EIGENVALUE ASYMPTOTICS FOR JAYNES-CUMMINGS TYPE MODELS WITHOUT MODULATIONS

ANNE BOUTET DE MONVEL* AND LECH ZIELINSKI ${ }^{\dagger}$

Abstract. We obtain eigenvalue asymptotics for Jacobi matrices of various Jaynes-Cummings type.

1. The results

We consider a type of Jacobi matrices with unbounded entries related to some problems of quantum optics. See [1-4].

Let $\mathbb{N}^{*}=\{1,2, \ldots\}$ be the set of positive integers and let l^{2} denote the Hilbert space of square summable complex sequences $x=\left(x_{n}\right)_{n \in \mathbb{N}^{*}}$. Let c_{00} be the subspace of sequences for which $\left\{n \in \mathbb{N}^{*} \mid x_{n} \neq 0\right\}$ is finite. We fix a real valued sequence $\left(\beta_{n}\right)_{n \in \mathbb{N}^{*}}$ and consider a linear operator J acting on $\left(x_{n}\right)_{n \in \mathbb{N}^{*}} \in c_{00}$ according to the formula

$$
(J x)_{n}= \begin{cases}n x_{n}+\beta_{n} x_{n+1}+\beta_{n-1} x_{n-1} & n \geq 2 \tag{1.1}\\ x_{1}+\beta_{1} x_{2} & n=1\end{cases}
$$

Then it is easy to establish the following elementary fact.
Proposition 1. Assume that there exists $\rho>0$ such that

$$
\begin{equation*}
\beta_{n}=\mathrm{O}\left(n^{1-\rho}\right) \tag{1.2}
\end{equation*}
$$

Then the closure of the operator defined by (1.1) is a self-adjoint operator J, its spectrum is discrete and bounded from below. Let $\left(\lambda_{n}(J)\right)_{n \in \mathbb{N}^{*}}$ denote the sequence of eigenvalues of J repeated according to their multiplicities and ordered so that $\lambda_{n}(J) \leq \lambda_{n+1}(J)$ for all $n \in \mathbb{N}^{*}$. Then the following estimate

$$
\begin{equation*}
\lambda_{n}(J)=n+\mathrm{O}\left(n^{1-\rho}\right) \tag{1.3}
\end{equation*}
$$

holds as $n \rightarrow \infty$.
The aim of this paper is to obtain sharper estimates of the asymptotic behaviour of $\left(\lambda_{n}(J)\right)_{n \in \mathbb{N}^{*}}$ which can be deduced from additional assumptions made on the sequence $\left(\beta_{n}\right)_{n \in \mathbb{N}^{*}}$. Our first result is

Theorem 1. Assume that (1.2) holds with a certain $\rho>0$ and

$$
\begin{equation*}
\beta_{n+1}-\beta_{n}=\mathrm{O}\left(n^{-\rho^{\prime}}\right) \tag{1.4}
\end{equation*}
$$

holds with a certain $\rho^{\prime}>0$. Then one has the estimate

$$
\begin{equation*}
\lambda_{n}(J)=n+\mathrm{O}\left(n^{1-\rho-\rho^{\prime}}\right) \tag{1.5}
\end{equation*}
$$

[^0]Our second theorem depends on the behaviour of the sequence

$$
\gamma_{n}= \begin{cases}\beta_{n-1}^{2}-\beta_{n}^{2} & n \geq 2 \tag{1.6}\\ -\beta_{1}^{2} & n=1\end{cases}
$$

Theorem 2. Assume that $\left(\beta_{n}\right)_{n \in \mathbb{N}^{*}}$ satisfies the hypotheses of Theorem 1. Let $\left(\gamma_{n}\right)_{n \in \mathbb{N}^{*}}$ be the sequence given by (1.6). If

$$
\begin{equation*}
\gamma_{n+1}-\gamma_{n}=\mathrm{O}\left(n^{-\rho_{1}}\right) \tag{1.7}
\end{equation*}
$$

holds with a certain $\rho_{1}>0$, then one has

$$
\begin{equation*}
\lambda_{n}(J)=n+\gamma_{n}+\mathrm{O}\left(n^{1-\rho-\rho_{1}}\right) . \tag{1.8}
\end{equation*}
$$

