Some results on stochastic porous media equations

Viorel Barbu ^{*}, University Al. I. Cuza, Iasi, Romania , Giuseppe Da Prato [†], Scuola Normale Superiore di Pisa, Italy and Michael Röckner [‡]

Faculty of Mathematics, University of Bielefeld, Germany

September 1, 2007

Abstract. Some recent results about nonnegative solutions of stochastic porous media equations in bounded open subsets of \mathbb{R}^3 are considered. The existence of an invariant measure is proved.

AMS subject Classification 2000: 76805, 60H15.

Key words: Porous media equation, Stochastic PDEs, Invariant measures.

1 Introduction

Let \mathscr{O} be a non empty bounded open subset of \mathbb{R}^3 with smooth boundary $\partial \mathscr{O}$, of class C^2 for instance. We are concerned with the following *porous*

^{*}Supported by the CEEX Project 05 of Romanian Minister of Research.

 $^{^\}dagger Supported by the research program "Equazioni di Kolmogorov" from the Italian "Ministero della Ricerca Scientifica e Tecnologica"$

^{\ddagger}Supported by the DFG-Research Group 399, the SFB-701, the BIBOS-Research Center, the INTAS project 99-559, the RFBR project 04–01–00748, the Russian–Japanese Grant 05-01-02941-JF, the DFG Grant 436 RUS 113/343/0(R).

media equation in \mathscr{O} perturbed by noise

$$\begin{cases} dX(t) = \Delta(\beta(X(t))dt + \sum_{k=1}^{\infty} \sigma_k(X(t))d\gamma_k(t), \quad t \ge 0, \\ \beta(X(t)) = 0, \quad \text{on } \partial \mathcal{O}, \quad t \ge 0, \\ X(0) = x, \end{cases}$$
(1.1)

under the following assumptions,

Hypothesis 1.1

- (i) $\beta(r) = \alpha r^m + \lambda r$ where m is an odd integer strictly greater than 1 and $\alpha > 0, \lambda \ge 0.$
- (ii) $\sigma_k(x) = \mu_k x e_k, \ k \in \mathbb{N}$, where $\{\mu_k\}$ is a sequence of positive numbers and $\{e_k\}$ is the complete orthonormal system in $L^2(\mathcal{O})$ consisting of eigenfunctions of the Dirichlet Laplacian problem in \mathcal{O} .
- (iii) $\{\gamma_k\}$ is a sequence of (mutually) independent standard Brownian motions on a filtered probability space $(\Omega, \mathscr{F}, \{\mathscr{F}_t\}_{t>0}, \mathbb{P}).$

An additional assumption on the sequence $\{\mu_k\}$ will be made later.

When the $\{\sigma_k\}$ are independent of x we say that the noise is *additive* (see the paper [6]). It is well known that in this case the positivity of the solution to (1.1) for $x \ge 0$ does not hold. Since we are here interested in finding positive solutions of (1.1), we will consider the multiplicative noise (ii).

We note that the assumption on β covers many important models of dynamics of ideal gases in porous media and extends to functions β with polynomial growth which are coercive, i.e.,

$$\beta(r)r \ge \alpha_1 r^{m+1} + \alpha_2 r^2, \quad |\beta(r)| \le \alpha_3 (r^m + 1),$$

with $\alpha_i \ge 0, i = 1, 2, 3$ (see [4]).

Other important cases, with more general β have been studied, in [10] and [5].

In this paper we shall give a review of the main results in [4], trying to explain the main ideas which are involved and avoiding technicalities as much as possible. In addition we shall discuss invariant measures for equation (1.1).

2 Notations and setting of the problem

2.1 Some functional spaces

We shall use the following notations.

• $L^2(\mathcal{O})$ is the Hilbert space consisting of all (equivalence classes) of mappings $x : \mathcal{O} \to \mathbb{R}$ which are measurable and square integrable, endowed with the scalar product

$$\langle x, y \rangle = \int_{\mathscr{O}} x(\xi) y(\xi) d\xi, \quad x, y \in L^2(\mathscr{O}).$$

We identify $L^2(\mathscr{O})$ with its topological dual.

For p > 2 the space $L^p(\mathcal{O})$ is similarly defined. We note the norm in $L^p(\mathcal{O})$ by $|\cdot|_p$.

• $H^1(\mathscr{O})$ (resp. $H^2(\mathscr{O})$) is the space of all mappings $x \in L^2(\mathscr{O})$ whose first (resp. first and second) derivatives in the sense of distributions belong to $L^2(\mathscr{O})$. We set moreover

$$H_0^1(\mathscr{O}) = \{ x \in H^1(\mathscr{O}) : x = 0 \text{ on } \partial \mathscr{O} \}.$$

• Δ is the realization of the Laplace operator with Dirichlet boundary conditions in $L^2(\mathcal{O})$,

$$\left\{ \begin{array}{ll} \Delta x = \sum_{k=1}^{3} \partial_k^2 x, \quad \forall \; x \in D(\Delta), \\ \\ D(\Delta) = H^2(\mathscr{O}) \cap H^1_0(\mathscr{O}). \end{array} \right.$$

It is well known that $-\Delta$ is self-adjoint, positive and anti-compact operator. So, there exists a complete orthonormal system $\{e_k\}$ in $L^2(\mathcal{O})$ of eigenfunctions of $-\Delta^{-1}$. We denote by $\{\lambda_k\}$ the corresponding sequence of eigenvalues,

$$\Delta e_k = -\lambda_k e_k, \quad k \in \mathbb{N}.$$

By the Sobolev embedding theorem 2 it follows that

$$e_k \in C(\overline{\mathscr{O}}), \quad \forall \ k \in \mathbb{N};$$

¹the system which is considered in Hypothesis 1.1.

