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Abstract. In this paper, we prove the existence of a unique strong solution to a stochastic tamed
3D Navier-Stokes equation in the whole space as well as in the periodic boundary case. Then,
we also study the Feller property of solutions, and prove the existence of invariant measures for
the corresponding Feller semigroup in the case of periodic conditions. Moreover, in the case of
periodic boundary and degenerated additive noise, using the notion of asymptotic strong Feller
property proposed by Hairer and Mattingly [15], we prove the uniqueness of invariant measures
for the corresponding transition semigroup.
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1. Introduction

The classical 3D Navier-Stokes equations (NSE) describe the time evolution of an incom-
pressible fluid and are given by

∂tu(t) = ν∆u(t) − (u(t) · ∇)u(t) + ∇p(t) + f(t)

and
divu(t) = 0,

where u(t, x) = (u1(t, x), u2(t, x), u3(t, x)) represents the velocity field, ν is the viscosity constant,
p(t, x) denotes the pressure, and f is an external force field acting on the fluid. In [19], Leray
initially constructed a weak solution for the Cauchy problem of NSE in the whole space, since
then, it is still not known whether there exists a smooth solution existing for all times. In [27],
we analyzed the following tamed scheme for the classical 3D NSE:

∂tu(t) = ν∆u(t) − (u(t) · ∇)u(t) + ∇p(t) − gN(|u(t)|2)u(t) + f(t),

where the taming function gN : R+ → R+ is smooth and satisfies for some N ∈ N,
gN(r) = 0, if r 6 N,
gN(r) = (r − N)/ν, if r > N + 1,
0 6 g′N(r) 6 2/(ν ∧ 1), r > 0.

(1.1)

Therein, we proved the existence of smooth solutions to this tamed equation when f and the
initial velocity are smooth. The main feature of this tamed equation is that if there is a bounded
smooth solution to the classical 3D NSE, then this smooth solution must satisfy our tamed
equation for some N large enough. Moreover, we can let N → ∞ to obtain the existence of
suitable weak solutions (cf. [27]). In this sense, the above tamed scheme can be considered as
a regularized equation for the classical equation.

Following the above tamed scheme, in the present paper we shall study the stochastic tamed
3D NSE. Let us now describe our model equation. Let D := R3 or T3 (in the periodic case),
where T = [0, 1) is the unit circle. Note that any function from T3 to R3 can be identified with a
periodic function from R3 to R3. We consider the following stochastic tamed 3D Navier-Stokes
equation with ν = 1 in D:

du(t) =
[
∆u(t) − (u(t) · ∇)u(t) + ∇p(t) − gN(|u(t)|2)u(t) + f(t,u(t))

]
dt

+

∞∑
k=1

[
(σk(t) · ∇)u(t) + ∇p̃k(t) + hk(t,u(t))

]
dWk

t (1.2)

subject to the incompressibility condition

divu(t) = 0 (1.3)

and the initial condition

u(0) = u0, (1.4)

where p(t, x) and p̃k(t, x) are unknown scalar functions, N > 0 and the taming function gN :
R+ → R+ as above satisfies (1.1), and {Wk

t ; t > 0, k = 1, 2, · · · } is a sequence of indepen-
dent one dimensional standard Brownian motions on some complete filtration probability space
(Ω,F , P; (Ft)t>0). The stochastic integral is understood as Itô’s integral. The entries of the
coefficients are given as follows:

R+ × D × R3 ∋ (t, x,u)→ f(t, x,u) ∈ R3,

R+ × D ∋ (t, x)→ σ(t, x) ∈ R3 × l2,

R+ × D × R3 ∋ (t, x,u)→ h(t, x,u) ∈ R3 × l2,
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where l2 denotes the Hilbert space consisting of all sequences of square summable real numbers
with standard norm ∥ · ∥l2 . In the following, f, σ and h are always assumed to be measurable
with respect to all their variables.

The study of stochastic Navier-Stokes equations (SNSE) began with the work of Bensous-
san -Temam in [2]. Using Galerkin’s approximation and compactness method, Flandoli and
Gatarek in [10] proved the existence of martingale solutions and stationary solutions for any
dimensional stochastic Navier-Stokes equations in a bounded domain. In particular, when the
transition semigroup is well defined, the stationary martingale solutions will yield the existence
of invariant measures. We remark that their results cannot be used in the case of whole space
because of the absence of compact Sobolev embeddings. Recently, Mikulevicius and Rozovskii
in [24] proved the existence of martingale solutions to SNSE in Rd (d > 2) under less assump-
tions on the coefficients (without the extra term gN). To avoid the use of compact Sobolev
embeddings, they used the approach of mollifying and cutting off the coefficients. In the case
of two dimension, they also obtained the existence and pathwise uniqueness of L2-continuous
adapted solutions.

On the other hand, the ergodicity of invariant measures for 2D stochastic Navier-Stokes equa-
tions has been studied extensively (cf. [11, 22, 7, 15] and reference therein). Especially, Hairer
and Mattingly [15] recently developed two important tools: the asymptotic strong Feller prop-
erty and an approximative integration by parts formula in the Malliavin calculus, and then used
them to derive an optimal ergodicity result for 2D SNSE in the sense that the random forces
only has two modes. As pointed out in [15], the asymptotic strong Feller property is much
weaker than the usual strong Feller property since many degenerated equations have the former
property rather than the later one.

Up to now, to the best of our knowledge, most of the well known results about the stochastic
Navier-Stokes equations such as the existence of invariant measures and the ergodicity under
different conditions on the noise are for 2D SNSE. As for the three dimensional case, there
are only a few results (cf. [4, 5, 1, 25, 12, 29]), of course, because of the lack of uniqueness.
Recently, in [4, 5, 25], Da-Prato, Debussche and Odasso proved the existence and ergodicity
of Markov solutions for 3D SNSE without the taming term gN , which are obtained as limits of
Galerkin’s approximations. Similar results were obtained by Flandoli and Romito in [12, 29] for
all Markov solutions. Moreover, using stochastic cascades, Bakhtin [1] explicitly constructed a
stationary solution of 3D Navier-Stokes system and proved a uniqueness theorem.

In the present paper, we shall prove the existence of a unique strong solution to our stochastic
tamed 3D Navier-Stokes equation (1.2) under some assumptions on f, σ and h. Here, the word
“strong” means “strong” both in the sense of the theory of stochastic differential equations and
the theory of partial differential equations. Let Hm denote the Sobolev space of divergence
free vector fields (see (2.2) below). Instead of working on the evolution triple H1 ⊂ H0 ⊂
H−1, we shall work on the evolution triple H2 ⊂ H1 ⊂ H0. This will enable us to obtain
the “strong” solution in the sense of partial differential equations. For the “strong” solution
in the sense of stochastic differential equations, we shall use the famous Yamada-Watanabe
theorem: the existence of martingale solutions plus pathwise uniqueness implies the existence
of a unique strong solution. Different from the method in [24], we still use the classical Galerkin
approximation to prove our existence of strong solutions. To overcome the absence of compact
Sobolev embeddings, we shall use localization method to prove tightness. We think that it is of
interest in itself and can be used in other cases. Moreover, as in the deterministic case, we can
take limits N → ∞ to prove the existence of weak solutions for the true stochastic Navier-Stokes
equations (without taming term). This will be done in a further investigation.

After obtaining the existence of a unique strong solution to Eq. (1.2), we turn to the study of
uniqueness of invariant measures in the case of periodic boundary conditions and degenerated
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additive noise. As a first step, we need to prove the Feller property and the existence of an
invariant measure. Then, using the asymptotic strong Feller property and approximative inte-
gration by parts formula in [15], we can prove the uniqueness of invariant measures. As said
above, since we shall work in the first order Sobolev space H1, all of our discussions will take
place in H1. This requires some delicate analysis and calculations, and the special form of gN

plays an important role throughout this paper. It should be emphasized that the optimal results
in [15] seem to depend strongly on the structure of 2D Navier-Stokes equations, we can not
develop a similar non-adapted analysis along their lines to obtain some optimal result for our
tamed 3D SNSE.

This paper is organized as follows: in Section 2, we give some preliminaries, that include
some necessary estimates and a tightness result for later use. In Section 3, we shall prove the
existence and uniquess result by Galerkin’s approximation. In Section 4, we study the Feller
property of the solutions to Eq. (1.2) and the existence of invariant measures for the Feller
semigroup in the case of periodic boundary conditions. In Section 5, we study the ergodicity
of invariant measures. In the Appendix, for the reader’s convenience, the martingale characteri-
zation for weak solutions is proved, two necessary basic estimates are given, and the derivative
flow equation is proved.

2. Preliminaries

2.1. Notations and Assumptions. Let C∞0 (D;R3) denote the set of all smooth functions from
D to R3 with compact supports. When D = T3, a function f ∈ C∞0 (D;R3) means that it is a
smooth periodic function from R3 to R3. For p > 1, let Lp(D;R3) be the vector valued Lp-space
in which the norm is denoted by ∥ · ∥Lp . For m ∈ N0 := N ∪ {0}, let Hm be the usual Sobolev
space on D with values in R3, i.e., the closure of C∞0 (D;R3) with respect to the norm:

∥u∥Hm =

(∫
D

|(I − ∆)m/2u|2dx
)1/2

.

Here as usual, (I −∆)m/2 is defined by Fourier transformation. For two separable Hilbert spaces
K and H, L2(K;H) will denote the space of all Hilbert-Schmidt operators from K to H with
norm ∥ · ∥L2(K;H).

The following Gagliardo-Nirenberg interpolation inequality will be used frequently. It plays
an essential role in the study of Navier-Stokes equations (cf. [33]). Let q ∈ [1,∞] and m ∈ N.
If

1
q
=

1
2
− mα

3
, 0 6 α 6 1,

then for any u ∈ Hm

∥u∥Lq 6 Cm,q∥u∥αHm∥u∥1−αL2 . (2.1)

Set for m ∈ N0

Hm := {u ∈ Hm : div(u) = 0}. (2.2)

Then (Hm, ∥ · ∥Hm) is a separable Hilbert space. We shall denote the norm ∥ · ∥Hm in Hm by ∥ · ∥Hm .
We remark that H0 is a closed linear subspace of the Hilbert space L2(D;R3) = H0.

Let P be the orthogonal projection from L2(D;R3) to H0 (cf. [8, 20]). It is well known that
P commutes with the derivative operators, and that P can be restricted to a bounded linear
operator from Hm to Hm. For any u ∈ H0 and v ∈ L2(D;R3), we have

⟨u, v⟩H0 := ⟨u,Pv⟩H0 = ⟨u, v⟩L2 .
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LetV be defined by

V := {u : u ∈ C∞0 (D;R3), div(u) = 0}.
We have the following density result (cf. [27]).

Lemma 2.1. V is dense in Hm for any m ∈ N0.

We now introduce the following assumptions on the coefficients f, σ and h:
(H1) For any T > 0, there exist a constant CT,f > 0 and a function Hf(t, x) ∈ L1([0,T ]×D) such

that for any t ∈ [0,T ], x ∈ D,u ∈ R3 and j = 1, 2, 3

|∂x jf(t, x,u)|2 + |f(t, x, u)|2 6 CT,f · |u|2 + Hf(t, x),
|∂u jf(t, x,u)| 6 CT,f .

(H2) For any T > 0, there exists a constant Cσ,T > 0 such that

sup
t∈[0,T ],x∈D

∥∂x jσ(t, x)∥l2 6 Cσ,T , j = 1, 2, 3

and

sup
t∈R+,x∈D

∥σ(t, x)∥2l2 6 1/4. (2.3)

(H3) For any T > 0, there exist a constant CT,h > 0 and a function Hh(t, x) ∈ L1([0,T ] × D)
such that for any t ∈ [0, T ], x ∈ D,u ∈ R3 and j = 1, 2, 3

∥∂x jh(t, x,u)∥2l2 + ∥h(t, x,u)∥2l2 6 CT,h · |u|2 + Hh(t, x),
∥∂u jh(t, x,u)∥l2 6 CT,h.

Remark 2.2. The factor 1
4 in (2.3) is related to the viscosity constant ν assumed to be 1. That

is to say, the first order term appearing in diffusion coefficients will be absorbed by the Laplace
term. Here, the factor 1

4 is not optimal (see [24]).

For any u ∈ H2, define

A(u) :=P∆u −P((u · ∇)u) −P(gN(|u|2)u), (2.4)

and for any v ∈ H2, we writeJA(u), vK := ⟨A(u), (I − ∆)v⟩H0 = A1(u, v) + A2(u, v) + A3(u, v),

where

A1(u, v) := ⟨∆u, (I − ∆)v⟩H0 ,

A2(u, v) := −⟨(u · ∇)u, (I − ∆)v⟩H0 ,

A3(u, v) := −⟨gN(|u|2)u, (I − ∆)v⟩H0 .

Below, for the sake of simplicity, the variable “x” in the coefficients will be dropped. Define
for k ∈ N

Bk(t,u) :=P((σk(t) · ∇)u) +Phk(t,u). (2.5)

Letting the operator P act on both sides of equation (1.2), we can and shall consider the
following equivalent abstract stochastic evolution equation in the sequel: du(t) =

[
A(u(t)) +Pf(t,u(t))

]
dt +

∑∞
k=1 Bk(t,u(t))dWk

t ,

u(0) = u0 ∈ H1.
(2.6)
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2.2. Estimates on A and B. We now prepare several important estimates for later use. In
the sequel, we shall use the following convention: The letter C with subscripts will denote a
constant depending on its subscripts and the coefficients. The letter C without subscripts will
denote an absolute constant, i.e., its value does not depend on any data. All the constants may
have different values in different places.

