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Abstract

This paper is concerned with the stochastic diffusion equation
dX(t) = div[sgn(∇(X(t))]dt +

√
Q dW (t) in (0,∞) × O where O

is a bounded open subset of Rd, d = 1, 2, W (t) is a cylindrical Wiener
process on L2(O) and sgn(∇X) = ∇X/|∇X|d if ∇X 6= 0 and sgn
(0) = {v ∈ Rd : |v|d ≤ 1}. The multivalued and highly singular
diffusivity term sgn(∇X) describes interaction phenomena and the
solution X = X(t) might be viewed as the stochastic flow generated
by the gradient of the total variation ‖DX‖. Our main result says
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that this problem is well posed in the space of processes with bounded
variation in the spatial variable ξ. The above equation is relevant for
modeling crystal growth as well as for total variation based techniques
in image restoration.

2000 Mathematics Subject Classification AMS: 60H15, 35K55
Key words: Stochastic diffusion equation, bounded variation, Wiener pro-
cess.

1 Introduction

We are concerned here with the following stochastic diffusion equation on
H = L2(O)

dX(t) = div[sgn (∇(X(t))]dt+
√
Q dW (t) in (0,∞)× O

X(t) = 0 on ∂O × (0, T )

X(0) = x in O,

(1.1)

where O is a bounded open subset of Rd, d = 1, 2, W (t) is a cylindrical
Wiener process on L2(O) of the form

W (t) =
∞∑

k=1

βk(t)ek, t ≥ 0,

where {βk} is a sequence of mutually independent real Brownian motions
on a filtered probability spaces (Ω,F , {Ft}t≥0,P) (see [8]) and {ek} is an
orthonormal basis in H = L2(O). We set

A = −∆, D(A) = H2(O) ∩H1
0 (O). (1.2)

The operator Q ∈ L(H) is symmetric, self-adjoint, nonnegative. For sim-
plicity we assume that A and Q have a common eigenbasis en, n ∈ N, with
eigenvalues λn and µn, n ∈ N, respectively. We shall assume that

∞∑
n=1

λ1+κ
n µn <∞, (1.3)

for some κ > 0. For example, we can take Q = A−1−δ where δ > 1
2

+ κ if
d = 1, δ > 1 + κ if d = 2 and
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The multi-valued function u→ sgn u from Rd into 2Rd
is defined by

sgn u =


u
|u|d
, if u 6= 0,

{v ∈ Rd : |v|d ≤ 1}, if u = 0.

(Here | · |d is the Euclidean norm and 〈·, ·〉d is the Euclidean inner product.)
Equation (1.1) is relevant in material science to describe the motion of

grain boundaries and in image processing. The first model is concerned with
facet growth of cristals derived from the spatially homogeneous energy

E(X) =

∫
O

|∇X|d dξ,

which formally leads to the gradient system

dX(t) = −div

(
∇X(t)

|∇X(t)|d

)
dt, t ≥ 0, (1.4)

or to (1.1) in presence of the Gaussian perturbation
√
Q dW . (We refer

to [11], [12], [17] for the presentation and treatment of the corresponding
deterministic models.)

The total variation based image restoration model based on E(X) has
been proposed in [19] (see also [7], [8], [16], [17]), i.e., as the solution to the
minimization problem,

min

∫
O

(
|∇X|d +

1

2
|X − f |2

)
dξ, (1.5)

where f is the given image and X is the restored image. The minimization
problem (1.5) leads to a flow X = X(t) generated by the evolution equation

dX(t) = −div

(
∇X(t)

|∇X(t)|d

)
dt− (X(t)− f(t))dt, t ≥ 0, (1.6)

which perturbed by a Gaussian process leads to equation (1.1). This restora-
tion model was designed with the explicit aim to preserve edges and sharp
discontinuities of the image.

In both equations (1.4) and (1.6) the discontinuous map u→ u
|u|d

should
be replaced of course by its multi-valued maximal monotone graph u→ sign
u obtained by filling the jumps. It should also be mentioned that equation
(1.1) (as well as the deterministic version (1.4) or (1.6)) is highly nonlinear.
For instance in 1-D equation (1.1) has the form

dX(t) = −δ(∇X(t))∆X(t)dt+
√
Q dW (t), t ≥ 0, (1.7)
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where δ is the Dirac measure at zero on O. Of course this is only a formal
representation because the multiplier δ(∇X(t)) is not well defined and so
(1.7) does not make sense.

