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ABSTRACT. In this paper, we study the existence and uniqueness of solutions for several
classes of stochastic evolution equations with non-Lipschitz coefficients, that contains
backward stochastic evolution equations, stochastic Volterra type evolution equations
and stochastic functional evolution equations. In particular, the results can be used
to treat a large class of quasi-linear stochastic equations, which includes the reaction
diffusion and porous medium equations.
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1. INTRODUCTION

Let O be a bounded open subset of R?. Consider the following stochastic porous
medium equation with Dirichlet boundary condition:

dut = |wt| . A(|ut|p_2ut)dt + dwt,
w(z) =0, z€d0,t>0 (1)
Ug = ¢ € LP((’))?

where p > 2, A is the usual Laplace operator, and {w;,t > 0} is a one dimensional
standard Brownian motion. This is a degenerate non-linear stochastic partial differential
equation. Notice that the degeneracy may be caused by w, = 0 and u; = 0. In the
deterministic case, it is well known that porous medium equations can be written as
abstract monotone operator equations(cf. [36] [31]). Thus, in the stochastic case, it can

Key words and phrases. Stochastic Reaction Diffusion Equation, Stochastic Porous Medium Equation,
Stochastic Evolution Equation, Backward Stochastic Evolution Equation, Stochastic Functional Integral
Evolution Equation.
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fall into a class of stochastic evolution equations studied by Krylov-Rozovskii [18]. More
discussions about the stochastic porous medium equation are referred to [8] [27] [24].
On the other hand, let us consider the following stochastic reaction diffusion equation:

duy = [wy| - (Aug — [ug|P~2 - wg)dt + wy - upduwy,
w(x) =0, z€00,t>0 (2)
Ug = Qb € L2(O),

where p > 2. Usually, one wants to find an adapted process u such that for almost all w
u.(w) € L*([0, T}, Hy(0)) N L*([0, T] x ©O) N C([0, T}, L*(0)),

and (2) holds in the generalized sense, where HJ(O) is the usual Sobolev space.

However, from the well known results, it seems that one cannot solve Eq.(1) and Eq.(2)
because of the presence of |wy| in front of the Laplace operator. One of the main purposes
in this paper is to extend the well known results in [18] [11] so that we can solve Eq.(1)
and Eq.(2) in the generalized sense for almost all path w.

In the present paper, we shall work on the framework of evolution triple. This is crucial
for treating a wide class of quasi-linear stochastic partial differential equations(including
reaction diffusion equations and porous medium equations). We now recall some well-
known results in this direction. In [21] [22], Pardoux considered linear stochastic partial
differential equations(SPDEs) using the monotonicity method. In [18], basing on their
established It0’s formula, Krylov and Rozovskii proved a more general result under some
monotonicity or dissipative conditions. This classic work was later extended in several
aspects: to stochastic evolution equations(SEEs) driven by general (discontinuous) mar-
tingales in [10], to SEEs with coercivity constants depending on ¢ in [11], to SEEs related
to some Orlicz spaces in [27]. All these works are based on Galerkin’s approximation.
It should be remarked that the semigroup method is another main tool in the theory of
semi-linear SPDEs (cf. [9] [6] [7] [17] [13] [37] [38], etc.). In order to solve Eq.(1), we
need to deal with SEEs with random coercivity coefficients. This is our first goal, and
will be done in Section 3 after some preliminaries of Section 2. Here, some stopping time
techniques will be used.

The second aim is to prove the existence and uniqueness of solutions to backward
stochastic evolution equations. Since Pardoux and Peng in [23] proved the existence and
uniqueness of solutions to nonlinear backward stochastic differential equations(BSDEs),
the theory of BSDEs has already been developed extensively. It is well known that BSDEs
can be applied to the studies of stochastic controls, mathematics finances, deterministic
PDEs, etc.. Meanwhile, backward SPDEs have also been studied in [14] [26] etc.. In these
works, the authors mainly concentrated on semilinear BSPDEs. The second aim in this
paper is to prove the existence and uniqueness of solutions to BSEEs with non-Lipschitz
coefficients in the framework of evolution triple. Thus, it can be used to deal with a large
class of quasi linear BSPDE. We remark that Mao in [19] has already studied the BSDEs
with non-Lipschitz coefficients, and the authors in [1] also investigated the BSDEs with
monotone and arbitrary growth coefficients. This is the content of Section 4.

The third aim is to study the stochastic functional integral evolution equations with
non-Lipschitz coefficients, which in particular includes a class of stochastic Volterra type
evolution equations. Stochastic Volterra equations driven by Brownian motion were first
studied by Berger-Mizel [3]|. Later, Protter [25] proved the existence and uniqueness of
stochastic Volterra equations driven by general semimartingales. Recently, Wang in [34]
studied the the existence and uniqueness of stochastic Volterra equations with singular
kernels and non-Lipschitz coefficients. About the stochastic functional differential equa-

tions, Mohammend’s book [20] is one of the main references. In [32], using the evolution
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semigroup approach, the authors studied the existence, uniqueness and asymptotic behav-
ior of mild solutions to stochastic semilinear functional differential equations in Hilbert
spaces. In our proof of Section 5, the main tool is the usual Picard iteration. As above, the
results in Section 5 can be also used to treat a class of quasi linear stochastic functional
partial differential equations.

Lastly, in Section 6 we shall present two applications for our abstract results: stochas-
tic porous medium equations and stochastic reaction diffusion equations. In particular,
Eq.(1) and Eq.(2) will be two special cases. It is worthy to say that the two examples given
in Section 6 have stochastic non-linear second order terms. Moreover, we may also con-
sider the corresponding backward and functional stochastic partial differential equations
with a slight modification.

2. FRAMEWORK AND PRELIMINARIES

In this section we present a general setting in which we can deal with a large class of
non-linear stochastic partial differential equations, and also recall the powerful It6 formula
and a nonlinear Gronwall type inequality (Bihari’s inequality) for treating non-Lipschitz
equations.

Let X be a reflexive and separable Banach space, which is densely injected in a separable
Hilbert space H. Identifying H with its dual we get

XCcH~HC X",

where the star “*’ denotes the topological dual space.
Assume that the norm in X is given by

lzllx == ||z]1x + ||z]2x, ze€X

Denote by X;, i = 1,2 the completions of X with respect to the norms || - |l;x =: | - [|x,-
Then X = X; N X,. Let us also assume that both spaces are reflexive and embedded in
H. Thus, we get two triples:

XiCH~H cX], Xo CH~H" C XJ.
Noticing that X} and X3 can be thought as subspaces of X*, one may define a Banach

space Y := X 4+ X} C X* as follows: f € Y if and only if f = fi + fo, fi € XI,i = 1,2
and the norm of f is defined by

Il = int (£

1+f2

In the following, the dual pairs of (X, X*) and (X;,X}),7 = 1,2 are denoted respectively
by

s+ [ fallxz)

['7.]X7 [.7']Xi7 Z: 172
Then, for any x € X and f = f1 + fo € Y C X¥,

[z, flx = [=, filx, + [2, fo]x.-
We remark that if f € H and z € X, then

[xuﬂX: [',’C7f]X1 = [:C?f]XQ = <x7f>]H[> (3)
where (-, )y stands for the inner product in H.

