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Abstract

We consider a Kolmogorov operator L0 in a Hilbert space H, related to
a stochastic PDE with a time-dependent singular quasi-dissipative drift
F = F (t, ·) : H → H, defined on a suitable space of regular functions. We
show that L0 is essentially m-dissipative in the space Lp([0, T ]×H; ν), p ≥ 1,
where ν(dt, dx) = νt(dx)dt and the family (νt)t∈[0,T ] is a solution of the
Fokker–Planck equation given by L0. As a consequence, the closure of L0

generates a Markov C0-semigroup. We also prove uniqueness of solutions to
the Fokker–Planck equation for singular drifts F . Applications to reaction-
diffusion equations with time-dependent reaction term are presented. This
result is a generalization of the finite-dimensional case considered in [1], [2],
and [5] to infinite dimensions.
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1 Introduction

Given a separable Hilbert space H (with norm | · | and inner product 〈·, ·〉), we
denote the space of all linear bounded operators in H by L(H) and the set of all
Borel probability measures on H by P(H).

We study non autonomous stochastic equations on H of the type dX(t) = (AX(t) + F (t,X(t)))dt +
√

C dW (t),

X(s) = x ∈ H, t ≥ s,
(1.1)

where A : D(A) ⊂ H → H is the infinitesimal generator of a C0-semigroup etA in
H, C is a linear positive definite operator in H and F : D(F ) ⊂ [0, T ]×H → H is
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such that F (t, ·) is quasi-dissipative for all t ∈ [0, T ] (see Sections 2 and 3 for the
precise assumptions).

The case where no further regularity assumptions are made on F turns out to be
very difficult because of the lack of parabolic regularity results in infinite dimensions.
No existence (and uniqueness) results for solutions of (1.1) are known in this very
general situation, in particular, when C is not of trace class.

Therefore, in order to get a first grip on the dynamics described by (1.1), we
study the corresponding Kolmogorov operator L on [0, T ]×H with the aim to prove
that it generates a C0-semigroup on a Banach space B of functions on [0, T ]×H. This
semigroup is just the space-time homogenization of the family Ps,t, 0 ≤ s ≤ t ≤ T ,
of transition probabilities of the solution to (1.1) (if it exists), i.e, Ps,t solve the
Chapman–Kolmogorov equation corresponding to L.

The restriction L0 of the Kolmogorov operator L to an initial domain of nice
functions, specified below, is given on [0, T ]×H, with T > 0 fixed, as follows:

(L0u)(t, x) =
∂

∂t
u(t, x) + N(t)u(t, x), (1.2)

where

N(t)u(t, x) =
1

2
Tr [CD2

xu(t, x)] + 〈x, A∗Dxu(t, x)〉+ 〈F (t, x), Dxu(t, x)〉 (1.3)

and A∗ is the adjoint of A.
In order to define the initial domain of L0 we introduce some functional spaces.

We denote the linear span of all real and imaginary parts of functions ei〈x,h〉 where
h ∈ D(A∗) by EA(H). Moreover, for any φ ∈ C1([0, T ]) such that φ(T ) = 0 and any
h ∈ C1([0, T ]; D(A∗)) we consider the function

uφ,h(t, x) = φ(t)ei〈x,h(t)〉, t ∈ R, x ∈ H,

and denote by EA([0, T ]×H) the linear span of all real and imaginary parts of such
functions uφ,h. We shall define the operator L0 on the space D(L0) := EA([0, T ]×H).

Our strategy to achieve the above described goal is the following:

Step 1. Choose the Banach space B as

B := Lp([0, T ]×H; ν),

for p ≥ 1, with ν an appropriate measure on [0, T ] × H of the form ν(dt dx) =
νt(dx)dt, where νt are probability measures in H. It turns out that appropriate are
all measures ν of the above type such that for some α > 0∫

[0,T ]×H

L0u dν ≤ α

∫
[0,T ]×H

u dν, ∀ u ∈ D(L0), u ≥ 0. (1.4)

Then it follows that L0 is quasi-dissipative on Lp([0, T ]×H; ν), hence closable. Let
Lp denote its closure. So, the first task is to find such measures. One way to do
this is to solve the Fokker–Planck equation corresponding to L0 (i.e. the dual of the
Kolmogorov equation). The resulting measure satisfies (1.4) with α = 0.