²Since $\mathscr{O} \subset \mathbb{R}^3$ we have $H^2(\mathscr{O}) \subset C(\overline{\mathscr{O}})$ and $H^1(\mathscr{O}) \subset L^6(\mathscr{O})$.

however the sequence $\{e_k\}$ is not equibounded in $C(\overline{\mathcal{O}})$ in general. The following elementary estimate is useful

$$|e_k|_{\infty} \le c_0 |e_k|_{H^2} \le c_1 |\Delta e_k|_2 = c_1 \lambda_k, \quad k \in \mathbb{N},$$

$$(2.1)$$

where c_0 and c_1 are suitable positive constants.

• $H^{-1}(\mathscr{O})$ is the topological dual of $H_0^1(\mathscr{O})$. It is well known that the Laplace operator Δ can be extended to an isomorphism of $H_0^1(\mathscr{O})$ onto $H^{-1}(\mathscr{O})$ (which we shall still denote by Δ).

We denote again by $\langle \cdot, \cdot \rangle$ the duality between $H_0^1(\mathscr{O})$ and $H^{-1}(\mathscr{O})$. $H^{-1}(\mathscr{O})$ is endowed with the inner product

$$\langle x,y\rangle_{-1}=-\langle \Delta^{-1}x,y\rangle, \quad x,y\in H^{-1}(\mathscr{O}).$$

For further use we note that there exists a constant $c_2 > 0$ such that

$$|xe_k|_{-1} \le c_2 \lambda_k |x|_{-1}, \quad \forall k \in \mathbb{N}.$$

$$(2.2)$$

We have in fact

$$|xe_k|_{-1}^2 = \sup\{|\langle xe_k, \phi \rangle|^2 : \phi \in H_0^1(\mathscr{O}), \ \|\phi\|_{H_0^1(\mathscr{O})} \le 1\}.$$

Moreover,

$$\begin{aligned} |\langle xe_k, \phi \rangle|^2 &\leq |x|_{-1}^2 |e_k \phi|_{H_0^1}^2 \leq 2|x|_{-1}^2 \left(|\phi \nabla e_k|_2^2 + |e_k \nabla \phi|_2^2 \right) \\ &\leq 2|x|_{-1}^2 \left(|\nabla e_k|_4^2 |\phi|_4^2 + |e_k|_\infty^2 |\phi|_{H_0^1}^2 \right) \\ &\leq C|x|_{-1}^2 |\phi|_{H_0^1}^2 \left(|e_k|_{H^2}^2 + |e_k|_\infty^2 \right), \end{aligned}$$

which implies (2.2).

Notice also that

$$\mathbb{E} \left| \sum_{k=1}^{\infty} \mu_k \int_0^t X(s) e_k d\gamma_k(s) \right|_{-1}^2 = \sum_{k=1}^{\infty} \mu_k^2 \mathbb{E} \int_0^t |X(s) e_k|_{-1}^2 ds$$
$$\leq c_2^2 \sum_{k=1}^{\infty} \mu_k^2 \lambda_k^2 \mathbb{E} \int_0^t |X(s)|_{-1}^2 ds.$$

In order that this quantity is finite (as we shall need later in several computations) we shall also assume that Hypothesis 2.1 We have

$$\sum_{k=1}^{\infty} \mu_k^2 \lambda_k^2 := \kappa_1 < +\infty.$$
(2.3)

2.2 Abstract formulation of the problem

Let us we write equation (1.1) in an abstract form. For this purpose we introduce the following nonlinear operator in $H^{-1}(\mathcal{O})$.

$$\begin{cases} A(x) = -\Delta(\beta(x)), & x \in D(A), \\ D(A) = \{ x \in H^{-1}(\mathscr{O}) \cap L^{1}(\mathscr{O}) : \beta(x) \in H^{1}_{0}(\mathscr{O}) \}. \end{cases}$$

$$(2.4)$$

It happens that the operator A is maximal monotone (see e.g. [2]) and this is the reason for studying equation (1.1) in the space $H^{-1}(\mathcal{O})$ which will denote by H in the following.

Let us write equation (1.1) in the following form.

$$\begin{cases} dX(t) + A(X(t))dt = \sum_{k=1}^{\infty} \mu_k X(t) e_k d\gamma_k(t), & t \ge 0, \\ X(0) = x. \end{cases}$$
(2.5)

We note that, in view of Hypothesis 2.1, the series above is convergent provided $X(t) \in H^{-1}(\mathcal{O})$.