Let (2, F, (Fi)t>0, P) be a complete separable filtration probability space, and @ a
nonnegative definite and symmetric bounded linear operator on another Hilbert space U.
A cylindrical @-Wiener process {W(t),t > 0} defined on (Q2, F, P) is given and assumed
to be adapted to (F3)i>o(cf. [9]). In the following we shall only consider the case of Q = I

for simplicity. Let Lo(U,H) denote the Hilbert space consisting of all Hilbert-Schmidt
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operators from U to H, where the norm is denoted by || - ||1,w,m), and the inner product
by <'7 ) >L2(U,H)'

Fix T' > 0. Let M be the total of progressively measurable subsets of [0,7] x Q. The
following It6’s formula is taken from Gyodngy-Krylov [12].

Theorem 2.1. Let X, be an Fy-measurable H-valued random variable. Let
Y;: 0,7 xQ—-X e M/B(X}), i=1,2,

and M an H-valued continuous locally square integrable martingale starting form zero. Let
A1, Ay be two M /B(R)-measurable real valued processes such that for (dt x dP)-almost all
(t,w), M(t,w), Ao(t,w) > 0. Assume that for some q1,q2 > 1 and for almost all w,

1

Ai(Hw) € N[0, T),dE),  Yi(-w) - A, " (-w) € LaT([0,T),dt; X7), i=1,2.

?

Define an X*-valued process by
t t
X(t) == Xo +/ Yi(s)ds +/ Yo(s)ds + M(t).
0 0

If there exists a (dt x dP)-version X of X such that for almost all w,

1
X(w)-Ni(,w) e L%([0,T],dt;X;), i=1,2,
then for almost all w,

(1) [0,T] 5t — X(t,w) € H is continuous;
(1) for allt € (0,7

Xt w)llz = IIXo(w)II%Jr?/O[X(Sw),(YlJrYz)(s,w)]xds

2 / (X(5), dM(8))g(w) + (M)(t,w),

where (- ) denotes the quadratic variation of H-valued martingale.

1

1 N 1
Proof. Set N;(t) := fg A (s)ds and Y;(t) :=Y;(t) - A; “(s),i =1,2. Then

X(t) = Xo+ /Ot Yi(s)dNy(s) + /Ot Ya(s)dNo(s) + M(t).

By the assumptions and Holder’s inequality, we have for almost all w,
Yi(w) € LY0,T],dN;; X)), i=1,2,
X(', w) S ﬂi:Lng([O, T], dN;; X,)

Moreover, by Holder’s inequality we have for almost all w and i = 1,2

/ it w)

T _1 5 1
= / 1Yi(t, w)llsz A (1) - [| X (¢ w) [, A" (£)dt
0

T ai—1
< ( / 1Yi(t,w)
0

9% 1 a;
N (et

([ 1w

xr - [X(Ew) |, dNi(1)

ggi)\i(t)dt) | < o0,
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Thus, we can prove this Theorem along the same lines as in the proof of [12, Theorem 2]
(see also [18] [30] [24]). We omit the details. O

We now recall the following Bihari’s inequality(cf. [4]). A multi-parameter version with
jump was proved in [40].

Lemma 2.2. Let p : RT — RT be a continuous and non-decreasing function. Let g(s)
and \(s) be two strictly positive functions on RT such that for some gy > 0

9(t) < g0 + / A(s) - plg(s))ds, ¢ 30,

If X\ is locally integrable, then

g(t) <G (G(go) + /0 t )\(s)ds) :

where G(z) = f;ﬂ @dy is well defined for some xy > 0, and G~! is the inverse function
of G.

In particular, if go = 0 and for some € > 0
° 1
——dz = +o0, (4)
/0 p(x)
then g(t) = 0.
Remark 2.3. The typical concave functions satisfying (4) are given by pg(x), k =
1,2,

co-x - 1% log? a1, x <
o) = { 0 ! )

co-n -1 log’ n™t +co - ph(n=) - (x—n), x>n,

1

where log’ 71 :=loglog---logz™" and co >0, 0 < n < 1/e".

In the sequel, we use the following convention: cg, ¢y, -+ will denote positive constants
whose values may change in different occasions. Moreover, the following Young’s inequal-
ity will be used frequently: Let a,b > 0 and «, 3 > 1 satisfying % + % = 1, then for any
e>0

8
ab < ea” + (asl))—ﬁ/aﬁ' (6)
For simplicity of notation, we also write
2A:=([0,7] x Q,B([0,T]) x F,dt x dP)
and
A, = ([0,T] x Q, M, dt x dP).
We now introduce three evolution operators used in the present paper:
A0, T xOxX;, - X' € MxB(X;)/BX}), i=1,2,
B:0,T] x Q2 x X — Ly(U,H) € M xB(X)/B(L(U, H)).
In the following, for the sake of simplicity, we write

A=A1+A, €Y CX".
Assume that



(H1) (Hemicontinuity) For any (¢,w) € [0,7] x Q and z,y, z € X, the mapping
0,1] 2 e [z, Alt,w,y + €2)]x

is continuous.
(H2) (Weak monotonicity) There exists 0 < Ay € L'(2,) such that for all z,y € X and
(t,w) € [0,T] x Q

2[1’ - Y, A(ta W, l’) - A(tawa y)]X + ||B(t7 W, l’) - B(t’ W y)”%/g(U,H)
< Ao(t,w) - [l =yl

(H3) (Weak coercivity) There exist ¢1,q2 > 1,¢1 > 0 and positive functions A, A2, & €
LY(2A), A3 € L' (2A,) such that for all x € X and (t,w) € [0,T] x Q

2[1‘, A(tawa $)]X + ||B(t7 w, $)||%2(U,H)
< =2 (Mt -2l ) + Aalt.w) -l + (¢ w)

i=1,2

and for (dt x dP)-almost all (t,w), A1(t,w), A2(t,w) > 0 and
0< /\Q(t,W) < Cl)\g(t,W), (7)
where ) is same as in (H2).

(H4) (Boundedness) There exist ¢4, > 0 and 0 < 7; € L%(Ql), i = 1,2 such that for all
r € Xand (t,w) € [0,7] x §2

1
[ As(t, w, 2)|lscx < it w) - A (W) +ca, - Ai(t,w) - |2

where ¢q1, g2 and A1, Ay are same as in (H3).

-1 . _
Xli 9 2_1727

In order to emphasize \;, & and ¢;, n; below, we shall say that
(Aa B) satisfies (%ﬂ()\[)’ )\17 )\27 )\37 ga m,n2,q1, q2)

Remark 2.4. By (H3), (H4) and Young’s inequality (6), it follows that for any z € X
and (t,w) € [0,T] x Q
)

1B(tw )y < 23 (e Ntw)- llz
i=1,2
() - el + €t w)
< Y (e Altw)- e
i=1,2
+)‘3<t7 w) ’ HxH%I + f(t, W),

where cg > 1 only depends on cyu, and q;, 1 =1, 2.