Step 2. Prove that Lp is maximal-dissipative on Lp([0, T ] × H; ν). Hence it
generates a C0-semigroup eτLp , τ ≥ 0, on Lp([0, T ] × H; ν) which turns out to be
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Markov. Then eτLp , τ ≥ 0, is the desired space-time homogenization of the transition
probabilities Ps,t, 0 ≤ s ≤ t ≤ T , of the process that (if it exists) should solve (1.1).

In this paper we realize both steps above, but emphasize that though this is
already quite hard work, it constitutes only a partial result. It would be desirable
to prove that eτLp is given by a probability kernel on [0, T ] × H and thus also get
Ps,t as probability kernels on H. And furthermore one should prove the existence of
a weak solution to (1.1) having Ps,t as transition probabilities.

This second part of the programme is under study and will be the subject of
forthcoming work. This paper consists of two parts, namely the case of regular F
and non regular F .

In the first part of the paper (Section 2) we assume that F (t, x) is regular, see
Hypothesis 2.1, and (extending [1], [2] and [5] to infinite dimensions) prove that,
for any ν0 ∈ P(H), there exists a unique family of probability measures (νt)t∈[0,T ] ⊂
P(H) with the same initial value ν0 such that they solve the Fokker–Planck equation
for L0, i.e., for each u ∈ D(L0) for almost all t ∈ [0, T ] one has

d

dt

∫
H

u(t, x)νt(dx) =

∫
H

L0u(t, x)νt(dx),

or, equivalently, for each u ∈ D(L0) for almost all t ∈ [0, T ] one has∫
H

u(t, x)νt(dx) =

∫
H

u(0, x)ν0(dx) +

∫ t

0

∫
H

L0u(s, x)νs(dx). (1.5)

Here we implicitly assume that the second integral on the right hand side exists for
all u ∈ D(L0), which is e.g. the case if∫

H

|x|νt(dx) < +∞

and F is Lipschitz, or if

〈x, A∗h〉, 〈F, h〉 ∈ L1([0, T ]×H; ν), ∀ h ∈ D(A∗),

where ν(dt, dx) = νt(dx)dt. The following remark is crucial in this paper.

Remark 1.1 (i) We note that even without F being regular, the relations νt(H) = 1
for all t ∈ [0, T ] and lim

t→T
u(t, x) = 0 for all x ∈ H along with (1.5) imply∫ T

0

∫
H

L0u(t, x)νt(dx)dt = −
∫

H

u(0, x)ν0(dx), ∀ u ∈ D(L0). (1.6)

In particular, ∫ T

0

∫
H

L0u(t, x)νt(dx)dt ≤ 0, ∀ u ∈ D(L0), u ≥ 0. (1.7)

(ii) If u ∈ D(L0), then u2 ∈ D(L0) and L0u
2 = 2uL0u + |C1/2Dxu|2. Hence by (1.6)

we have ∫ T

0

∫
H

L0u(t, x) u(t, x) νt(dx)dt (1.8)

= −1

2

∫ T

0

∫
H

|C1/2Dxu(t, x)|2νt(dx)dt−
∫

H

u2(0, x)ν0(dx).
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If νt only satisfies (1.7) we still have∫ T

0

∫
H

L0u(t, x) u(t, x) νt(dx)dt ≤ −1

2

∫ T

0

∫
H

|C1/2Dxu(t, x)|2νt(dx)dt. (1.9)

After having established existence and uniqueness of (νt)t∈[0,T ] satisfying (1.5) in
the regular case, we show that L0 is essentially m-dissipative in the space Lp([0, T ]×
H; ν), i.e. (L0, D(L0)) is dissipative on Lp([0, T ] × H; ν) and (λ − L0, D(L0)) has
dense range for all λ > 0. By the well known Lumer–Phillips Theorem this means
that the closure Lp of L0 generates a C0-semigroup etLp , t ≥ 0, on Lp([0, T ]×H; ν),
which in our case is even Markov.

In the second part (Section 3), devoted to the case of irregular drifts, we prove
(see Theorem 3.3 below) that L0 is essentially m-dissipative in Lp([0, T ]×H; ν) where
ν(dt, dx) = νt(dx)dt and (νt)t∈[0,T ] is a suitable family of probability measures (see
Hypothesis 3.1) as e.g. the solutions to the Fokker–Planck equation corresponding
to L0; sufficient conditions for the existence of the latter have been obtained in [4],
to which we refer for the proofs. However, in this paper, we prove uniqueness
(see Theorem 3.6 below). Then, in Section 4, we apply the obtained results to
reaction-diffusion equations with time-dependent coefficients. In this case existence
and uniqueness for equation (1.1) is known. However, the m-dissipativity of its
Kolmogorov operator and the uniqueness result for the Fokker–Planck equation are
new.

