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1 Introduction

Let O be a non empty bounded open subset of R3 with smooth boundary
∂O, of class C2 for instance. We are concerned with the following porous
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media equation in O perturbed by noise

dX(t) = ∆(β(X(t))dt +
∞∑

k=1

σk(X(t))dγk(t), t ≥ 0,

β(X(t)) = 0, on ∂O, t ≥ 0,

X(0) = x,

(1.1)

under the following assumptions,

Hypothesis 1.1

(i) β(r) = αrm + λr where m is an odd integer strictly greater than 1 and
α > 0, λ ≥ 0.

(ii) σk(x) = µk xek, k ∈ N, where {µk} is a sequence of positive numbers
and {ek} is the complete orthonormal system in L2(O) consisting of
eigenfunctions of the Dirichlet Laplacian problem in O.

(iii) {γk} is a sequence of (mutually) independent standard Brownian mo-
tions on a filtered probability space (Ω, F , {Ft}t≥0, P).

An additional assumption on the sequence {µk} will be made later.
When the {σk} are independent of x we say that the noise is additive (see

the paper [6]). It is well known that in this case the positivity of the solution
to (1.1) for x ≥ 0 does not hold. Since we are here interested in finding
positive solutions of (1.1), we will consider the multiplicative noise (ii).

We note that the assumption on β covers many important models of
dynamics of ideal gases in porous media and extends to functions β with
polynomial growth which are coercive, i.e.,

β(r)r ≥ α1r
m+1 + α2r

2, |β(r)| ≤ α3(r
m + 1),

with αi ≥ 0, i = 1, 2, 3 (see [4]).
Other important cases, with more general β have been studied, in [10]

and [5].

In this paper we shall give a review of the main results in [4], trying to
explain the main ideas which are involved and avoiding technicalities as much
as possible. In addition we shall discuss invariant measures for equation (1.1).
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2 Notations and setting of the problem

2.1 Some functional spaces

We shall use the following notations.

• L2(O) is the Hilbert space consisting of all (equivalence classes) of
mappings x : O → R which are measurable and square integrable,
endowed with the scalar product

〈x, y〉 =

∫
O

x(ξ)y(ξ)dξ, x, y ∈ L2(O).

We identify L2(O) with its topological dual.

For p > 2 the space Lp(O) is similarly defined. We note the norm in
Lp(O) by | · |p.

• H1(O) (resp. H2(O)) is the space of all mappings x ∈ L2(O) whose
first (resp. first and second) derivatives in the sense of distributions
belong to L2(O). We set moreover

H1
0 (O) = {x ∈ H1(O) : x = 0 on ∂O}.

• ∆ is the realization of the Laplace operator with Dirichlet boundary
conditions in L2(O),

∆x =
3∑

k=1

∂2
kx, ∀ x ∈ D(∆),

D(∆) = H2(O) ∩H1
0 (O).

It is well known that −∆ is self-adjoint, positive and anti-compact op-
erator. So, there exists a complete orthonormal system {ek} in L2(O)
of eigenfunctions of −∆ 1. We denote by {λk} the corresponding se-
quence of eigenvalues,

∆ek = −λkek, k ∈ N.

By the Sobolev embedding theorem 2 it follows that

ek ∈ C(O), ∀ k ∈ N;

1the system which is considered in Hypothesis 1.1.
2Since O ⊂ R3 we have H2(O) ⊂ C(O) and H1(O) ⊂ L6(O).
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however the sequence {ek} is not equibounded in C(O) in general. The
following elementary estimate is useful

|ek|∞ ≤ c0|ek|H2 ≤ c1|∆ek|2 = c1λk, k ∈ N, (2.1)

where c0 and c1 are suitable positive constants.

• H−1(O) is the topological dual of H1
0 (O). It is well known that the

Laplace operator ∆ can be extended to an isomorphism of H1
0 (O) onto

H−1(O) (which we shall still denote by ∆).

We denote again by 〈·, ·〉 the duality between H1
0 (O) and H−1(O).

H−1(O) is endowed with the inner product

〈x, y〉−1 = −〈∆−1x, y〉, x, y ∈ H−1(O).

For further use we note that there exists a constant c2 > 0 such that

|xek|−1 ≤ c2λk|x|−1, ∀ k ∈ N. (2.2)

We have in fact

|xek|2−1 = sup{|〈xek, φ〉|2 : φ ∈ H1
0 (O), ‖φ‖H1

0 (O) ≤ 1}.