These equations derived from the mathematical description of diffusion
phenomena with non differentiable energy are modeling non local interactions
via singular diffusivity (see [12]).

The main result established here (see Theorem 3.2 below) is concerned,
however, with existence and uniqueness of a variational solution for d = 1, 2
in the space of functions with bounded variation in the spatial variable ξ ∈
O. A similar result is proved in Section 6 for equation (1.1) with linear
multiplicative noise along with positivity of solutions.

It should be noted that, though equation (1.1) arises in a variational set-
ting, its existence theory is not covered by the classical results of E. Pardoux
[14] or N. Krylov and B. Rozovskii [13] (see also [15], [18]). Indeed, a general
stochastic equation of the form

dX(t) = div (a(∇(X(t)))dt+
√
Q dW (t) in (0,∞)× O

X(t) = 0 on ∂O × (0, T )
X(0) = x in O,

(1.8)

where a : Rd → Rd is a monotonically increasing, continuous and coercive
vector field with polynomial growth can be solved in the abstract variational
setting{

dX(t) + ÃX(t)dt =
√
Q dW (t)

X(0) = x
(1.9)

where Ã : V → V ′ is a nonlinear monotone and demi-continuous operator
(see [2]) such that

(Ãx, x) ≥ ω‖x‖p
V − ω1|x|2H ,

‖Ãx‖V ′ ≤ C1‖x‖p−1
V + C2,

where ω > 0, p > 1 and ω1, C1, C2 ∈ R. (Here V ⊂ H ⊂ V ′ is a classical
variational Gelfand triple.)

This is exactly the variational stochastic framework developed in [14],
[13], which however does not apply in this situation. As a matter of fact, the
situation considered here is a limit case of (1.8)-(1.9) and this fact will be
exploited later to obtain existence of solutions for (1.1).

Notations. Everywhere in the following H is the Hilbert space L2(O)
with the scalar product (·, ·) and the norm | · |). Lp(O), p ≥ 1 and W 1,p

0 (O)
are the standard spaces of integrable functions and Sobolev spaces on O
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with Dirichlet boundary conditions. We set H1
0 (O) := W 1,2

0 (O) and by
L2

W (0, T ;H) (resp. CW ([0, T ];H)) we shall denote the space of all square
integrable (resp. all continuous) functions from [0, T ] to L2(Ω;H) which are
adapted to {Ft}t≥0. The spatial variables in O are denoted by ξ.

2 Preliminaries

Here we shall recall a few standard results on functions of bounded variation
on O for later use. A function f ∈ L1(O) is said to be of bounded variation
on O if

‖Df‖ := sup

{∫
O

f div ψ dξ : ψ ∈ C∞
0 (O; Rd), |ψ|∞ ≤ 1

}
< +∞. (2.1)

In the following we shall denote the gradient of f in the sense of distributions
by Df , which by (2.1) is a vector valued measure of bounded variation.

The space of all functions of bounded variation on O will be denoted by
BV (O). It is a Banach space with the norm

‖f‖BV (O) = |f |L1(O) + ‖Df‖.

Let f ∈ BV (O). Then there is a Radon measure µf on O and a µf -
measurable function σf : O → Rd such that |σf (x)| = 1, µf a.e. and∫

O

f div ψ dξ = −
∫

O

ψ · σf dµf , ∀ ψ ∈ C1
0(O; Rd). (2.2)

For each f ∈ BV (O) there is the trace γ(f) on ∂O (assumed sufficiently
smooth) defined by∫

O

f div ψ dξ = −
∫

O

ψ ·σf dµf +

∫
∂O

γ(f)ψ ·ν dHd−1, ∀ ψ ∈ C1(O; Rd),

(2.3)

where ν is the outward normal and dHd−1 is the Hausdorff measure on ∂O.
We have that |γ(f)|d ∈ L1(∂O;Hd−1) (See [1]).

In the following we shall denote by BV 0(O) the space of all BV (O)
functions with vanishing trace on ∂O. By the Poincaré inequality it follows
that on BV 0(O), ‖Df‖ is norm equivalent with ‖f‖BV 0(O).

Consider the function Φ : L1(O) → R̄ = (−∞,+∞]

Φ(x) =


‖Dx‖ if x ∈ BV 0(O),

+∞ if x ∈ L1(O) \BV 0(O)
(2.4)
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Obviously, Φ is convex on BV 0(O) and lower semicontinuous on L1(O), hence
on every Lp(O), p ≥ 1.