We are now going to define a concept of solution for (2.5). Since we have no hope to find a solution X(t) belonging to D(A), we shall give a weak concept of solution. For this we need some functional spaces.

For any T > 0 we shall denote by $L^2_W(0, T; L^2(\Omega, H))$ the set of all adapted processes X(t) such that

$$\mathbb{E} \int_0^T \int_{\mathscr{O}} |X(t,\xi)|^2 dt d\xi < +\infty.$$
(2.6)

Moreover, by $C_W([0,T]; L^2(\Omega, H))$ we denote the subspace of $L^2_W(0,T; L^2(\Omega, H))$ of all mean square continuous processes.

Definition 2.2 A solution of (2.5) is an *H*-valued continuous adapted process X such that

$$X \in C_W([0,T]; L^2(\Omega, H)) \cap L^{m+1}(\Omega \times (0,T) \times \mathscr{O})$$

and for any $j \in \mathbb{N}$

$$(X(t), e_j)_2 = (x, e_j)_2 - \lambda_j \int_0^t \int_{\mathscr{O}} \beta(X(s)) e_j d\xi ds$$

+
$$\sum_{k=1}^\infty \mu_k \int_0^t (X(s) e_k, e_j)_2 d\gamma_j(s).$$
 (2.7)

Since

$$(X(t), e_j)_2 = \lambda_j \langle X(t), e_j \rangle_{-1}, \quad j \in \mathbb{N},$$

we may equivalently write (2.7) as follows

$$\langle X(t), e_j \rangle_{-1} + \int_0^t \int_{\mathscr{O}} \beta(X(s)) e_j d\xi ds = \langle x, e_j \rangle_{-1}$$

$$+ \sum_{k=1}^\infty \mu_k \int_0^t \langle X(s) e_k, e_j \rangle_{-1} d\gamma_j(s).$$

$$(2.8)$$

3 Existence and uniqueness

We shall first consider the equation

$$\begin{cases} dX^{*}(t) + A(X^{*}(t))dt = \sum_{k=1}^{\infty} \mu_{k} Z(t) e_{k} d\gamma_{k}(t), \quad t \ge 0, \\ X^{*}(0) = x, \end{cases}$$
(3.1)

where $Z \in C_W([0,T]; L^2(\Omega, H))$ has been fixed. Then we shall solve (2.5) showing that the mapping

$$C_W([0,T]; L^2(\Omega, H)) \to C_W([0,T]; L^2(\Omega, H)), \ Z \to X^*$$

has a fixed point.

Also equation (3.1) will be solved in a weak sense, precised by the following definition.

Definition 3.1 A solution of (3.1) is an *H*-valued continuous adapted process X^* such that

$$X^* \in C_W([0,T]; L^2(\Omega, H)) \cap L^{m+1}(\Omega \times (0,T) \times \mathscr{O})$$

and for any $j \in \mathbb{N}$

$$\langle X^*(t), e_j \rangle_{-1} + \int_0^t \int_{\mathscr{O}} \beta(X^*(s)) e_j d\xi ds = \langle x, e_j \rangle_{-1}$$

$$+ \sum_{k=1}^\infty \mu_k \int_0^t \langle Z(s) e_k, e_j \rangle_{-1} d\gamma_j(s).$$

$$(3.2)$$

3.1 The solution of (3.1)

Let us introduce the approximating equation,

$$\begin{cases} dX_{\varepsilon}(t) + A_{\varepsilon}(X_{\varepsilon}(t))dt = \sum_{k=1}^{\infty} \mu_k Z(t)e_k d\gamma_k(t), \quad t \ge 0, \\ X_{\varepsilon}(0) = x, \end{cases}$$
(3.3)

where A_{ε} are the Yosida approximations of the maximal monotone operator A,

$$A_{\varepsilon}(x) = \frac{1}{\varepsilon} (x - J_{\varepsilon}(x)) = A(J_{\varepsilon}(x)), \quad \varepsilon > 0, \ x \in H,$$

and $J_{\varepsilon}(x) = (1 + \varepsilon A)^{-1}(x)$.

As is well known (see e.g. [2]), A_{ε} is maximal monotone and Lipschitzian on H. Notice also that

$$\langle A_{\varepsilon}(x), x \rangle_{-1} = \langle AJ_{\varepsilon}(x), J_{\varepsilon}(x) \rangle_{-1} + \langle AJ_{\varepsilon}(x), x - J_{\varepsilon}(x) \rangle_{-1}$$
$$= \langle AJ_{\varepsilon}(x), J_{\varepsilon}(x) \rangle_{-1} + \varepsilon |A_{\varepsilon}(x)|^{2},$$

so that

$$\langle A_{\varepsilon}x, x \rangle_{-1} = \langle AJ_{\varepsilon}(x), J_{\varepsilon}(x) \rangle_{-1} + \frac{1}{\varepsilon} |x - J_{\varepsilon}(x)|_{-1}^{2}$$
 (3.4)

By standard existence theory for stochastic equations in Hilbert spaces, equation (3.3) has a unique solution $X_{\varepsilon} := \Gamma_{\varepsilon}(Z) \in C_W([0,T]; L^2(\Omega; H))$ (see e.g. [7]).