Lemma 2.3. For any u ∈ H2, we have

∥A(u)∥H0 6 C(1 + ∥u∥4
H0 + ∥u∥2H2), (2.7)

⟨A(u),u⟩H0 = −∥∇u∥2
H0 − ∥

√
gN(|u|2) · |u|∥2L2 (2.8)

6 −∥∇u∥2
H0 − ∥u∥4L4 +C · N∥u∥2

H0 , (2.9)

JA(u), uK 6 −1
2
∥u∥2

H2 −
1
2
∥|u| · |∇u|∥2L2 +C · N∥∇u∥2

H0 + ∥u∥2H0 . (2.10)

Proof. Estimate (2.7) is direct from (2.4) and the Sobolev inequality (2.1). Estimate (2.8) fol-
lows from

⟨(u · ∇)u,u⟩H0 = 0.
For inequality (2.10), we have

A1(u,u) = −∥(I − ∆)u∥2
H0 + ⟨u, (I − ∆)u⟩H0 = −∥u∥2

H2 + ∥∇u∥2
H0 + ∥u∥2H0 ,

and by Young’s inequality,

A2(u,u) 6
1
2
∥(I − ∆)u∥2

H0 +
1
2
∥(u · ∇)u∥2

H0 6
1
2
∥u∥2

H2 +
1
2
∥|u| · |∇u|∥2

H0 ,

where

|u|2 =
3∑

k=1

|uk|2, |∇u|2 =
3∑

k,i=1

|∂iuk|2.

Recalling ν = 1, from (1.1), we also have

A3(u,u) = −⟨∇(gN(|u|2)u),∇u⟩H0 − ⟨gN(|u|2)u,u⟩H0

= −
3∑

k,i=1

∫
D

∂iuk · ∂i(gN(|u|2)uk)dx −
∫
D

|u|2 · gN(|u|2)dx

6 −
3∑

k,i=1

∫
D

∂iuk ·
(
gN(|u|2) · ∂iuk − g′N(|u|2)∂i|u|2 · uk

)
dx

= −
∫
D

|∇u|2 · gN(|u|2)dx − 1
2

∫
D

g′N(|u|2)|∇|u|2|2dx

6 −
∫
D

|∇u|2 · |u|2dx +C · N∥∇u∥2
H0 .

Combining the above calculations yields (2.10). �

Lemma 2.4. Let v ∈ V, and let the support of v be contained in O := {x ∈ D, |x| 6 m} for some
m ∈ N. Let T > 0. For any u,u′ ∈ H2 and t ∈ [0,T ], we have

|JA(u), vK| 6 Cv ·
(
1 + ∥u∥3L3(O)

)
, (2.11)

∥⟨B·(t,u), v⟩H1∥2l2 6 Cv,T ·
(
1 + ∥Hh(t)∥L1(D) + ∥u∥2L2(O)

)
(2.12)

and

|JA(u) − A(u′), vK| 6 Cv · ∥u − u′∥L2(O) · (1 + ∥u∥2H1 + ∥u′∥2H1). (2.13)
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Proof. For estimate (2.11), we have

A1(u, v) = ⟨u, (I − ∆)∆v⟩H0 6 C∥u∥L2(O) · ∥v∥H4 ,

A2(u, v) = ⟨u∗ · u,∇(I − ∆)v⟩H0 6 C∥u∥2L2(O) · sup
x∈D
|∇(I − ∆)v(x)|,

where u∗ denotes the transposition of the row vector u, and

A3(u, v) 6 ∥u∥3L3(O) · sup
x∈D
|(I − ∆)v(x)|.

Combining them gives (2.11).
For estimate (2.12), by (H2) and (H3), we have

∥⟨B·(t,u), v⟩H1∥2l2 6 C sup
t∈R+,x∈D

∥σ(t, x)∥2l2 · sup
x∈D
|∇(I − ∆)v(x)|2 · ∥u∥2L2(O)

+C sup
x∈D
∥∇xσ(t, x)∥2l2 · sup

x∈D
|(I − ∆)v(x)|2 · ∥u∥2L2(O)

+C sup
x∈D
|(I − ∆)v(x)|2 · (CT,h · ∥u∥2L2(O) + ∥Hh(t)∥L1(D)

)
6 Cv,T ·

(
1 + ∥Hh(t)∥L1(D) + ∥u∥2L2(O)

)
.

We now look at (2.13). For A1, we clearly have

|A1(u, v) − A1(u′, v)| = |⟨(u − u′) · 1O, (I − ∆)∆v⟩H0 | 6 Cv · ∥u − u′∥L2(O).

For A2, we have

|A2(u, v) − A2(u′, v)| = |⟨u∗ · u − u′∗ · u′,∇(I − ∆)v⟩H0 |
6 Cv · ∥u − u′∥L2(O) · (∥u∥H0 + ∥u′∥H0).

For A3, by Sobolev inequality (2.1) we similarly have

|A3(u, v) − A3(u′, v)| 6 Cv · ∥u − u′∥L2(O) · (∥u∥2L4 + ∥u′∥2L4)

6 Cv · ∥u − u′∥L2(O) · (∥u∥2H1 + ∥u′∥2H1).

�

Lemma 2.5. For any T > 0 and u ∈ H2,

∥B(t,u)∥2L2(l2;H0) 6
1
2
∥u∥2

H1 +CT ∥u∥2H0 + ∥Hh(t)∥L1(D), (2.14)

∥B(t,u)∥2L2(l2;H1) 6
1
2
∥u∥2

H2 +CT ∥u∥2H1 +C∥Hh(t)∥L1(D). (2.15)

Proof. First of all, by (H2) and (H3), we have

∥B(t,u)∥2L2(l2;H0) =

∞∑
k=1

∫
D

|Bk(t, x,u(x))|2dx 6

6 2
∫
D

∥σ(t, x)∥2l2 · |∇u(x)|2dx + 2
∫
D

(
CT,h|u(x)|2 + Hh(t, x)

)
dx

6
1
2
∥u∥2

H1 +CT ∥u∥2H0 + ∥Hh(t)∥L1(D).

Secondly, noting that

∥B(t, u)∥2L2(l2;H1) = ∥B(t,u)∥2L2(l2;H0) + ∥∇B(t,u)∥2L2(l2;H0)

and

∂x j Bk(t,u) =P∂x j((σk(t) · ∇)u) +P∂x jhk(t,u)
7



=P
(
(∂x jσk(t) · ∇)u + (σk(t) · ∇)∂x ju

)
+P

(
(∂x jhk)(t,u) +

3∑
i=1

∂uihk(t,u) · ∂x jui
)
,

by (H2) and (H3), we have

∥B(t,u)∥2L2(l2;H1) 6
1
2
∥u∥2

H2 +CT ∥u∥2H1 +C∥Hh(t)∥L1(D).

�

2.3. Tightness Criterion. In the following, we only give a tightness criterion in the case of
D = R3. When D = T3, since H1 is compactly embedded in H0, the corresponding result is
simple and well known.

By H0
loc we denote the space of all locally L2-integrable and divergence free vector fields

endowed with the Fréchet metric: for u, v ∈ H0
loc

ρ(u, v) :=
∞∑

m=1

2−m

[∫
|x|6m
|u(x) − v(x)|2dx

]1/2

∧ 1
 .

Thus, (H0
loc, ρ) is a Polish space and H0 ⊂ H0

loc.
Let X := C(R+;H0

loc) denote the space of all continuous functions from R+ to (H0
loc, ρ)

equipped with the metric

ρX(u, v) :=
∞∑

m=1

2−m

(
sup

t∈[0,m]
ρ(u(t), v(t)) ∧ 1

)
.

In the following, we shall fix a complete orthonormal basis E := {ek, k ∈ N} ⊂ V of H1 such
that span{E } is a dense subset of H3 and, in the case of periodic boundary conditions, we also
require that E is an orthogonal basis of H0. Moreover, for u ∈ H0 and v ∈ H2, the inner product
⟨u, v⟩H1 is taken in the generalized sense, i.e.,

⟨u, v⟩H1 = ⟨u, (I − ∆)v⟩H0 .

We need the following relative compactness result, which is essentially due to Ladyzhenskaya
[18, Theorem 13].

Lemma 2.6. Let K ⊂ X. If for every T > 0,
(1o) supu∈K sups∈[0,T ] ∥u(s)∥H1 < +∞,
(2o) limδ→0 supu∈K supt,s∈[0,T ],|t−s|<δ |⟨u(t) − u(s), e⟩H1 | = 0 for any e ∈ E ,
then K is relatively compact in X.

Proof. We only need to prove that K is relatively compact in C([0,T ];H0
loc) for every T > 0.

Let {un, n ∈ N} ⊂ K be any sequence of K. Define for e ∈ E ,

Ge
n(t) := ⟨un(t), e⟩H1 .

Then, by (1o) and (2o), the sequence {t 7→ Ge
n(t), n ∈ N} is uniformly bounded and equi-

continuous on [0,T ]. Hence, by Ascoli-Arzelà’s lemma, there exist a subsequence nl (depend-
ing on e) and a continuous function Ge(t) such that Ge

nl
(t) uniformly converges to Ge(t) on [0, T ].

Since E is countable, by a diagonalization method, we may further find a common subsequence
(still denoted by n) such that for any e ∈ E ,

lim
n→∞

sup
t∈[0,T ]

|Ge
n(t) −Ge(t)| = 0.

8



Thus, by the weak compactness of closed balls in H1, there is a u ∈ L∞(0,T ;H1) such that for
any e ∈ E ,

lim
n→∞

sup
t∈[0,T ]

|⟨un(t) − u(t), e⟩H1 | = 0.

By a simple approximation we further have for any v ∈ H1,

lim
n→∞

sup
t∈[0,T ]

|⟨un(t) − u(t), v⟩H1 | = 0.

Note that (I − ∆)−1v ∈ H2 for any v ∈ H0. Hence, we also have for any v ∈ H0,

lim
n→∞

sup
t∈[0,T ]

|⟨un(t) − u(t), v⟩H0 | = 0.

Hence, by Helmholtz-Weyl’s decomposition (cf. [32, 13]),

lim
n→∞

sup
t∈[0,T ]

|⟨un(t) − u(t), v⟩| = 0 (2.16)

for any v ∈ L2(R3;R3).
We now show that

lim
n→∞

sup
t∈[0,T ]

ρ(un(t),u(t)) = 0.

It suffices to prove that for any m ∈ N,

lim
n→∞

sup
t∈[0,T ]

∫
|x|6m
|un(t, x) − u(t, x)|2dx = 0,

which follows from (1o), (2.16) and the following Friedrichs inequality (cf. [18, p.176]): Let
O ⊂ R3 be any bounded domain. For any ϵ > 0, there exist Nϵ ∈ N and functions hi ∈ L2(O), i =
1, · · · ,Nϵ such that for any w ∈ W1,2

0 (O),∫
O
|w(x)|2dx 6

Nϵ∑
i=1

(∫
O

w(x)hi(x)dx
)2

+ ϵ

∫
O
|∇w(x)|2dx.

�

Lemma 2.7. Let µn be a family of probability measures on (X,B(X)). Assume that
(1o) For each e ∈ E and any ϵ, T > 0,

lim
δ↓0

sup
n
µn

{
u ∈ X : sup

s,t∈[0,T ],|s−t|6δ
|⟨u(t) − u(s), e⟩H1 | > ϵ

}
= 0.

(2o) For any T > 0
lim
R→∞

sup
n
µn

{
u ∈ X : sup

s∈[0,T ]
∥u(s)∥H1 > R

}
= 0.

Then {µn, n ∈ N} is tight on (X,B(X)).

Proof. Fix η > 0. For any l ∈ N, by (2o) one can choose Rl sufficiently large such that

sup
n
µn

{
u ∈ X : sup

s∈[0,l]
∥u(s)∥H1 > Rl

}
6
η

2l . (2.17)

For k, l ∈ N and ei ∈ E , by (1o) one may choose δk,i,l > 0 small enough such that

sup
n
µn

{
u ∈ X : sup

s,t∈[0,l],|s−t|6δk,i,l
|⟨u(t) − u(s), ei⟩H1 | > 1

k

}
6
η

2k+i+l . (2.18)

Now let us define

K1 :=
∩

k,l∈N,ei∈E

{
u ∈ X : sup

s,t∈[0,l],|s−t|6δk,i,l
|⟨u(t) − u(s), ei⟩H1 | 6 1

k

}
9



K2 :=
∩
l∈N

{
u ∈ X : sup

s∈[0,l]
∥u(s)∥H1 6 Rl

}
.

By Lemma 2.6, K1 ∩ K2 is a relatively compact set in X. By (2.17) and (2.18), we also have

sup
n
µn(Kc

1 ∪ Kc
2) 6 2η.

In view of the arbitrariness of η, {µn, n ∈ N} is tight on (X,B(X)). �

3. Existence and Uniqueness of Strong Solutions

3.1. Weak and Strong Solutions. For a metric space U, we use P(U) to denote the total of
all probability measures on U. We first introduce the following notion of weak solutions to Eq.
(2.6).

Definition 3.1. We say that Eq. (2.6) has a weak solution with initial law ϑ ∈ P(H1) if there
exist a stochastic basis (Ω,F , P; (Ft)t>0), an H1-valued (Ft)-adapted process u and an infinite
sequence of independent standard (Ft)-Brownian motions {Wk(t), t > 0, k ∈ N} such that

(i) u(0) has law ϑ in H1;
(ii) for almost all ω ∈ Ω and every T > 0, u(·, ω) ∈ C([0,T ];H1) ∩ L2([0,T ];H2);

(iii) it holds that in H0

u(t) = u0 +

∫ t

0

[
A(u(s)) +Pf(s, u(s))

]
ds +

∞∑
k=1

∫ t

0
Bk(s,u(s))dWk

s ,

for all t > 0, P-a.s..
This solution is denoted by (Ω,F , P; (Ft)t>0; W; u).