Lemma 2.1 Assume that d = 1 or 2. Then

BV (O) ⊂ L
d

d−1 (O) (2.5)

compactly.

Proof. See e.g. [1, Corollary 3.49]. �

By ∂Φ : L2(O) → L2(O) we shall denote the sub-differential of Φ, i.e.,

∂Φ(x) =

{
η ∈ L2(O) : Φ(x)− Φ(y) ≤

∫
O

η(x− y)dξ, ∀ y ∈ BV 0(O)

}
,

∀ x ∈ BV 0(O).

It is clear that if x ∈ W 1,1
0 (O) then x ∈ BV 0(O) and ‖Dx‖ = |∇x|L1(O) and

so if

η = −div

(
∇x
|∇x|d

)
∈ L2(O), (2.6)

then η ∈ ∂Φ(x). A precise description of ∂Φ is hard to get. We note, however,
that according to the general theory of sub-differential mappings (see e.g. [2],
[6]) the domain

D(∂Φ) = {x ∈ BV 0(O) : ∂Φ(x) 6= ∅}

of ∂Φ is dense in

D(Φ) = {x ∈ L2(O) : Φ(x) <∞} = BV 0(O).

Remark 2.2 With the above notation and because of (2.6) we can (infor-
mally) rewrite (1.1) as

dX(t) + ∂Φ(X(t))dt =
√
Q dW (t) in (0,∞)× O

X(t) = 0 on ∂O × (0, T )
X(0) = x in O.

(2.7)
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3 Definition of a strong solution to equation

(1.1) and the main result

Definition 3.1 A stochastic process X = X(t, x) with P-a.s. continuous
sample paths in H is said to be a strong solution to equation (1.1) if

X ∈ CW ([0, T ];H) ∩ L1((0, T )× Ω, BV 0(O)), X(0) = x ∈ H

and

1

2
|X(t)− Y (t)|2 +

∫ t

0

(Φ(X(s))− Φ(Y (s)))ds

≤ 1

2
|x− Y (0)|2 +

∫ t

0

(G(s), X(s)− Y (s))ds, t ∈ [0, T ],

(3.1)

for all G ∈ L2
W (0, T ;H) and Y ∈ CW ([0, T ];H) ∩ L1((0, T ) × Ω;BV 0(O))

satisfying the equation

dY (t) +G(t)dt =
√
Q dW (t), t ∈ [0, T ]. (3.2)

We recall that H = L2(O) and (·, ·) is its scalar product. Definition 3.1
generalizes the usual definition of solution, since if ∂Φ is regular, by Itô’s
formula a solution of (2.7), satisfies (3.1). In this sense equation (3.1) is a
variational version of problem (2.7). The main point is, of course, to show
uniqueness for the process X satisfying (3.1) which we shall do below in our
case.

Definition 3.1 resembles the classical definition of a mild (integral) solu-
tion to deterministic variational inequalities (see e.g. [2],[6]) and in a slightly
different version it was used in [18], but in a different context.

Theorem 3.2 below is the main result of this paper.

Theorem 3.2 Assume that d = 1 or d = 2. Then there is a unique strong
solution

X ∈ CW ([0, T ];H) ∩ L1((0, T )× Ω;BV 0(O)),

to equation (1.1) for each x ∈ H. Furthermore, for all x, y ∈ H, T > 0

sup
t∈[0,T ]

|X(t, x)−X(t, y)| ≤ |x− y|. (3.3)

A similar result in the case of equation (1.1) with linear multiplicative noise
holds (see Theorem 6.2 below).

7



The solution X is the limit in CW ([0, T ];H) of solutions Xε to an approx-
imative diffusion equation with diffusivity βε which is a Lipschitz continuous
approximation of the sign function as a multi-valued function. In particular;
this implies that the solution X in Definition 3.1 keeps most of the nice fea-
tures of the approximating solution Xε (for instance a Lipschitz dependence
on initial data or positivity in the case of linear multiplicative noise.)

Remark 3.3 As it will become clear from the proof, Theorem 3.2 remains
true for equation (1.1) with Neumann boundary conditions

∇X(t)

|∇X(t)|d
· n(X(t)) = 0 on ∂O, (3.4)

where n(X(t)) is the normal to ∂O. Definition 3.1 is the same in this case
except that the space BV 0(O) must be replaced by BV (O).