Remark. If it is possible to evaluate $\beta_{n}=b(n)$ by means of a function $b \in C^{\infty}((0,+\infty))$ satisfying the estimates

$$
\left\{\begin{array}{l}
b(\lambda)=\mathrm{O}\left(\lambda^{1-\rho}\right), \\
b^{\prime}(\lambda)=\mathrm{O}\left(\lambda^{-\rho}\right),
\end{array}\right.
$$

then

$$
\beta_{n+1}-\beta_{n}=\int_{0}^{1} b^{\prime}(n+s) \mathrm{d} s=\mathrm{O}\left(n^{-\rho}\right),
$$

i.e., (1.4) holds with $\rho=\rho^{\prime}$, and (1.5) takes the form

$$
\lambda_{n}(J)=n+\mathrm{O}\left(n^{1-2 \rho}\right) .
$$

If moreover

$$
b^{\prime \prime}(\lambda)=\mathrm{O}\left(\lambda^{-1-\rho}\right),
$$

then

$$
\begin{aligned}
\gamma_{n+1}-\gamma_{n}= & -\int_{0}^{1} \mathrm{~d} s \int_{0}^{1} b^{2 \prime \prime}\left(n+s-s^{\prime}\right) \mathrm{d} s^{\prime} \\
& -2 \int_{0}^{1} \mathrm{~d} s \int_{0}^{1}\left(b b^{\prime \prime}+b^{\prime 2}\right)\left(n+s-s^{\prime}\right) \mathrm{d} s^{\prime} \\
= & \mathrm{O}\left(n^{-2 \rho}\right)
\end{aligned}
$$

i.e., (1.7) holds with $\rho_{1}=2 \rho$, and (1.8) takes the form

$$
\lambda_{n}(J)=n+\gamma_{n}+\mathrm{O}\left(n^{1-3 \rho}\right)
$$

2. Proof of Proposition 1

Let $\mathcal{B}\left(l^{2}\right)$ denote the algebra of bounded operators in l^{2}. Let $\left(\mathrm{e}_{k}\right)_{k \in \mathbb{N}^{*}}$ be the canonical basis of l^{2}, i.e. $\mathrm{e}_{k}=\left(\delta_{k, n}\right)_{n \in \mathbb{N}^{*}}$ where

$$
\delta_{k, n}= \begin{cases}1 & \text { if } k=n, \\ 0 & \text { if } k \neq n .\end{cases}
$$

We denote by Λ the self-adjoint operator on l^{2} satisfying

$$
\begin{equation*}
\Lambda \mathrm{e}_{n}=n \mathrm{e}_{n} \text { for } n \in \mathbb{N}^{*} . \tag{2.1}
\end{equation*}
$$

Proof of Proposition 1. The estimate (1.2) allows us to find a constant $C>0$ such that

$$
\begin{equation*}
-C \Lambda^{1-\rho} \leq J-\Lambda \leq C \Lambda^{1-\rho} \tag{2.2}
\end{equation*}
$$

holds in the sense of quadratic forms and it follows straightforwardly that Λ and J are both bounded from below and essentially self-adjoint on c_{00}.

Next we choose $\lambda>0$ large enough and we observe that the operator

$$
Q_{\lambda}=(J+\lambda)^{-1}-(\Lambda+\lambda)^{-1}=-(J+\lambda)^{-1}(J-\Lambda)(\Lambda+\lambda)^{-1}
$$

satisfies $Q_{\lambda} \Lambda^{\rho} \in \mathcal{B}\left(l^{2}\right)$. However $\Lambda^{-\rho}$ is compact on l^{2}, hence Q_{λ} is compact as well and the essential spectrum $\sigma_{\text {ess }}(J)=\sigma_{\text {ess }}(\Lambda)=\varnothing$. Moreover (2.2) gives