Finally, it would be interesting to prove existence and uniqueness for equation
(1.5) when t varies on all R, generalizing results in [11], [12]. This problem will be
studied in a forthcoming paper. Some results of this work have been announced in
our note [3].

We end this section by listing the assumptions on the linear operator A which
we will assume throughout.

Hypothesis 1.2

(i) There is ω ∈ R such that 〈Ax, x〉 ≤ ω|x|2, ∀ x ∈ D(A).

(ii) C ∈ L(H) is symmetric, nonnegative and such that the linear operator

Q
(α)
t :=

∫ t

0

s−2αesACesA∗
ds

is of trace class for all t > 0 and some α ∈ (0, 1/2).

(iii) Setting Qt :=
∫ t

0
esACesA∗

ds, one has etA(H) ⊂ Q
1/2
t (H) for all t > 0 and

there is Λt ∈ L(H) such that Q
1/2
t Λt = etA and

γλ :=

∫ +∞

0

e−λt‖Λt‖dt < +∞,

where ‖ · ‖ denotes the operator norm in L(H).

We note that by our assumptions on F (see Hypothesis 2.1(ii) in the regular case
and Hypothesis 3.1(ii) in the irregular case), by adding a constant times identity to
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F , we may assume without loss of generality that ω in Hypothesis 1.2(i) is strictly
negative.

We also note that Hypothesis 2.1(iii) implies that the Ornstein–Uhlenbeck oper-
ator associated to L0 (that is when F = 0) is strong Feller. This assumption is not
essential but it allows to simplify several proofs below. In the appendix we collect
some results on the Ornstein–Uhlenbeck operator

Uϕ(x) =
1

2
Tr [CD2

xϕ(x)] + 〈x, A∗Dxϕ(x)〉, ϕ ∈ EA(H), x ∈ D(A∗),

needed throughout. In addition, we introduce the operator

V0u(t, x) = Dtu(t, x) + Uu(t, x), u ∈ EA([0, T ]×H),

and its maximal monotone extension V (see (A.1)). Then we prove that the space
EA([0, T ] ×H) is a core (in a suitable sense) of V0, generalizing a similar result for
the operator U in [13].

2 The case when F is regular

In this section we assume that

Hypothesis 2.1

(i) Hypothesis 1.2 is fulfilled.

(ii) F : [0, T ]×H → H is continuous together with DxF (t, ·) : H → L(H) for all
t ∈ [0, T ]. Moreover, there exists K > 0 such that

|F (t, x)− F (t, y)| ≤ K|x− y|, x, y ∈ H, t ∈ [0, T ].

This clearly implies that x → F (t, x)−Kx is m-dissipative for any t ∈ [0, T ].
It is known (see, e.g., [14]) that, under Hypothesis 2.1, for any s ≥ 0, there

exists a unique mild solution X(·, s, x) with P-a.s. H-continuous sample paths of
the stochastic differential equation dX(t) = (AX(t) + F (t,X(t)))dt +

√
C dW (t),

X(s) = x ∈ H, t ≥ s,
(2.1)

where W (t), t ∈ R, is a cylindrical Wiener process in H defined on a filtered
probability space (Ω,F ,Ft, P). A mild solution X(t, s, x) of (2.1) is an adapted
stochastic process X ∈ C([s, T ]; L2(Ω,F , P)) such that

X(t, s, x) = e(t−s)Ax +

∫ t

s

e(t−r)AF (r, X(r, s, x))dr + WA(t, s), t ≥ s,

where WA(t, s) is the stochastic convolution:

WA(t, s) =

∫ t

s

e(t−r)A
√

C dW (r), t ≥ s,
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which is also P-a.s. H-continuous under our assumptions on A. In view of Hypothe-
sis 1.2(ii), WA(t, s) is a Gaussian random variable in H with mean 0 and covariance
operator Qs,t given by

Qs,tx =

∫ t

s

esACesA∗
xds, t ≥ s, x ∈ H.

The next result will be useful below.

Lemma 2.2 For any m > 1/2 there is Cm > 0 such that for ω1 := ω −K

E
(
|X(t, s, x)|2m

)
≤ Cm(1 + e−mω1(t−s)|x|2m), t ≥ s. (2.2)

Proof. It is convenient to write equation (2.1) as a family of deterministic equations.
Setting Y (t) = X(t, s, x)−WA(t, s), we see that Y (t) satisfies the equation

Y ′(t) = AY (t) + F (t, Y (t) + WA(t, s)),

Y (s) = x, t ≥ s,
(2.3)

again in the mild sense. Also we set

M = sup
t∈[0,T ]

|F (t, 0)|.