Moreover,

|〈xek, φ〉|2 ≤ |x|2−1 |ekφ|2H1
0
≤ 2|x|2−1 (|φ∇ek|22 + |ek∇φ|22)

≤ 2|x|2−1 (|∇ek|24 |φ|24 + |ek|2∞ |φ|2
H1

0
)

≤ C|x|2−1 |φ|2H1
0
(|ek|2H2 + |ek|2∞),

which implies (2.2).

Notice also that

E

∣∣∣∣∣
∞∑

k=1

µk

∫ t

0

X(s)ekdγk(s)

∣∣∣∣∣
2

−1

=
∞∑

k=1

µ2
kE

∫ t

0

|X(s)ek|2−1ds

≤ c2
2

∞∑
k=1

µ2
kλ

2
k E

∫ t

0

|X(s)|2−1ds.

In order that this quantity is finite (as we shall need later in several compu-
tations) we shall also assume that
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Hypothesis 2.1 We have

∞∑
k=1

µ2
kλ

2
k := κ1 < +∞. (2.3)

2.2 Abstract formulation of the problem

Let us we write equation (1.1) in an abstract form. For this purpose we
introduce the following nonlinear operator in H−1(O).

A(x) = −∆(β(x)), x ∈ D(A),

D(A) = {x ∈ H−1(O) ∩ L1(O) : β(x) ∈ H1
0 (O)}.

(2.4)

It happens that the operator A is maximal monotone (see e.g. [2]) and this is
the reason for studying equation (1.1) in the space H−1(O) which will denote
by H in the following.

Let us write equation (1.1) in the following form.
dX(t) + A(X(t))dt =

∞∑
k=1

µkX(t)ekdγk(t), t ≥ 0,

X(0) = x.

(2.5)

We note that, in view of Hypothesis 2.1, the series above is convergent pro-
vided X(t) ∈ H−1(O).

We are now going to define a concept of solution for (2.5). Since we have
no hope to find a solution X(t) belonging to D(A), we shall give a weak
concept of solution. For this we need some functional spaces.

For any T > 0 we shall denote by L2
W (0, T ; L2(Ω, H)) the set of all adapted

processes X(t) such that

E
∫ T

0

∫
O

|X(t, ξ)|2dtdξ < +∞. (2.6)

Moreover, by CW ([0, T ]; L2(Ω, H)) we denote the subspace of L2
W (0, T ; L2(Ω, H))

of all mean square continuous processes.

Definition 2.2 A solution of (2.5) is an H-valued continuous adapted pro-
cess X such that

X ∈ CW ([0, T ]; L2(Ω, H)) ∩ Lm+1(Ω× (0, T )× O)
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and for any j ∈ N

(X(t), ej)2 = (x, ej)2 − λj

∫ t

0

∫
O

β(X(s))ejdξds

+
∞∑

k=1

µk

∫ t

0

(X(s)ek, ej)2dγj(s).

(2.7)

Since
(X(t), ej)2 = λj〈X(t), ej〉−1, j ∈ N,

we may equivalently write (2.7) as follows

〈X(t), ej〉−1 +

∫ t

0

∫
O

β(X(s))ejdξds = 〈x, ej〉−1

+
∞∑

k=1

µk

∫ t

0

〈X(s)ek, ej〉−1dγj(s).

(2.8)

3 Existence and uniqueness

We shall first consider the equation
dX∗(t) + A(X∗(t))dt =

∞∑
k=1

µkZ(t)ekdγk(t), t ≥ 0,

X∗(0) = x,

(3.1)

where Z ∈ CW ([0, T ]; L2(Ω, H)) has been fixed. Then we shall solve (2.5)
showing that the mapping

CW ([0, T ]; L2(Ω, H)) → CW ([0, T ]; L2(Ω, H)), Z → X∗

has a fixed point.
Also equation (3.1) will be solved in a weak sense, precised by the follow-

ing definition.

Definition 3.1 A solution of (3.1) is an H-valued continuous adapted pro-
cess X∗ such that

X∗ ∈ CW ([0, T ]; L2(Ω, H)) ∩ Lm+1(Ω× (0, T )× O)
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and for any j ∈ N

〈X∗(t), ej〉−1 +

∫ t

0

∫
O

β(X∗(s))ejdξds = 〈x, ej〉−1

+
∞∑

k=1

µk

∫ t

0

〈Z(s)ek, ej〉−1dγj(s).