1

%o m(t,w) - A (tw) -l

i

(tw)

_i
qi 4=
x, T

The following lemma is well known(cf. [18]).

Lemma 2.5. Let (A,0) satisfy 7 (o, A1, A2y A3, &, M1, M2, q1, G2), and 0 < 7 < T a bounded
random wvariable. Let X and Y;(i = 1,2) be respectively X and Xf-valued measurable

processes with
1

Loa - A X € LN UK, Lo Y€ LMK, i=1,2

Let A be a strictly positive and real-valued bounded measurable process. Assume that for

any X-valued measurable process ® satisfying
1

Lo - A - @ e LY (X)), i=1,2,
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it holds
B ([ A6 X0 - 06, Y(5) — (s, 0(5) s
< 2 ([ A6 Xl 1X(6) - p(o)as). )

whereY =Y, +Y, € Y C X*.
Then Y (t,w) = A(t,w, X (t,w)) for almost all (t,w) € {(t,w) : t € [0, 7(w)]}.

Proof. For any € € (0, 1) and X-valued bounded measurable process ¢, letting & = X —e¢
in (8) and dividing both sides by ¢, we get

B ([ A (9060 Y(5) = 4G, X(6) = 20(6))es
< cB ([ A0 (o) ot ).
By (H4) and the assumptions, we have
Lon () (YOl + sup 4G XC) = 20()) ) € 2(2.

Hence, by (H1) and the dominated convergence theorem

B ([ M) 19061, Y(9) - Als, X(s)eds ) <o
0
By changing ¢ to —¢ and the arbitrariness of ¢, we conclude that Y = A(-, X). 0

The following lemma is simple and will be used in Section 4. A short proof is provided
here for the reader’s convenience.

Lemma 2.6. Let (S,S) be a measurable space. Let X : RY x S — R4 be a measurable
field. Assume that for every s € S, RY > x — X (x,s) € R? is a homeomorphism. Then,
the inverse (x,s) — X~ (z,s) is also a measurable field, i.e.: for each v € RY, X 1(x,-)

is S/B(R?)-measurable.
Proof. Fix z € R?. Tt suffices to prove that for any bounded open set U C R¢
S i={s: X Ya,s)cU} €S, 9)

where U denotes the closure of U in R
Let @ be the set of rational points in R?. Then

S1 =Mz Uyeonu {s: |1 X (y, s) — z||ga < 1/k} =: Ss. (10)

In fact, if s € S;, then there is a y € U such that z = X(y,s). Since U is open

and X (-, s) is continuous, there exists a sequence y, € U N @ such that y, — y and

X(Yn,s) — X(y,s) = x. So, s € S5. On the other hand, if s € Sy, then there is a

sequence y,, € U NQ such that lim, .o || X (¥n, s) — 2||ge = 0, and so y, — X 1(z,s) € U.

(9) now follows from (10). O
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3. STOCHASTIC EVOLUTION EQUATIONS WITH RANDOM COEFFICIENTS

In this section we consider the following stochastic evolution equation:

{ dX(t) = A(t, X (t))dt + B(t, X (£))dW (1), (11)
X(0) = X, € H,

where (A, B) satisfies 52 (Ao, M1, A2, A3, &, 11, M2, q1, q2). Here and after, one should keep in
mind that A=A+ A, € Y C X*, where A; € XT,AQ c X;
Set
t
H(t,w) := / As3(s,w)ds, (12)
0
and define
0y(w) = inf{s € 0,T] : H(s,w) > t}. (13)

Here inf{()} = T by convention. Then ¢ — 6, is continuous and 6, is a stopping time for
each t. Moreover, 0, TT ast T oco.
Set for each m € N

p™(dt x dw) = 1o, @)y (dt x dP),

and define the completed measurable spaces

o = (0, 7] = 0, B0, T]) x F)"

and

o = ([0, 7] x &, M)

We introduce the following stochastic Banach spaces for later use: for each m € N

Ky, o= La-T(O™ A, 71 Y(tw) - p™(dE x dw); X7, 0= 1,2,
Ky, = LU N\t w) - p™(dt x dw); X5), i=1,2,

Ky = L*O, @™ (dt x dw); Ly(U, H)),
Ky = L*OU™, ™ (dt x dw); H),
K2 = L9 As(t,w) - ™ (dt x dw); H),
where the norms are defined in a natural manner, and denoted by || - ||k, where K stands
for the above spaces. For instance,
1/qs
% /\Z-(t)dt” , 1=1,2.

Ils, =[5 ([ 10

Remark 3.1. If A3 is non-random, then for some m sufficiently large, 6,, = T. In this
case, we shall omit the superscript ‘m’ of K™.

We need the following lemma.

Lemma 3.2. (i) K%,4,7 = 1,2 and K3, K", KZ* are separable and reflevive Banach
spaces.

(i) For any Y € K", we have E <f00m 1Y (t) X*dt> co ||Ylkp,, wherei=1 or2.
(iii) Let {Y,,n € N} weakly converge to'Y" in KT, then for any X € K3},

Jim E ( /0 " [X(t),Yn(t)]Xidt) _E ( /0 "X, Y(t)]xidt) ,

where 1 =1 or 2.
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(iv) Let {X,,n € N} weakly converge to X in K3, then for any Y € KT,

i & ([ 0y Oar) =& ([ oy oa).

where i = 1 or 2. Moreover, if {X,,,n € N} also weakly converges to X in K2, then

X(t,w) = X(t,w) for p™-almost all (t,w).
(v) Define a linear operator from K35* to K as

“AOp,
J(G) = /O G(s)dW (s), (14)

then J is a continuous linear operator. In particular, J is continuous with respect
to the weak topologies.

Proof. (i). Tt follows from the separabilities and reflexivities of X;, X¥ i = 1,2, and
H, L,(U, H).
(ii). By Holder’s inequality we have

s ([ o) = 5 ([vo

< Wl ([ Buo)ar) "

oAy (1) - A <t>dt)

(iii). It follows from
1 1
XA e Lu(m™ N, T (tw) - p™(dE x dw); X)) C (K%)™
(iv). The first conclusion follows from

4

Y () - AH() € La—T (O™, \i(t,w) - p™(dt x dw); XF) C (Kg,)™

As for the second conclusion, by the well known Banach-Saks-Kakutani theorem, there
exists a subsequence of X, (still denoted by X,) such that its Césaro means X,, strongly
converges to X and X in K3 and K7 respectively. Therefore, there is a subsequence )N(nk
such that for g-almost all (¢,w), X, (t,w) — X(t,w) in X, and X, (t,w) — X(t,w) in
H. Since X is continuously and densely embedded in H, we have X (t,w) = X (t,w) for

w"-almost all (t,w).
tAOm 2
/ G(s)dW (s)|| dt
0 H

(v). It follows from
Om
V@l = E( [
T tAOm,
L ([ 160 s a
< TG

VAN

The proof is complete. U

Definition 3.3. An H-valued continuous Fi-adapted process X (t,w) is called a solution
of Eq.(11) if for almost all w € (Q,

X (- w) € Nz 2L ([0, T, A+, w)dt; X5)
9



and in X*, for all t € [0,T]

t t
X(t,w) = Xo(w) —|—/ A(S,w,X(s,w))dS—i—/ B(s, X(s))dW (s)(w),
0 0
where the first integral is understood as an X*-valued Bochner integral.