Multiplying (2.3) by |Y (t)|2m−2Y (t) and taking into account Hypothesis 2.1, yields
for a suitable constant C1

m that

1

2m

d

dt
|Y (t)|2m ≤ −ω|Y (t)|2m + 〈F (t,WA(t, s)), Y (t)〉|Y (t)|2m−2

+ 〈F (t, Y (t) + WA(t, s))− F (t,WA(t, s)), Y (t)〉|Y (t)|2m−2

≤ −ω|Y (t)|2m + 〈F (t,WA(t, s)), Y (t)〉|Y (t)|2m−2 + K|Y (t)|2m

≤ −K − ω

2
|Y (t)|2m + C1

m|F (t,WA(t, s))|2m.

This computation is formal, but can be made rigorous by approximation, cf. [14].
By a standard comparison result it follows that

|Y (t)|2m ≤ e−mω1(t−s)|x|2m + 2mC1
m

∫ t

s

e−mω1(s−σ)|F (σ, WA(σ, s))|2mdσ,

and finally we find that, for some constant C2
m one has

|X(t, s, x)|2m ≤ C2
me−mω(t−s)|x|2m

+ C2
m

(∫ t

s

e−mω(σ−s)|F (σ, WA(σ, s))|2mdσ + |WA(t, s)|2m

)
. (2.4)

Now the conclusion follows by taking the expectation and recalling that in view of
Hypothesis 2.1 one has

|F (t, x)| ≤ |F (t, 0)|+ |F (t, x)− F (t, 0)| ≤ M + K|x|, t ∈ [0, T ], x ∈ H,
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and using the fact that (see [15])

sup
t∈[0,T ],t≥s

E|WA(t, s)|2m < +∞.

The proof is complete. �
We define the transition evolution operator

Ps,tϕ(x) = E[ϕ(X(t, s, x))], t ≥ s, ϕ ∈ Cu(H),

where Cu(H) is the Banach space of all uniformly continuous and bounded functions
ϕ : H → R endowed with the usual supremum norm

‖ϕ‖0 = sup
x∈H

|ϕ(x)|.

For k ∈ N, Ck
u(H) is the subspace of Cu(H) consisting of all functions with uniformly

continuous and bounded derivatives of order l for all l ≤ k, equipped with its natural
norm.

By Cu,2(H) we denote the set of all functions ϕ : H → R such that the function

x → ϕ(x)
1+|x|2 is uniformly continuous and bounded. Endowed with the norm

‖ϕ‖u,2 := sup
x∈H

|ϕ(x)|
1 + |x|2

,

Cu,2(H) is a Banach space. We notice that, in view of Lemma 2.2, the transition
evolution operator Ps,t acts in Cu,2(H).

We recall that, since F is Lipschitz, we have for some constant C > 0,

Ps,t| · |(x) ≤ C(1 + |x|), ∀ x ∈ H, 0 ≤ s ≤ t ≤ T, (2.5)

and, by Lemma 2.2, for all m > 1/2 and some Cm > 0 one has

Ps,t| · |2m(x) ≤ Cm(1 + |x|2m), ∀ x ∈ H, 0 ≤ s ≤ t ≤ T. (2.6)

The following result is well-known (it follows from Itô’s formula, see [5]).

Lemma 2.3 For each 0 ≤ s ≤ t ≤ T , Ps,t is Feller, and maps Cu,2(H) into itself.
Moreover, for any u ∈ EA([0, T ]×H) we have

∂

∂t
Ps,tu(t, ·) = Ps,tL0u(t, ·), ∀ 0 ≤ s ≤ t ≤ T.

It is useful to introduce an extension of the operator L0 in C([0, T ]; Cu,2(H)). For
any λ ∈ R, (s, x) ∈ [0, T ]×H set

Fλf(s, x) :=

∫ T

s

e−λ(r−s)Ps,rf(r, ·)(x)dr, f ∈ C([0, T ]; Cu,2(H)).

Let us show that Fλ satisfies the resolvent identity

Fλ − Fλ′ = (λ′ − λ)Fλ′Fλ (2.7)
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for all real λ and λ′, whence it follows that the range Fλ(C([0, T ]; Cu,2(H))) is
independent of λ. Identity (2.7) is verified as follows:

Fλ(Fλ′f)(s, x) =

∫ T

s

e−λ(r−s)Ps,r(Fλ′(r, · ))(x) dr

=

∫ T

s

e−λ(r−s)Ps,r

(∫ T

r

e−λ′(u−r)Pr,uf(u, · )(x) du
)
dr

=

∫ T

s

e−(λ−λ′)reλs

∫ T

r

e−λ′uPs,uf(u, · )(x) du dr.