4 Proof of Theorem 3.2

We start with the approximating equation{
dXε(t) = −AεXε(t)dt+

√
Q dW (t),

Xε(0) = x in O,
(4.1)

where

βε(u) =


u

ε
, if |u|d ≤ ε,

u

|u|d
, if |u|d > ε,

and the operator Aε : H → H is defined by

Aεu = −(1 + εA)−1 div[βε(∇(1 + εA)−1u)], ∀ u ∈ H. (4.2)

where (cf. (1.2))

A = −∆, D(A) = H2(O) ∩H1
0 (O).

It is easily seen that Aε is Lipschitzian in H.
We see that βε = ∇jε where

jε(u) =


|u|2d
2ε

, if |u|d ≤ ε,

|u|d −
ε

2
, if |u|d > ε.

(4.3)
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In other words βε is the Yosida approximation of sgn, i.e.,

βε(u) =
1

ε
(u− (1 + ε sgn )−1u) ∈ sgn (1 + ε sgn )−1u, ∀ u ∈ Rd, (4.4)

where 1 denotes the identity function on Rd.
By standard existence results equation (4.1) has a unique solution Xε ∈

CW ([0, T ];H) which is path-wise continuous in H P-a.s.(see [9],[10]).

Existence. Because |βε|∞ ≤ 1 we have

|βε(∇(1 + εA)−1Xε)|L∞(Ω×(0,T )×O) ≤ C, ∀ ε > 0. (4.5)

We set X̃ε = (1 + εA)−1Xε, X̃λ = (1 + λA)−1Xλ. Then by (4.2) we have

1

2
|Xε(t)−Xλ(t)|2

+

∫ t

0

∫
O

〈βε(∇X̃ε(s))− βλ(∇X̃λ(s)),∇X̃ε(s)−∇X̃λ(s)〉ddξ ds = 0.

But, setting β(x) = sign (x), uε = ∇Xε and Jε = (1 + ε β)−1 by (4.4) we
have that βε(u) ∈ β(Jε(u)), so by the monotonicity of β

〈βε(uε)− βλ(uλ), uε − uλ〉d
= 〈βε(uε)−βλ(uλ), Jε(uε)−Jλ(uλ)〉d+〈βε(uε)−βλ(uλ), εβε(uε)−λβλ(uλ)〉d

≥ 〈βε(uε) − βλ(uλ), εβε(uε) − λβλ(uλ)〉d (4.6)

Therefore

1

2
|Xε(t)−Xλ(t)|2

+

∫ t

0

∫
O

〈βε(∇X̃ε(s))−βλ(∇X̃λ(s)), εβε(∇X̃ε(s))−λβλ(∇X̃λ(s))〉ddξ ds ≤ 0.

Since |βε| ≤ 1 we deduce that

|Xε(t)−Xλ(t)|2 ≤ C(ε+ λ), ∀ ε, λ > 0, t ∈ [0, T ], P-a.s.. (4.7)

Hence there is a continuous H-valued process X ∈ CW ([0, T ];H) such that

lim
ε→0

sup
t∈[0,T ]

|Xε(t)−X(t)| = 0, P-a.s.. (4.8)

Repeating the above argument for Xε(t) = Xε(t, x) and Xε(t, y) for some
y ∈ H, we obtain that

|Xε(t, x)−Xε(t, y)|2 ≤ Cε+ |x− y|2, ∀ ε > 0, t ∈ [0, T ], P-a.s.. (4.9)
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Hence

sup
t∈[0,T ]

|X(t, x)−X(t, y)| ≤ |x− y|, ∀ x, y ∈ H, P-a.s.. (4.10)

Taking into account that

〈u, βε(u)〉d ≥ jε(u) ∀ u ∈ Rd, ε > 0,

(4.1) and Itô’s formula imply that

1

2
|Xε(t)|2 +

∫ t

0

∫
O

jε(∇(1 + εA)−1Xε(s))dξds

≤ 1

2
|x|2 +

t

2
Tr Q+

∫ t

0

(Xε(s),
√
Q dW (s)), t ∈ [0, T ], ε > 0.