Lemma 3.2 Assume that Hypotheses 1.1 and 2.1 are fulfilled. Then for any $x \in H^{-1}(\mathcal{O})$ and any $Z \in C_W([0,T]; L^2(\Omega, H))$ there exists a unique solution $X^* := \Gamma(Z)$ of (3.1) such that

$$X^* \in C_W([0,T]; L^2(\Omega, H)) \cap L^{m+1}(\Omega \times (0,T) \times \mathscr{O}).$$

Moreover, there exists a constant C > 0 such that for any $Z, Z_1 \in C_W([0,T]; L^2(\Omega, H))$ we have

$$\mathbb{E}|X^*(t) - X_1^*(t)|_{-1}^2 \le CE \int_0^t |Z(s) - Z_1(s)|_{-1}^2 ds, \quad \forall t \in [0, T], \quad (3.5)$$

where $X_1^* = \Gamma(Z_1)$.

Proof. By Itô's formula we have

$$\frac{1}{2} \mathbb{E}|X_{\varepsilon}(t)|_{-1}^{2} + \mathbb{E} \int_{0}^{t} \langle A_{\varepsilon}X_{\varepsilon}(s), X_{\varepsilon}(s) \rangle_{-1} ds$$
$$= \frac{1}{2} \mathbb{E}|x|_{-1}^{2} + \sum_{k=1}^{\infty} \mu_{k}^{2} \mathbb{E} \int_{0}^{t} |Z(s)e_{k}|_{-1}^{2} ds.$$

Now, setting $Y_{\varepsilon} = J_{\varepsilon}(X_{\varepsilon})$ and taking into account (3.4) and Hypothesis 2.1, we obtain

$$\frac{1}{2} \mathbb{E}|X_{\varepsilon}(t)|_{-1}^{2} + \mathbb{E} \int_{0}^{t} (\beta(Y_{\varepsilon}(s)), Y_{\varepsilon}(s)) \, ds + \frac{1}{\varepsilon} \mathbb{E} \int_{0}^{t} |X_{\varepsilon}(s) - Y_{\varepsilon}(s)|_{-1}^{2} ds$$

$$= \frac{1}{2} \mathbb{E}|x|_{-1}^{2} + \sum_{k=1}^{\infty} \mu_{k}^{2} \mathbb{E} \int_{0}^{t} |Z(s)e_{k}|_{-1}^{2} ds$$

$$\leq \frac{1}{2} \mathbb{E}|x|_{-1}^{2} + \kappa_{1} \mathbb{E} \int_{0}^{t} |Z(s)|_{-1}^{2} ds.$$
(3.6)

From (3.6) it follows that

$$\begin{cases} \{X_{\varepsilon}\} & \text{is bounded in } C_W([0,T]; L^2(\Omega,H)), \\ \\ \{Y_{\varepsilon}\} & \text{is bounded in } L^{m+1}(\Omega \times (0,T) \times \mathscr{O}). \end{cases}$$

Therefore there exists a sequence $\varepsilon_k \downarrow 0$, and a pair of processes (X^*, η^*) such that

 $X^* \in L^{m+1}(\Omega \times (0,T) \times \mathscr{O}).$

and

$$\eta^* \in L^{\frac{m+1}{m}}(\Omega \times (0,T) \times \mathscr{O})$$

such that

$$\begin{cases} \lim_{k \to \infty} X_{\varepsilon_k} = X^* \quad \text{weakly in } L^{m+1}(\Omega \times (0, T) \times \mathscr{O}), \\\\ \lim_{k \to \infty} \beta(Y_{\varepsilon_k}(s)) = \eta^* \quad \text{weakly in } L^1(\Omega \times (0, T) \times \mathscr{O}). \end{cases}$$

Passing to the limit in equation (3.3) we see that X^* fulfills the identity

$$\langle X^*(t), \phi \rangle_{-1} = \langle x, \phi \rangle_{-1} - \int_0^t \int_{\mathscr{O}} \eta(s) \phi d\xi ds + \sum_{k=1}^\infty \mu_k \lambda_k \int_0^t (Z(s)e_k, e_j)_2 d\gamma_j(s).$$

$$(3.7)$$

To conclude the proof of existence it suffices to show that

$$\eta = \beta(X^*)$$
 a.e. in $\Omega \times (0, T) \times \mathscr{O}$. (3.8)

Indeed, in such a case we may take in (3.7) $\phi = \Delta e_j$ for $j \in \mathbb{N}$.