Integrating by parts we obtain on the right

− eλs

λ− λ′

∫ T

s

e−λrPs,rf(r, · )(x) dr +
eλ′s

λ− λ′

∫ T

s

e−λ′uPs,uf(u, · )(x) du

=
1

λ− λ′

(
Fλ′f(s, x)− Fλf(s, x)

)
.

Furthermore, as λ →∞, we have

λFλf(s, x) = λ

∫ T−s

0

e−λrPs,r+sf(r + s, · )(x) dr

=

∫ λ(T−s)

0

e−rPs,rλ−1+sf(rλ−1 + s, · )(x) dr → f(s, x).

Hence Fλ is one-to-one, continuous with D(Fλ) := C([0, T ], Cu,2(H)), so F−1
λ exists

and is closed on Fλ(D(Fλ)). Therefore, the operator L := λI − F−1
λ is closed (as

a densely defined operator on C([0, T ]; Cu,2(H))) and does not depend on λ (which
follows by (2.7)). In addition, we have

Fλ = (λ− L)−1, D(L) = Fλ(C([0, T ]; Cu,2(H))), λ ∈ R. (2.8)

By Lemma 2.3 it follows that L is indeed an extension of L0.
Finally, it is easy to check that the semigroup Pτ , τ ≥ 0, in the space

CT ([0, T ]; Cu,2(H)) = {u ∈ C([0, T ]; Cu,2(H)) : u(T, x) = 0, ∀ x ∈ H},

defined by

Pτf(t, x) =

{
Pt,t+τf(t + τ, ·)(x) if t + τ ≤ T
0 otherwise,

(2.9)

is generated by L in the sense of π-semigroups (cf. [19]).
Arguing as in [19] one can show that u ∈ D(L) and Lu = f if and only if

(i) lim
h→0

1

h
(Phu(t, x)− u(t, x)) = f(t, x), ∀ (t, x) ∈ [0, T ]×H,

(ii) sup
h∈(0,1],(t,x)∈[0,T ]×H

(1 + |x|2)−1

h
|(Phu(t, x)− u(t, x))| < +∞.

(2.10)
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2.1 Existence for problem (1.5)

We denote the topological dual of Cu,2(H) by Cu,2(H)∗. If 0 ≤ s < t ≤ T , let
P ∗

s,t be the adjoint operator of Ps,t. It is easy to see that if ν0 ∈ P(H) we have
P ∗

s,tν0 ∈ P(H) and∫
H

ϕ(x)(P ∗
s,tν0)(dx) =

∫
H

Ps,tϕ(x)ν0(dx), ∀ ϕ ∈ Cu,2(H).

Proposition 2.4 Let ν0 ∈ P(H) be such that
∫

H
|x|ν0(dx) < +∞. Then, setting

νt = P ∗
0,tν0, (νt) is a solution of problem (1.5) for all (not just a.e.) t ∈ [0, T ] such

that for any m ≥ 1/2 there exists Cm > 0 such that∫
H

|x|2mνt(dx) ≤ Cm

(
1 +

∫
H

|x|2mν0(dx)

)
. (2.11)

In particular, ∫
H

|x|νt(dx) < +∞, ∀ t ∈ [0, T ]. (2.12)

Proof. Let u ∈ D(L0), i.e., u(t, x) = φ(t)ei〈x,h(t)〉, where φ ∈ C1([0, T ]), φ(T ) = 0
and h ∈ C1([0, T ]; D(A∗)). Then by definition∫

H

u(t, x)νt(dx) =

∫
H

P0,tu(t, ·)(x)ν0(dx).

Hence by (2.5) and (2.6) we obtain (2.11) and (2.12). On the other hand, by Lemma
2.3 we have

∂

∂t
P0,tu(t, ·) = P0,tL0u(t, ·).

So, using (2.5) we obtain

∂

∂t

∫
H

u(t, x)νt(dx) =

∫
H

∂

∂t
P0,tu(t, ·)(x)ν0(dx)

=

∫
H

P0,tL0u(t, ·)(x)ν0(dx) =

∫
H

L0u(t, ·)(x)νt(dx).