Remark 3.4. Note that

/OtA(S,w,X(SM))ds = /OtAl(s,w,X(s,w))d3+/OtAQ(S’%X(S’w))dS‘

Since X is M/B(H)-measurable, 1x,(X) - X is M/B(X;)-measurable by [18, Lemma 2.1]

fori=1,2. The above integrals are meaningful.
We have the following estimates for the solutions of Eq.(11).

Theorem 3.5. Assume that (H1)-(H4) hold and X, € L*(Q, Fo, P;H). Let X
solution of Eq. (11) in the sense of Definition 3.3. Then, we have for any m €

T
to, + X < o (EIXGlE+ [ Bles),

ElX(0n)lE+ ) I1X

i=1,2

and

E ( sup ”X(t)HI2H1> + Xl + 1BC X O + D 1A X )y

t€[0,0m] i=1,2

T a1 92
< o (EIXE+ [ B (604070 40T (9) ),
0
where ¢, only depends on m, T and ca,,q;,i = 1,2.

Proof. By 1td’s formula (Theorem 2.1) and (H3), we have
12X ()13 — 1 Xolliz — M()

= /0(2[X(S)7A(37X(8))]X+||B(87X(S))||%2(U,H))ds

< | (‘Z (Ai<s>-||X<s>H%’;)“3(3)'”)“3)”%%(8)) "

i=1,2

where M () is a continuous local martingale given by

t
M) =2 [ (X(5) Bls, X)W (s)se
For any R > 0, define the stopping time
t
Tr = inf {t c0,7]: I X))l = R,/ Ai(s) - |IX(s)[I%,ds = R,i = 1,2} .
0

Then, by Definition 3.3, 7 T T a.s. as R T oo.
By Remark 2.4 and the change of clock(cf. [28]), we know that {M (6, A Tg)
a continuous Fp,-martingale. Indeed, this follows from

0t TR
(M(0. N TR))(t) < 4/0 IX ()l - 1B (s, X () Ly enyds < e
10

(t) be any
N

94
q;—1
m
K %

(15)

(16)

,t >0} is



So, replacing t by 0; AT in (15) and taking expectations for both sides of (15), we obtain

0:NTR
E|X (6, A )[4 — BN XolZ + 3" E ( / A(s) - ||X<s>||§gids)

i=1,2

< () X @I +€) )

- (/ Ixelan)) v ([ £(5)s)

< E (/00 HX(S/\TR)H]%IdH(S)> +/OTE(€(S))d8

_ / B X (6, A ) [2ds + / E(&(s))ds,

where H(s) is defined by (12), and in the last step we have used the variable substitution
formula.
Hence, by Gronwall’s inequality we have for any ¢ > 0

E[| X (6, A Tr)lf: < € (EHXoH% + /OT E(é(S))Cb) :

Letting R — oo, by Fatou’s lemma we obtain that for any m € N

EIX Gl <o (Bl + [ Elelsas)

-:12E </09m Ai(s) - | X (s) ‘;’g;ds) +E (/Oem As(s) - HX(S)H%Ids)

(2

< en (B0l + [ Bleos ). a7

which gives the first estimate.
From (15), by Burkholder’s inequality and Young’s inequality (6) we further have

as well as

E< p uxwr%) par

t€[0,0m]

< E < / " Ouls) - X2 + €(5) ds)
1/2

vt | " IX($) 1505, X () 00
</ "E(E(s))ds + E ( / " M) |\X<s>r|ﬁds)

1 Om
+§E ( sup HX(t)H%I) + & (/0 HB(s,X(S))H%Q(U,H)dS> :

t€[0,0m]

Hence

t€[0,0m]

JE( sup HX(t)H%[> S Cm (EHXoH%Jr/OTE(S(S))dS)

11



gm
vt ([ 1B, XO s
The second estimate now follows from (H4), Remark 2.4 and (17). O

We now prove our main result in this section.

Theorem 3.6. Assume that (A, B) satisfies (Ao, A1, A2, A3, &€, 1,12, q1,q2). Then for
any Xo € L*(Q, Fy, P;H), there exists a unique solution to Eq.(11) in the sense of Defi-
nition 3.5.

Proof. (Uniqueness): Let X; and X3 be two solutions of Eq.(11) in the sense of Definition
3.3. For t > 0, define

By := inf {s €[0,7]: /S Xo(r)dr > t} ,
0

and for R > 0 and i = 1,2, let 75 be defined as in (16) corresponding to X;. For ¢, € (0,7),

set 7)Y 1= Th ATE Ato. By Itd’s formula(Theorem 2.1), as in the proof of Theorem 3.5 we

have
E[|(X; — X2)(B: A5

BTy
_ E( [ (21506 = Xate), Al X)) — A Yol

HIB(s, X,(5)) - B(s,xz<s>>uaw,m)ds>
ﬂt/\’r;o
< E(/o 1X1(s) — Xao(s)|1f - Ao(s)ds)

< E(/O H(Xl—Xz)(ﬁsATfé))H%dS)-

Using Gronwall’s inequality yields that for any ¢ > 0 and R > 0
E[|(X1 = X2) (B A7) lfy = 0.
Letting R,t — oo, and by Fatou’s lemma we get
E[ (X1 — X5)(to) || = 0.

The uniqueness is then obtained.

(Existence): We shall use Galerkin’s approximation to prove the existence of solutions,
and divide the proof into four steps.

(Step 1): Let {e;,i € N} C X be a dense subset of X and a normal orthogonal basis of
H. Set

n
I,z := Z[ei,x]x ce;, xe X
i=1
Then the mapping II,, : X* — X is linear and continuous, and satisfy

I,z = Z (€i, )y - €, xe€H
i=1
and

[z, ylx = My, z]x, =x,y€ X"
12



We also fix a normal orthogonal basis {fi, f, -} of U. Let W;(t) := (W (t), f;)y for
7 € N. Consider the following Ito type stochastic ordinary differential equation in R™:

{ dX (1) = ' (t, X (D) dt + D27, o (¢, X (8))dW;(2), (18)
X1(0) = (Xo,ei)y, i=1,---,n,
where '
b'(t,x) == [e;, A(t, x - e)x,
and

0;(t7 ZL’) = <ei’ B(t7 xz:- 6)(fj)>H'
Here z e R" and z-e:= Y .  a'e;.
The coefficients satisfy the following conditions by (H1)-(H4):
(i) b and o are M x B(R")/B(R") and M x B(R")/B(Lz(R", R™))-measurable respec-
tively and continuous in x.
(ii) For any (t,w) € [0,T] x Q and x,y € R"
2<LU - Y, b(ta W, LU) - b(ta W, y)>]R” + HO'(t, w, LC) - 0(t7 w, y) H%Q(R”,R”)
< Ao(t,w) -z = yllre-
(iii) For any (t,w) € [0,T] x Q and x € R"
2(x,b(t,w, 2))ga + o (t,w, )|, @n gy < As(t,w) - [l2ll2n + E(E, W)
(iv) For any (t,w) € [0,7] x  and z € R"
%*1)
-

