EIGENVALUE ASYMPTOTICS FOR JAYNES-CUMMINGS TYPE
MODELS WITHOUT MODULATIONS

ANNE BOUTET DE MONVEL* AND LECH ZIELINSKI'

ABSTRACT. We obtain eigenvalue asymptotics for Jacobi matrices of various Jaynes-Cummings
type.

1. THE RESULTS

We consider a type of Jacobi matrices with unbounded entries related to some problems
of quantum optics. See [1-4].

Let N* = {1,2,...} be the set of positive integers and let I?> denote the Hilbert space of
square summable complex sequences x = (zp)nen+. Let cgp be the subspace of sequences for
which {n € N* | z,, # 0} is finite. We fix a real valued sequence (3, )nen+ and consider a
linear operator J acting on (x,)nen+ € cop according to the formula

(1 1) (J{L') _ nTy, + ﬁnxn—l—l + ﬁn—1$n—1 n > 2,
’ " 1+ f1x9 n=1.

Then it is easy to establish the following elementary fact.
Proposition 1. Assume that there exists p > 0 such that

(1.2) B, = O(n'™").

Then the closure of the operator defined by (1.1) is a self-adjoint operator J, its spectrum is
discrete and bounded from below. Let (A,(J))nen+ denote the sequence of eigenvalues of J
repeated according to their multiplicities and ordered so that A\p(J) < Apt1(J) for all n € N*.
Then the following estimate

(1.3) M(J) =n+0O(n'=7)
holds as n — oo.

The aim of this paper is to obtain sharper estimates of the asymptotic behaviour of
(An(J))nen+ which can be deduced from additional assumptions made on the sequence (8, )nen--
Our first result is

Theorem 1. Assume that (1.2) holds with a certain p > 0 and

(1.4) Bn—i-l - Bn = O(n_pl)
holds with a certain p’ > 0. Then one has the estimate
(1.5) An(J) =n+0(n'=r=7)
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Our second theorem depends on the behaviour of the sequence
2 -3 n>2
1.6 =t P =

Theorem 2. Assume that (B,)nen+ satisfies the hypotheses of Theorem 1. Let (p)nen+ be
the sequence given by (1.6). If

(1.7) Tn+l — Tn = O(n_pl)
holds with a certain p1 > 0, then one has
(1.8) A (J) =n+ 7, + O(nt PP,

Remark. If it is possible to evaluate 3, = b(n) by means of a function b € C*°((0,+00))
satisfying the estimates

{b(A) = O(\'),
b'(A) = O(A™"),
then X
Bns1 — Bn = / V(n+ s)ds = O(n~"),
i.e., (1.4) holds with p = p/, and (1.5) takoes the form
M(J) =n+0O(n'~%).

If moreover
b'(A) = O(A~'77),
then

%+1—%——/ dS/ v (n+ s — s')ds’
—2/ ds/ (0" + ) (n+ s —s)ds/,

_2p
i.e., (1.7) holds with p; = 2p, and (1.8) takes the form
() =0+, + O(n'=3°).

2. PROOF OF PROPOSITION 1

Let B(I1?) denote the algebra of bounded operators in 1%. Let (eg)zen+ be the canonical
basis of [2, i.e. e = (0% n)nen+ where

1 if k=n,
5kn: .
’ {0 if k #n.

We denote by A the self-adjoint operator on {2 satisfying
(2.1) Ae,, = ne, for n € N*.
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Proof of Proposition 1. The estimate (1.2) allows us to find a constant C' > 0 such that
(2.2) —CA'"™P < J— A< CAY?

holds in the sense of quadratic forms and it follows straightforwardly that A and J are both
bounded from below and essentially self-adjoint on cqg.
Next we choose A > 0 large enough and we observe that the operator

Q=J+N 1A+ Nt =T+ N T =-NA+ N

satisfies Q\A? € B(I?). However A= is compact on /2, hence Q) is compact as well and the
essential spectrum ess(J) = Tess(A) = &. Moreover (2.2) gives

(2.3) A—CA™P < J<A+CATP

and the min-max principle ensures

(2.4) A(A = CAYTP) < XN (J) € Mp(A 4 CAYP),

where

(2.5) M(A+£CATP)=n+Cn'™?

is the n-th eigenvalue of A + CA'~*. This completes the proof of (1.3). O

3. NOTATIONS AND CONVENTIONS

Below we describe further notations and conventions.