(3.2)

3.1 The solution of (3.1)

Let us introduce the approximating equation,
dXε(t) + Aε(Xε(t))dt =

∞∑
k=1

µkZ(t)ekdγk(t), t ≥ 0,

Xε(0) = x,

(3.3)

where Aε are the Yosida approximations of the maximal monotone operator
A,

Aε(x) =
1

ε
(x− Jε(x)) = A(Jε(x)), ε > 0, x ∈ H,

and Jε(x) = (1 + εA)−1(x).
As is well known (see e.g. [2]), Aε is maximal monotone and Lipschitzian

on H. Notice also that

〈Aε(x), x〉−1 = 〈AJε(x), Jε(x)〉−1 + 〈AJε(x), x− Jε(x)〉−1

= 〈AJε(x), Jε(x)〉−1 + ε|Aε(x)|2,

so that

〈Aεx, x〉−1 = 〈AJε(x), Jε(x)〉−1 +
1

ε
|x− Jε(x)|2−1 (3.4)

By standard existence theory for stochastic equations in Hilbert spaces,
equation (3.3) has a unique solution Xε := Γε(Z) ∈ CW ([0, T ]; L2(Ω; H)) (see
e.g. [7]).

Lemma 3.2 Assume that Hypotheses 1.1 and 2.1 are fulfilled. Then for any
x ∈ H−1(O) and any Z ∈ CW ([0, T ]; L2(Ω, H)) there exists a unique solution
X∗ := Γ(Z) of (3.1) such that

X∗ ∈ CW ([0, T ]; L2(Ω, H)) ∩ Lm+1(Ω× (0, T )× O).
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Moreover, there exists a constant C > 0 such that for any Z,Z1 ∈ CW ([0, T ]; L2(Ω, H))
we have

E|X∗(t)−X∗
1 (t)|2−1 ≤ CE

∫ t

0

|Z(s)− Z1(s)|2−1ds, ∀ t ∈ [0, T ], (3.5)

where X∗
1 = Γ(Z1).

Proof. By Itô’s formula we have

1

2
E|Xε(t)|2−1 + E

∫ t

0

〈AεXε(s), Xε(s)〉−1ds

=
1

2
E|x|2−1 +

∞∑
k=1

µ2
k E

∫ t

0

|Z(s)ek|2−1ds.

Now, setting Yε = Jε(Xε) and taking into account (3.4) and Hypothesis 2.1,
we obtain

1

2
E|Xε(t)|2−1 + E

∫ t

0

(β(Yε(s)), Yε(s)) ds +
1

ε
E

∫ t

0

|Xε(s)− Yε(s)|2−1ds

=
1

2
E|x|2−1 +

∞∑
k=1

µ2
k E

∫ t

0

|Z(s)ek|2−1ds

≤ 1

2
E|x|2−1 + κ1E

∫ t

0

|Z(s)|2−1ds.

(3.6)

From (3.6) it follows that
{Xε} is bounded in CW ([0, T ]; L2(Ω, H)),

{Yε} is bounded in Lm+1(Ω× (0, T )× O).

Therefore there exists a sequence εk ↓ 0, and a pair of processes (X∗, η∗) such
that

X∗ ∈ Lm+1(Ω× (0, T )× O).

and
η∗ ∈ L

m+1
m (Ω× (0, T )× O)
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such that 
lim
k→∞

Xεk
= X∗ weakly in Lm+1(Ω× (0, T )× O),

lim
k→∞

β(Yεk
(s)) = η∗ weakly in L1(Ω× (0, T )× O).

Passing to the limit in equation (3.3) we see that X∗ fulfills the identity

〈X∗(t), φ〉−1 = 〈x, φ〉−1 −
∫ t

0

∫
O

η(s)φdξds

+
∞∑

k=1

µkλk

∫ t

0

(Z(s)ek, ej)2dγj(s).

(3.7)

To conclude the proof of existence it suffices to show that

η = β(X∗) a.e. in Ω× (0, T )× O. (3.8)

Indeed, in such a case we may take in (3.7) φ = ∆ej for j ∈ N.
To show (3.8) consider the lower semicontinuous convex function ossn

Lm(Ω× (0, T )× O),

Φ(x) =
1

m + 1
E

∫ T

0

∫
O

|x(t, ξ)|m+1 dtdξ +
λ

2
E

∫ T

0

∫
O

|x(t, ξ)|2 dtdξ.