Hb(t,w,x) R < Cn Z (Th<t7u)> ’ /\zl/ql(tvw) + )\z(t7w) ’ “I
i=1,2
By a well-known result due to Krylov [16](see also [24]), there exists a unique contin-
uous Fi-adapted solution denoted by X' (t) to Eq.(18). Moreover, if we let X,,(¢) :=
S X (t)es, then we can write Eq.(18) as

Xn(t) =11, X0 + /t I1,A(s, X,,(s))ds + /t IT,, B(s, Xn(s)IL,dW (s), (19)

where II,, is the orthogonal projection from U to span{fi,--- , f.}.
Noticing that

L B (s, X ()l oquy < 1B (s, X () o, (20)

and using the same method as in the proof of Theorem 3.5, by (H4) and Remark 2.4, we
have for all n € N

B[ Xn (0m) & + [ Xallip + 1 Xnllip + 1BC, Xa)llzp

+ > (IXallgy, + 1A X))

i=1,2

T q1 q2
< om (]E||Xo||§ﬁ+ / E(é(S)Jrﬁf”(S)JrﬁS”(S)) ds) < +oo,
0

where ¢, > 0 is independent of n, and m € N is fixed in the next two steps.

(Step 2): By the reflexivities of Banach spaces K™, one may find a common subsequence
ny (denoted by & for simplicity) and X™ € K5, NK3Y, Xm e KPNK:, Y™ € Ky, i=1,2,
Zm e Kg and X™ € L?(Q, Fy,,, P;H) such that as k — oo

X, — X™ weakly in K3, and K3, (21)
13



Xi — X™ weakly in KJ* and K, (22)

A, X)) = Yy — Y™ weakly in K7, i=1,2, (23)
B(-, X)), =: Z, — Z™ weakly in KZ', (24)
Xi(0,) — X2 weakly in L*(Q, Fy,,, P; H). (25)

Clearly, Xm, Xm Y, YJ" and Z™ are M-measurable. First of all, by (iv) of Lemma 3.2,
we have

X"(t,w) = X™(t,w), for y™-almost all (t,w).
Secondly, define

X™(t) == Xo +/

0

tAOm tAOm
07+ Y )s+ [ 25w s) 20
0
then
X"M(t,w) = X"(t,w) for p™-almost all (,w). (27)

Indeed, let ((¢) be any H-valued bounded and measurable process on (2, F, P). By (19)
we have for any k£ > n

E < /O L), Xk(t)>Hdt> _E ( /O L), HkXO)Hdt)
+E ( /O " /O ML), Vi (5) + Yk,2<s)]xdsdt>
v ([ "), JB) D)),

where J is defined by (14), and we have used that

(¢ (1), J (e Zk) (1)) = (TaC(2), i J (Z3) (1)) = (G (1), J(Z5) (1)) -

Taking limits for & — oo, and by Fubini’s theorem, (22) (23) (24) and (iii), (v) of Lemma
3.2 we obtain

B ( | " (1,60, X0t =5 ( [ " L), X" (Ot

which then shows (27) by the arbitrariness of ¢ and n. In the following we shall not
distinguish X™, X™ and X™. Moreover, using the same method, by (23) (24) and (25)
we also have

X"l (w),w) = X2 (w)  for P-almost all w € Q. (28)

(Step 3): Our task in this step is to show by the standard monotone argument that for
p™-almost all (t,w) € [0,7] x

(Al + A2)(t7 W, Xm(ta w)) = (lem + Y’Zm)@u w) = Ym<t7w>7
B(t,w, X™(t,w)) = Z™(t,w).
Set
¢
A(t,w) = exp{ —/ )\O(s,w)ds}.
0
Then ¢t — A(?) is a continuous and Fi-adapted process, and satisfies by (7) and (13)

A(tAGy) <exp{a ;Lm}, te[0,7]. (29)
1



By (19) and Ito’s formula we have
A(Orm) - [1X5(Om) 1y — Tk X0l — 2M (61n)

= [ A (200D, Al Xl + B, X)L ) s
Om
o AL CRNCR SIS
where ¢t — M (t) is a continuous martingale defined by
tAOm .
M(t) = /0 A(s) - (X(s), B(s, X)) TTod TV (s))..

Using (20) and (H2), we further have for any ¢ € K5, N K3, N Ky’

< | " Afs) (21Xl Als, X))l + 1B (s, Xe()usn) ds
-/ " As) - dols) -1 Xi(s) s

< [ " A(5) (21X (5), AGs, B(5))e + 21006, Als, Xe(s)) — Als, B(5)
B, D) [y + 2Bl X)), Bls. D3} 0 ) s

Om
[T Aale) - (IR = 2 (s). D5 ) s, (30)

Since ® € Ky, N Ky, N KY', we have B(-, ®(-)) € K¥' by Remark 2.4. Firstly taking
expectations for (30), and then taking limits for & — oo, we find by (21)-(24) and (iii)
(iv) of Lemma 3.2 that

lim inf E(A(0,) - X060 ) — EllXol %

< E< / " A5 (20X (5), Als. D)+ 21B(3), 1) = A(s, ()]s
—1B(s, () + 2(27 (). Bls, B(5)) ) ) ds
- " M) o) (IR - 2007(5), <1><s>>H)ds>,

where we have used that A and )¢ are bounded on [0, ,,,].
On the other hand, noting that by (26) and It6’s formula again

E(Aln) - 1 X™(0m) ) — EN X0l
- E ( / " AGs) (X5, Y6l + 1275 ) ds)
“E ( / " Aol uxm<s>uﬁds) ,
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and by (25), (28) and (29)
E(A(n) - IX"(0n)) < Tim inf E(A0) - | Xu(0)]13).

we finally arrive at by combining the above calculations

Om
E (/o 2A(s) - [X™(s) — ®(s),Y™(s) — A(s, @(s))]xds)
1E ( R CREREIE Zm<s>||i2w,mds)

<z(/ " AGS) Mol -0 (s) B(s) s

Letting ® = X™ in the above inequality, we obtain that Z™ = B(-, X™). By Lemma 2.5
we also have Y™ = A(-, X™).

(Step 4): For m > I, since 0,,(w) > 6;(w) a.s., both X™(-,w) and X'(-,w) solve the
following equation
dX(t) = A(t, X(t))1p<oydt + B(t, X (1)) 1<y dW (s),  X(0) = Xo.
The uniqueness of solutions gives that for almost all w
X"t w) = X'(t,w), t<Ow).