To show (3.8) consider the lower semicontinuous convex function ossn $L^m(\Omega \times (0,T) \times \mathcal{O}),$

$$\Phi(x) = \frac{1}{m+1} \mathbb{E} \int_0^T \int_{\mathscr{O}} |x(t,\xi)|^{m+1} dt d\xi + \frac{\lambda}{2} \mathbb{E} \int_0^T \int_{\mathscr{O}} |x(t,\xi)|^2 dt d\xi.$$

We claim that

$$\Phi(X^*) - \Phi(U) \le \mathbb{E} \int_0^T \int_{\mathscr{O}} \eta(X^* - U) dt d\xi, \quad \forall \ U \in L^{m+1}(\Omega \times (0, T) \times \mathscr{O}).$$
(3.9)

It is clear that (3.9) yields (3.8). We tray to deduce (3.9) letting $k \to \infty$ in the inequality

$$\Phi(Y_{\varepsilon_k}) - \Phi(U) \le \mathbb{E} \int_0^T \int_{\mathscr{O}} \beta(Y_{\varepsilon_k}) (Y_{\varepsilon_k} - U) dt d\xi \quad \forall \ U \in L^{m+1}(\Omega \times (0, T) \times \mathscr{O}).$$
(3.10)

We obtain by the lower semicontinuity of Φ and the fact that $\{\beta(Y_{\varepsilon_k})\}$ weakly converges to η , that

$$\Phi(X^*) - \Phi(U) \le \liminf_{k \to \infty} \mathbb{E} \int_0^T \int_{\mathscr{O}} \beta(Y_{\varepsilon_k}) Y_{\varepsilon_k} dt d\xi - \mathbb{E} \int_0^T \int_{\mathscr{O}} \eta U dt d\xi.$$
(3.11)

So, in order to prove (3.9) it remains to show that

$$\liminf_{k \to \infty} \mathbb{E} \int_0^T \int_{\mathscr{O}} \beta(Y_{\varepsilon_k}) Y_{\varepsilon_k} dt d\xi \le \mathbb{E} \int_0^T \int_{\mathscr{O}} \eta X^* dt d\xi.$$
(3.12)

For this we go back to the Itô formula (3.6) from which we deduce that

$$\frac{1}{2} \mathbb{E}|X_{\varepsilon}(t)|_{-1}^{2} + \mathbb{E}\int_{0}^{T} \int_{\mathscr{O}} \beta(Y_{\varepsilon_{k}})Y_{\varepsilon_{k}} dt d\xi$$

$$\leq \frac{1}{2} \mathbb{E}|x|_{-1}^{2} + \sum_{k=1}^{\infty} \mu_{k}^{2} \mathbb{E}\int_{0}^{t} |Z(s)e_{k}|_{-1}^{2} ds.$$
(3.13)

Next we apply Itô formula to (3.6) and find that

$$\frac{1}{2} \mathbb{E}|X_{\varepsilon}(t)|_{-1}^{2} + \mathbb{E} \int_{0}^{T} \int_{\mathscr{O}} \eta(s) X^{*}(s) dt d\xi
\leq \frac{1}{2} \mathbb{E}|x|_{-1}^{2} + \sum_{k=1}^{\infty} \mu_{k}^{2} \mathbb{E} \int_{0}^{t} |Z(s)e_{k}|_{-1}^{2} ds.$$
(3.14)

Comparing (3.13) and (3.14) yields (3.12). So, existence is proved.

Now (3.5) follows from Itô's formula and therefore uniqueness follows from (3.5) and the Gronwall lemma. \Box

3.2 Existence and uniquenesss for (2.8)

Theorem 3.3 Assume that Hypotheses 1.1 and 2.1 are fulfilled. Then for any $x \in H^{-1}(\mathcal{O})$ there exists a unique solution X of (2.8) such that

$$X \in C_W([0,T]; L^2(\Omega, H)) \cap L^{m+1}(\Omega \times (0,T) \times \mathscr{O}).$$

Proof. By (3.5) it follows that

$$|\Gamma(Z) - \Gamma(Z_1)|_{C_W([0,T];L^2(\Omega,H))} \le CT|Z - Z_1|_{C_W([0,T];L^2(\Omega,H))},$$

for all $Z, Z_1 \in C_W([0,T]; L^2(\Omega, H))$. Thus the operator Γ is a contraction in $C_W([0,T_1]; L^2(\Omega, H))$, where $T_1 = \frac{1}{2C}$. Therefore there exists a unique solution of (2.8) in the interval $[0,T_1]$. In a similar way we can prove existence and uniqueness of a solution in the interval $[T_1, 2T_1]$ and so on. The conclusion follows now in a finite numbers of steps. \Box

In fact, one can prove that X has continuous sample paths in H (see [10])

4 Regularity

By Theorem 3.3 it follows that there exists a unique solution

$$X \in C_W([0,T]; L^2(\Omega, H)) \cap L^{m+1}(\Omega \times (0,T) \times \mathscr{O}).$$

of (2.8) provided $x \in H^{-1}(\mathscr{O})$. Our aim is to show that if $x \ge 0$ (in the sense of distributions) then $X(t) \ge 0$ for all $t \in [0, T]$.