(4.11)

Clearly by (4.3)∫
O

jε(∇(1 + εA)−1u)dξ − 3

2
ε|O| ≤ |∇(1 + εA)−1u|L1(O)

≤
∫

O

jε(∇(1 + εA)−1u)dξ +
3

2
ε|O|, ∀ u ∈ L1(O), ε > 0, (4.12)

where |O| =
∫

O
dξ. (4.8), (4.11) and(4.12) imply that

sup
ε∈(0,1]

E
∫ T

0

|∇(1 + εA)−1Xε(s)|L1(O)ds ≤ C(1 + |x|2 + Tr Q)

and that for some subsequence εn → 0

sup
n∈N

∫ T

0

∫
O

jεn(∇(1 + εnA)−1Xεn(s))dξds <∞, P-a.s. (4.13)

Since we also have that by (4.8)

lim
ε→0

|(1 + εA)−1Xε(t)−X(t)| ≤ lim
ε→0

|Xε(t))−X(t)|

+ lim
ε→0

|(1 + εA)−1X(t)−X(t)| = 0, P-a.s., ∀ t ∈ [0, T ], (4.14)

we conclude by the lower semicontinuity of Φ, Fatou’s lemma and (4.12) that∫ T

0

Φ(X(s))ds ≤ lim inf
n→∞

∫ T

0

∫
O

jεn(∇(1 + εnA)−1Xεn(s))dξds, P-a.s..
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(4.15)

Now it also follows that X ∈ L1((0, T ) × Ω;BV (O)). In fact, since (1 +
εA)−1Xε(t) ∈ H1

0 (O) and as seen above it is a.e. convergent to X(t) it
follows by (4.12), (4.13) that X(t) ∈ BV 0(O), a.e. and so X ∈ L1((0, T ) ×
Ω;BV 0(O)).

We set

Φε(u) =

∫
O

jε(∇(1 + εA)−1u)dξ, ∀ u ∈ H. (4.16)

Then

∂Φε(u) = ∇Φε(u) = Aε(u), ∀ u ∈ H. (4.17)

Let Y ∈ CW ([0, T ];H) ∩ L1((0, T ) × Ω;BV 0(O)) and G ∈ L2
W (0, T ;H) be

such that
dY (t) +G(t)dt =

√
Q dW (t),

i.e.,

Y (t) = Y (0)−
∫ t

0

G(s)ds+
√
Q W (t), ∀ t ∈ [0, T ], P-a.s..

By (4.1) and (4.17) we have that

1

2

d

dt
|Xε(t)− Y (t)|2

+

∫
O

〈βε(∇(1 + εA)−1Xε(t),∇(1 + εA)−1Xε(t)−∇(1 + εA)−1Y (t)〉ddξ

= (G(t), Xε(t) − Y (t)). (4.18)

On the other hand, since jε is convex we have that

〈βε(u), u− v〉d ≥ jε(u)− jε(v), ∀ u, v ∈ Rd.

Consequently, taking u = ∇Xε(t), v = ∇Y (t) in (4.18), we deduce that

1

2

d

dt
|Xε(t)−Y (t)|2+

∫
O

(jε(∇(1+εA)−1Xε(t))−jε(∇(1+εA)−1Y (t)))dξ

≤ (G(t), Xε(t) − Y (t)),

which is equivalent to

1

2

d

dt
|Xε(t)− Y (t)|2 + Φε(Xε(t))− Φε(Y (t)) ≤ (G(t), Xε(t)− Y (t)).
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Integrating with respect to t yields

1

2
|Xε(t)− Y (t)|2 +

∫ t

0

(Φε(Xε(s))− Φε(Y (s))ds

≤
∫ t

0

(G(s), Xε(s)− Y (s))ds+
1

2
|x− Y (0)|2, ∀ t ∈ [0, T ], P-a.s..

Furthermore, since (1 + εA)−1 is a contraction on L∞(O), for all y ∈ L1(O)
we have

|∇(1 + εA)−1y|L1(O) ≤ ‖Dy‖ = Φ(y). (4.19)

In particular, this holds for y = Y (s), s ∈ [0, T ]. Hence replacing ε by εn
and letting n→∞, by (4.8), (4.12), (4.14) and (4.16) we obtain that

1

2
|X(t)− Y (t)|2 +

∫ t

0

Φ(X(s))ds ≤
∫ t

0

Φ(Y (s))ds

+

∫ t

0

(G(s), X(s)− Y (s))ds+
1

2
|x− Y (0)|2, ∀ t ∈ [0, T ], P-a.s..

Hence X is a solution to (3.1) as claimed. This completes the proof of
existence.