Thus, noting that 6,,(w) T T a.s. as m | oo, we may define a continuous F;-adapted
H-valued process for all ¢ € (0,T) by

X(tw) :=X"(tw) ift<b,(w),
Clearly, it is a solution of Eq.(11) in the sense of Definition 3.3. The proof is complete. [

4. BACKWARD STOCHASTIC EVOLUTION EQUATIONS

In this section we consider the following type of backward stochastic evolution equation:

{ dX(t) = —A(t, X (t))dt — C(t, X (t), Z(t))dt + Z(t)dW (¢t), (31)
X(T) = Xr € Fr/B(H),
where
A0, T xOxX;, - X' € MxB(X,)/BX), i=1,2,
C:0,T]| xQxHx Ly(UH) - H € M x B(H) x B(Ly(U, H))/B(H).
We assume that

(HB1) X7 € L*(Q, Fr, P;H) and (A, 0) satisfies 22 (\g, A1, A2, A3, &, 01, M2, q1, G2 ), where
Ni, i = 0,1,2,3 are positive constants, ¢; > 2, 0 < £ € L'(2) and

T (q1Vq2)/2
E (/ im(s) + 772(3)|2ds) < 400,
0

(HB2) There exist a ¢; > 0 and an increasing concave function p satisfying (4) such that
for all (t,w) € [0,T] x Q, z,2" € H and z, 2" € Ly(U, H)

IC(Etw, 2, 2) = Ct,w, 2, )l < ex (ol — 2'llg) + |2 = 2L, ) -

(HB3) There exist a ¢ > 0 and a 0 < ¢ € L*(2A) such that for all (t,w) € [0,T] x Q,
x € Hand z € Ly(U, H)

IC(Et w, 2, 2)]lm < C(t,w) + 2 ([l + [12] Lawe) -
16



Recalling Remark 3.1, we give the following definition.

Definition 4.1. A pair of measurable F;-adapted processes (X, Z) is called a solution of
Eq.(31) if

(Z) X € KQJ mK272 ﬂK4 and Z € Kg, X(O) € LQ(Q,fO,P; H)

(i1) For almost all w, t — X (t,w) is continuous in H and X (T) = Xt a.s..
(111) (X, Z) satisfies that in X*, for almost all w and all t € [0,T]

X(t):XTJr/t A(S,X(s))ds+/t C(s,X(s),Z(s))ds—/t Z(s)dW (s).

Let (t) := e**2 and make the following transformations

(X(tw), Z(t,w) = (1) X(t,w), 1 () Z(t,w)),
At w, ) = (@) Ait,w, v H(t) 1) — N 2/2, i=1,2,
Clt,w,z,2) = ~(t)-Ct,w,y 1) -z,77L(t) - 2).

Thus, we can assume Ay = 0 in (HB1) in the following.
We have the following uniqueness result.

Theorem 4.2. Assume that (HB1), (HB2) and (HB3) hold. Let (X,Z) and (X,Z)
be two solutions of Eq.(31) with the same terminal values Xp. Then for (dt x dP)-almost
all (t,w) € [0,T] x Q

X(t,w)=X(t,w), Ztw)=2Z(tw).

Proof. Set Y (t) := X (t) — X(t). By It&’s formula(Theorem 2.1), we have

YOI+ [ 176) = 26 0

= 2/tT[Y(s),A(s,X(s)) — A(s,f((s))]xds

+2 /t ' (Y (s), C(s, X (5), Z(5)) — C(s, X (5), Z(5)))nds

2 f C Y (5),(2(5) — Z()AW (3)}
Taking expectations, by (H2)(with Ay = 0), (HB2) and Young’s inequality (6) we have

BIY O+ [ BI6) - Z6) s
< ab(f Y (YOI + 126~ Z26) ) )

T 1 T
<o [ EIVERds+ 5 [ BaV(s)[E)ds
t t

1 (7 -
+3 [ EIZ6) - Z6) B mds
t

Hence, by Jensen’s inequality

1T .
EIYOIE+ 5 [ EIZ() - Z6)Eomds
t
17



T 1 T
< co/ E||Y(s)||ﬁds+§/ p (EY (s)]lf) ds.
t t

The uniqueness follows from Lemma 2.2. O

The following finite dimensional result was proved in [1]. For completeness, we give a
different proof by Yosida’s approximation.

Lemma 4.3. Assume that X = H = X* = U = R? and C = 0, and (A,0) satisfies
H(0,01,0,A3,£,1,0,4,0), where A1, A3 are positive constants, ¢ = 2, 0 < & € L'(2A) and
2

E (/OT yn(s)PdS) e

Then for any Xr € L, Fr, P;RY), there exists a unique solution to Eq.(31) in the
sense of Definition 4.1. Moreover,

T q/
E ( sup ||X<t>uggd) FE ([ 12601 et
te[0,T] 0

2

T q/
< cOEuxTuzgﬁcOE( / rn<s>|2ds) | (32)
0

where ¢y only depends on q, T and \;.

2

Proof. For every (t,w) € [0,T] x €, note that z — A(t,w, x) is a continuous monotone
function on RY. Let A.(t,w,-),e > 0 be the Yosida approximation of A(t,w,-), i.e.:

A(tw,x) = e Y (J(t,w,x) — 1) = Alt,w, J.(t,w, 7)),
J.(t,w,z) = (I—cAlt,w, ) ),
then z — J.(t,w, z) is a homeomorphism on R? for each (¢,w) and for any z,y € R4(cf.
2] [5])
(I) <:B - Y, Aa(ta w, 35) - A8(t’ W, y)>Rd < 07
(I) [|A=(t,w,2) — Ae(t,w,y)|[pe < 7|z — Yl|ra,
(II) | A:(t, w, z)l[re < [|A(E w, 2)||ra,
(IV) lim. g ||A:(t,w, z) — A(t,w, x)||ga = 0.
By Lemma 2.6, J. and A, are progressively measurable. From (I), (III) and (H4), we

have for any x € R?
1

(@, Ac(t,w, 2))ga < [[2llme - |At,w, 0)llpa <9t w) - AL - [|2]|ga. (33)

Let (X., Z.) be the unique F;-adapted solution of the following backward stochastic dif-
ferential equation(cf. [23])

X (t) = XT+/t AE(S,XE(S))dS—/t Z.(s)dW (s). (34)

By It6’s formula, we have
T
1. (82 + / 1Z.(5) 12, g g s

= ||XTH1§d+2/t (X:(5), Ac(s, Xc(5)))gads

2 / (X-(5). Zo(3)AW(5) g, (35)
18



and further

T
X+ [ (X4 12 ) s
t
T
2 [ e ) Al X))l
t
T
=2 [ ) ZUAW (3}
t
T T
< Pl [ e ta [ ela)Pds
t t

=2 [ X5). Zu)AW (5] (36)

where the second step is due to (33) and Young’s inequality (6).
Taking conditional expectations for both sides of (36) with respect to F;, we find

T
eI Xtz < 6TIEJ%IIXTll%édﬂLC()'IEﬂ/ AUIOIKE
t

T
< B Xrla o B [ a()Pds.
0

Hence, by Doob’s maximal inequality(cf. [28]), we have for ¢ > 2
/2

T q
E<sup |rxe<t>u§gd><co-EuXT|r]§d+co~E(/ ns)fds) (37)
0

t€[0,T]