The proof is complete. �

2.2 Uniqueness for problem (1.5)

Lemma 2.5 Let f ∈ C([0, T ]; C1
u(H)), λ ∈ R, and let u = (λ− L)−1f . Then

(i) Dxu ∈ C([0, T ]; Cu(H; H)),

u ∈ D(V ), where V is the operator defined in the Appendix by (A.3), and we
have

λu− V u− 〈F, Dxu〉 = f. (2.13)

Proof. By the definition of u we have that u ∈ D(L) and

u(t, x) =

∫ T

t

e−λ(r−t)Pt,rf(r, ·)(x)dr, t ∈ [0, T ], x ∈ H.
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Let us prove (i). Since Pt,rf(r, ·)(x) = E[f(r, X(r, t, x))], and F is C1 we have

DxPt,rf(r, ·)(x) = E[DxX(r, t, x)∗Dxf(r, X(r, t, x))],

which is also bounded in x since F is Lipschitz uniformly in t. Consequently, Dxu ∈
C([0, T ]; Cu(H; H)) and

Dxu(t, x) =

∫ T

t

e−λ(r−t)DxPt,rf(r, ·)(x)dr.

Let us now prove (ii). Fix t ∈ [0, T ] and h > 0 such that t + h ≤ T . Then

X(t + h, t, x) = Z(t + h, t, x) +

∫ t+h

t

e(t+h−s)AF (s, X(s, t, x))ds, (2.14)

where

Z(t + h, t, x) = ehAx +

∫ t+h

t

e(t+h−s)A
√

C dW (s).

Therefore, we have

Rhu(t, x) = Rhu(t + h, ·)(x) = E[u(t + h, Z(h, 0, x))]

= E[u(t + h, Z(t + h, t, x))],

where Rh is defined by (A.4). Set

g(t + h, t, x) =

∫ t+h

t

e(t+h−s)AF (s, X(s, t, x))ds.

Then, taking into account (2.14), we have for any h > 0

Rhu(t, x)

= E
[
u

(
t + h,X(t + h, t, x)−

∫ t+h

t

e(t+h−s)AF (s, X(s, t, x))ds

)]
= E[u(t + h,X(t + h, t, x)]

−
∫ 1

0

E [〈Du (t + h,X(t + h, t, x)− ξg(t + h, t, x)) , g(t + h, t, x)〉] dξ

= Phu(t, x)

−
∫ 1

0

E [〈Du (t + h,X(t + h, t, x)− ξg(t + h, t, x)) , g(t + h, t, x)〉] dξ.

It follows that

1

h
(Rhu(t, x)− u(t, x)) =

1

h
(Phu(t, x)− u(t, x)) (2.15)

− 1

h

∫ 1

0

E [〈Du (t + h,X(t + h, t, x)− ξg(t + h, t, x)) , g(t + h, t, x)〉] dξ.

Since u ∈ D(L) due to the equality u = (λ− L)−1f , Lemma 2.2 yields

lim
h→0

1

h
(Rhu(t, x)− u(t, x)) = Lu(t, x)− 〈Dxu(t, x), F (t, x)〉, (t, x) ∈ [0, T ]×H.
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To show that u ∈ D(V ) and V u = Lu − 〈F, Du〉, it remains to prove (see (A.5))
that

sup
h∈(0,1],(t,x)∈[0,T ]×H

(1 + |x|2)−1

h
|Rhu(t, x)− u(t, x)| < +∞.

By (2.5) and(2.15) we have

1

h

∣∣∣∣∫ 1

0

E [〈Du (t + h,X(t + h, t, x)− ξg(t + h, t, x)) , g(t + h, t, x)〉] dξ

∣∣∣∣
≤ c‖Du‖0

(
1 + sup

t≥s
E[|X(t, s, x)|]

)
≤ c′(1 + |x|).

The proof is complete. �

(ii) Corollary 2.6 Let f ∈ C([0, T ]; C1
u(H)), λ ∈ R and u = (λ − L)−1f . Then, for

every bounded Borel measure µ on [0, T ]×H, there exists a sequence (un) ⊂ D(L0)
such that un → u, Dxun → Dxu, V0un → V0u, hence one has L0un → Lu in measure
µ and

|un(t, x)|+ |V0un(t, x)|+ |Dxun(t, x)| ≤ c1(1 + |x|2), ∀ (t, x) ∈ [0, T ]×H,

for some constant c1.

Proof. By Lemma 2.5 we know that u = (λ− L)−1f belongs to D(V ) and

Lu = V u + 〈Dxu, F 〉.