Remark 3.2. Under (H1)-(H3), by (2.7) the above integrals are meaningful.

Definition 3.3. (Pathwise Uniqueness) We say that the pathwise uniqueness holds for Eq. (2.6)
if whenever we are given two weak solutions of Eq. (2.6) defined on the same probability space
together with the same Brownian motion

(Ω,F , P; (Ft)t>0; W; u)
(Ω,F , P; (Ft)t>0; W; ũ),

the condition P{u(0) = ũ(0)} = 1 implies P{ω : u(t, ω) = ũ(t, ω),∀t > 0} = 1.

We have the following martingale characterization for the weak solution (cf. [31]). For the
reader’s convenience, a short proof is provided in the Appendix.

Proposition 3.4. Let E be given in Subsection 2.3. For ϑ ∈ P(H1), the following two statements
are equivalent:

(i) Eq. (2.6) has a weak solution with initial law ϑ.
(ii) There exists a probability measure Pϑ ∈ P(X) such that for Pϑ-almost all u ∈ X and any

T > 0,

u ∈ L∞([0, T ];H1) ∩ L2([0,T ];H2), (3.1)

and for any h ∈ C∞0 (R), i.e., any smooth function with compact support, and any e ∈ E ,

Mh
e (t,u) := h(⟨u(t), e⟩H1) − h(⟨u(0), e⟩H1)

−
∫ t

0
h′(⟨u(s), e⟩H1) · JA(u(s)), eKds

10



−
∫ t

0
h′(⟨u(s), e⟩H1) · ⟨f(s,u(s)), e⟩H1ds

− 1
2

∫ t

0
h′′(⟨u(s), e⟩H1) · ∥⟨B(s,u(s)), e⟩H1∥2l2ds

is a continuous local martingale under Pϑ with respect to Bt(X). Here and below, Bt(X)
denotes the sub σ-algebra of X up to time t.

In order to introduce the notion of strong solutions to Eq. (2.6), we need a canonical realiza-
tion of an infinite sequence of independent standard Brownian motions on a Polish space.

Let C(R+;R) denote the space of all continuous functions defined on R+, which is equipped
with the metric

ρ̃(w,w′) =
∞∑

k=1

2−k

(
sup

t∈[0,k]
|w(t) − w′(t)| ∧ 1

)
.

Define the product spaceW :=
∞∏
j=1

C(R+;R), which is endowed with the metric:

ρW(w,w′) =
∞∑
j=1

2− j(ρ̃(w j,w′ j) ∧ 1), w = (w1,w2, · · · ),w′ = (w′1,w′2, · · · ).

Then (W, ρW) is a Polish space. Let Bt(W) ⊂ B(W) be the σ-algebra up to time t. We endow
(W,B(W)) with the Wiener measure P such that the coordinate process

w(t) := (w1(t),w2(t), · · · )
is an infinite sequence of independent standard Bt(W)-Brownian motions on (W,B(W),P).

Let B := C(R+;H1) denote the space of all continuous functions from R+ to H1, which is
endowed with the metric

ρB(u, v) :=
∞∑

k=1

2−k

(
sup

t∈[0,k]
∥u(t) − v(t)∥H1 ∧ 1

)
.

In the following, Bt(B) denotes the sub σ-algebra of B up to time t. For a measure space
(S ,S, λ), S

λ
will denote the completion of S with respect to λ.

Definition 3.5. Let (Ω,F , P; (Ft)t>0; W; u) be a weak solution of Eq. (2.6) with initial distribu-

tion ϑ ∈ P(H1). If there exists a B(H1) × B(W)
ϑ×P
/B(B)-measurable functional Fϑ : H1×W 7→

B, with the property that for every t > 0,

Fϑ ∈ B̂t/Bt(B); B̂t := B(H1) × Bt(W)
ϑ×P

(3.2)

and such that

u(·) = Fϑ(u(0),W(·)), P − a.s.,

we call u together with W a strong solution.
We shall say that Eq. (2.6) has a unique strong solution associated with ϑ ∈ P(H1) if there

exists a functional Fϑ : H1 ×W 7→ B with the same properties as above such that
(i) for any infinite sequence of independent standard (Ft)-Brownian motions {W(t), t > 0}

on stochastic basis (Ω,F , P; (Ft)t>0), and any H1-valued random variable u0 ∈ F0 with
distribution ϑ,

(Ω,F , P; (Ft)t>0; W; Fϑ(u0,W(·))) is a weak solution of Eq. (2.6);
11



(ii) for any weak solution (Ω,F , P; (Ft)t>0; W; u) of Eq. (2.6) with initial law ϑ,

u(·) = Fϑ(u(0),W(·)), P − a.s..

The following Yamada-Watanabe theorem holds in this case (cf. [28]).

Theorem 3.6. Existence of weak solutions plus pathwise uniqueness implies the existence of a
unique strong solution.

3.2. Pathwise Uniqueness. We first prove the following pathwise uniqueness result.

Theorem 3.7. Under (H1)-(H3), pathwise uniqueness holds for Eq. (2.6).

Proof. Let u and ũ be two weak solutions of Eq. (2.6) defined on the same probability space
together with the same Brownian motion, and starting from the same initial value u0. For any
T > 0 and R > 0, define the stopping time

τR := inf{t ∈ [0,T ] : ∥u(t)∥H1 ∨ ∥ũ(t)∥H1 > R}.
By the definition of weak solutions, one knows that τR ↑ ∞ as R ↑ ∞.

Set
w(t) := u(t) − ũ(t).

Then by Itô’s formula, we have

∥w(t)∥2
H0 = 2

∫ t

0
⟨A(u(s)) − A(ũ(s)),w(s)⟩H0ds

+ 2
∫ t

0
⟨f(s,u(s)) − f(s, ũ(s)),w(s)⟩H0ds

+ 2
∞∑

k=1

∫ t

0
⟨Bk(s,u(s)) − Bk(s, ũ(s)),w(s)⟩H0dWk

s

+

∞∑
k=1

∫ t

0
∥Bk(s,u(s)) − Bk(s, ũ(s))∥2

H0ds

=: I1(t) + I2(t) + I3(t) + I4(t). (3.3)

By |gN(r) − gN(r′)| 6 |r − r′| and a simple calculation, it is easy to see that

I1(t) = −2
∫ t

0
∥∇w(s)∥2

H0ds + 2
∫ t

0
⟨∇w(s), (u∗(s) · u(s) − ũ∗(s) · ũ(s))⟩H0ds

− 2
∫ t

0
⟨gN(|u(s)|2)u(s) − gN(|ũ(s)|2)ũ(s),w(s)⟩H0ds

6 −
∫ t

0
∥∇w(s)∥2

H0ds +
∫ t

0
∥u∗(s) · u(s) − ũ∗(s) · ũ(s)∥2

H0ds

+ 8
∫ t

0
∥|w(s)| · (|u(s)| + |ũ(s)|)∥2

H0ds.

Noting that by Sobolev inequality (2.1),

∥u∗(s) · u(s) − ũ∗(s) · ũ(s)∥2
H0 6 ∥|w(s)|(|u(s)| + |ũ(s)|)∥2

H0 (3.4)

6 2∥w(s)∥2L4(∥u(s)∥2L4 + ∥ũ(s)∥2L4)

6 2C2
1,4 · ∥w(s)∥3/2

H1 ∥w(s)∥1/2
H0 (∥u(s)∥2

H1 + ∥ũ(s)∥2
H1),

12



we have by Young’s inequality,

I1(t ∧ τR) 6 −
∫ t∧τR

0
∥∇w(s)∥2

H0ds +CR

∫ t∧τR

0
∥w(s)∥3/2

H1 ∥w(s)∥1/2
H0 ds

6 −1
2

∫ t∧τR

0
∥∇w(s)∥2

H0ds +CR

∫ t∧τR

0
∥w(s)∥2

H0ds.

Moreover, it is clear that

I2(t ∧ τR) 6 CT

∫ t∧τR

0
∥w(s)∥2

H0ds

and by (H3),

I4(t ∧ τR) 6 sup
t>0,x∈D

∥σ(t, x)∥l2 ·
∫ t∧τR

0
∥∇w(s)∥2

H0ds +CT

∫ t∧τR

0
∥w(s)∥2

H0ds.

Taking expectations for (3.3) and combining the above calculations as well as (2.3), we find that
for any t ∈ [0,T ],

E∥w(t ∧ τR)∥2
H0 6 CR,T · E

(∫ t∧τR

0
∥w(s)∥2

H0ds
)
6 CR,T

∫ t

0
E∥w(s ∧ τR)∥2

H0ds.

By Gronwall’s inequality, we get for any t ∈ [0, T ],

E∥w(t ∧ τR)∥2
H0 = 0.

Now the uniqueness follows by letting R ↑ ∞ and Fatou’s lemma. �

3.3. Existence of Martingale Solutions. We now prove the existence of a weak solution to
Eq. (2.6).

Theorem 3.8. Under (H1)-(H3), for any initial law ϑ ∈ P(H1), there exists a weak solution for
Eq. (2.6) in the sense of Definition 3.1.

We shall use Galerkin’s approximation to prove this theorem. In the following, we fix a sto-
chastic basis (Ω,F , P; (Ft)t>0), and an infinite sequence of independent standard (Ft)-Brownian
motions {Wk(t), t > 0, k ∈ N}, as well as an F0-measurable random variable u0 having law ϑ.

Recall that E = {ei, i ∈ N} ⊂ V is a complete orthonormal basis of H1. Set

H1
n := span{ei, i = 1, · · · , n}

and for u ∈ H0,

Πnu :=
n∑

i=1

⟨u, ei⟩H1ei =

n∑
i=1

⟨u, (I − ∆)ei⟩H0ei.

Consider the following finite dimensional stochastic ordinary differential equation in H1
n{

dun(t) = [ΠnA(un(t)) + Πnf(t,un(t))]dt +
∑

k ΠnBk(t,un(t))dWk
t ,

un(0) = Πnu0.

By Lemmas 2.3 and 2.5, we have, for some Cn,N > 0 and any u ∈ H1
n,

⟨u,ΠnA(u) + Πnf(t, u)⟩H1
n
6 Cn,N(∥u∥2

H1
n
+ 1),

∥ΠnB(t,u)∥l2⊗H1
n
6 Cn,N(∥u∥2

H1
n
+ 1).

Moreover, by (H1)-(H3) it is easy to see that

H1
n ∋ u 7→ ΠnA(u) + Πnf(t,u) ∈ H1

n

and
H1

n ∋ u 7→ ΠnB(t,u) ∈ l2 × H1
n
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are locally Lipschitz continuous. Hence, by the theory of SDE (cf. [17, 26]), there is a unique
continuous (Ft)-adapted process un(t) satisfying

un(t) = un(0) +
∫ t

0
ΠnA(un(s))ds +

∫ t

0
Πnf(s,un(s))ds +

∞∑
k=1

∫ t

0
ΠnBk(s,un(s))dWk

s (3.5)

and for any n > i,

⟨un(t), ei⟩H1 = ⟨u0, ei⟩H1 +

∫ t

0
JA(un(s)), eiKds +

∫ t

0
⟨f(s,un(s)), ei⟩H1ds

+

∞∑
k=1

∫ t

0
⟨Bk(s,un(s)), ei⟩H1dWk

s . (3.6)

We now prove a series of lemmas.

Lemma 3.9. For any T > 0, there exists a positive constant CT,N > 0 such that for any n ∈ N,

E

(
sup

t∈[0,T ]
∥un(t)∥2

H1

)
+

∫ T

0
E∥un(s)∥2

H2ds +
∫ T

0
E∥∇|un(s)|2∥2L2ds 6 CT,N , (3.7)

and also in the periodic case ∫ T

0
E∥un(s)∥4L4ds 6 CT,N . (3.8)

Proof. By Itô’s formula and Lemmas 2.3 and 2.5, we have

∥un(t)∥2
H1 = ∥u0∥2H1 + 2

∫ t

0
JA(un(s)),un(s)Kds + 2

∫ t

0
⟨f(s,un(s)),un(s)⟩H1ds

+ M(t) +
∫ t

0
∥B(s, un(s))∥2L2(l2;H1)ds

6 ∥u0∥2H1 −
∫ t

0
∥un(s)∥2

H2ds −
∫ t

0
∥|un(s)| · |∇un(s)|∥2L2ds (3.9)

+C · N
∫ t

0
∥∇un(s)∥2

H0ds + 2
∫ t

0
∥un(s)∥2

H0ds

+ 2
∫ t

0
∥f(s,un(s))∥H0 · ∥un(s)∥H2ds + M(t)

+

∫ t

0

(1
2
∥un(s)∥2

H2 +CT ∥un(s)∥2
H1 +C∥Hh(s)∥L1(D)

)
ds,

where M(t) is a continuous martingale defined by

M(t) := 2
∞∑

k=1

∫ t

0
⟨Bk(s,un(s)), un(s)⟩H1dWk

s .