$$
\begin{equation*}
\Lambda-C \Lambda^{1-\rho} \leq J \leq \Lambda+C \Lambda^{1-\rho} \tag{2.3}
\end{equation*}
$$

and the min-max principle ensures

$$
\begin{equation*}
\lambda_{n}\left(\Lambda-C \Lambda^{1-\rho}\right) \leq \lambda_{n}(J) \leq \lambda_{n}\left(\Lambda+C \Lambda^{1-\rho}\right) \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{n}\left(\Lambda \pm C \Lambda^{1-\rho}\right)=n \pm C n^{1-\rho} \tag{2.5}
\end{equation*}
$$

is the n-th eigenvalue of $\Lambda \pm C \Lambda^{1-\rho}$. This completes the proof of (1.3).

3. Notations and conventions

Below we describe further notations and conventions.
3.1. For any application $q: \mathbb{N}^{*} \rightarrow \mathbb{R}$ we denote by $q(\Lambda)$ the self-adjoint operator satisfying

$$
\begin{equation*}
q(\Lambda) \mathrm{e}_{n}=q(n) \mathrm{e}_{n} \text { for } n \in \mathbb{N}^{*}, \tag{3.1}
\end{equation*}
$$

i.e. the domain of $q(\Lambda)$ is $D(q(\Lambda))=\left\{\left(x_{n}\right)_{n \in \mathbb{N}^{*}} \mid\left(q(n) x_{n}\right)_{n \in \mathbb{N}^{*}} \in l^{2}\right\}$.
3.2. Let B_{1} and B_{2} be operators acting on $\cap_{k \in \mathbb{N}} D\left(\Lambda^{k}\right)$, i.e., the subspace of sequences satisfying $x_{n}=\mathrm{O}\left(n^{-s}\right)$ for every $s \in \mathbb{R}$. Then for $m \in \mathbb{R}$ we write

$$
\begin{equation*}
B_{1}=B_{2}+\mathrm{O}\left(\Lambda^{m}\right) \tag{3.2}
\end{equation*}
$$

if and only if $\Lambda^{s-m}\left(B_{1}-B_{2}\right) \Lambda^{-s} \in \mathcal{B}\left(l^{2}\right)$ holds for any $s \in \mathbb{R}$.
3.3. We also observe property

$$
\left.\begin{array}{rl}
B & =\mathrm{O}\left(\Lambda^{m}\right) \tag{3.3}\\
B^{\prime} & =\mathrm{O}\left(\Lambda^{m^{\prime}}\right)
\end{array}\right\} \Longrightarrow B B^{\prime}=\mathrm{O}\left(\Lambda^{m+m^{\prime}}\right)
$$

which follows immediately from the inequality

$$
\left\|\Lambda^{s-m-m^{\prime}} B B^{\prime} \Lambda^{-s}\right\| \leq\left\|\Lambda^{\left(s-m^{\prime}\right)-m} B \Lambda^{-\left(s-m^{\prime}\right)}\right\| \cdot\left\|\Lambda^{s-m^{\prime}} B^{\prime} \Lambda^{-s}\right\|
$$

where $\|\cdot\|$ denotes the norm of $\mathcal{B}\left(l^{2}\right)$.
3.4. Further on all operators are acting on $\cap_{k \in \mathbb{N}} D\left(\Lambda^{k}\right)$ and are assumed to be closable on $\cap_{k \in \mathbb{N}} D\left(\Lambda^{k}\right)$. Moreover we often write $A+$ hc instead of $A+A^{*}$.
3.5. Let $S \in \mathcal{B}\left(l^{2}\right)$ denote the shift operator satisfying

$$
\begin{equation*}
S \mathrm{e}_{n}=\mathrm{e}_{n+1} \text { for } n \in \mathbb{N}^{*}, \tag{3.4}
\end{equation*}
$$

let $b: \mathbb{N}^{*} \rightarrow \mathbb{R}$ be given by the formula

$$
\begin{equation*}
b(n)=\beta_{n} \text { for } n \in \mathbb{N}^{*} \tag{3.5}
\end{equation*}
$$

and set

$$
\begin{equation*}
J_{1}=S b(\Lambda)+b(\Lambda) S^{*}=S b(\Lambda)+\mathrm{hc} \tag{3.6}
\end{equation*}
$$