Let us introduce the approximating equation,

$$\begin{cases} dX_{\varepsilon}(t) + A_{\varepsilon}(X_{\varepsilon}(t))dt = \sum_{k=1}^{\infty} \mu_k X_{\varepsilon}(t)e_k d\gamma_k(t), \quad t \ge 0, \\ X_{\varepsilon}(0) = x, \end{cases}$$

$$(4.1)$$

We are going to find a unique solution X_{ε} of equation (4.1) in $C_W([0,T]; L^2(\Omega \times \mathscr{O}))$ and prove that $X_{\varepsilon} \to X$ in $C_W([0,T]; L^2(\Omega; H))$ as $\varepsilon \to 0$.

It is easier to discuss positivity in the space $L^2(\mathscr{O})$ instead of in $H^{-1}(\mathscr{O})$. For this we shall prove some regularity results for the solution of equation (4.1), namely that if $x \in L^p(\mathscr{O})$ then $X_{\varepsilon}(t) \in L^p(\mathscr{O})$ for all $t \in [0,T]$ (with estimates independent of ε . These regularity results are also needed in order to prove that $X_{\varepsilon} \to 0$ in $C_W([0,T]; L^2(\Omega; H))$.

To solve equation (4.1) in $L^p(\mathscr{O})$ we need some additional properties of the operators J_{ε} in $L^p(\mathscr{O})$ which are gathered in Lemma 4.1 below. However, the proof of this lemma requires that $\beta(r) = r^m + \lambda r$ with $\lambda > 0$. So, we will make this assumption in this section. Finally, in Section 5 we shall show how to remove this condition and prove the positivity of the solution of (2.8) for all $x \in H^{-1}(\mathscr{O})$.

Lemma 4.1 For any $p \ge m+1$, $\varepsilon > 0$ and any $x \in L^p(\mathcal{O})$ there is a unique $y = J_{\varepsilon}(x) \in L^p(\mathcal{O})$ such that

$$y - \varepsilon \Delta \beta(y) = x. \tag{4.2}$$

Moreover,

$$|J_{\varepsilon}(x)|_{p} \le |x|_{p}, \quad \forall p \ge 2.$$

$$(4.3)$$

Finally, J_{ε} is Lipschitz continuous in $L^{2}(\mathcal{O})$.

Proof. For existence of y one uses the assumption $\lambda > 0$ which implies that β^{-1} is Lipschitz continuous. Estimate (4.3) follows multiplying both sides of equation (4.2) by $|x|^{p-2}x$ and then integrating on \mathcal{O} . To prove the last

statement one considers another element $x_1 \in L^p(\mathscr{O})$ and the corresponding element y_1 such that $y_1 - \varepsilon \Delta \beta(y_1) = x_1$. Then one multiplies both sides of the last identity by $\beta(y) - \beta(y_1)$ and integrates on \mathscr{O}^{-3} (For details see [4]).

Proposition 4.2 Assume that Hypotheses 1.1 and 2.1 are fulfilled and that $\lambda > 0$. Then equation (4.1) has a unique solution $X_{\varepsilon} \in C_W([0,T]; L^2(\Omega \times \mathscr{O}))$. Moreover, if $x \in L^p(\mathscr{O})$, $p \ge m+1$, there exists C > 0 such that

$$\mathbb{E}|X_{\varepsilon}(t)|_{p}^{p} \leq C(|x|_{p}). \tag{4.4}$$

Finally

$$\lim_{\varepsilon \to 0} X_{\varepsilon} = X, \quad \text{in } C_W([0,T]; L^p(\Omega \times \mathscr{O})),$$

where X is the solution to (2.5).

Proof. Let us prove (4.4). We start from the case p = 2. By the Itô formula we have,

$$\mathbb{E}|X_{\varepsilon}(t)|_{2}^{2} + 2\mathbb{E}\int_{0}^{t} (A_{\varepsilon}(s), X_{\varepsilon}(s))_{2} ds$$
$$= |x|_{2}^{2} + \sum_{k=1}^{\infty} \mu_{k}^{2} \mathbb{E}\int_{0}^{t} |X_{\varepsilon}(s)e_{k}|_{2}^{2} ds.$$

Since $(A_{\varepsilon}(s), X_{\varepsilon}(s))_2 \ge 0$ we have, recalling (2.1)

$$\mathbb{E}|X_{\varepsilon}(t)|_{2}^{2} \leq |x|_{2}^{2} + c_{3} \int_{0}^{t} \mathbb{E}|X_{\varepsilon}(s)|_{2}^{2} ds,$$

where c_3 is a suitable constant. So, (4.4) follows for p = 2.

Let now p be arbitrary. Applying (formally) the Itô formula to the function

$$\Phi(x) = \int_{\mathscr{O}} |x(\xi)|^p d\xi,$$

(4.4) follows. To make rigorous the argument we have to apply the Itô formula to the function

$$\Phi_{\rho}(x) = \int_{\mathscr{O}} \frac{|x(\xi)|^p}{1 + \rho |x(\xi)|^p} d\xi,$$

and let $\rho \to 0$.