Uniqueness. Let Z, Z(0) = x, be an arbitrary solution in the sense of
Definition 3.1. Let Xε be the solution to (4.1). We set

Gε(t) =

∫ t

0

(AεXε(s), Xε(s)− (1 + εA)−2Xε(s)− (1 + εA)−1ηε(s))ds,

where dηε = (−(1 + εA)−1 + 1)
√
Q dW, ηε(0) = 0. We note that, as shown
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above, AεXε ∈ L2
W (0, T ;H) and

1

2
E|Z(t)− (1 + εA)−1Xε(s)− ηε(s)|2

+E
∫ t

0

(Φ(Z(s))− Φ((1 + εA)−1Xε(s) + ηε(s)))ds

≤ E
∫ t

0

((1 + εA)−1AεXε(s), Z(s)− (1 + εA)−1Xε(s)− ηε(s))ds

= E
∫ t

0

(AεXε(s), (1 + εA)−1Z(s)−Xε(s))ds+ E
∫ t

0

Gε(s)ds

≤ E
∫ t

0

(Φε((1 + εA)−1Z(s))− Φε(Xε(s)))ds+ E
∫ t

0

Gε(s)ds, ∀ t ∈ [0, T ].

(4.20)

(Here we have applied (3.1) with Y = (1 + εA)−1Xε(s) + ηε(s) and G =
(1 + εA)−1AεXε, and(4.16)). On the other hand, ηε(t) ∈ H1

0 (O) P-a.s. (see
(4.21) below) and hence by (4.3),(4.16) we have

Φ((1 + εA)−1Xε + ηε)− Φε(Xε)

=

∫
O

|∇(1 + εA)−1Xε +∇ηε|ddξ −
∫

O

jε(∇(1 + εA)−1Xε)dξ

≤
∫
{|∇(1+εA)−1Xε|d≤ε}

|∇(1 + εA)−1Xε|d
(

1− |∇(1 + εA)−1Xε|d
2ε

)
dξ

+

∫
O

(
|∇ηε|d +

ε

2

)
dξ ≤ 3ε

2

∫
O

dξ +

∫
O

|∇ηε|ddξ, P-a.s..

It remains to estimate Gε(t) and ηε(t). We have

E|ηε(t)|2H1
0 (O) ≤ Tr [A(1− (1 + εA)−1)2Q]t

= t

∞∑
n=1

λnµn

(
ελn

1 + ελn

)2

≤ tεκ
∞∑

n=1

λ1+κ
n µn. (4.21)

By (1.3) it follows that

lim
ε→0

E|ηε(t)|2H1
0 (O) = 0.
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In particular, this implies also that

lim
ε→0

E
∫ t

0

(AεXε(s), (1 + εA)−1ηε(s))ds = 0,

because

(AεXε(s), (1 + εA)−1ηε(s)) =

∫
O

(βε(∇(1 + εA)−1Xε(s)),∇(1 + εA)−2ηε(s))dξ

and {βε} is bounded.
Finally, applying Itô’s formula in (4.1) with ϕε(x) = 1

2
|x|2 − 1

2
(x, (1 +

εA)−2x) we obtain that for ε ∈ (0, 1]

E
∫ t

0

(AεXε(s), Xε(s)− (1 + εA)−2Xε(s))ds

≤ 1

2
Tr [(1− (1 + εA)−2)Q] + ϕε(x) ≤

3

2
ε
∞∑

n=1

λnµn + ϕε(x).

Hence

lim sup
ε→0

E
∫ t

0

Gε(s)ds ≤ 0.

Now we take lim supε→0 on both sides of (4.20). Recalling that limε→0Xε(t) =
X(t), P-a.s. and that by (4.12) and (4.19) lim supε→0 Φε((1 + εA)−1Z(s)) ≤
Φ(Z(s)), P-a.s. for all s ∈ [0, T ], letting ε → 0 in (4.20), by (4.14) we see
that Z(t) = X(t) = limε→0Xε(t) where X is the solution of (3.1) from the
previous step. This completes the proof of Theorem 3.2. �

Remark 4.1 As follows from the proof we even obtain that for every T > 0
there exists a constant C > 0 such that

sup
t∈[0,T ]

|X(t)−Xε(t)| ≤ Cε, ∀ ε ∈ (0, 1], P-a.s..

Remark 4.2 By the previous proof it follows that the existence part of
Theorem 3.2 requires instead of (1.3) the weaker assumption Tr Q <∞.