Thus the operator J can be expressed

$$
\begin{equation*}
J=\Lambda+J_{1} . \tag{3.7}
\end{equation*}
$$

3.6. We introduce the closed operator A defined on $\cap_{k \in \mathbb{N}} D\left(\Lambda^{k}\right)$ by

$$
\begin{equation*}
A=S b(\Lambda)-b(\Lambda) S^{*}=S b(\Lambda)-\mathrm{hc} . \tag{3.8}
\end{equation*}
$$

4. Proof of theorem 1

We deduce Theorem 1 from
Proposition 2. The domain of A is the domain of the self-adjoint operator $\mathrm{i} A$ and

$$
\begin{equation*}
\tilde{J}=\mathrm{e}^{-A} J \mathrm{e}^{A}=\Lambda+\mathrm{O}\left(\Lambda^{1-\rho-\rho^{\prime}}\right) \tag{4.1}
\end{equation*}
$$

holds under the hypotheses of Theorem 1.
Proof of Proposition 2. See Section 6.
Proof of Theorem 1. It is easy to see that Theorem 1 follows from Proposition 2. Indeed, (4.1) implies

$$
\begin{equation*}
\Lambda-C \Lambda^{1-\rho-\rho^{\prime}} \leq \tilde{J} \leq \Lambda+C \Lambda^{1-\rho-\rho^{\prime}} \tag{4.2}
\end{equation*}
$$

for a certain constant $C>0$ and the min-max principle gives

$$
\begin{equation*}
\lambda_{n}\left(\Lambda-C \Lambda^{1-\rho-\rho^{\prime}}\right) \leq \lambda_{n}(\tilde{J}) \leq \lambda_{n}\left(\Lambda+C \Lambda^{1-\rho-\rho^{\prime}}\right) \tag{4.3}
\end{equation*}
$$

with $\lambda_{n}\left(\Lambda \pm C \Lambda^{1-\rho-\rho^{\prime}}\right)=n \pm C n^{1-\rho-\rho^{\prime}}$. Hence (1.5) follows from the fact that J and \tilde{J} are unitary equivalent, which ensures $\lambda_{n}(J)=\lambda_{n}(\tilde{J})$ for all \mathbb{N}^{*}.

5. Proof of theorem 2

Similarly we can deduce the assertion of Theorem 2 from
Proposition 3. Under the hypotheses of Theorem 2 one has

$$
\begin{equation*}
\mathrm{e}^{-A} J \mathrm{e}^{A}=\Lambda+g(\Lambda)+\mathrm{O}\left(\Lambda^{1-\rho-\rho_{1}}\right) \tag{5.1}
\end{equation*}
$$

where $g: \mathbb{N}^{*} \rightarrow \mathbb{R}$ satisfies $g(n)=\gamma_{n}$ for $n \in \mathbb{N}^{*}$.
Proof of Proposition 3. See Section 7.

Proof of Theorem 2. Theorem 2 follows from Proposition 3. Indeed, (5.1) ensures existence of a constant $C>0$ such that

$$
\lambda_{n}\left(\Lambda+g(\Lambda)-C \Lambda^{1-\rho-\rho_{1}}\right) \leq \lambda_{n}(\tilde{J}) \leq \lambda_{n}\left(\Lambda+g(\Lambda)+C \Lambda^{1-\rho-\rho_{1}}\right)
$$

where

$$
\lambda_{n}\left(\Lambda+g(\Lambda) \pm C \Lambda^{1-\rho-\rho_{1}}\right)=n+g(n) \pm C n^{1-\rho-\rho_{1}}
$$

is the n-th eigenvalue of $\Lambda+g(\Lambda) \pm C \Lambda^{1-\rho-\rho_{1}}$, and (1.8) follows from $\lambda_{n}(J)=\lambda_{n}(\tilde{J})$.