We claim that

Φ(X∗)−Φ(U) ≤ E
∫ T

0

∫
O

η(X∗−U)dtdξ, ∀ U ∈ Lm+1(Ω×(0, T )×O). (3.9)

It is clear that (3.9) yields (3.8). We tray to deduce (3.9) letting k → ∞ in
the inequality

Φ(Yεk
)−Φ(U) ≤ E

∫ T

0

∫
O

β(Yεk
)(Yεk

−U)dtdξ ∀ U ∈ Lm+1(Ω×(0, T )×O).

(3.10)

We obtain by the lower semicontinuity of Φ and the fact that {β(Yεk
)} weakly

converges to η, that

Φ(X∗)−Φ(U) ≤ lim inf
k→∞

E
∫ T

0

∫
O

β(Yεk
)Yεk

dtdξ−E
∫ T

0

∫
O

ηUdtdξ. (3.11)
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So, in order to prove (3.9) it remains to show that

lim inf
k→∞

E
∫ T

0

∫
O

β(Yεk
)Yεk

dtdξ ≤ E
∫ T

0

∫
O

ηX∗dtdξ. (3.12)

For this we go back to the Itô formula (3.6) from which we deduce that

1

2
E|Xε(t)|2−1 + E

∫ T

0

∫
O

β(Yεk
)Yεk

dtdξ

≤ 1

2
E|x|2−1 +

∞∑
k=1

µ2
k E

∫ t

0

|Z(s)ek|2−1ds.

(3.13)

Next we apply Itô formula to (3.6) and find that

1

2
E|Xε(t)|2−1 + E

∫ T

0

∫
O

η(s)X∗(s)dtdξ

≤ 1

2
E|x|2−1 +

∞∑
k=1

µ2
k E

∫ t

0

|Z(s)ek|2−1ds.

(3.14)

Comparing (3.13) and (3.14) yields (3.12). So, existence is proved.
Now (3.5) follows from Itô’s formula and therefore uniqueness follows

from (3.5) and the Gronwall lemma. �

3.2 Existence and uniquenesss for (2.8)

Theorem 3.3 Assume that Hypotheses 1.1 and 2.1 are fulfilled. Then for
any x ∈ H−1(O) there exists a unique solution X of (2.8) such that

X ∈ CW ([0, T ]; L2(Ω, H)) ∩ Lm+1(Ω× (0, T )× O).

Proof. By (3.5) it follows that

|Γ(Z)− Γ(Z1)|CW ([0,T ];L2(Ω,H)) ≤ CT |Z − Z1|CW ([0,T ];L2(Ω,H)),

for all Z,Z1 ∈ CW ([0, T ]; L2(Ω, H)). Thus the operator Γ is a contraction
in CW ([0, T1]; L

2(Ω, H)), where T1 = 1
2C

. Therefore there exists a unique
solution of (2.8) in the interval [0, T1]. In a similar way we can prove exis-
tence and uniqueness of a solution in the interval [T1, 2T1] and so on. The
conclusion follows now in a finite numbers of steps. �

In fact, one can prove that X has continuous sample paths in H (see [10])
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4 Regularity

By Theorem 3.3 it follows that there exists a unique solution

X ∈ CW ([0, T ]; L2(Ω, H)) ∩ Lm+1(Ω× (0, T )× O).

of (2.8) provided x ∈ H−1(O). Our aim is to show that if x ≥ 0 (in the sense
of distributions) then X(t) ≥ 0 for all t ∈ [0, T ].

Let us introduce the approximating equation,
dXε(t) + Aε(Xε(t))dt =

∞∑
k=1

µkXε(t)ekdγk(t), t ≥ 0,

Xε(0) = x,

(4.1)

We are going to find a unique solution Xε of equation (4.1) in CW ([0, T ]; L2(Ω×
O)) and prove that Xε → X in CW ([0, T ]; L2(Ω; H)) as ε → 0.

It is easier to discuss positivity in the space L2(O) instead of in H−1(O).
For this we shall prove some regularity results for the solution of equation
(4.1), namely that if x ∈ Lp(O) then Xε(t) ∈ Lp(O) for all t ∈ [0, T ] (with
estimates independent of ε. These regularity results are also needed in order
to prove that Xε → 0 in CW ([0, T ]; L2(Ω; H).