Hereafter ¢y only depends on ¢, T and \;.
Noting that by BDG’s inequality and Young’s inequality (6)

q/2

IE/O e*(Xc(s), Z:(s)dW (8))ga

T q/4
< oF ( [ ol ||Z€<s>uig(w,mds)
1 T q/2
< E<p ||X€<t>||§d)+§E(/ ||zs<s>||iQ(Rd,Rd>ds) |
0

te[0,7

we also have from (36)

T q
E ( / ’|Zs(5)\|%2(Rd,Rd)d3)

For ¢ = 2, from (36) and the above proof, it is easy to see that

/2 T q/2
<CO-E\|XT\|§d+cO-E(/ \77(8)!2018) )
0

T
E ( sup, HXs(t)Héd> +/0 E[|Z- ()17, (e ey ds

t€[0,T

T
< o Bl XrlPu+ o E / In(s)|?ds.
0
19



Moreover, by (III), (H4) and (37)
T T
| i xolitas < [ 1A ot
T T
< CO/O | X< () || gads + CO/O E (nq%l(s)> ds < ¢

Therefore, there exists a subsequence ¢, | 0 and (X, Y, Z, X;) such that

X, — X weakly in Ky,
A (X, (4) — Y weakly in K 4,
Z., — Z weakly in Kj,
X.,(0) — X weakly in L?(Q, Fy, P;RY)

as n — oo. By (37) and (38), we get (32).
Set

T T
X(t) = Xr +/ Y (s)ds —/ Z(s)dW(s).
t t
By taking weak limits for (34), we deduce that X(0) = Xj a.s. and
X,

X(t,w) = w) for almost all (t,w) € [0,77] x €.

It remains to show that Y(s) = A(s, X(s)). For any ® € Ky, by (III) (IV) and the
dominated convergence theorem we have

i 2 ([ 065 = 906) A, (50(5) = A5, 006) s

< Tim (40,0, 20) = ACBODIEL 1Kz, — Bllra) =0 (39)
On the other hand, we have by (35)
T
2lim inf E ( / (X...(s), A.. (s, XEH(S)»st) (40)
n—oo O

T
> E|Xo|2 — B X2 + / B Z(5) 2, e eyl
0

_ R ( /0 ' <X(s),Y(s))>Rdds> |

Combining (39) and (40), we have by (I)

E (/OT (X(s) — B(s), Y (s) — A(s, @(s))»Rdds)

n—oo

< liminfE ( /0 (X () — D(s), A, (5, Xo..(5)) — Ao (s, @(s)))Rdds) <0,

which implies that Y = A(-, X)) by Lemma 2.5. The proof is complete. O
Remark 4.4. When q > 2, it suffices to require that

2 ([ moas) <o
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In fact, taking conditional expectations for both sides of (35) with respect to Fi, and by
(33) and Young’s inequality (6) we find for any § >0

T 1
X2 < ER [ Xgl + gEF ( / ||Xa<s>||Rd-n<s>-Afds)

t

s€[0,7

< B Xrga +0 - E” ( sup IIXe(S)II%d)

2

rer 7 ([ mioas)

Hence, by Doob’s mazimal inequality we have for q > 2

D ( sup IIXe(t)||§d> < o ElXrlga+0-¢ - E ( sup HXs(S)Hﬁéd>

t€[0,1] s€[0,7]
T q
+cs - E (/ |77(s)|ds) )
0

Letting ¢ be sufficiently small, we get
T q
b ( sup HXa(t)H%d) < co - Bl|Xrll% + o E ( / !n(S)IdS) |
te[0,7 0
where ¢y only depends on q, \y and T'.
We now prove the following infinite dimensional version.

Lemma 4.5. Assume that C(-,z,z) = C(-) € L*(A,; H) is independent of x and z, and
(HB1) holds. Then there exists a unique solution to Eq.(31) in the sense of Definition

4.1,

Proof. We use Galerkin’s approximation to prove the existence as in the proof of Theorem
3.6. For n € N, let (X, Z,) solve the following finite dimensional backward stochastic
differential equation (Lemma 4.3)

Xn(t) = X7+ /tT I1,A(s, X, (s))ds + /tT Cr(s)ds — /tT Zn (), dW (s),

where I1,, and TI,, are same as in Theorem 3.6, and
Xr = ALXr - Lgmxfasn
Cn(s) = MC(s) - Lym,c(s)usn}-
It is easy to see that for each n and s
[ X7l < [ X7lle,  (1Ca(s)]la < 1C(s) ]|

and
lim E[| X7 - Xzl = 0, (41)
T

lim E||C,(s) — C(s)|l3ds = 0. (42)

n—oo 0

By It6’s formula and (H3), we have
T
EIX 0+ [ EIZu(o) s (43
t
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= E||X7"~||%I+/t E[Xn(s),A(s,Xn(s))]xds+2/t E(X,(s), Cn(s))yds

T
< IEIIXTII]%ﬁ/O E(2¢(s) + [1C(s) 1) ds

+/t E (— >N 1 X(s)

i=1,2

5t As+1)- IIXn(S)II%> ds. (44)
By Gronwall’s inequality we have

EJIX. ()12 < co (EHXTnﬁ + [ B + ||c<s>||%ﬂ>ds) |

Hence, from (44) and (H4) we get

_ai_
B Xa(0) I + 1XallE, + 120l + Y (Xl + 14, XIE ) < co.
i=1,2
Hereafter, the constant ¢j is independent of n.
By the reflexivities of Banach spaces K, one may find a subsequence ny (denoted by k

for simplicity) and X € Ky; NKyo NKy, V; € Ky, i = 1,2 and Z € Ky such that
X, — X weakly in Ky, Ky and Ky,

A, Xy) =Y, — Y, weaklyinK;,, i=1,2,
Zy — Z weakly in Kj,
X(0) — Xo weakly in L?*(Q, Fo, P; H).

Define Y =Y, +Y, € Y C X* and

X(1) = XT+/tTY(s)ds+/tTO(s)ds—/tTZ(s)dW(s).

Then, similar to Step 2 of Theorem 3.6 one may prove that

X(t,w) = X(t,w) for (dt x dP)-almost all (¢,w),
X(0) = X, as.
We now show that
A(t, X (t,w)) =Y (t,w) for (dt x dP)-almost all (¢,w). (45)
By (43) and (H2)(with A\p = 0), we have for any ® € K,

E|| X, (0) 2 + / B Z(5)]2, oy s
< E|XEE +2 / E[®(s), A(s, Xi(s)) — A(s, ®(s))Jxds

T T
—1—2/ E[Xk(s), A(s, ®(s))]xds + 2/ E(X})(s), Ck(s))yds.
0 0
Taking limits for £ — oo, we find by (41) (42)

T
lilgnianEHXk(O)HﬁH—irlilgninf/ B Z4(5) 2, 50,
—00 —00 0

< E|X7|E+ 2/0 E[®(s),Y (s) — A(s, ®(s))]xds
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+2/0 E[X(s),A(s,(I)(s))]de+2/0 E(X(s),C(s))yds.