3.1. For any application ¢: N* — R we denote by ¢(A) the self-adjoint operator satisfying
(3.1) q(N)en, = q(n)e, for n € N*,

i.e. the domain of ¢(A) is D(q(A)) = {(zn)nen+ | (¢(n)2n)nen+ € 12}.

3.2. Let By and By be operators acting on ﬂkeND(Ak), i.e., the subspace of sequences sat-
isfying =, = O(n™*) for every s € R. Then for m € R we write

(3.2) B; = By + O(A™)

if and only if AS~™(B; — By)A~* € B(I?) holds for any s € R.

3.3. We also observe property

B = O(A™)
B' = O(A™)

which follows immediately from the inequality

”As—m—m’BB/A—sH < ”A(s—m’)—mBA—(s—m’)” . HAS_mIB/A_S”,

(3.3) } — BB = O(A™),

where || - || denotes the norm of B(I?).

3.4. Further on all operators are acting on NgenD(A¥) and are assumed to be closable on
NkenD(A¥). Moreover we often write A 4 hc instead of A 4 A*.
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3.5. Let S € B(I%) denote the shift operator satisfying

(3.4) Se,, = ep41 for n € N*,

let b: N* — R be given by the formula

(3.5) b(n) = By, for n € N*

and set

(3.6) J1 = Sb(A) + b(A)S™ = Sb(A) + he.
Thus the operator J can be expressed

(3.7) J=A+J1.

3.6. We introduce the closed operator A defined on NyenD(A¥) by
(3.8) A = Sb(A) —b(A)S™ = Sb(A) — he.

4. PROOF OF THEOREM 1
We deduce Theorem 1 from
Proposition 2. The domain of A is the domain of the self-adjoint operator iA and
(4.1) J=eAJe! = A+ O(A P77
holds under the hypotheses of Theorem 1.
Proof of Proposition 2. See Section 6. O

Proof of Theorem 1. It is easy to see that Theorem 1 follows from Proposition 2. Indeed,
(4.1) implies

(4.2) A—CA=P P < J<A+CA—P7

for a certain constant C' > 0 and the min-max principle gives

(4.3) An(A = CAY=P=) < Mo (J) < Ap(A + CAP=F)

with A, (A £ CAY™P=F") = n 4+ Cnl=r=7 Hence (1.5) follows from the fact that J and J are
unitary equivalent, which ensures A, (J) = A, (J) for all N*. O

5. PROOF OF THEOREM 2
Similarly we can deduce the assertion of Theorem 2 from
Proposition 3. Under the hypotheses of Theorem 2 one has
(5.1) e A Je = A+ g(A) + O(A} PP,
where g: N* — R satisfies g(n) = 7, for n € N*.
Proof of Proposition 8. See Section 7. O
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Proof of Theorem 2. Theorem 2 follows from Proposition 3. Indeed, (5.1) ensures existence
of a constant C' > 0 such that
M(A + g(A) — CATP7PYY < X\ (J) < Ap(A + g(A) + CAYP=P1,
where
A(A + g(A) £ CAY™P=P1) = n + g(n) £ Cnt=rP=A
is the n-th eigenvalue of A + g(A) = CA'=P=P1 and (1.8) follows from A, (J) = A, (J). O
6. PROOF OF PROPOSITION 2
We begin by a few simple lemmas.
Lemma 1. If qg: N* — R then the commutator of q(A) with the shift operator S has the form
(6.1) [a(A), S] = (a(A+ 1) — q(A))S.
Proof. Indeed, the direct computation gives
Sq(A)e, = Sq(n)e, = q(n)e,+1 = q(A)Se,
q(A)Se, = q(N)ept1 = q(n+ 1)epr1 = q(A+1)Sey,
for every n € N*. (]
Lemma 2. Let A and J; be as in Section 3. Then