To solve equation (4.1) in Lp(O) we need some additional properties of
the operators Jε in Lp(O) which are gathered in Lemma 4.1 below. However,
the proof of this lemma requires that β(r) = rm +λr with λ > 0. So, we will
make this assumption in this section. Finally, in Section 5 we shall show how
to remove this condition and prove the positivity of the solution of (2.8) for
all x ∈ H−1(O).

Lemma 4.1 For any p ≥ m+1, ε > 0 and any x ∈ Lp(O) there is a unique
y = Jε(x) ∈ Lp(O) such that

y − ε∆β(y) = x. (4.2)

Moreover,

|Jε(x)|p ≤ |x|p, ∀p ≥ 2. (4.3)

Finally, Jε is Lipschitz continuous in L2(O).

Proof. For existence of y one uses the assumption λ > 0 which implies that
β−1 is Lipschitz continuous. Estimate (4.3) follows multiplying both sides
of equation (4.2) by |x|p−2x and then integrating on O. To prove the last
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statement one considers another element x1 ∈ Lp(O) and the corresponding
element y1 such that y1 − ε∆β(y1) = x1. Then one multiplies both sides of
the last identity by β(y)− β(y1) and integrates on O 3 (For details see [4]).
�

Proposition 4.2 Assume that Hypotheses 1.1 and 2.1 are fulfilled and that
λ > 0. Then equation (4.1) has a unique solution Xε ∈ CW ([0, T ]; L2(Ω×O)).
Moreover, if x ∈ Lp(O), p ≥ m + 1, there exists C > 0 such that

E|Xε(t)|pp ≤ C(|x|p). (4.4)

Finally
lim
ε→0

Xε = X, in CW ([0, T ]; Lp(Ω× O)),

where X is the solution to (2.5).

Proof. Let us prove (4.4). We start from the case p = 2. By the Itô formula
we have,

E|Xε(t)|22 + 2E
∫ t

0

(Aε(s), Xε(s))2ds

= |x|22 +
∞∑

k=1

µ2
kE

∫ t

0

|Xε(s)ek|22ds.

Since (Aε(s), Xε(s))2 ≥ 0 we have, recalling (2.1)

E|Xε(t)|22 ≤ |x|22 + c3

∫ t

0

E|Xε(s)|22ds,

where c3 is a suitable constant. So, (4.4) follows for p = 2.
Let now p be arbitrary. Applying (formally) the Itô formula to the func-

tion

Φ(x) =

∫
O

|x(ξ)|pdξ,

(4.4) follows. To make rigorous the argument we have to apply the Itô
formula to the function

Φρ(x) =

∫
O

|x(ξ)|p

1 + ρ|x(ξ)|p
dξ,

and let ρ → 0.
Finally, the last statement follows from the monotonicity of β and the Lp

estimate for Xε, see [4] for details. �

3A similar argument does not work on Lp(O) for p 6= 2. So, we are able to show
Lipschitzianity of Jε in L2(O) only.
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5 Positivity

Theorem 5.1 Assume that Hypotheses 1.1 and 2.1 are fulfilled. Let x ∈
Lp(O) be nonnegative a.e. on O where p ≥ m+1 is a natural number. Then
the solution X to (2.5) is such that X ∈ L∞W (0, T ; Lp(Ω; Lp(O))) and X ≥ 0
a.e. on Ω× (0,∞)× O.

Proof. First assume that λ > 0. Then in view of Proposition 4.2 to prove
positivity of the solution X of (2.5) it is enough to prove positivity of the
solution Xε of (4.1). Let us consider the modified equation

dZε(t) + Aε(Z
+
ε (t))dt =

∞∑
k=1

µkZ
+
ε (t)ekdγk(t), t ≥ 0,

Zε(0) = x,

(5.1)

where Z+
ε (t) = max{Z+

ε (t), 0} which can be solved as equation (4.1). If we
show that Zε(t) ≥ 0 it follows clearly that

Xε(t) = Zε(t) ≥ 0.

To show positivity of Z+
ε we use Itô’s formula for the function (Z−ε )4. For-

mally we obtain
E(Z−ε )4 ≤ 0

(for details see [4]). This implies that Z+
ε (t) ≥ 0.

