λn(J) ≤ λn(Λ + CΛ1−ρ),

where

(2.5) λn(Λ ± CΛ1−ρ) = n ± Cn1−ρ

is the n-th eigenvalue of Λ ± CΛ1−ρ. This completes the proof of (1.3). �

3. Notations and conventions

Below we describe further notations and conventions.

3.1. For any application q : N
∗ → R we denote by q(Λ) the self-adjoint operator satisfying

(3.1) q(Λ)en = q(n)en for n ∈ N
∗,

i.e. the domain of q(Λ) is D(q(Λ)) = {(xn)n∈N∗ | (q(n)xn)n∈N∗ ∈ l2}.

3.2. Let B1 and B2 be operators acting on ∩k∈ND(Λk), i.e., the subspace of sequences sat-
isfying xn = O(n−s) for every s ∈ R. Then for m ∈ R we write

(3.2) B1 = B2 + O(Λm)

if and only if Λs−m(B1 − B2)Λ
−s ∈ B(l2) holds for any s ∈ R.

3.3. We also observe property

(3.3)
B = O(Λm)

B′ = O(Λm′
)

}

=⇒ BB′ = O(Λm+m′

),

which follows immediately from the inequality

‖Λs−m−m′

BB′Λ−s‖ ≤ ‖Λ(s−m′)−mBΛ−(s−m′)‖ · ‖Λs−m′

B′Λ−s‖,

where ‖ · ‖ denotes the norm of B(l2).

3.4. Further on all operators are acting on ∩k∈ND(Λk) and are assumed to be closable on
∩k∈ND(Λk). Moreover we often write A + hc instead of A + A∗.
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3.5. Let S ∈ B(l2) denote the shift operator satisfying

(3.4) Sen = en+1 for n ∈ N
∗,

let b : N
∗ → R be given by the formula

(3.5) b(n) = βn for n ∈ N
∗

and set

(3.6) J1 = Sb(Λ) + b(Λ)S∗ = Sb(Λ) + hc .

Thus the operator J can be expressed

(3.7) J = Λ + J1.

3.6. We introduce the closed operator A defined on ∩k∈ND(Λk) by

(3.8) A = Sb(Λ) − b(Λ)S∗ = Sb(Λ) − hc .

4. Proof of theorem 1

We deduce Theorem 1 from

Proposition 2. The domain of A is the domain of the self-adjoint operator iA and

(4.1) J̃ = e−AJeA = Λ + O(Λ1−ρ−ρ′)

holds under the hypotheses of Theorem 1.

Proof of Proposition 2. See Section 6. �

Proof of Theorem 1. It is easy to see that Theorem 1 follows from Proposition 2. Indeed,
(4.1) implies

(4.2) Λ − CΛ1−ρ−ρ′ ≤ J̃ ≤ Λ + CΛ1−ρ−ρ′

for a certain constant C > 0 and the min-max principle gives

(4.3) λn(Λ − CΛ1−ρ−ρ′) ≤ λn(J̃) ≤ λn(Λ + CΛ1−ρ−ρ′)

with λn(Λ ± CΛ1−ρ−ρ′) = n ± Cn1−ρ−ρ′ . Hence (1.5) follows from the fact that J and J̃ are

unitary equivalent, which ensures λn(J) = λn(J̃) for all N
∗. �

5. Proof of theorem 2

Similarly we can deduce the assertion of Theorem 2 from

Proposition 3. Under the hypotheses of Theorem 2 one has

(5.1) e−AJeA = Λ + g(Λ) + O(Λ1−ρ−ρ1),

where g : N
∗ → R satisfies g(n) = γn for n ∈ N

∗.

Proof of Proposition 3. See Section 7. �
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Proof of Theorem 2. Theorem 2 follows from Proposition 3. Indeed, (5.1) ensures existence
of a constant C > 0 such that

λn(Λ + g(Λ) − CΛ1−ρ−ρ1) ≤ λn(J̃) ≤ λn(Λ + g(Λ) + CΛ1−ρ−ρ1),

where

λn(Λ + g(Λ) ± CΛ1−ρ−ρ1) = n + g(n) ± Cn1−ρ−ρ1

is the n-th eigenvalue of Λ + g(Λ) ± CΛ1−ρ−ρ1 , and (1.8) follows from λn(J) = λn(J̃). �

6. Proof of Proposition 2

We begin by a few simple lemmas.

Lemma 1. If q : N
∗ → R then the commutator of q(Λ) with the shift operator S has the form

(6.1) [q(Λ), S] =
(

q(Λ + I) − q(Λ)
)

S.

Proof. Indeed, the direct computation gives

Sq(Λ)en = Sq(n)en = q(n)en+1 = q(Λ)Sen

q(Λ)Sen = q(Λ)en+1 = q(n + 1)en+1 = q(Λ + I)Sen

for every n ∈ N
∗. �

Lemma 2. Let A and J1 be as in Section 3. Then

(6.2) [Λ, A] = ΛA − AΛ = J1.