Taking expectations and by Young’s inequality, one finds that for any t ∈ [0,T ],

E∥un(t)∥2
H1 6 E∥u0∥2H1 −

1
4

∫ t

0
E∥un(s)∥2

H2ds −
∫ t

0
E∥|un(s)| · |∇un(s)|∥2L2ds

+C · N
∫ t

0
E∥∇un(s)∥2

H0ds +CT

∫ t

0
E∥un(s)∥2

H0ds

+CT

∫ t

0

(
∥Hf(s)∥L1(D) + ∥Hh(s)∥L1(D)

)
ds.
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Hence, by Gronwall’s inequality, we have for any T > 0,

sup
t∈[0,T ]

E∥un(t)∥2
H1 +

∫ T

0
E∥un(s)∥2

H2ds +
∫ T

0
E∥∇|un(s)|2∥2L2ds 6 CT,N . (3.10)

Here, the constant CT,N is independent of n, and we have used that |∇|u|2| 6 C|u| · |∇u|.
Furthermore, from (3.9) and using Burkholder’s inequality, Young’s inequality, Lemma 2.5

and (3.10), we have for any T > 0 and ϵ > 0,

E

(
sup

t∈[0,T ]
∥un(t)∥2

H1

)
6 CT,N +CE

(∫ T

0
∥B(s,un(s))∥2L2(l2;H0) · ∥un(s)∥2

H2ds
)1/2

6 CT,N + ϵ · E
(

sup
t∈[0,T ]

∥B(s,un(s))∥2L2(l2;H0)

)
+Cϵ

∫ T

0
E∥un(s)∥2

H2ds

6 CT,N,ϵ + ϵ ·CTE

(
sup

t∈[0,T ]
∥un(t)∥2

H1

)
.

Choosing ϵ small enough, we get

E

(
sup

t∈[0,T ]
∥un(t)∥2

H1

)
6 CT,N .

In the periodic case, since E is also orthogonal in H0, we have by (2.9) and (H1)-(H3),

E∥un(t)∥2
H0 = E∥u0∥2H0 + 2

∫ t

0
E⟨A(un(s)), un(s)⟩H0ds

+ 2
∫ t

0
E⟨f(s,un(s)),un(s)⟩H0ds +

∫ t

0
E∥B(s,un(s))∥2L2(l2;H0)ds

6 E∥u0∥2H1 − 2
∫ t

0
E∥∇un(s)∥2

H0ds − 2
∫ t

0
E∥un(s)∥4L4ds

+CN

∫ t

0
E∥un(s)∥2

H0ds +CT ,

which yields (3.8) by Gronwall’s lemma. �

Lemma 3.10. Let µn be the law of un in (X,B(X)). Then the family of probability measures
{µn, n ∈ N} is tight on (X,B(X)).

Proof. Set for R > 0
τn

R := inf{t > 0 : ∥un(t)∥H1 > R}.
Then, by (3.7) we have for any T > 0,

sup
n

P(τn
R < T ) = sup

n
P

(
sup

t∈[0,T ]
∥un(t)∥H1 > R

)
6

CT,N

R2 . (3.11)

On the other hand, from (3.6) and using (2.11), Lemma 2.5 and Burkholder’s inequality, we
have for any q > 2 and s, t ∈ [0,T ], e ∈ E ,

E|⟨un(t ∧ τn
R) − un(s ∧ τn

R), e⟩H1 |q

6 CE

∣∣∣∣∣∣
∫ t∧τnR

s∧τnR
JA(un(s)), eKds

∣∣∣∣∣∣
q

+CE

∣∣∣∣∣∣
∫ t∧τnR

s∧τnR
⟨f(s,un(s)), e⟩H1ds

∣∣∣∣∣∣
q

+CE

∣∣∣∣∣∣
∫ t∧τnR

s∧τnR
⟨Bk(s,un(s)), e⟩H1dWk

s

∣∣∣∣∣∣
q
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6 Ce · E
∣∣∣∣∣∣
∫ t∧τnR

s∧τnR
(1 + ∥un(s)∥3

H1)ds

∣∣∣∣∣∣
q

+Ce · E
∣∣∣∣∣∣
∫ t∧τnR

s∧τnR
∥f(s,un(s))∥H0ds

∣∣∣∣∣∣
q

+Ce · E
∣∣∣∣∣∣
∫ t∧τnR

s∧τnR
∥B(s,un(s))∥2L2(l2;H0)ds

∣∣∣∣∣∣
q/2

6 Ce,R,T · |t − s|q/2.

By Kolomogorov’s criterion (cf. [16]), we get for any T > 0 and 0 < α < 1
2 ,

E

(
sup

s,t∈[0,T ],|t−s|6δ
|⟨un(t ∧ τn

R) − un(s ∧ τn
R), e⟩H1 |

)
6 Ce,R,T · δα.

So, for any ϵ > 0 and R > 0,

sup
n

P
{

sup
s,t∈[0,T ],|t−s|6δ

|⟨un(t) − un(s), e⟩H1 | > ϵ
}

6 sup
n

P
{

sup
s,t∈[0,T ],|t−s|6δ

|⟨un(t) − un(s), e⟩H1 | > ϵ; τn
R > T

}
+ sup

n
P

{
τn

R < T
}

6
Ce,R,T · δ
ϵ

+
CT,N

R2 ,

which then gives that

lim
δ↓0

sup
n

P
{

sup
s,t∈[0,T ],|t−s|6δ

|⟨un(t) − un(s), e⟩H1 | > ϵ
}
= 0. (3.12)

The tightness of {µn, n ∈ N} now follows from (3.11), (3.12) and Lemma 2.7. �

In the sequel, without loss of generality, we assume that µn weakly converges to µ ∈ P(X).
By Skorohod’s embedding theorem (cf. [16]), there exist a probability space (Ω̃, F̃ , P̃) and
X-valued random variables ũn and ũ such that

(I) ũn has the same law as un in X for each n ∈ N;
(II) ũn → ũ in X, P̃-a.e., and ũ has law µ.
Moreover, by (3.7) and Fatou’s lemma, we have for any T > 0,

Eµ
(

sup
t∈[0,T ]

∥u(t)∥2
H1

)
= EP̃

(
sup

t∈[0,T ]
∥ũ(t)∥2

H1

)
< +∞, (3.13)∫ T

0
Eµ∥u(s)∥2

H2ds =
∫ T

0
EP̃∥ũ(s)∥2

H2ds < +∞, (3.14)∫ T

0
Eµ∥∇|u(s)|2∥2L2ds =

∫ T

0
EP̃∥∇|ũ(s)|2∥2L2ds < +∞ (3.15)

and also in the periodic case∫ T

0
Eµ∥u(s)∥4L4ds =

∫ T

0
EP̃∥ũ(s)∥4L4ds < +∞. (3.16)

Let h ∈ C∞0 (R) and e ∈ E . Define for any t > 0 and u ∈ X,

Mh
e (t,u) := Ih

1(t,u) − Ih
2(t,u) − Ih

3(t,u) − Ih
4(t,u) − Ih

5(t, u),

where

Ih
1(t,u) := h(⟨u(t), e⟩H1),

Ih
2(t,u) := h(⟨u(0), e⟩H1),
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Ih
3(t,u) :=

∫ t

0
h′(⟨u(s), e⟩H1) · JA(u(s)), eKds,

Ih
4(t,u) :=

∫ t

0
h′(⟨u(s), e⟩H1) · ⟨f(s,u(s)), e⟩H1ds,

Ih
5(t,u) :=

1
2

∫ t

0
h′′(⟨u(s), e⟩H1) · ∥⟨B(s,u(s)), e⟩H1∥2l2ds.

Note that e ∈ E ⊂ V has compact support, there exists m ∈ N such that

supp{e} ⊂ O := {x ∈ R3, |x| 6 m}. (3.17)

Lemma 3.11. We have

sup
n
EP̃|Mh

e (t, ũn)|4/3 + EP̃|Mh
e (t, ũ)|4/3 < +∞. (3.18)

Proof. It is clear that Ih
1(t, ũn) and Ih

2(t, ũn) are bounded by some constant Ch. For Ih
3 , noting that

in the whole space case,
∥u∥L6 6 C∥∇u∥L2 ,

by (2.11) and (3.7), we have

EP̃|Ih
3(t, ũn)|4/3 6 CT,h

∫ T

0
EP̃

∣∣∣JA(ũn(s)), eK∣∣∣4/3ds

6 CT,h,e

∫ T

0
EP̃

(
1 + ∥ũn(s)∥4L3(O)

)
ds

6 CT,h,e

∫ T

0
EP̃

(
1 + ∥ũn(s)∥4L12(O)

)
ds

= CT,h,e

∫ T

0
EP̃

(
1 + ∥|ũn(s)|2∥2L6

)
ds

6 CT,h,e

∫ T

0
EP̃

(
1 + ∥∇|ũn(s)|2∥2L2

)
ds

6 CT,h,e,N .

In the periodic case, by (2.11) and (3.8), we have

EP̃|Ih
3(t, ũn)|4/3 6 CT,h

∫ T

0
EP̃

(
1 + ∥ũn(s)∥4L3(T3)

)
ds

6 CT,h,e

∫ T

0
EP̃

(
1 + ∥ũn(s)∥4L4(T3)

)
ds

6 CT,h,e,N .

For Ih
5 , by (2.12), we similarly have

EP̃|Ih
5(t, ũn)|2 6 CT,h,e,N .

For Ih
4 , it is clear that

EP̃|Ih
4(t, ũn)|2 6 CT,h,e,N .

Moreover, by (3.13)-(3.16), we also have

EP̃|Mh
e (t, ũ)|4/3 < +∞.

The proof is thus complete. �
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Lemma 3.12. For any t > 0 and ϵ > 0,

lim
n→∞

P̃
(|Mh

e (t, ũn) − Mh
e (t, ũ)| > ϵ) = 0. (3.19)

That is, Mh
e (t, ũn) converges to Mh

e (t, ũ) in probability P̃ as n→ ∞.

Proof. Recalling the definition of X in Subsection 2.2, by (II) we have

lim
n→∞

∫
O
|ũn(t, x, ω̃) − ũ(t, x, ω̃)|2dx = 0, P̃ − a.a. ω̃ ∈ Ω̃,

where O is from (3.17). Thus, by the dominated convergence theorem, we have

lim
n→∞
EP̃|Ih

1(t, ũn) − Ih
1(t, ũ)| = 0,

lim
n→∞
EP̃|Ih

2(t, ũn) − Ih
2(t, ũ)| = 0.

ForIh
3 , define for any R > 0,

τ̃n
R := inf{t > 0 : ∥ũn(t)∥H1 > R}.

Then, by (I) and (3.7), for any T > 0, we have

sup
n

P̃(τ̃n
R 6 T ) 6

CT,N

R2 .

Thus, by the dominated convergence theorem and Lemma 2.4, we have from the proof of
Lemma 3.11,

lim
n→∞

P̃(|Ih
3(t, ũn) − Ih

3(t, ũ)| > ϵ)

6 lim
R→∞

lim
n→∞

P̃(|Ih
3(t, ũn) − Ih

3(t, ũ)| > ϵ; τ̃n
R > t) + lim

R→∞
sup

n
P̃(τ̃n

R 6 T )

6 lim
R→∞

lim
n→∞
EP̃

(
1{τ̃nR>t} · |Ih

3(t, ũn) − Ih
3(t, ũ)|

)
/ϵ

6 lim
R→∞
EP̃

( ∫ t

0
lim
n→∞

(
1{τ̃nR>t} ·

∣∣∣∣h′(⟨ũn(s), e⟩H1) · JA(ũn(s)), eK
− h′(⟨ũ(s), e⟩H1) · JA(ũ(s)), eK∣∣∣∣)ds

)
/ϵ = 0.

Similarly, we also have

lim
n→∞

P̃(|Ih
4(t, ũn) − Ih

4(t, ũ)| > ϵ) = 0,

lim
n→∞

P̃(|Ih
5(t, ũn) − Ih

5(t, ũ)| > ϵ) = 0.

Combining the above calculations yields (3.19). �

We can now give the proof of Theorem 3.8.

Proof of Theorem 3.8: Now let t > s and G be any bounded and real valuedBs(X)-measurable
continuous function on X. Then by (3.18) and (3.19), we have

Eµ
(
(Mh

e (t,u) − Mh
e (s,u)) ·G(u)

)
= EP̃

(
(Mh

e (t, ũ) − Mh
e (s, ũ)) ·G(ũ)

)
= lim

n→∞
EP̃

(
(Mh

e (t, ũn) − Mh
e (s, ũn)) ·G(ũn)

)
= lim

n→∞
EP

(
(Mh

e (t,un) − Mh
e (s, un)) ·G(un)

)
= 0,
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where the last step is due to the martingale property of Mh
e (t,un) on (Ω,F , P; (Ft)t>0) and

G(un) ∈ Fs. This means that {Mh
e (t,u), t > 0} is a Bt(X)-martingale. The existence of a weak

solution to Eq. (2.6) now follows from Proposition 3.4.

Summarizing Theorems 3.7, 3.8 and 3.6, we have the following main result in the present
paper.

Theorem 3.13. Under (H1)-(H3), for any u0 ∈ H1, there exists a unique u(t, x) such that
(1o) u ∈ L2(Ω, P; C([0,T ],H1)) ∩ L2(Ω, P; L2([0,T ],H2)) for any T > 0, and

E

(
sup

t∈[0,T ]
∥u(t)∥2

H1

)
+

∫ T

0
E∥u(s)∥2

H2ds 6 CT (1 + ∥u0∥2H1)N; (3.20)

(2o) it holds that in H0,

u(t) = u0 +

∫ t

0

[
A(u(s)) +Pf(s, u(s))

]
ds +

∞∑
k=1

∫ t

0
Bk(s,u(s))dWk

s ,

for all t > 0, P-a.s..