Finally, denote by Xλ the solution of (2.5) for a fixed λ > 0. Then it is
easy, using the monotonicity of β, to show that there exists the limit X of
Xλ as λ → 0 and to show that X is the solution of (2.5). �

6 The invariant measure

We assume here that β(r) = rm.
Let X(t, x) be the solution of (2.5) for x ∈ H. Define the transition

semigroup
Ptϕ(x) = E[ϕ(X(t, x))], t ≥ 0, ϕ ∈ Bb(H),

where Bb(H) is the space of all real Borel functions on H. It is easy to check
that Pt is Feller, that is Ptϕ ∈ Cb(H) for all ϕ ∈ Cb(H), where Cb(H) is the
space of all real continuous and bounded functions on H.

For any t ≥ 0 and x ∈ H we denote by πt(x, ·) the law of X(t, x), so that
we have

Ptϕ(x) =

∫
H

ϕ(y)πt(x, dy), ϕ ∈ Bb(H). (6.1)

13



We recall that a Borel probability measure ν on H is said to be invariant
for the transition semigroup Pt if∫

H

Ptϕdν =

∫
H

ϕdν, ∀ ϕ ∈ Cb(H).

It is clear that δ0 is an invariant measure for Pt. For this it is convenient to
consider a more general problem

dX(t) + A(X(t))dt =
∞∑

k=1

µkX(t)ekdγk(t) + g, t ≥ 0,

X(0) = x.

(6.2)

where g ∈ L2(O) is a constant exterior force. We notice that all results
established for problem (2.5) extend trivially to problem (6.2).

Theorem 6.1 There exists an invariant measure for Pt.

Proof. Let x ∈ H and let X(t, x) be the solution of (2.5). From Itô’s formula
we have

1

2
E|X(t)|2−1 + E

∫ t

0

|X(s)|m+1
m+1ds

=
1

2
E|x|2−1 +

∞∑
k=1

µ2
kE

∫ t

0

|X(s)ek|2−1ds

≤ 1

2
E|x|2−1 + κ1E

∫ t

0

|X(s)|2−1ds.

(6.3)

It follows that

E
∫ t

0

|X(s)|m+1
m+1ds ≤ 1

2
E|x|2−1 + κ1E

∫ t

0

|X(s)|2−1ds. (6.4)

By the Sobolev embedding theorem we have

H1
0 (O) ⊂ L

m+1
m (O),

the inclusion being compact. Therefore, the dual inclusion,

Lm+1(O) ⊂ H−1(O),
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holds and it is compact.
Consequently, there exists a positive constant κ2 such that

|x|−1 ≤ κ2|x|m+1, (6.5)

and from (6.4) we obtain

E
∫ t

0

|X(s)|m+1
m+1ds ≤ 1

2
E|x|2−1 + κ1κ

2
2E

∫ t

0

|X(s)|2m+1ds. (6.6)

Now let κ3 be a positive constant such that

κ1κ
2
1r

2 ≤ 1

2
rm+1 + κ3, ∀r ∈ R.

Then by (6.6) we deduce that

1

t
E

∫ t

0

|X(s)|m+1
m+1ds ≤ E|x|2−1 + 2κ1κ

2
1, ∀ t ≥ 1. (6.7)

Set now

µt =
1

t

∫ t

0

πs(x, ·)ds, t > 0.

We claim that the family of probability measures {µt}t≥1 on H is tight.
Then the Krylov-Bogoliubov theorem will yields the existence of an invariant
measure for Pt. To prove the claim consider for any R > 0 the ball BR in
Lm+1(O) of center 0 and radius R, which is compact in H by the compactness
of the embedding of Lm+1(O) into H−1(O). Then, denoting by Bc

R the
complement of BR in H, we write

µt(B
c
R) =

1

t

∫ t

0

πs(x, Bc
R)ds =

1

t

∫ t

0

∫
Bc

R

πs(x, dy)ds

≤ 1

t

1

Rm+1

∫ t

0

∫
H

|y|m+1
m+1πs(x, dy)ds.

Recalling (6.1) we deduce that

µt(B
c
R) ≤ 1

t

1

Rm+1

∫ t

0

Ps(|x|m+1
m+1)ds =

1

t

1

Rm+1

∫ t

0

E(|X(s, x)|m+1
m+1)ds.

Finally, we deduce from (6.7) that

µt(B
c
R) ≤ 1

Rm+1
(E|x|2−1 + 2κ1κ

2
1).

Since R is arbitrary, this implies the claim. The proof is complete. �
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Remark 6.2 We do not know whether the invariant measure is unique or
not. In the case of additive noise this was proved in [6].

Remark 6.3 A different prove of existence of invariant measure, based on
dissipativity of the equation, was given in [9].
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