Note that 〈Dxu, F 〉 ∈ Cu,2(H) (this space is defined before Lemma 2.3) since F is
Lipschitz continuous and consequently sub-linear. On the other hand, by Corollary
A.3 there exists a sequence of elements un ∈ D(L0) and a constant c2 > 0 such that

|un(t, x)|+ |V0un(t, x)|+ |Dxun(t, x)| ≤ c2(1 + |x|2), ∀ (t, x) ∈ [0, T ]×H,

and un → u, V0un → V u, Dxun → Dxu in measure µ. It follows that L0un → Lu in
µ-measure. �

Proposition 2.7 Let (ζt)t∈[0,T ] be a solution of (1.5) such that

sup
t∈[0,T ]

∫
H

|x|2ζt(dx) < +∞.

Then ζt = P ∗
0,tν0 for all t ∈ [0, T ].

Proof. Set γt = νt − ζt, where νt = P ∗
0,tν0 for all t ∈ [0, T ] and γ(dt, dx) = γt(dx)dt.

Then for any u ∈ D(L0) by Remark 1.1(i) we have∫ T

0

∫
H

L0u γt(dx) dt = 0. (2.16)

Let now f ∈ C([0, T ]; C1
u(H)) and set u = L−1f . Then by Corollary 2.6 there exists

a sequence (un) ⊂ D(L0) such that

un → u, L0un → L0u in γ measure,
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and

|un(t, x)|+ |L0un(t, x)| ≤ c(1 + |x|2), ∀ (t, x) ∈ [0, T ]×H, ρ ∈ Γ,

for a suitable constant c > 0. Then by (2.16) we find by the dominated convergence
theorem ∫ T

0

∫
H

f(t, x) γt(dx) dt =

∫ T

0

∫
H

Lu(t, x) γt(dx) dt = 0.

This implies that γtdt = 0 since the set C([0, T ]; C1
u(H)) is dense in the space

L1([0, T ]×H; γ). �

2.3 m-Dissipativity of L0

Theorem 2.8 Let p ∈ [1,∞) and let ν be a positive bounded Borel measure on
[0, T ]×H such that there exists a constant α > 0 such that∫ T

0

∫
H

L0u(t, x)ν(dt, dx) ≤ α

∫ T

0

∫
H

u(t, x)ν(dt, dx), ∀ u ∈ D(L0), u ≥ 0,

and ∫ T

0

∫
H

|x|2p(1 + |F (t, x)|p)ν(dt, dx) < ∞.

Then under Hypotheses 1.2 and 2.1, L0 − α/p is dissipative in the space Lp([0, T ]×
H; ν). Consequently, L0 − α/p is closable. Its closure Lp − α/p is m-dissipative
in the space Lp([0, T ] ×H; ν). Hence Lp generates a C0-semigroup eτLp , τ ≥ 0, on
Lp([0, T ]×H; ν). Furthermore, this semigroup is Markov. In particular this holds for
ν(dt, dx) = ν(dx)dt from Proposition 2.4 with α = 0, provided

∫
H
|x|3pν0(dx) < ∞.

Proof. By [17, Lemma 1.8 in Appendix B], the operator (L0 − α/p, D(L0)) is
dissipative in Lp([0, T ] ×H; ν) for all p ∈ [1,∞). Let f ∈ C([0, T ]; C1

u(H)), λ ∈ R,
and let u = (λ− L)−1f . By Lemma 2.5 we know that u ∈ D(V ) ∩ C([0, T ]; C1

u(H))
and

λu− V u− 〈Dxu, F 〉 = f.

By Corollary A.3 there exists a sequence (un) ⊂ EA([0, T ]×H) such that for some
c1 > 0 one has

|un(t, x)|+ |Dxun(t, x)|+ |V un(t, x)| ≤ c1(1 + |x|2), ∀ n ∈ N,

and un → u, V un → V u, Dxun → Dxu in measure ν. Set

fn = λun − V un − 〈Dxun, F 〉 = λun − L0un.

Then we have fn → f in measure ν and there exists c2 > 0 such that

|fn(t, x)| ≤ c1(1 + |x|2 + |x|2|F (t, x)|), (t, x) ∈ [0, T ]×H.

By assumption and the dominated convergence theorem it follows that fn → f in
Lp([0, T ]×H; ν). So we have proved that the closure of the range of λ−L0 includes
C([0, T ]; C1

u(H)) which is dense in Lp([0, T ] × H; ν). The remaining part of the
assertion is proved as Theorem 3.3 below. �
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3 General coefficients

Suppose we are given a family {F (t, ·)}t∈[0,T ] of m-quasi-dissipative mappings

F (t, ·) : D(F (t, ·)) ⊂ H → 2H .