5 Invariant measure

Let Pt : Cb(H) → Cb(H) be the transition semigroup associated with equa-
tion (1.1), i.e.,

Ptϕ(x) = E[ϕ(X(t, x))], ∀ t ≥ 0, ϕ ∈ Cb(H) (5.1)

where X(t, x) is the solution given by Definition 3.1 (Theorem 3.2). Here
Cb(H) is the space of all uniformly continuous bounded functions on H.
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Theorem 5.1 There is at least one invariant measure ν for the semigroup
Pt, i.e.∫

H

Ptϕ(x)ν(dx) =

∫
H

ϕ(x)ν(dx), ∀ t ≥ 0, ϕ ∈ Cb(H) (5.2)

and ν(BV 0(O)) = 1.

Proof. By estimates (4.11) and (4.15) it follows for ε→ 0 that

E|X(t)|2 + 2E
∫ t

0

Φ(X(s))ds ≤ |x|2 + t Tr Q, ∀ t ≥ 0, x ∈ H. (5.3)

We set

µT :=
1

T

∫ T

0

πt,xdt, ∀ T ≥ 0,

where πt,x is the law of X(t, x). Let

ΓR = {x ∈ BV 0(O) : ‖Dx‖ ≤ R}.

Since the embedding of BV 0(O) into L2(O) = H is compact we infer that
ΓR is a compact subset of H. On the other hand, by (5.3) we see that

µT (Γc
R) ≤ |x|2

2TR2
+

Tr Q

2R2
, ∀ T ≥ 0. (5.4)

Hence the set {µT}T>0 is tight and so by the Krylov-Bogoliubov theorem it
is weakly convergent along a sequence {Tn} → ∞ to an invariant measure ν
on L2(O) of Pt.

Now by (5.4) it follows that

ν(Γc
R) ≤ Tr Q

2R2
, ∀ R > 0.

Taking into account that BV 0(O) =
⋃

R>0 ΓR, we infer that ν(BV 0(O)) = 1
as claimed. �

Remark 5.2 Taking into account that the diffusion effect of equation (1.1)
is non local, one might suspect that the measure ν is not full, i.e. it may
be zero on a non-empty open set. Also for the same reason (the gradient
operator ∂Φ is not strongly monotone) perhaps we do not have uniqueness
of the invariant measure.
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6 Equation (1.1) with linear multiplicative noise

Consider the problem
dX(t) = div (sgn (∇(X(t)))dt+ σ(X(t)) dW (t) in (0,∞)× O
X(t) = 0 on ∂O × (0, T )
X(0) = x in O,

(6.1)

where

σ(X(t)) dW (t) =
∞∑

k=1

Xekµkdβk(t), (6.2)

{ek} is the eigenbasis of A and {µk} is a sequence of positive numbers.
We need the linear map x 7→ σ(x) =

∑∞
k=1 µk(ek, ·)xek to be continuous

(hence Lipschitz) from L2(O) to L2(L
2(O), L2(O)) (the space of all Hilbert–

Schmidt operators on L2(O)) which is the case if
∞∑

k=1

µ2
k|ek|2∞ <∞. (6.3)

By Sobolev embedding (6.3) holds if
∞∑

k=1

µ2
kλ

2
k < +∞. (6.4)

By standard fixed point arguments it follows that the equation{
dYε(t) + AεYε(t)dt = σ(Yε(t))dW (t)
Yε(0) = x,

(6.5)

where Aε is as in Section 4, has a unique solution Yε ∈ CW ([0, T ];H) which
is path-wise H continuous (See [9], [10]).

Definition 6.1 A stochastic process X = X(t, x) with P-a.s. continuous
sample paths in H is said to be a strong solution to equation (6.1) if

X ∈ CW ([0, T ];H) ∩ L1((0, T )× Ω;BV 0(O)), X(0) = x (6.6)

and

1

2
E|X(t)− Y (t)|2 + E

∫ t

0

(Φ(X(s))− Φ(Y (s)))ds

≤ 1

2
E|x− Y (0)|2 + E

∫ t

0

(G(s), X(s)− Y (s))ds

+
1

2
E

∞∑
k=1

µ2
k

∫ t

0

|(X(s)− Y (s))ek|2ds, t ∈ [0, T ],

(6.7)
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for all G ∈ L2
W (0, T ;H) and Y ∈ CW ([0, T ];H) ∩ L1((0, T ) × H;BV 0(O))

satisfying the equation

dY (t) +G(t)dt = σ(Y )dW (t), t ∈ [0, T ]. (6.8)