On the other hand, noting that
T

EIXolf+ | EIZO)mds
0

- E||XT||]%1+2/0 E[X(s),Y(s)]de+2/0 E(X(s), C(s))yds

and
E|Xollz < liminf B[ X,(0)[f3,
T T
| EIZ6)Ewnds < tmint [ EIZ6) 1 umds

0 > Jo

we obtain .
/ E[X (s) — ®(s), V() — A(s, B(s))]xds < 0.
0

Hence Y = A(-, X) by Lemma 2.5. The proof is complete. O

Lemma 4.6. Assume that C(t,z,z) = C(t,z) is independent of x, and (HB1), (HB2)
and (HB3) hold. Then there exists a unique solution to Eq.(31) in the sense of Definition

4.1,

Proof. Let Zy(t) = 0. We consider the following Picard iteration: for n € N, let (X, Z,,)
solve the following equation(Lemma 4.5):

Xn(t):XT+/t A(S,Xn(s))ds+/t C(S,Zn_1(5))d5—/t Zn(s)dW (s).

Set Y, (t) == X,41(t) — X,(t). By Itd’s formula, (H2)(with A\g = 0), (HB2) and
Young’s inequality, we have

E||Yn(t)||]%1+/t El| Zn11(5) = Zn($) 17, wmds
— /tE[Yn(s),A(s,Xn+1(s))—A(S,Xn(S))]XdS
n /t E(Y,,(5), C(5, Zu(3)) — C(8, Zu-1(5)))gds

T 1 T
<o [ EINORds+; [ 12.06) - 2Ol omds (46)
t t

Hence, for a := ¢y

d (. (" w [T
3 (¢ [ i) - [ o)~ 400t
t

t

eozt T )
< 7/ 1Z0(s) — Zn—1(3)||L2(U,H)d3 =
t

Integrating both sides from 0 to T yields that

T ) T 1 T 1 T co
| Bl [ amnar< [ aod< g [ a5
0 0 2 0 2 0 2



It then follows from (46) that

Co 1

T T
| E1Z0n(5) = Za s < 52+ 5 [ BIZ) = Zus(6) B
0 0

[terating this inequality gives
T
| E1Z0(9) = iR uimds <
0

Therefore, there exist an X € K, and a Z € K3 such that
lim || X, — X||g, =0 and lim ||Z, — Z||x, = 0.

ncoy
A

From (46) and the above estimates, we also have

sup sup E||X, ()| < +oc. (47)
neN t€[0,7T)

We now show that there exists a version (X, Z) of (X, Z) such that (X,Z) is a so-
lution to Eq.(31) in the sense of Definition 4.1. In fact, let (X, Z) solve the following
equation(Lemma 4.5):

X(t):XT+/t A(s,f((s))ds—i-/t C(S,Z(s))ds—/t Z(s)dW (s).

It is similar to estimate (46) that
T
E[|Xn(t) — X(8)]l& + / E[|Z0(s) = Z()II7,wmds
t

T B 1 (7
< o [ BN - KOs+ 5 [ 1Z0a(5) = Z06) s
t t

Letting ¢(t) := limsup,, .. B[ X,.(t) — X (¢)||4, by (47) and Fatou’s lemma, we have

T
o) <o [ glo)ds,
t
which yields that g(¢) = 0 by Gronwall’s inequality. The proof is complete. ([l
We now prove our main result in this section.

Theorem 4.7. Assume that (HB1), (HB2) and (HB3) hold. Then there exists a unique
solution to Fq.(31) in the sense of Definition 4.1.

Proof. Let Xy(t) = 0. We consider the following Picard iteration: for n € N, let (X,,, Z,)
solve the following equation(Lemma 4.6)

Xn(t):XT+/t A(S,Xn(s))ds—i-/t C(S,an(s),Zn(s))ds—/t Zn(s)dW (s).

First of all, by Ito’s formula, (H2)(with A\p = 0), (HB3) and Young’s inequality, we have
T
EIX @+ [ EIZu(o) s
t
T
= E|X7|E+ 2/ E[X,(s), A(s, X,(s))]xds
t

42 /t (X, (5), C(5, Xn_1(), Zn(s))))dls
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N

T
E|Xr|2 +2 / E (Al X ()2 + €(s)) ds

+2 / " (16660 + eallXma (5 + 1205 s ) d

N

T T
EIXrlfs + o [ E(€(5) +C6))ds o [ EIXa(o)lBds
0 t

1 T
43 [ B+ 12406) o ) .
t

So

T
E|| X, (0% + / B Z(5)[2, 05
t

T
< ata [ EIXGIE+EXA G s (48)
t
where ¢g is independent of n.
Set
— 2
gn(t) = max B|l.X(#)]l5
Then

T
gn(t) < Co + CO/ gn(s)d3>
t

which gives that by Gronwall’s inequality

max sup E||X.()|[F < max sup g,(t) < +oo. (49)
keN yeio,17] neN tefo0,71]

Set Yom(t) = X,(t) — Xyn(t) and Gm(t) = Z.(s) — Z,(s). By Ito’s formula,
(H2)(with A\g = 0) and (HB2), we have
T
BN O+ [ EIGon(s)wands

t

T

_ / B[V, (5), A(s, Xa(5)) — A(s, Xon(s))]cds
t

+2/t E(Y,m(s), C(s, Xpn_1(5), Zn(s)) — C(s, Xin-1(5), Zm(s)))gds

o

T 1
< @ [ B (W11 G + 166 ) .
t

Using the same method as in estimating (48), we have

T
E|[ Yo (1) 12 + / B[ G ()2, 120,
t

T T
< ¢ / E[| V() |[dls + co / Ep([[ Y11 (5) [2)ds.
t t
Set
g(t) :== limsupEHYn,m(t)H%H.

n,Mm— 00
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By (49), Fatou’s lemma and Jensen’s inequality, we have

ol6) < co [ (9l) + pla(s)))ds.
So, by Lemma 2.2
g(t) =0, tel0,71).
Hence

T
imsup [ (BYn (5) [+ IG5 020) ds =0
0

n,Mm—00

and there exist an X € K, and a Z € K3 such that
lim || X, — X||x, =0 and lim ||Z, — Z||x, = 0.

Using the same method as in the proof of Lemma 4.6, we can show that (X, Z) solves
Eq.(31). The proof is thus complete. O

Remark 4.8. In finite dimensional case, under rather weak assumptions on C, the au-
thors [1] proved the existence and uniqueness of Eq.(31). It is interesting that the growth
of C in x therein can be arbitrary (not necessary polynomial growth). We remark that
in our equation, the operator A may contain a polynomial growth part in x. However,
it seems difficult to extend A or C' to be arbitrary growth in x when we use the cutoff
technique as in [1], because A is a non-linear operator and we need to take weak limits in
LP-spaces. On the other hand, if C is polynomial growth in H with respect to x, it will
exclude the interesting case that C' is a Nemytskii operator. For example, let o(r) = —|r|r,
it is not true that L*(0,1) > z +— p(x) € L*(0,1), but, L*(0,1) 3 x — p(x) € L*(0,1).

5. STOCHASTIC FUNCTIONAL INTEGRAL EVOLUTION EQUATIONS

Fix S > 0. For any T > 0, let F%(H) denote the space of all continuous functions from
[