6. Proof of Proposition 2

We begin by a few simple lemmas.
Lemma 1. If $q: \mathbb{N}^{*} \rightarrow \mathbb{R}$ then the commutator of $q(\Lambda)$ with the shift operator S has the form

$$
\begin{equation*}
[q(\Lambda), S]=(q(\Lambda+I)-q(\Lambda)) S \tag{6.1}
\end{equation*}
$$

Proof. Indeed, the direct computation gives

$$
\begin{aligned}
& S q(\Lambda) \mathrm{e}_{n}=S q(n) \mathrm{e}_{n}=q(n) \mathrm{e}_{n+1}=q(\Lambda) S \mathrm{e}_{n} \\
& q(\Lambda) S \mathrm{e}_{n}=q(\Lambda) \mathrm{e}_{n+1}=q(n+1) \mathrm{e}_{n+1}=q(\Lambda+I) S \mathrm{e}_{n}
\end{aligned}
$$

for every $n \in \mathbb{N}^{*}$.
Lemma 2. Let A and J_{1} be as in Section 3. Then

$$
\begin{equation*}
[\Lambda, A]=\Lambda A-A \Lambda=J_{1} \tag{6.2}
\end{equation*}
$$

Proof. Using Lemma 1 with $q(n)=n$ we find

$$
\begin{equation*}
[\Lambda, S]=S \tag{6.3}
\end{equation*}
$$

hence

$$
[\Lambda, S b(\Lambda)]=[\Lambda, S] b(\Lambda)=S b(\Lambda)
$$

and

$$
[\Lambda, A]=[\Lambda, S b(\Lambda)]+\mathrm{hc}=S b(\Lambda)+(S b(\Lambda))^{*}=J_{1}
$$

Lemma 3. Let g be as in Proposition 3. Then

$$
\begin{equation*}
\left[J_{1}, A\right]=-2 g(\Lambda) \tag{6.4}
\end{equation*}
$$

Proof. To begin we observe that

$$
\begin{equation*}
g(\Lambda)=S b(\Lambda)^{2} S^{*}-b(\Lambda)^{2} \tag{6.5}
\end{equation*}
$$

follows from $S b(\Lambda) S^{*} \mathrm{e}_{n}=S b(\Lambda) \mathrm{e}_{n-1}=b(n-1) \mathrm{e}_{n}$ if $n \geq 2$ and $S^{*} \mathrm{e}_{1}=0$. Then

$$
\begin{aligned}
{\left[J_{1}, A\right] } & =\left[S b(\Lambda)+b(\Lambda) S^{*}, S b(\Lambda)\right]+\mathrm{hc} \\
& =\left[b(\Lambda) S^{*}, S b(\Lambda)\right]+\mathrm{hc}
\end{aligned}
$$

and we complete the proof writing

$$
\left[b(\Lambda) S^{*}, S b(\Lambda)\right]=b(\Lambda)^{2}-S b(\Lambda)^{2} S^{*}=-g(\Lambda)
$$

where we used $S^{*} S=I$ and (6.5).

Proof of Proposition 2. The standard expansion formula gives

$$
\begin{equation*}
\mathrm{e}^{A} \Lambda \mathrm{e}^{-A}=\Lambda+[\Lambda, A]+\int_{0}^{1}(1-s) \mathrm{e}^{s A}[[\Lambda, A], A] \mathrm{e}^{-s A} \mathrm{~d} s \tag{6.6}
\end{equation*}
$$

and (6.2) allows us to rewrite (6.6) in the form

$$
\begin{equation*}
\mathrm{e}^{-A} J \mathrm{e}^{A}=\Lambda-\int_{0}^{1}(1-s) \mathrm{e}^{(s-1) A}[[\Lambda, A], A] \mathrm{e}^{(1-s) A} \mathrm{~d} s \tag{6.7}
\end{equation*}
$$