(6.2) [A,A] = AA — AN = J;.
Proof. Using Lemma 1 with ¢(n) = n we find

(6.3) [A,S] =S,

hence

[A, Sb(A)] = [A, S]b(A) = Sb(A)

and

[A, A] = [A, SB(A)] + he = Sb(A) + (Sb(A))* = J. O
Lemma 3. Let g be as in Proposition 3. Then
(6.4) 1, A] = —2g(A).
Proof. To begin we observe that
(6.5) g(A) = Sb(A)?S* — b(A)?
follows from Sb(A)S*e, = Sb(A)e,—1 = b(n — 1)ey, if n > 2 and S*e; = 0. Then

[J1, A] = [Sb(A) 4+ b(A)S*, Sb(A)] + he
= [b(A)S™, Sb(A)] + he
and we complete the proof writing
[B(A)S", SH(A)] = b(A)* — SB(A)*S* = —g(A),

where we used S*S = I and (6.5). O
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Proof of Proposition 2. The standard expansion formula gives

1
(6.6) e = A+ [N A + / (1 —s)e*4[[A, A], Ale~*4ds
0
and (6.2) allows us to rewrite (6.6) in the form
(6.7) e et = A — / DATIA, A], Ale'=9)4ds.

However (6.2), (6.4) and (1.4) imply
[[A, AL, A] = [J1, 4] = —29(8) = O(A'~),
which completes the proof due to

Lemma 4. For every m € R one has

(6.8) sup AT AN < oo
—1<s<1

Proof. (a) To begin, we check that the estimate
(6.9) [A®, A] = O(A°™7)
holds for every € > 0. Indeed, using Lemma 1 with ¢(n) = n® we find
[A%, A] = [A®, Sb(A)] + he
= [A%, S]b(A) + he
= ((A+1)" —A®%)Sb(A) + he.
Hence using property (3.3) and
Sb(A) = O(A1™P),
(A+1)F— A =0(AY)

we obtain (6.9).
(b) Further on we assume 0 < ¢ < p and we show that

(6.10) M. = sup |[AFe*ATF|| < 0
—1<s<1

holds for every k € N. We introduce
Rks(s) — A(k—i—l)aesAA—(k-i-l)e - AkeesAA—ke

and observe that

B 1
Rg(S) _ [es(l—t)AAsestAA—s] z;(l) _ / es(l—t)A [A, As]estAA—sdt
0

allows us to estimate (6.9) allows us to estimate
|Ric(5)]] = A% Ra(s)A~]
Rl AFE[A%, AJATH| < oo
if Mks < Q.
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7. PROOF OF PROPOSITION 3

(a) To begin, we observe that

(7.1) [g(A), A] = O(At=P=r1)
follows from assumption (1.7). Indeed,
[g(A), A] = [g(A), Sb(A)] + he
= [g(A), S]b(A) + he

= (g(A +1)— g(A))Sb(A) + he,
hence using property (3.2) and
Sb(A) = O(A!™7),
g(A+1) —g(A) = O(A™")

we obtain (7.1).
(b) Then the standard expansion formula gives

(7.2) eMNe ™ = A+ [N A + %[[A, A, Al + /0 1(1 — 5)%e" Re™*Ads
with
R =2 [[IA A} A}, A] = ~[o(A), AL

(c) However we have R = O(A'=P~71) due to (7.1) and Lemma 4 allows us to deduce
(7.3) e ™ = J — g(A) + O(AL=P=P1)
from (7.2). Applying Lemma 4 once more we obtain
(7.4) e AJe = A4 e Ag(A)e + O(AT PP,

(d) To complete the proof of Proposition 3 it remains to show
(7.5) e Ag(A)e? = g(A) +O(APP).
However

1
et —g(0) = [ gn), Al as
and it is clear that (7.5) follows from (7.1) and Lemma 4.
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