Finally, the last statement follows from the monotonicity of β and the L^p estimate for X_{ε} , see [4] for details. \Box

³A similar argument does not work on $L^p(\mathscr{O})$ for $p \neq 2$. So, we are able to show Lipschitzianity of J_{ε} in $L^2(\mathscr{O})$ only.

5 Positivity

Theorem 5.1 Assume that Hypotheses 1.1 and 2.1 are fulfilled. Let $x \in L^p(\mathcal{O})$ be nonnegative a.e. on \mathcal{O} where $p \ge m+1$ is a natural number. Then the solution X to (2.5) is such that $X \in L^{\infty}_W(0,T; L^p(\Omega; L^p(\mathcal{O})))$ and $X \ge 0$ a.e. on $\Omega \times (0,\infty) \times \mathcal{O}$.

Proof. First assume that $\lambda > 0$. Then in view of Proposition 4.2 to prove positivity of the solution X of (2.5) it is enough to prove positivity of the solution X_{ε} of (4.1). Let us consider the modified equation

$$\begin{cases} dZ_{\varepsilon}(t) + A_{\varepsilon}(Z_{\varepsilon}^{+}(t))dt = \sum_{k=1}^{\infty} \mu_{k} Z_{\varepsilon}^{+}(t) e_{k} d\gamma_{k}(t), \quad t \ge 0, \\ Z_{\varepsilon}(0) = x, \end{cases}$$
(5.1)

where $Z_{\varepsilon}^{+}(t) = \max\{Z_{\varepsilon}^{+}(t), 0\}$ which can be solved as equation (4.1). If we show that $Z_{\varepsilon}(t) \ge 0$ it follows clearly that

$$X_{\varepsilon}(t) = Z_{\varepsilon}(t) \ge 0.$$

To show positivity of Z_{ε}^+ we use Itô's formula for the function $(Z_{\varepsilon}^-)^4$. Formally we obtain

$$\mathbb{E}(Z_{\varepsilon}^{-})^4 \le 0$$

(for details see [4]). This implies that $Z_{\varepsilon}^{+}(t) \geq 0$.

Finally, denote by X_{λ} the solution of (2.5) for a fixed $\lambda > 0$. Then it is easy, using the monotonicity of β , to show that there exists the limit X of X_{λ} as $\lambda \to 0$ and to show that X is the solution of (2.5). \Box

6 The invariant measure

We assume here that $\beta(r) = r^m$.

Let X(t,x) be the solution of (2.5) for $x \in H$. Define the transition semigroup

$$P_t\varphi(x) = \mathbb{E}[\varphi(X(t,x))], \quad t \ge 0, \varphi \in B_b(H),$$

where $B_b(H)$ is the space of all real Borel functions on H. It is easy to check that P_t is Feller, that is $P_t \varphi \in C_b(H)$ for all $\varphi \in C_b(H)$, where $C_b(H)$ is the space of all real continuous and bounded functions on H.

For any $t \ge 0$ and $x \in H$ we denote by $\pi_t(x, \cdot)$ the law of X(t, x), so that we have

$$P_t\varphi(x) = \int_H \varphi(y)\pi_t(x, dy), \quad \varphi \in B_b(H).$$
(6.1)

We recall that a Borel probability measure ν on H is said to be *invariant* for the transition semigroup P_t if

$$\int_{H} P_t \varphi d\nu = \int_{H} \varphi d\nu, \quad \forall \ \varphi \in C_b(H).$$

It is clear that δ_0 is an invariant measure for P_t . For this it is convenient to consider a more general problem

$$\begin{cases} dX(t) + A(X(t))dt = \sum_{k=1}^{\infty} \mu_k X(t) e_k d\gamma_k(t) + g, \quad t \ge 0, \\ X(0) = x. \end{cases}$$
(6.2)

where $g \in L^2(\mathscr{O})$ is a constant exterior force. We notice that all results established for problem (2.5) extend trivially to problem (6.2).

Theorem 6.1 There exists an invariant measure for P_t .

Proof. Let $x \in H$ and let X(t, x) be the solution of (2.5). From Itô's formula we have

$$\frac{1}{2} \mathbb{E}|X(t)|_{-1}^{2} + \mathbb{E} \int_{0}^{t} |X(s)|_{m+1}^{m+1} ds$$

$$= \frac{1}{2} \mathbb{E}|x|_{-1}^{2} + \sum_{k=1}^{\infty} \mu_{k}^{2} \mathbb{E} \int_{0}^{t} |X(s)e_{k}|_{-1}^{2} ds$$

$$\leq \frac{1}{2} \mathbb{E}|x|_{-1}^{2} + \kappa_{1} \mathbb{E} \int_{0}^{t} |X(s)|_{-1}^{2} ds.$$
(6.3)

It follows that

$$\mathbb{E}\int_{0}^{t} |X(s)|_{m+1}^{m+1} ds \leq \frac{1}{2} \mathbb{E}|x|_{-1}^{2} + \kappa_{1} \mathbb{E}\int_{0}^{t} |X(s)|_{-1}^{2} ds.$$
(6.4)

By the Sobolev embedding theorem we have

$$H_0^1(\mathscr{O}) \subset L^{\frac{m+1}{m}}(\mathscr{O}),$$

the inclusion being compact. Therefore, the dual inclusion,

$$L^{m+1}(\mathscr{O}) \subset H^{-1}(\mathscr{O}),$$

holds and it is compact.