Proof. We only need to prove estimate (3.20). By Itô’s formula, (2.8) and Lemma 2.5, we have

E∥u(t)∥2
H0 = ∥u0∥2H0 + 2

∫ t

0
E⟨A(u(s)),u(s)⟩H0ds

+ 2
∫ t

0
E⟨f(s,u(s)),u(s)⟩H0ds +

∫ t

0
E∥B(s,u(s))∥2L2(l2;H0)ds

6 ∥u0∥2H0 +C − 1
2

∫ t

0
E∥u(s)∥2

H1ds +C
∫ t

0
E∥u(s)∥2

H0ds.

By Gronwall’s inequality, we obtain

sup
t∈[0,T ]

E∥u(t)∥2
H0 +

∫ T

0
E∥u(s)∥2

H1ds 6 CT (∥u0∥2H0 + 1).

Using this estimate, as in the proof of (3.7), we obtain (3.20). �

4. Feller Properties and InvariantMeasures

In the following, we consider the time homogenous case, i.e., the coefficients f, σ and h are
independent of t, and assume a stronger assumption than (H3), namely:
(H3)′ There exist a constant Ch > 0 and a function Hh(x) ∈ L1(D) such that for any x ∈ D,u, v ∈

R3 and j = 1, 2, 3,

∥∂x jh(x,u)∥2l2 + ∥h(x, u)∥2l2 6 Ch · |u|2 + Hh(x),
∥∂x jh(x,u) − ∂x jh(x, v)∥l2 6 Ch · |u − v|,

∥∂u jh(x, u)∥l2 6 Ch,

∥∂u jh(x,u) − ∂v jh(x, v)∥l2 6 Ch · |u − v|.

For fixed initial value u0 = v ∈ H1, we denote the unique solution in Theorem 3.13 by u(t; v).
Then {u(t; v) : v ∈ H1, t > 0} forms a strong Markov process with state space H1. We have:

Lemma 4.1. For v, v′ ∈ H1 and R > 0, define

τv
R := inf {t > 0 : ∥u(t; v)∥H1 > R}
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and
τv,v′

R := τv
R ∧ τv′

R .

Assume (H1), (H2) and (H3)′, then

E∥u(t ∧ τv,v′
R ; v) − u(t ∧ τv,v′

R ; v′)∥2
H1 6 Ct,R · ∥v − v′∥2

H1 .

Proof. Write u(t) := u(t; v), ũ(t) := u(t, v′) and

w(t) := u(t) − ũ(t).

Set tR := τv,v′
R ∧ t. By Itô’s formula (cf. [30, 26]), we have

∥w(tR)∥2
H1 = ∥w(0)∥2

H1 + 2
∫ tR

0
⟨A(u(s)) − A(ũ(s)),w(s)⟩H1ds

+ 2
∫ tR

0
⟨f(s,u(s)) − f(s, ũ(s)),w(s)⟩H1ds

+ 2
∞∑

k=1

∫ tR

0
⟨Bk(s,u(s)) − Bk(s, ũ(s)),w(s)⟩H1dWk

s

+

∞∑
k=1

∫ tR

0
∥Bk(s,u(s)) − Bk(s, ũ(s))∥2

H1ds

=: ∥w(0)∥2
H1 + I1(tR) + I2(tR) + I3(tR) + I4(tR).

By |gN(r) − gN(r′)| 6 |r − r′| and Young’s inequality, it is easy to see that

I1(tR) = −2
∫ tR

0
∥w(s)∥2

H2ds + 2
∫ tR

0
∥w(s)∥2

H1ds

+ 2
∫ tR

0
⟨((u(s) · ∇)u(s) − (ũ(s) · ∇)ũ(s)), (I − ∆)w(s)⟩H0ds

− 2
∫ tR

0
⟨gN(|u(s)|2)u(s) − gN(|ũ(s)|2)ũ(s), (I − ∆)w(s)⟩H0ds

6 −
∫ tR

0
∥w(s)∥2

H2ds + 2
∫ tR

0
∥w(s)∥2

H1ds

+C
∫ tR

0
∥(w(s) · ∇)u(s)∥2L2ds +C

∫ tR

0
∥(ũ(s) · ∇)w(s)∥2L2ds

+C
∫ tR

0
∥|w(s)| · (|u(s)|2 + |ũ(s)|2)∥2L2ds.

By Hölder’s inequality and the Sobolev inequality (2.1), we further have

I1(tR) 6 −
∫ tR

0
∥w(s)∥2

H2ds + 2
∫ tR

0
∥w(s)∥2

H1ds

+CR

∫ tR

0
∥w(s)∥2L∞ds +C

∫ tR

0
∥ũ(s)∥2L6 · ∥∇w(s)∥2L3ds

+C
∫ tR

0
∥w(s)∥2L6 · (∥u(s)∥2L6 + ∥ũ(s)∥2L6)2ds

6 −
∫ tR

0
∥w(s)∥2

H2ds +CR

∫ tR

0
∥w(s)∥2

H1ds

+CR

∫ tR

0
∥w(s)∥3/2

H2 · ∥w(s)∥1/2
H0 ds +CR

∫ tR

0
∥w(s)∥H2 · ∥w(s)∥H1ds

20



6 −3
4

∫ tR

0
∥w(s)∥2

H2ds +CR

∫ tR

0
∥w(s)∥2

H1ds.

By (H1), (H2) and (H3)′, we similarly have

I2(tR) 6
1
4

∫ tR

0
∥w(s)∥2

H2ds +CR

∫ tR

0
∥w(s)∥2

H0ds,

I4(tR) 6
1
2

∫ tR

0
∥w(s)∥2

H2ds +CR

∫ tR

0
∥w(s)∥2

H1ds.

So,

E∥w(t ∧ τR)∥2
H1 6 ∥w(0)∥2

H1 +CR

∫ tR

0
∥w(s)∥2

H1ds

6 ∥v − v′∥2
H1 +CR

∫ t

0
∥w(s ∧ τR)∥2

H1ds.

By Gronwall’s inequality, we get the desired estimate. �

Let Cloc
b (H1) denote the set of all bounded and locally uniformly continuous functions on H1.

Then Cloc
b (H1) is clearly a Banach space under the sup norm

∥ϕ∥∞ := sup
u∈H1
|ϕ(u)|.

For t > 0, we define the semigroup Tt associated with {u(t; v) : v ∈ H1, t > 0} by

Ttϕ(v) := E(ϕ(u(t; v))), ϕ ∈ Cloc
b (H1).

We have:

Theorem 4.2. Under (H1), (H2) and (H3)′, for every t > 0, Tt maps Cloc
b (H1) into Cloc

b (H1).
That is, (Tt)t>0 is a Feller semigroup on Cloc

b (H1).

Proof. Let ϕ ∈ Cloc
b (H1) be given. We want to prove that for any t > 0 and m ∈ N

lim
δ→0

sup
v,v′∈Bm,∥v−v′∥H16δ

|Ttϕ(v) − Ttϕ(v′)| = 0, (4.1)

where Bm := {v ∈ H1 : ∥v∥H1 6 m} denotes the ball in H1.
For any v, v′ ∈ Bm and R > m, as in Lemma 4.1, define

τv
R := {t > 0 : ∥u(t; v)∥H1 > R}

and
τv,v′

R := τv
R ∧ τv′

R .

By (3.20), we have

E|ϕ(u(t; v)) − ϕ(u(t ∧ τv,v′
R ; v))| 6 2∥ϕ∥∞ · P(τv,v′

R < t) 6 2∥ϕ∥∞ · sup
v∈Bm

E

(
sup

s∈[0,t]
∥u(s; v)∥2

H1

)
/R2

6 2∥ϕ∥∞ ·Ct,m,N/R2.

For any ϵ > 0, choose R > m sufficiently large such that for any v, v′ ∈ Bm

E|ϕ(u(t; v)) − ϕ(u(t ∧ τv,v′
R ; v))| 6 ϵ, (4.2)

E|ϕ(u(t; v′)) − ϕ(u(t ∧ τv,v′
R ; v′))| 6 ϵ. (4.3)

For this R, since ϕ is uniformly continuous on BR, one may choose η > 0 such that for any
u,u′ ∈ BR with ∥u − u′∥H1 6 η

|ϕ(u) − ϕ(u′)| 6 ϵ.
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Thus, for any v, v′ ∈ Bm with ∥v − v′∥H1 6
√
ϵ·η√

2Cϕ·Ct,R
, by Lemma 4.1 we have

E|ϕ(u(t ∧ τv,v′
R ; v)) − ϕ(u(t ∧ τv,v′

R ; v′))|
6 ϵ + 2Cϕ · P(∥u(t ∧ τv,v′

R ; v) − u(t ∧ τv,v′
R ; v′)∥H1 > η) 6 2ϵ. (4.4)

Combining (4.2) (4.3) and (4.4), we get (4.1). �

In the periodic case, we have the following existence of invariant measures associated to
(Tt)t>0.

Theorem 4.3. Under (H1), (H2) and (H3)′, in the periodic case, there is an invariant measure
µ ∈ P(H1) associated to the semigroup (Tt)t>0 such that for any t > 0 and ϕ ∈ Cloc

b (H1),∫
H1

Ttϕ(u)µ(du) =
∫
H1
ϕ(u)µ(du).

Proof. In the following, we assume that u0 = 0. Using Itô’s formula, we have by (2.9) and
(2.14),

E∥u(t)∥2
H0 = 2

∫ t

0
E⟨A(u(s)),u(s)⟩H0ds + 2

∫ t

0
E⟨f(u(s)),u(s)⟩H0ds +

∫ t

0
E∥B(u(s))∥2L2(l2;H0)ds

6 −3
2

∫ t

0
E∥u(s)∥2

H1ds − 2
∫ t

0
E∥u(s)∥4L4ds +Ch,f,N

∫ t

0
E∥u(s)∥2

H0ds +Ch,f · t.

In the periodic case, noting that for any ϵ > 0

∥u∥2
H0 6 C∥u∥2L4 6 ϵ∥u∥4L4 +Cϵ ,

we further have

E∥u(t)∥2
H0 6 −

3
2

∫ t

0
E∥u(s)∥2

H1ds −
∫ t

0
E∥u(s)∥4L4ds +Ch,f,N · t.

Hence, for any t > 0

E∥u(t)∥2
H0 +

∫ t

0
E∥u(s)∥2

H1ds +
∫ t

0
E∥u(s)∥4L4ds 6 Ch,f,N · t. (4.5)

On the other hand, by Itô’s formula again and (2.10), (2.15), as above we have

E∥u(t)∥2
H1 = 2

∫ t

0
EJA(u(s)),u(s)Kds + 2

∫ t

0
E⟨f(u(s)),u(s)⟩H1ds +

∫ t

0
E∥B(u(s))∥2L2(l2;H1)ds

6 −1
4

∫ t

0
E∥u(s)∥2

H2ds +Ch,f,N ·
∫ t

0
E∥u(s)∥2

H1ds +Ch,f,N · t

6 −1
4

∫ t

0
E∥u(s)∥2

H2ds +Ch,f,N · t.

Therefore, for any t > 0

1
t

∫ t

0
E∥u(s)∥2

H2ds 6 Ch,f,N .

In the periodic case, since H2 is compactly embedded into H1, the existence of an invariant
measure µ now follows from the classical Krylov-Bogoliubov method (cf. [3]). �
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5. Ergodicity: Uniqueness of InvariantMeasures

In the following, we shall work in the case of D = T3, and suppose that for f ∈ H0, the mean
value of f on T3 vanishes, i.e., ∫

T3
f(x)dx = 0.

In this case, we assume that the orthonormal basis E of H1 consists of the eigenvectors of P∆,
i.e,

P∆ei = −λiei, ⟨ei, ei⟩H1 = 1, i = 1, 2, · · · ,
where 0 < λ1 6 · · · 6 λn ↑ ∞. Recalling that the following Poincare inequality holds:

∥u∥2
H0 6 1/λ1∥∇u∥2

H0 , (5.1)

two equivalent norms in H1 and H2 are given by

∥u∥H1 := ∥∇u∥H0 , ∥u∥H2 := ∥∆u∥H0 .

We shall use these two norms in what follows.
For m ∈ N, let Ω := C0(R+;Rm) denote the space of all continuous functions with initial

values 0, P the standard Wiener measure on F := B(C0(R+;Rm)). Then, the coordinate process

Wt(ω) := ω(t), ω ∈ Ω,

is a standard Wiener process on (Ω,F , P).
Consider the following stochastic tamed 3D Navier-Stokes equation:{

du(t) = A(u(t))dt + dw(t),
u(0) = u0 ∈ H1,

(5.2)

where w(t) := QWt is the noise, and the linear map Q : Rm → H1 is given by

Qei = qiei, qi > 0, i = 1, · · · ,m.

Here, {ei, i = 1, · · · ,m} is the canonical basis of Rm.
Set

E0 :=
m∑

i=1

q2
i /λi, E1 :=

m∑
i=1

q2
i .

Then the quadratic variation of w(t) in H0 and H1 are given respectively by

[w·]H0(t) = E0t, [w·]H1(t) = E1t.

We remark that E0 6 E1/λ1.
Our main result in this section is the following:

Theorem 5.1. Let (Tt)t>0 be the transition semigroup associated with (5.2). For any sufficiently
large m∗ = m∗(E1, λ1,N) ∈ N, there exists a unique invariant probability measure associated
with (Tt)t>0.

We shall divide the proof into two parts. In the first part, we shall prove the asymptotic
strong Feller property of (Tt)t>0 (cf. [15, Proposition 3.12]). In the second part, we shall prove
a support property of the invariant measure, namely that the origin 0 is contained in the support
of each invariant measure (cf. [6]). By [15, Proposition 3.12 and Corollary 3.17], these two
parts will imply Theorem 5.1.