Theorem 6.2 For each x ∈ H there is at least one strong solution

X ∈ L1(Ω× (0, T );BV 0(O)) ∩ L2
W (Ω;C([0, T ];H)),

to equation (6.1). Moreover, we have for every T > 0

lim
ε→0

E sup
t∈[0,T ]

|X(t)− Yε(t)|2 = 0 (6.9)

and for some constant C > 0

E sup
t∈[0,T ]

|X(t, x)−X(t, y)| ≤ C|x− y|, ∀ x, y ∈ H. (6.10)

Proof. We proceed in the same way as for Theorem 3.2, so the proof will be
sketched only. By (6.5) and by Itô’s formula we have by (4.6) that

1

2
|Yε(t)− Yλ(t)|2

+

∫ t

0

∫
O

〈βε(∇Ỹε(s))− βλ(∇Ỹλ(s)), (εβε(∇Ỹε(s))− λβλ(∇Ỹλ(s))〉ddξds

≤
∫ t

0

〈(σ(Yε(s))− σ(Yλ(s))dW (s), Yε(s)− Yλ(s)〉ds

+
1

2

∞∑
k=1

µ2
k|ek|2∞

∫ t

0

|Yε(s)− Yλ(s)|2ds, P-a.s..

Here Ỹε = (1 + εA)−1Yε.
Now arguing as in the proof of Theorem 3.2 it follows, by the Burkholder-

Davis-Gundy inequality, that

E sup
t∈[0,T ]

|Yε(t)− Yλ(t)|2 ≤ C(ε+ λ).

Hence there exists X ∈ CW ([0, T ];H)) with P-a.s. H-continuous sample
paths satisfying (6.9). Similarly as we proved (3.3) we obtain (6.10).
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If G, Y are as in Definition 6.1 and Φε is defined by (4.16) we have by
Itô’s formula that

1

2
E|Yε(t)− Y (t)|2 + E

∫ t

0

(Φε(Yε(s))− Φε(Y (s)))ds

≤ 1

2
|x− Y (0)|2 +

1

2
E

∞∑
k=1

µ2
k |ek|2∞

∫ t

0

|(Yε(s)− Y (s))|2ds

+E
∫ t

0

(G(s), Yε(s)− Y (s))ds,

for all t ∈ [0, T ], which implies (6.7) letting ε→ 0 by the same arguments as
in the proof of Theorem 3.2. This completes the proof. �

Theorem 6.3 Assume that x ∈ L2(O), x ≥ 0,P-a.s. in O. Then the
solution X given by Theorem 6.2 satisfies

X(t, x) ≥ 0 P-a.s. in (0, T )× O.

Proof. The proof is very similar to that of [4, Theorem 2.2] so, we only give
a sketch. By virtue of (6.9) it suffices to prove that Yε ≥ 0 and by (6.10)
without loss of generality we may assume that x ∈ L4(O). Then we apply
Itô’s formula to

φ(x) =
1

4

∫
O

(x−)4dξ

in equation (6.5). Since Dφ(x) = −(x−)3, we get

Eφ(Yε(t))− 3E
∫ t

0

∫
O

〈
βε(∇Yε(s)),∇Y −

ε (s)
〉

d
(Y −

ε (s))2dξds

+
3

2
εE

∫ t

0

∫
O

|∇Y −
ε (s)|2d|Y −

ε (s)|2ξds

≤ 3

2
E

∫ t

0

∫
O

∞∑
k=1

µ2
k|Y −

ε (s)ek|2 |Y −
ε (s)|2dξds

≤ CE
∫ t

0

∫
O

|Y −
ε (s)|4dξds, ∀ ε > 0, t ∈ [0, T ].

(6.11)

Of course, this calculation is formal. But for making it rigorous one regu-
larizes φ in exactly the same way as in [4, Lemma 3.5]. Now, taking into
account that〈

βε(∇Yε(s)),∇Y −
ε (s)

〉
d

= −
〈
βε(∇Y −

ε (s)),∇Y −
ε (s)

〉
d
≤ 0,
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it follows by (6.11) that Y −
ε is identically equal to zero in (0, T ) × Ω × O.

as claimed. For details we refer to the part of the proof of [4, Theorem 2.2]
after the proof of [4, Lemma 3.5]. �

Remark 6.4 The uniqueness of solution X remains open and the arguments
of the proof of Theorem 3.2 can not be used here without imposing some
strong assumptions on σ(x).
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