Consequently, there exists a positive constant κ_2 such that

$$|x|_{-1} \le \kappa_2 |x|_{m+1},\tag{6.5}$$

and from (6.4) we obtain

$$\mathbb{E}\int_{0}^{t} |X(s)|_{m+1}^{m+1} ds \leq \frac{1}{2} \mathbb{E}|x|_{-1}^{2} + \kappa_{1}\kappa_{2}^{2} \mathbb{E}\int_{0}^{t} |X(s)|_{m+1}^{2} ds.$$
(6.6)

Now let κ_3 be a positive constant such that

$$\kappa_1 \kappa_1^2 r^2 \le \frac{1}{2} r^{m+1} + \kappa_3, \quad \forall r \in \mathbb{R}.$$

Then by (6.6) we deduce that

$$\frac{1}{t} \mathbb{E} \int_0^t |X(s)|_{m+1}^{m+1} ds \le \mathbb{E} |x|_{-1}^2 + 2\kappa_1 \kappa_1^2, \quad \forall t \ge 1.$$
(6.7)

Set now

$$\mu_t = \frac{1}{t} \int_0^t \pi_s(x, \cdot) ds, \quad t > 0.$$

We claim that the family of probability measures $\{\mu_t\}_{t\geq 1}$ on H is tight. Then the Krylov-Bogoliubov theorem will yields the existence of an invariant measure for P_t . To prove the claim consider for any R > 0 the ball B_R in $L^{m+1}(\mathcal{O})$ of center 0 and radius R, which is compact in H by the compactness of the embedding of $L^{m+1}(\mathcal{O})$ into $H^{-1}(\mathcal{O})$. Then, denoting by B_R^c the complement of B_R in H, we write

$$\mu_t(B_R^c) = \frac{1}{t} \int_0^t \pi_s(x, B_R^c) ds = \frac{1}{t} \int_0^t \int_{B_R^c} \pi_s(x, dy) ds$$
$$\leq \frac{1}{t} \frac{1}{R^{m+1}} \int_0^t \int_H |y|_{m+1}^{m+1} \pi_s(x, dy) ds.$$

Recalling (6.1) we deduce that

$$\mu_t(B_R^c) \le \frac{1}{t} \frac{1}{R^{m+1}} \int_0^t P_s(|x|_{m+1}^{m+1}) ds = \frac{1}{t} \frac{1}{R^{m+1}} \int_0^t \mathbb{E}(|X(s,x)|_{m+1}^{m+1}) ds.$$

Finally, we deduce from (6.7) that

$$\mu_t(B_R^c) \le \frac{1}{R^{m+1}} \, (\mathbb{E}|x|_{-1}^2 + 2\kappa_1 \kappa_1^2).$$

Since R is arbitrary, this implies the claim. The proof is complete. \Box

Remark 6.2 We do not know whether the invariant measure is unique or not. In the case of additive noise this was proved in [6].

Remark 6.3 A different prove of existence of invariant measure, based on dissipativity of the equation, was given in [9].

References

- D.G. Aronson, *The porous medium equation*, Lecture Notes Math. Vol. 1224, Springer, Berlin, 1–46, 1986.
- [2] V.Barbu, Analysis and Control of Infinite Dimensional Systems, Academic Press, 1993.
- [3] V. Barbu and G. Da Prato The two phase stochastic Stefan problem, Probab. Theory Relat. Fields, 124, 544–560, 2002.
- [4] V. Barbu, G. Da Prato and M. Röckner, Existence and uniqueness of nonnegative solutions to the stochastic porous media equation, Indiana J. Math. (to appear).
- [5] V. Barbu, G. Da Prato and M. Röckner, Existence of strong solutions for stochastic porous media equation under general monotonicity conditions, Preprint n.5, SNS Pisa, March 2007.
- [6] G. Da Prato, M. Röckner, B. L. Rozovskii and Feng-Yu Wang, Strong Solutions of Stochastic Generalized Porous Media Equations: Existence, Uniqueness and Ergodicity, Comm. Partial Differential Equations 31, no. 1-3, 277–291, 2006
- [7] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge University Press, 1992.
- [8] N.V. Krylov and B.L. Rozovskii, Stochastic evolution equations, Translated from Itogi Naukii Tekhniki, Seriya Sovremennye Problemy Matematiki 14(1979), 71–146, Plenum Publishing Corp. 1981.
- [9] C. Prevot and M. Röckner, A concise course on stochastic partial differential equations, Monograph 2006, to appear in Lecture Notes in Mathematics, Springer.
- [10] J. Ren, M. Röckner and Feng-Yu Wang, Stochastic generalized porous media and fast diffusions equations, BiBoS-preprint 2006, to appear in J. Diff. Eqn.