23



5.1. Asymptotic Strong Feller Property. Let u(t, ω; u0) be the unique solution of Eq. (5.2).
For 0 6 s < t, let Js,t denote the derivative flow of u(t, ω; u0) between s and t with respect to
the initial values u0, i.e., for every v0 ∈ H1, Js,tv0 ∈ H1 satisfies

∂tJs,tv0 = ∆Js,tv0 +K(u(t, ω; u0),Js,tv0), Js,sv0 = v0, (5.3)

where K is linear with respect to the second component and given by

K(u, v) := −P((v · ∇)u + (u · ∇)v) −P(gN(|u|2)v + 2g′N(|u|2)⟨u, v⟩R3u).

In the Appendix, we shall prove that for each ω

(J0,tv0)(ω) = lim
ϵ↓0

u(t, ω; u0 + ϵv0) − u(t, ω; u0)
ϵ

in H1. (5.4)

Let us now consider the Malliavin derivative of u(t, ω; u0) with respect to ω. Let H be the
Cameron-Martin space, i.e., all absolutely continuous functions from R+ to Rm with locally
square integrable derivative. For any v ∈H , the Malliavin derivative is defined by

Dvu(t, ω; u0) := lim
ϵ→0

u(t, ω + ϵv; u0) − u(t, ω; u0)
ϵ

, P − a.s.. (5.5)

Notice that v can be random and possibly nonadapted to the filtration generated by W. For the
sake of simplicity, we writeAtv := Dvu(t, ω; u0). Then

∂tAtv = ∆Atv +K(u(t, ω; u0),Atv) + Qv̇(t), A0v = 0, (5.6)

where v̇(t) is the derivative of v(t) with respect to t.
By the formula of variation of constants, it is easy to see that

Atv =
∫ t

0
Js,tQv̇(s)ds.

Moreover, for any v0 ∈ H1 and v ∈H , set

v(t) := J0,tv0 −Atv.

Then

∂tv(t) = ∆v(t) +K(u(t), v(t)) − Qv̇(t), v(0) = v0. (5.7)

As done in [15], our main aim is to construct a suitable v such that v(t) exponentially decays
to zero in some sense as t → ∞. We first introduce some necessary notations and prove some
preparing lemmas.

Let H1
ℓ denote the following finite dimensional subspace of H1 (called low mode space)

H1
ℓ := span{e1, · · · , em}.

Then we have the following direct sum decomposition:

H1 = H1
ℓ ⊕ H1

~

and for any u ∈ H1,
u = uℓ + u~, uℓ ∈ H1

ℓ , u~ ∈ H1
~.

The co-dimensional space H1
~ is also called high mode space. For any v ∈ H0, we define

Πℓv :=
m∑

i=1

⟨(−∆)ei, v⟩H0ei ∈ H1
ℓ

and
Π~v := v − Πℓv ∈ H0.

In what follows, we shall always write vℓ := Πℓv and v~ := Π~v.
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The following lemma is immediate.

Lemma 5.2. For any u ∈ H2

∥∆Π~u∥2H0 > λm∥∇Π~u∥2H0 .

We also need the following lemma. Recall that ∥u∥H2 = ∥∆u∥H0 .

Lemma 5.3. For any u, v ∈ H2, set

N(u) := ∥u∥2
H2 + ∥|u| · |∇u|∥2L2 . (5.8)

Then

⟨v~,K(u, v)⟩H1 6
1
2
∥∆v~∥2H0 +CN · N(u) · (∥v~∥2H1 + ∥vℓ∥2H1)

and
∥ΠℓK(u, v)∥2

H1 6 Cm∥v∥2H0 · (1 + ∥u∥4H1),
where the constant CN (resp. Cm) only depends on N (resp. m).

Proof. For the first, we write

⟨v~,K(u, v)⟩H1 = I1 + I2 + I3 + I4,

where

I1 := −⟨v~,P((v · ∇)u)⟩H1 ,

I2 := −⟨v~,P((u · ∇)v)⟩H1 ,

I3 := −⟨v~,P(gN(|u|2)v)⟩H1 ,

I4 := −2⟨v~,P(g′N(|u|2)⟨u, v⟩R3u)⟩H1 .

For I1, by Young’s inequality and the Sobolev inequality (2.1) we have

I1 6
1
8
∥∆v~∥2H0 + 2∥|v| · |∇u|∥2L2 6

1
8
∥∆v~∥2H0 + 2∥v∥2L6 · ∥∇u∥2L3 6

6
1
8
∥∆v~∥2H0 +C∥v~∥2H1 · ∥u∥2H2 +C∥vℓ∥2H1 · ∥u∥2H2 .

For I2, we have

I2 6
1
8
∥∆v~∥2H0 + 2∥|∇v| · |u|∥2L2 6

1
8
∥∆v~∥2H0 + 2∥v∥2

H1 · ∥u∥2L∞ 6

6
1
8
∥∆v~∥2H0 +C∥v~∥2H1 · ∥u∥2H2 +C∥vℓ∥2H1 · ∥u∥2H2 .

For I3, we have

I3 = −⟨∇v~, gN(|u|2)∇v)⟩H0 − ⟨∇v~, g′N(|u|2)∇|u|2v)⟩H0

6 ∥u∥2L∞ · ∥|∇v~| · |∇v|∥L1 + ∥∇v~∥L6 · ∥v∥L3 · ∥∇|u|2∥L2

6 C∥u∥2
H2 · (∥v~∥2H1 + ∥vℓ∥2H1) +

1
8
∥v~∥2H2 +C∥v∥2

H1 · ∥|u| · |∇u|∥2L2 .

For I4, noting that
|g′′N(r)| 6 C · 1{N<r<N+1},

we similarly have

I4 6 C∥u∥2
H2 · (∥v~∥2H1 + ∥vℓ∥2H1) +

1
8
∥v~∥2H2 +CN∥v∥2H1 · ∥|u| · |∇u|∥2L2 .

Combining the above calculations, we obtain the first estimate.
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As for the second one, we may write

∥ΠℓK(u, v)∥2
H1 =

m∑
i=1

⟨ei,K(u, v)⟩2H1 =

m∑
i=1

 4∑
j=1

Ji j


2

,

where

Ji1 := −⟨ei,P((v · ∇)u)⟩H1 ,

Ji2 := −⟨ei,P((u · ∇)v)⟩H1 ,

Ji3 := −⟨ei,P(gN(|u|2)v)⟩H1 ,

Ji4 := −2⟨ei,P(g′N(|u|2)(u · v)u)⟩H1 .

For Ji1, we have

Ji1 = ⟨∆ei, (v · ∇)u)⟩H0 = −⟨∇∆ei, v ⊗ u⟩H0 6 ∥∇∆ei∥L∞∥|v| · u∥L1 6 Cei∥v∥H0∥u∥H0 .

Similarly, we have

Ji2 6 Cei∥v∥H0∥u∥H0 ,

Ji3 6 Cei∥v∥H0∥u∥2L4 ,

Ji4 6 Cei∥v∥H0∥u∥2L4 .

Summarizing the above calculations and by the Sobolev embedding theorem, we obtain the
second estimate. �

We now prove the following crucial estimate about the solution u(t).

Lemma 5.4. (i) For any η > 0, there exist constants Cη,CE1,λ1,N,η > 0 such that for any t > 0
and u0 ∈ H1

E exp
{
η

∫ t

0
N(u(s; u0))ds

}
6 exp{Cη∥u0∥2H1 +CE1,λ1,N,ηt},

where N(u) is defined by (5.8).
(ii) There exist constants CN ,CE1,λ1,N > 0 such that for any t > 0 and u0 ∈ H1

E∥u(t; u0)∥2
H1 6 ∥u0∥2H1(CN · t + 1)e−t/2 +CE1,λ1,N .

Proof. By Itô’s formula, we have

d∥u(t)∥2
H0 = 2⟨u(t), A(u(t))⟩H0dt + 2⟨u(t), dw(t)⟩H0 + E0dt. (5.9)

By (2.9) and Young’s inequality, we know

⟨u(t), A(u(t))⟩H0 6 −∥∇u(t)∥2
H0 − ∥u(t)∥4L4 + N∥u(t)∥2

H0

6 −∥u(t)∥2
H1 −

1
2
∥u(t)∥4

H0 +
N2

2
. (5.10)

Using Lemma 6.2 in the Appendix, we get for any t, η > 0

E exp
{
η

∫ t

0
∥u(s)∥2

H1ds
}
6 exp{η∥u0∥2H0 +CE0,N,ηt}. (5.11)

Again, by Itô’s formula and (2.10), we have

d∥u(t)∥2
H1 = 2Ju(t), A(u(t))Kdt + 2⟨u(t), dw(t)⟩H1 + E1dt

6 (−N(u(t)) +CN∥u(t)∥2
H1)dt + 2⟨u(t), dw(t)⟩H1 + E1dt. (5.12)

As in the proof of Lemma 6.2 in the Appendix, using (5.11) and exponential martingales, we
then get the first estimate.
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On the other hand, from (5.9) and (5.10), we have

d∥u(t)∥2
H0 6 −

1
2
∥u(t)∥2

H0dt + 2⟨u(t), dw(t)⟩H0 + (E0 + N2 +
1
2

)dt.

It is direct by Gronwall’s inequality that

E∥u(t; u0)∥2
H0 6 ∥u∥2H0e−t/2 + 2(E0 + N2 + 1).

Thus, thanks to

∥u(t)∥2
H1 6 ∥u(t)∥H2∥u(t)∥H0 , (5.13)

we obtain

d(et/2∥u(t)∥2
H1) = et/2(2Ju(t), A(u(t))K + E1 +

1
2
∥u(t)∥2

H1)dt + 2et/2⟨u(t), dw(t)⟩H1

6 et/2(−∥u(t)∥2
H2 +CN∥u(t)∥2

H1 + E1)dt + 2et/2⟨u(t), dw(t)⟩H1

6 et/2(CN∥u(t)∥2
H0 + E1)dt + 2et/2⟨u(t), dw(t)⟩H1 .

Therefore,

et/2E∥u(t; u0)∥2
H1 6 ∥u0∥2H1 +CN

∫ t

0
es/2E∥u(s; u0)∥2

H0ds + 2E1et/2

6 ∥u0∥2H1 +CN

∫ t

0
(∥u0∥2H0 + 2es/2(E0 + N2 + 1))ds + 2E1et/2

6 ∥u0∥2H1 +CN∥u0∥2H0t + et/2(CN(E0 + N2 + 1) + 2E1),

which then gives the second estimate. �

Based on the previous discussions and lemmas, we can now prove the following proposition,
which will imply the asymptotic strong Feller property of (Tt)t>0 according to [15, Proposition
3.12].

Proposition 5.5. Let (Tt)t>0 be the semigroup associated with (5.2). There exist a constant
m∗ := m∗(E1,N) ∈ N and constants C0,C1, γ > 0 such that for any t > 0, u0 ∈ H1, and any
Fréchet differentiable function φ on H1 with ∥φ∥∞, ∥∇φ∥∞ < +∞,

∥∇Ttφ(u0)∥H1 6 C0 · exp{C1∥u0∥2H1} · (∥φ∥∞ + e−γt∥∇φ∥∞).

Proof. For any v0 ∈ H1 with ∥v0∥H1 = 1, define

vℓ(t) :=
{

v0ℓ · (1 − t/(2∥v0ℓ∥H1)), t ∈ [0, 2∥v0ℓ∥H1]
0, t ∈ (2∥v0ℓ∥H1 ,∞).

Let v~(t) solve the following linear evolution equation:

∂tv~(t) = ∆Π~v~(t) + Π~K(u(t), v~(t) + vℓ(t)), v~(0) = v0~.

Set
v(t) := vℓ(t) + v~(t)

and

v̇(t) := Q−1
(vℓ · 1{t<2∥vℓ∥H1 }

2∥vℓ∥H1
+ ∆vℓ(t) + ΠℓK(u(t), v(t))

)
.

Then v(t) ∈ H is a continuous adapted process. From the construction, one finds that v(t)
together with v(t) solves the equation (5.7).

Thus, we have

⟨∇Ttφ(u0), v0⟩H1 = E⟨(∇φ)(u(t; u0)),J0,tv0⟩H1

= E⟨(∇φ)(u(t; u0)),Atv(t)⟩H1 + E⟨(∇φ)(u(t; u0)), v(t)⟩H1
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= E(Dv(φ(u(t; u0)))) + E⟨(∇φ)(u(t; u0)), v(t)⟩H1

= E

(
φ(u(t; u0)) ·

∫ t

0
v̇(s)dWs

)
+ E⟨(∇φ)(u(t; u0)), v(t)⟩H1

6 ∥φ∥∞
(∫ t

0
E|v̇(s)|2ds

)1/2

+ ∥∇φ∥∞E∥v(t)∥H1 , (5.14)

where the last equality is due to the integration by parts formula in the Malliavin calculus (cf.
[21]).

By the chain rule and Lemmas 5.3 and 5.2, we have

∂t∥v~(t)∥2H1 = −2∥∆Π~v~(t)∥2H0 + 2⟨v~(t),Π~K(u(t), v(t))⟩H1

6 −∥∆Π~v~(t)∥2H0 +CN · N(u(t)) · (∥v~(t)∥2H1 + ∥vℓ(t)∥2H1)

6 (−λm +CN · N(u(t))) · ∥v~(t)∥2H1 +CN · N(u(t)) · ∥vℓ(t)∥2H1 .