However (6.2), (6.4) and (1.4) imply

$$
[[\Lambda, A], A]=\left[J_{1}, A\right]=-2 g(\Lambda)=\mathrm{O}\left(\Lambda^{1-\rho-\rho^{\prime}}\right)
$$

which completes the proof due to
Lemma 4. For every $m \in \mathbb{R}$ one has

$$
\begin{equation*}
\sup _{-1 \leq s \leq 1}\left\|\Lambda^{m} \mathrm{e}^{s A} \Lambda^{-m}\right\|<\infty \tag{6.8}
\end{equation*}
$$

Proof. (a) To begin, we check that the estimate

$$
\begin{equation*}
\left[\Lambda^{\varepsilon}, A\right]=\mathrm{O}\left(\Lambda^{\varepsilon-\rho}\right) \tag{6.9}
\end{equation*}
$$

holds for every $\varepsilon>0$. Indeed, using Lemma 1 with $q(n)=n^{\varepsilon}$ we find

$$
\begin{aligned}
{\left[\Lambda^{\varepsilon}, A\right] } & =\left[\Lambda^{\varepsilon}, S b(\Lambda)\right]+\mathrm{hc} \\
& =\left[\Lambda^{\varepsilon}, S\right] b(\Lambda)+\mathrm{hc} \\
& =\left((\Lambda+I)^{\varepsilon}-\Lambda^{\varepsilon}\right) S b(\Lambda)+\mathrm{hc}
\end{aligned}
$$

Hence using property (3.3) and

$$
\begin{aligned}
& S b(\Lambda)=\mathrm{O}\left(\Lambda^{1-\rho}\right) \\
& (\Lambda+I)^{\varepsilon}-\Lambda^{\varepsilon}=\mathrm{O}\left(\Lambda^{\varepsilon-1}\right)
\end{aligned}
$$

we obtain (6.9).
(b) Further on we assume $0<\varepsilon \leq \rho$ and we show that

$$
\begin{equation*}
\mathcal{M}_{k \varepsilon}=\sup _{-1 \leq s \leq 1}\left\|\Lambda^{k \varepsilon} \mathrm{e}^{s A} \Lambda^{-k \varepsilon}\right\|<\infty \tag{6.10}
\end{equation*}
$$

holds for every $k \in \mathbb{N}$. We introduce

$$
R_{k \varepsilon}(s)=\Lambda^{(k+1) \varepsilon} \mathrm{e}^{s A} \Lambda^{-(k+1) \varepsilon}-\Lambda^{k \varepsilon} \mathrm{e}^{s A} \Lambda^{-k \varepsilon}
$$

and observe that

$$
R_{\varepsilon}(s)=\left[\mathrm{e}^{s(1-t) A} \Lambda^{\varepsilon} \mathrm{e}^{s t A} \Lambda^{-\varepsilon}\right]_{t=0}^{t=1}=\int_{0}^{1} \mathrm{e}^{s(1-t) A}\left[A, \Lambda^{\varepsilon}\right] \mathrm{e}^{s t A} \Lambda^{-\varepsilon} \mathrm{d} t
$$

allows us to estimate (6.9) allows us to estimate

$$
\begin{aligned}
\left\|R_{k \varepsilon}(s)\right\| & =\left\|\Lambda^{k \varepsilon} R_{\varepsilon}(s) \Lambda^{-k \varepsilon}\right\| \\
& \leq \mathcal{M}_{k \varepsilon}^{2}\left\|\Lambda^{k \varepsilon}\left[\Lambda^{\varepsilon}, A\right] \Lambda^{-k \varepsilon}\right\|<\infty
\end{aligned}
$$

if $\mathcal{M}_{k \varepsilon}<\infty$.