Proof. Using Lemma 1 with q(n) = n we find

(6.3) [Λ, S] = S,

hence

[Λ, Sb(Λ)] = [Λ, S]b(Λ) = Sb(Λ)

and

[Λ, A] = [Λ, Sb(Λ)] + hc = Sb(Λ) + (Sb(Λ))∗ = J1. �

Lemma 3. Let g be as in Proposition 3. Then

(6.4) [J1, A] = −2g(Λ).

Proof. To begin we observe that

(6.5) g(Λ) = Sb(Λ)2S∗ − b(Λ)2

follows from Sb(Λ)S∗en = Sb(Λ)en−1 = b(n − 1)en if n ≥ 2 and S∗e1 = 0. Then

[J1, A] = [Sb(Λ) + b(Λ)S∗, Sb(Λ)] + hc

= [b(Λ)S∗, Sb(Λ)] + hc

and we complete the proof writing

[b(Λ)S∗, Sb(Λ)] = b(Λ)2 − Sb(Λ)2S∗ = −g(Λ),

where we used S∗S = I and (6.5). �
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Proof of Proposition 2. The standard expansion formula gives

(6.6) eAΛe−A = Λ + [Λ, A] +

∫ 1

0
(1 − s)esA

[

[Λ, A], A
]

e−sAds

and (6.2) allows us to rewrite (6.6) in the form

(6.7) e−AJeA = Λ −

∫ 1

0
(1 − s)e(s−1)A

[

[Λ, A], A
]

e(1−s)Ads.

However (6.2), (6.4) and (1.4) imply
[

[Λ, A], A
]

= [J1, A] = −2g(Λ) = O(Λ1−ρ−ρ′),

which completes the proof due to �

Lemma 4. For every m ∈ R one has

(6.8) sup
−1≤s≤1

‖ΛmesAΛ−m‖ < ∞.

Proof. (a) To begin, we check that the estimate

(6.9) [Λε, A] = O(Λε−ρ)

holds for every ε > 0. Indeed, using Lemma 1 with q(n) = nε we find

[Λε, A] = [Λε, Sb(Λ)] + hc

= [Λε, S]b(Λ) + hc

=
(

(Λ + I)ε − Λε
)

Sb(Λ) + hc .

Hence using property (3.3) and

Sb(Λ) = O(Λ1−ρ),

(Λ + I)ε − Λε = O(Λε−1)

we obtain (6.9).
(b) Further on we assume 0 < ε ≤ ρ and we show that

(6.10) Mkε = sup
−1≤s≤1

||ΛkεesAΛ−kε|| < ∞

holds for every k ∈ N. We introduce

Rkε(s) = Λ(k+1)εesAΛ−(k+1)ε − ΛkεesAΛ−kε

and observe that

Rε(s) =
[

es(1−t)AΛεestAΛ−ε
]t=1

t=0
=

∫ 1

0
es(1−t)A[A,Λε]estAΛ−εdt

allows us to estimate (6.9) allows us to estimate

‖Rkε(s)‖ = ‖ΛkεRε(s)Λ
−kε‖

≤ M2
kε‖Λ

kε[Λε, A]Λ−kε‖ < ∞

if Mkε < ∞. �
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7. Proof of Proposition 3

(a) To begin, we observe that

(7.1) [g(Λ), A] = O(Λ1−ρ−ρ1)

follows from assumption (1.7). Indeed,

[g(Λ), A] = [g(Λ), Sb(Λ)] + hc

= [g(Λ), S]b(Λ) + hc

=
(

g(Λ + I) − g(Λ)
)

Sb(Λ) + hc,

hence using property (3.2) and

Sb(Λ) = O(Λ1−ρ),

g(Λ + I) − g(Λ) = O(Λ−ρ1)

we obtain (7.1).
(b) Then the standard expansion formula gives

(7.2) eAΛe−A = Λ + [Λ, A] +
1

2
[[Λ, A], A] +

∫ 1

0
(1 − s)2esARe−sAds

with

R =
1

2

[

[[Λ, A], A], A
]

= −[g(Λ), A].

(c) However we have R = O(Λ1−ρ−ρ1) due to (7.1) and Lemma 4 allows us to deduce

(7.3) eAΛe−A = J − g(Λ) + O(Λ1−ρ−ρ1)

from (7.2). Applying Lemma 4 once more we obtain

(7.4) e−AJeA = Λ + e−Ag(Λ)eA + O(Λ1−ρ−ρ1).

(d) To complete the proof of Proposition 3 it remains to show

(7.5) e−Ag(Λ)eA = g(Λ) + O(Λ1−ρ−ρ1).

However

e−Ag(Λ)eA − g(Λ) =

∫ 1

0
e−sA[g(Λ), A]esAds

and it is clear that (7.5) follows from (7.1) and Lemma 4.
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∗IMJ, case 7012, Université Paris Diderot, 175 rue du Chevaleret, 75013 Paris, France

†IMJ & Université du Littoral, Calais, France