Noting that v(t) = 0 for t > 2, by Gronwall’s inequality we get

∥v~(t)∥2H1 6 ∥v~(0)∥2
H1 exp

{
−λmt +CN

∫ t

0
N(u(s))ds

}
+ exp

{
−λm(t − 2) +CN

∫ t

0
N(u(s))ds

}∫ 2

0
∥vℓ(s)∥2

H1ds.

By (i) of Lemma 5.4, since λm ↑ ∞ as m → ∞, there exist constants γ > 0 and m∗ =
m∗(E1, λ1,N) ∈ N such that for all t > 0,

E∥v~(t)∥4H1 6 CE1,λ1,N · e
CN∥u0∥2

H1−γt.

Hence, for any t > 2,

E∥v(t)∥H1 6 CE1,λ1,N · e
CN∥u0∥2

H1−γt. (5.15)

On the other hand, by Lemma 5.3, we have

E|v̇(t)|2 6 Cm

(
1 + E(∥v(t)∥2

H0(1 + ∥u(t)∥4
H1))

)
6 Cm

(
1 + (E∥v(t)∥4

H0)1/2(1 + E∥u(t)∥8
H1)1/2

)
. (5.16)

Using Itô’s formula and (2.8), as in the proof of Theorem 4.3, we have

E∥u(t)∥2p
H0 6 C∥u0∥2p

H0(1 + t),

and also by (2.10), ∥u∥2
H1 6 ∥u∥H0∥u∥H2 and Young’s inequality,

E∥u(t)∥2p
H1 6 ∥u0∥2p

H1 − pE
∫ t

0
∥u(s)∥2(p−1)

H1 ∥u(s)∥2
H2ds +CNE

∫ t

0
∥u(s)∥2p

H1ds +Ct

6 ∥u0∥2p
H1 −

p
2
E

∫ t

0
∥u(s)∥2(p−1)

H1 ∥u(s)∥2
H2ds +CNE

∫ t

0
∥u(s)∥2(p−1)

H1 ∥u(s)∥2
H0ds +Ct

6 ∥u0∥2p
H1 +CNE

∫ t

0
∥u(s)∥2p

H0ds +Ct 6 C∥u0∥2p
H1(1 + t2).

Thus, integrating both sides of (5.16) and using (5.15), we obtain∫ ∞

0
E|v̇(t)|2dt 6 Cm,E1,λ1,N,γ · e

CN∥u0∥2
H1 ·

(
1 +

∫ ∞

0
e−γt(1 + t)dt

)
6 Cm,E1,λ1,N,γ · e

CN∥u0∥2
H1 . (5.17)

The proof is thus completed by combining (5.14)-(5.17). �
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5.2. A Support Property of Invariant Measures.

Proposition 5.6. The point 0 belongs to the support of any invariant measure of (Tt)t>0.

For the proof we need the following lemma, whose proof in turn is inspired by [6].

Lemma 5.7. For any r1, r2 > 0, there exists T > 0 such that

inf
∥u0∥H16r1

P{ω : ∥u(T, ω; u0)∥H1 6 r2} > 0.

Proof. Set
v(t) := u(t) − w(t).

Then
v′(t) = A(v(t) + w(t)), v(0) = u0.

Let T > 0 and ϵ ∈ (0, 1), to be determined below. We assume that

sup
t∈[0,T ]

∥w(t)∥H6 < ϵ. (5.18)

First of all, by the chain rule, we have
d
dt
∥v(t)∥2

H0 = J1 + J2 + J3 + J4,

where

J1 := −2∥∇v(t)∥2
H0 + 2⟨∆w(t), v(t)⟩H0 ,

J2 := −2⟨v(t), ((v(t) + w(t)) · ∇)(v(t) + w(t))⟩H0 ,

J3 := −2⟨v(t) + w(t), gN(|v(t) + w(t)|2)(v(t) + w(t))⟩H0 ,

J4 := 2⟨w(t), gN(|v(t) + w(t)|2)(v(t) + w(t))⟩H0 .

For J1, by (5.18) we have

J1 6 −2∥∇v(t)∥2
H0 +Cϵ∥v(t)∥H0 .

Here and below, C denotes an absolute constant.
For J2, by the Sobolev inequality (2.1) and (5.18) we have

J2 = −2⟨w(t), ((v(t) + w(t)) · ∇)(v(t) + w(t))⟩H0

6 2∥∇w(t)∥L∞∥v(t) + w(t)∥2
H0

6 Cϵ · ∥v(t)∥2
H0 +Cϵ.

For J3, we obviously have
J3 6 0.

For J4, by (2.1) and Young’s inequality we have

J4 6 2∥w(t)∥L∞ · ∥v(t) + w(t)∥3L3 6 Cϵ · ∥v(t)∥3L3 +Cϵ4 6

6 Cϵ · ∥∇v(t)∥3/2
H0 ∥v(t)∥3/2

H0 +Cϵ4

6 ∥∇v(t)∥2
H0 +Cϵ4 · ∥v(t)∥6

H0 +Cϵ4.

Combing the above calculations gives that
d
dt
∥v(t)∥2

H0 6 −∥∇v(t)∥2
H0 +Cϵ · ∥v(t)∥6

H0 +Cϵ

6 − 1
λ1
∥v(t)∥2

H0 +Cϵ · ∥v(t)∥6
H0 +Cϵ,

where the second step is due to the Poincare inequality (5.1).
29



Note that ∥v(t)∥2
H0 depends on ϵ through (5.18). By Lemma 6.1 in the Appendix, for any

δ, h > 0, we may choose a T0 > 0 sufficiently large and an ϵ small enough such that

sup
t∈[0,T0]

∥v(t)∥H0 6 2r1 (5.19)

and

sup
t∈[T0,T0+h]

∥v(t)∥H0 < δ. (5.20)

Let us now turn to the estimate of the first order Sobolev norm of v(t). By the chain rule
again, we have

d
dt
∥v(t)∥2

H1 = 2Jv(t), A(v(t) + w(t))K = I1 + I2 + I3 + I4,

where

I1 := 2Jv(t) + w(t), A(v(t) + w(t))K,
I2 := −2⟨∆2w(t), v(t) + w(t)⟩H0 ,

I3 := 2⟨∆w(t), ((v(t) + w(t)) · ∇)(v(t) + w(t))⟩H0 ,

I4 := 2⟨∆w(t), gN(|v(t) + w(t)|2)(v(t) + w(t))⟩H0 .

For I1, by (2.10) and (5.13) we have

I1 6 −∥v(t) + w(t)∥2
H2 +CN∥v(t) + w(t)∥2

H1

6 −1
2
∥v(t)∥2

H2 + 4N∥v(t)∥2
H1 +CNϵ

6 −1
4
∥v(t)∥2

H2 +CN∥v(t)∥2
H0 +CNϵ.

Here and below, CN denotes a constant only depending on N.
For I2, we have

I2 6 Cϵ +Cϵ∥v(t)∥H0 .

For I3, we have

I3 6 2∥∇∆w(t)∥L∞∥v(t) + w(t)∥2
H0 6 Cϵ +Cϵ∥v(t)∥2

H0 .

For I4, we have

I4 6 Cϵ +Cϵ∥v(t)∥3L3 6
1
8
∥v(t)∥2

H2 +Cϵ +Cϵ∥v(t)∥6
H0 .

Combing the above calculations gives that

d
dt
∥v(t)∥2

H1 6 −
1
8
∥v(t)∥2

H2 +CN · ∥v(t)∥2
H0 +Cϵ · ∥v(t)∥6

H0 +Cϵ

6 −C0∥v(t)∥2
H1 +CN · ∥v(t)∥2

H0 +Cϵ∥v(t)∥6
H0 +Cϵ.

By Gronwall’s inequality, for any 0 < t1 < t2 we have

∥v(t2)∥2
H1 6 e−C0(t2−t1)∥v(t1)∥2

H1 +
1

C0

(
CN · sup

t∈[t1,t2]
∥v(t)∥2

H0 +Cϵ · sup
t∈[t1,t2]

∥v(t)∥6
H0 +Cϵ

)
.

Firstly, letting t1 = 0 and t2 = T0 and by (5.19), we find

∥v(T0)∥2
H1 6 r2

1 +
1

C0

(
CN · sup

t∈[0,T0]
∥v(t)∥2

H0 +Cϵ · sup
t∈[0,T0]

∥v(t)∥6
H0 +Cϵ

)
6 CN,C0(r

6
1 + 1).
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Secondly, letting t1 = T0 and t2 = T0 + h yields

∥v(T0 + h)∥2
H1 6 e−C0hCN,C0(r

6
1 + 1) +

1
C0

(
CN · sup

t∈[T0,T0+h]
∥v(t)∥2

H0 +Cϵ · sup
t∈[T0,T0+h]

∥v(t)∥6
H0 +Cϵ

)
,

which together with (5.20) implies that for some T large enough and ϵ > 0 small enough

∥v(T )∥H1 6 r2/2.

Therefore, there exist T sufficiently large and ϵ small enough such that for any ∥u0∥H1 6 r1

∥u(T, ω; u0)∥H1 6 r2.

That is, if we set

Ωϵ :=
{
ω : sup

t∈[0,T ]
∥w(t, ω)∥H6 < ϵ

}
,

then
Ωϵ ⊂ ∩∥u0∥H16r1{ω : ∥u(T, ω; u0)∥H1 6 r2}.

The desired estimate now follows from the fact that Ωϵ is an open subset of Ω and P(Ωϵ) >
0. �

Proof of Proposition 5.6: For r > 0, let Br := {u0 ∈ H1 : ∥u0∥H1 6 r} be the ball in H1. For
each invariant measure µ, we can choose some r1 > 0 such that

µ(Br1) > 1/2.

By Lemma 5.7, we further have for any r2 > 0 and some t > 0

µ(Br2) =
∫
H1

(Tt1Br2
)(u0)µ(du0) >

∫
Br1

(Tt1Br2
)(u0)µ(du0) > µ(Br1) · inf

u0∈Br1

(Tt1Br2
)(u0) > 0,

which means that 0 belongs to the support of µ.

Proof of Theorem 5.1: The assertion follows from Propositions 5.5 and 5.6 due to [15, Propo-
sition 3.12, Corollary 3.17].

6. Appendix

6.1. Proof of Proposition 3.4. In this subsection, we prove the martingale characterization of
weak solutions.

First of all, (i)=⇒(ii) is direct by Itô’s formula. Let us prove (ii)=⇒(i). Define for e ∈ E (see
Subsection 2.3 for the notation E )

Me(t,u) := ⟨u(t) − u(0), e⟩H1 −
∫ t

0
JA(u(s)), eKds −

∫ t

0
⟨f(s,u(s)), e⟩H1ds.

Using (ii) and by simple approximations as in [31], one knows that {Me(t,u), t > 0} is a con-
tinuous local martingale under Pϑ with respect to Bt(X), and its quadratic variation process is
given by

[Me](t,u) =
∫ t

0
∥⟨B(s,u(s)), e⟩H1∥2l2ds.

Set

M(t,u) :=
∞∑
j=1

Me j(t,u)e j. (6.1)
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Then t 7→ M(t,u) is an H1-valued continuous local martingale under Pϑ with respect to Bt(X).
Indeed, for any R > 0, define the stopping time

τR(u) := inf
{

t > 0 :
∫ t

0
∥B(s,u(s))∥2L2(l2;H1)ds > R

}
.

Then by (3.1) and (2.15) we have

τR(u) ↑ ∞, Pϑ − a.a. u, as R→ ∞.

Set

MR,n(t,u) :=
n∑

j=1

Me j(t ∧ τR,u)e j.

It is clear that MR,n(t,u) is an H1-valued continuous martingale with

≪ MR,n ≫H1 (t,u) =
n∑

i, j=1

[Mei ,Me j](t ∧ τR,u) · ei ⊗ e j

=

n∑
i, j=1

∫ t∧τR

0
⟨⟨B(s,u(s)), e j⟩H1 , ⟨B(s,u(s)), e j⟩H1⟩l2 · ei ⊗ e jds,

where≪ · ≫H1 denotes the square variation of MR in H1. Moreover, by Burkholder’s inequality
we have, for any T > 0

EPϑ

(
sup

t∈[0,T ]
∥MR,n(t,u) − MR,m(t,u)∥2

H1

)
6 C

m∑
j=n

EPϑ

(∫ T∧τR

0
∥⟨B(s, u(s)), e j⟩H1∥2l2ds

)
→ 0

as n,m → ∞. Hence, the series in (6.1) converges in C([0,T ];H1), Pϑ-a.s., and MR(t,u) :=
M(t ∧ τR,u) is an H1-valued continuous square integrable martingale with

≪ MR ≫H1 (t, u) =
∞∑

i, j=1

[Mei ,Me j](t ∧ τR, u) · ei ⊗ e j

=

∞∑
i, j=1

∫ t∧τR

0
⟨⟨B(s,u(s)), e j⟩H1 , ⟨B(s, u(s)), e j⟩H1⟩l2 · ei ⊗ e jds.

Letting R→ ∞ we obtain the desired property of M(t,u).
In particular, the following equality holds in H0

u(t) = u(0) +
∫ t

0
A(u(s))ds +

∫ t

0
f(s,u(s))ds + M(t,u), Pϑ − a.s..

By Itô’s formula (cf. [30, 26]), we obtain that Pϑ(C([0,∞),H1)) = 1. The existence of weak
solutions now follows from the representation theorem for martingales (cf. [23, Lemma 3.2] or
[3, Theorem 8.2]).