7. Proof of Proposition 3

(a) To begin, we observe that

$$
\begin{equation*}
[g(\Lambda), A]=\mathrm{O}\left(\Lambda^{1-\rho-\rho_{1}}\right) \tag{7.1}
\end{equation*}
$$

follows from assumption (1.7). Indeed,

$$
\begin{aligned}
{[g(\Lambda), A] } & =[g(\Lambda), S b(\Lambda)]+\mathrm{hc} \\
& =[g(\Lambda), S] b(\Lambda)+\mathrm{hc} \\
& =(g(\Lambda+I)-g(\Lambda)) S b(\Lambda)+\mathrm{hc}
\end{aligned}
$$

hence using property (3.2) and

$$
\begin{aligned}
& S b(\Lambda)=\mathrm{O}\left(\Lambda^{1-\rho}\right) \\
& g(\Lambda+I)-g(\Lambda)=\mathrm{O}\left(\Lambda^{-\rho_{1}}\right)
\end{aligned}
$$

we obtain (7.1).
(b) Then the standard expansion formula gives

$$
\begin{equation*}
\mathrm{e}^{A} \Lambda \mathrm{e}^{-A}=\Lambda+[\Lambda, A]+\frac{1}{2}[[\Lambda, A], A]+\int_{0}^{1}(1-s)^{2} \mathrm{e}^{s A} R \mathrm{e}^{-s A} \mathrm{~d} s \tag{7.2}
\end{equation*}
$$

with

$$
R=\frac{1}{2}[[[\Lambda, A], A], A]=-[g(\Lambda), A]
$$

(c) However we have $R=\mathrm{O}\left(\Lambda^{1-\rho-\rho_{1}}\right)$ due to (7.1) and Lemma 4 allows us to deduce

$$
\begin{equation*}
\mathrm{e}^{A} \Lambda \mathrm{e}^{-A}=J-g(\Lambda)+\mathrm{O}\left(\Lambda^{1-\rho-\rho_{1}}\right) \tag{7.3}
\end{equation*}
$$

from (7.2). Applying Lemma 4 once more we obtain

$$
\begin{equation*}
\mathrm{e}^{-A} J \mathrm{e}^{A}=\Lambda+\mathrm{e}^{-A} g(\Lambda) \mathrm{e}^{A}+\mathrm{O}\left(\Lambda^{1-\rho-\rho_{1}}\right) \tag{7.4}
\end{equation*}
$$

(d) To complete the proof of Proposition 3 it remains to show

$$
\begin{equation*}
\mathrm{e}^{-A} g(\Lambda) \mathrm{e}^{A}=g(\Lambda)+\mathrm{O}\left(\Lambda^{1-\rho-\rho_{1}}\right) \tag{7.5}
\end{equation*}
$$

However

$$
\mathrm{e}^{-A} g(\Lambda) \mathrm{e}^{A}-g(\Lambda)=\int_{0}^{1} \mathrm{e}^{-s A}[g(\Lambda), A] \mathrm{e}^{s A} \mathrm{~d} s
$$

and it is clear that (7.5) follows from (7.1) and Lemma 4.

References

[1] A. Boutet de Monvel, S. Naboko, and L. O. Silva, Eigenvalue asymptotics of a modified Jaynes-Cummings model with periodic modulations, C. R. Math. Acad. Sci. Paris 338 (2004), no. 1, 103-107.
[2] , The asymptotic behavior of eigenvalues of a modified Jaynes-Cummings model, Asymptot. Anal. 47 (2006), no. 3-4, 291-315.
[3] J. Janas and S. Naboko, Infinite Jacobi matrices with unbounded entries: asymptotics of eigenvalues and the transformation operator approach, SIAM J. Math. Anal. 36 (2004), no. 2, 643-658.
[4] G. Teschl, Jacobi operators and completely integrable nonlinear lattices, Mathematical Surveys and Monographs, vol. 72, American Mathematical Society, Providence, RI, 2000.
*IMJ, Case 7012, Université Paris Diderot, 175 rue du Chevaleret, 75013 Paris, France † IMJ \& Université du Littoral, Calais, France

[^0]: Date: February 24, 2008.