6.2. Two Basic Estimates. In this subsection, we prove two basic estimates used in Section 5.

Lemma 6.1. Let {φϵ(·, r0), ϵ ∈ (0, 1), r0 > 0} be a family of positive real functions on R+ with
φϵ(0, r0) = r0. Suppose that for some p > 1, C0,C1,C2 > 0, C3 > 0 and any ϵ ∈ (0, 1) and t > 0

φ′ϵ(t, r0) 6 −C0φϵ(t, r0) +C1ϵ · φϵ(t, r0)p +C2ϵ +C3.

Then: (i) For any T > 0 and R > 0, there exists ϵ0 > 0 such that

sup
t∈[0,T ],ϵ∈[0,ϵ0],r0∈[0,R]

φϵ(t, r0) 6 2R + 2C3/C0.
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(ii) If C3 = 0, then for any δ > 0 and R, h > 0, there exist T > 0 and ϵ0 > 0 such that

sup
t∈[T,T+h],ϵ∈[0,ϵ0],r0∈[0,R]

φϵ(t, r0) 6 δ.

Proof. Let Cϵ4 := (C2ϵ +C3)/C0 and set

ϕ(t) := eC0t(φϵ(t, r0) −Cϵ4).

Then for fixed T > 0 and any t ∈ [0,T ]

ϕ′(t) 6 C1eC0tϵ · φϵ(t, r0)p 6 C1ϵ · (ϕ(t) +Cϵ4 · eC0T )p.

Solving this differential inequality gives that

ϕ(T ) 6
[
(ϕ(0) +Cϵ4 · eC0T )1−p +C1(1 − p)ϵT

] 1
1−p −Cϵ4 · eC0T .

Hence,

φϵ(T, r0) 6 e−C0T
[
(r0 +Cϵ4 · (eC0T − 1))1−p +C1(1 − p)ϵT

] 1
1−p

6
[
(e−C0T R +Cϵ4)1−p +C1(1 − p)ϵTe(p−1)C0T

] 1
1−p
.

Now the assertions easily follow by suitable choices of ϵ and T . �

We now prove the following exponential estimate.

Lemma 6.2. Let Xt be a positive Itô process of the form

Xt = x0 +

∫ t

0
MsdWs +

∫ t

0
Nsds, (6.2)

where s 7→ Ms,Ns are two measurable adapted processes. Suppose that there exist a positive
process Ys and some α > 1 and C0,C1,C2,C3 > 0 such that for any s > 0

Ns 6 −C0Xαs − Ys +C1, |Ms|2 6 C2Xs +C3. (6.3)

Then for any t, η > 0

EeηXt 6 Cα,η · exp{e−C0t/2ηx0} (6.4)

and

E exp
{
η

∫ t

0
(
C0

2
Xαs + Ys)ds

}
6 exp{ηx0 +Cα,ηt}. (6.5)

Proof. Let us first prove that for any t, η > 0

EeηXt < +∞. (6.6)

Set for R > 0
τR := inf{t > 0 : |Xt| > R}.

By Itô’s formula, (6.3) and Young’s inequality, we have

deηXt = ηeηXt MtdWt + ηeηXt Ntdt +
η2

2
eηXt |Mt|2dt

6 ηeηXt MtdWt + ηeηXt(−C0Xαt +C1 +
η

2
(C2Xt +C3))dt

6 ηeηXt MtdWt + ηeηXt(−C0

2
Xαt +Cα,η)dt

6 ηeηXt MtdWt + ηeηXt(−C0

2
Xt +Cα,η)dt.
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Set
fR(t) := EeηXt∧τR .

Then
f ′R(t) 6 Cα,η fR(t).

Hence

fR(t) = EeηXt∧τR 6 eηx0eCα,ηt.

By Fatou’s lemma, we obtain (6.6).
We now set

f (t) := EeηXt .

Then by Jensen’s inequality, we obtain

f ′(t) 6 −C0

2
f (t) log f (t) +Cα,η f (t).

Solving this differential equality gives the first estimate (6.4).
On the other hand, for any t, η > 0, we have by (6.2) and (6.3)

η

∫ t

0
(
C0

2
Xαs + Ys)ds 6 ηx0 + η

∫ t

0
MsdWs +

∫ t

0
(−ηC0

2
Xαs +C1η)ds.

Noting that by (6.3) and (6.4)

E exp
{
η2

2

∫ t

0
|Ms|2ds

}
6

1
t

∫ t

0
E exp{tη2|Ms|2/2}ds < +∞,

we know by Novikov’s criterion that

t 7→ exp
{
η

∫ t

0
MsdWs −

η2

2

∫ t

0
|Ms|2ds

}
=: E(M)(t)

is an exponential martingale. Moreover, by (6.3) and Young’s inequality

η2

2
|Ms|2 −

ηC0

2
Xαs +C1η 6 Cα,η.

Therefore,

E exp
{
η

∫ t

0
(
C0

2
Xαs + Ys)ds

}
6 eηx0E

(
E(M)(t) · exp{Cα,ηt}

)
= eηx0 · exp{Cα,ηt}.

The proof is thus complete. �

6.3. Proof of the Derivative Flow Equation. In this subsection, we prove (5.3). Note that
(5.5) can be proved similarly.

Lemma 6.3. For any T > 0, there exists a constant CN,T > 0 such that for each ω and u0 ∈ H1

sup
t∈[0,T ]

∥u(t, ω)∥2
H1 +

∫ T

0
∥u(t, ω)∥2

H2 6 CN,T

(
1 + ∥u0∥6H1 + sup

t∈[0,T ]
∥w(t, ω)∥12

H5

)
.

Proof. Following the proof of Lemma 5.7, let us give different estimates for Ji, i = 1, 2, 3, 4.
For J1, by (5.18) we have

J1 6 −2∥∇v(t)∥2
H0 + 2∥∆w(t)∥H0 · ∥v(t)∥H0 .

For J2, by the Sobolev inequality (2.1) and Young’s inequality we have

J2 = −2⟨w(t), ((v(t) + w(t)) · ∇)(v(t) + w(t))⟩H0

= 2⟨∇w(t), (v(t) + w(t)) ⊗ (v(t) + w(t))⟩H0

34



6 2∥∇w(t)∥L∞∥v(t) + w(t)∥2
H0

6 C∥∇w(t)∥L∞∥v(t) + w(t)∥2L4

6 ∥v(t) + w(t)∥4L4 +C∥∇w(t)∥2L∞ .
For J3, we have

J3 6 −2∥v(t) + w(t)∥4L4 + N∥v(t) + w(t)∥2
H0 .

For J4, by (2.1) and Young’s inequality we have

J3 6 2∥w(t)∥L∞ · ∥v(t) + w(t)∥3L3

6 2∥w(t)∥L∞ · ∥v(t) + w(t)∥3L4

6 −∥v(t) + w(t)∥4L4 +C∥w(t)∥4L∞ .
Hence

d
dt
∥v(t)∥2

H0 6 CN∥v(t)∥2
H0 +C(∥w(t)∥4

H2 + ∥w(t)∥2
H3).

By Gronwall’s inequality, we get

sup
t∈[0,T ]

∥v(t)∥2
H0 6 CN,T

(
∥v0∥2H0 + sup

t∈[0,T ]
(∥w(t)∥4

H2 + ∥w(t)∥2
H3)

)
. (6.7)

Using the similar calculations as in the proof of Lemma 5.7, one finds that

d
dt
∥v(t)∥2

H1 6 −
1
8
∥v(t)∥2

H2 +CN(1 + ∥w(t)∥4
H5) · (1 + ∥v(t)∥6

H0),

which together with (6.7) gives the desired estimate. �

For v0 ∈ H1, let us consider a small perturbation of the initial values given by uϵ(0) = u0+ϵv0.
The corresponding solution of Eq. (5.2) is denoted by uϵ(t).

Set
vϵ(t) := (uϵ(t) − u(t))/ϵ.

Then vϵ(t) satisfies

v′ϵ(t) = ∆vϵ(t) −P[(uϵ(t) · ∇)vϵ(t)] −P[(vϵ(t) · ∇)u(t)]

−P[gN(|uϵ(t)|2)vϵ(t)] −P[(gN(|uϵ(t)|2) − gN(|u(t)|2))/ϵ · u(t)],

with initial value vϵ(0) = v0.
We have:

Lemma 6.4. For any T > 0, there is a constant CN,T > 0 such that for any ϵ ∈ (0, 1)

sup
t∈[0,T ]

∥vϵ(t)∥2H1 +

∫ T

0
∥vϵ(t)∥2H2dt 6 CT,N .

Proof. As in the proof of Lemma 4.1, we have

d
dt
∥vϵ(t)∥2H1 6 −∥vϵ(t)∥2H2 + 2∥vϵ(t)∥2H1 +C∥uϵ(t)∥2L6 · ∥∇vϵ(t)∥2L3

+C∥vϵ(t)∥2L∞ · ∥u(t)∥2
H1 +C∥vϵ(t)∥2L6 · (∥uϵ(t)∥4L6 + ∥u(t)∥4L6)

6 −1
2
∥vϵ(t)∥2H2 +C(∥uϵ(t)∥4H1 + ∥u(t)∥4

H1 + 1) · ∥vϵ(t)∥2H1 ,

which together with Lemma 6.3 gives the desired estimate. �
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We are now in a position to prove (5.4). Set

jϵ(t) := vϵ(t) − J0,tv0,

where J0,tv0 satisfies (5.3).
By Taylor’s formula, we have

gN(|uϵ(t)|2) − gN(|u(t)|2) = g′N(|u(t)|2)(|uϵ(t)|2 − |u(t)|2) + g′′N(θ)(|uϵ(t)|2 − |u(t)|2)2/2

= ϵ2 · g′N(|u(t)|2)|vϵ(t)|2 + 2g′N(|u(t)|2)⟨vϵ(t),u(t)⟩R3

+ g′′N(θ)(|uϵ(t)|2 − |u(t)|2)2/2,

where θ takes some value between |u(t)|2 and |uϵ(t)|2.
Thus, it is not hard to see that jϵ(t) satisfies

j′ϵ(t) = ∆jϵ(t) −
8∑

i=1

Ji(t),

where

J1(t) := ϵ ·P[(vϵ(t) · ∇)vϵ(t)],
J2(t) :=P[(u(t) · ∇)jϵ(t)],
J3(t) :=P[(jϵ(t) · ∇)u(t)],

J4(t) :=P[(gN(|uϵ(t)|2) − gN(|u(t)|2)) · vϵ(t)],
J5(t) :=P[gN(|u(t)|2) · jϵ(t)],
J6(t) := ϵ ·P[g′N(|u(t)|2)|vϵ(t)|2 · u(t)],

J7(t) := 2P[g′N(|u(t)|2)⟨jϵ(t),u(t)⟩R3 · u(t)],

J8(t) :=P[g′′N(θ)(|uϵ(t)|2 − |u(t)|2)2 · u(t)/ϵ].

By the chain rule and Young’s inequality, we have

d
dt
∥jϵ(t)∥2H1 6 −∥jϵ(t)∥2H2 + 2∥jϵ(t)∥2H0 +C

8∑
i=1

∥Ji(t)∥2H0 .

Here and below, the constant C is independent of ϵ.
For J1(t), we have

∥J1(t)∥2
H0 6 Cϵ2 · ∥vϵ(t)∥2H1 · ∥vϵ(t)∥2H2 .

For J2(t), we have
∥J2(t)∥2

H0 6 C∥u(t)∥2
H2 · ∥jϵ(t)∥2H1 .

For J3(t), we have

∥J3(t)∥2
H0 6 ∥u(t)∥2

H1 · ∥jϵ(t)∥2L∞ 6 C∥u(t)∥2
H1 · ∥jϵ(t)∥H1 · ∥jϵ(t)∥H2 6

6 C∥u(t)∥4
H1 · ∥jϵ(t)∥2H1 +

1
4
∥jϵ(t)∥2H2 .

For J4(t), we have

∥J4(t)∥2
H0 6 Cϵ2 · ∥vϵ(t)∥4L6 · (∥uϵ(t)∥2L6 + ∥u(t)∥2L6)

6 Cϵ2 · ∥vϵ(t)∥4H1 · (∥uϵ(t)∥2H1 + ∥u(t)∥2
H1).

For J5(t), we have

∥J5(t)∥2
H0 6 C∥u(t)∥4L6 · ∥jϵ(t)∥2L6 6 C∥u(t)∥4

H1 · ∥jϵ(t)∥2H1 .
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For J6(t), we have
∥J6(t)∥2

H0 6 Cϵ2 · ∥vϵ(t)∥2H1 · ∥u(t)∥2
H1 .

For J7(t), we have
∥J7(t)∥2

H0 6 C · ∥jϵ(t)∥2H1 · ∥u(t)∥4
H1 .

For J8(t), we have

∥J8(t)∥2
H0 6 Cϵ2 · ∥|vϵ(t)|2 · (|uϵ(t)|2 + |u(t)|2)∥2

H0

6 Cϵ2 · ∥vϵ(t)∥4L4 · (∥uϵ(t)∥4L4 + ∥u(t)∥4L4)

6 Cϵ2 · ∥vϵ(t)∥4H1 · (∥uϵ(t)∥4H1 + ∥u(t)∥4
H1).

Combining the above calculations and Lemmas 6.3 and 6.4 yields that
d
dt
∥jϵ(t)∥2H1 6 Cϵ2(1 + ∥vϵ(t)∥2H2) +C(1 + ∥u(t)∥2

H2) · ∥jϵ(t)∥2H1 .

By Gronwall’s inequality, we get

∥jϵ(t)∥2H1 6 Cϵ2
(
1 +

∫ t

0
∥vϵ(s)∥2

H2ds
)
· exp

{
C +C

∫ t

0
∥u(s)∥2

H2ds
}
,

which together with Lemmas 6.3 and 6.4 clearly gives (5.4).
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