This means that D(F (t, ·)) is a Borel set in H and for some K > 0

〈u− v, x− y〉 ≤ K|x− y|2, ∀ x, y ∈ D(F (t, ·)), u ∈ F (t, x), v ∈ F (t, y), (3.1)

and Range (λ−F (t, ·)) :=
⋃

x∈D(F (t,·))(x−F (t, x)) = H for any λ > K. We assume
additionally that K is independent of t.

For any x ∈ D(F (t, ·)) the set F (t, x) is closed, non empty, and convex; we set
F0(t, x) := y0(t), where y0(t) ∈ F (t, x) is such that |y0(t)| = miny∈F (t,x) |y|, x ∈
D(F (t, ·)).

We are concerned with the Kolmogorov operator

L0u(t, x) := Dtu(t, x) + Uu(t, x) + 〈F0(t, x), Dxu(t, x)〉, u ∈ D(L0),

where D(L0) = EA([0, T ] × H) and U is the Ornstein–Uhlenbeck operator defined
by (A.1) in the Appendix.

Our goal is to prove that the closure of L0 − α/p is m-dissipative in the space
Lp([0, T ] × H, ν), p ∈ [1,∞), where ν(dt, dx) = νt(dx)dt and (νt)t∈[0,T ] is a given
family of finite positive Borel measures on H such that for some α > 0 one has∫ T

0

∫
H

L0u(t, x)νt(dx)dt

≤ α

∫ T

0

∫
H

u(t, x)νt(dx)dt, ∀ u ∈ D(L0), u ≥ 0. (3.2)

We shall assume, in addition to Hypothesis 1.2, that

Hypothesis 3.1 (i) There is a family {F (t, ·)}t∈[0,T ] of m-quasi-dissipative map-
pings in H such that 0 ∈ D(F (t, ·)) and F0(t, 0) = 0 for all t ∈ R.

(ii) There is a family (νt)t∈[0,T ] of Borel probability measures on H such that for
some p ∈ [1,∞),∫ T

0

dt

∫
H

(|x|2p + |F0(t, x)|p + |x|2p|F0(t, x)|p)νt(dx) < +∞.

(iii) For all u ∈ D(L0) we have L0u ∈ Lp([0, T ]×H, ν) and (3.2) is fulfilled.

(iv) νt(D(F (t, ·)) = 1, ∀ t ∈ [0, T ].

Remark 3.2 (i) For simplicity below we shall assume that K in (3.1) is zero. This
is, however, no restriction since all our arguments below immediately extend to the
case when we add a C∞-Lipschitz map to F and clearly F = F̃ + KId with F̃
satisfying (3.1) with K = 0.
(ii) Obviously, in Hypothesis 3.1(iii) we have L0u ∈ Lp([0, T ]×H, ν) if and only if the
maps x 7→ 〈x, A∗h〉, (t, x) 7→ 〈F (t, x), h〉 are in Lp([0, T ]×H, ν) for all h ∈ D(A∗).
(iii) In [4] a number of results have been proved that ensure the existence of measures
ν(dt dx) = νt(dx)dt satisfying the required properties in Hypothesis 3.1. More pre-
cisely, it was proved that they even satisfy (1.5) which by Remark 1.1(i) is stronger
than (3.2).
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Let us introduce the Yosida approximations of F (t, ·), t ∈ R. For any α > 0 we
set

Fα(t, x) :=
1

α
(Jα(t, x)− x), x ∈ H,

where
Jα(t, x) := (I − αF (t, ·))−1(x), x ∈ H, t ∈ R, α > 0.

It is well-known that

lim
α→0

Fα(t, x) = F0(t, x), ∀ x ∈ D(F (t, ·)),

and
|Fα(t, x)| ≤ |F0(t, x)|, ∀ x ∈ D(F (t, ·)).

Moreover, Fα(t, ·) is Lipschitzian with constant 2/α and Fα(t, 0) = 0.
Since Fα(t, ·) is not differentiable in general, we introduce a further regulariza-

tion, as in [10], by setting

Fα,β(t, x) =

∫
H

eβBFα(t, eβBx + y)N 1
2

B−1(e2βB−1)(dy), α, β > 0,

where B : D(B) ⊂ H → H is a self–adjoint negative definite operator such that
B−1 is of trace class.

The mapping Fα,β(t, ·) is dissipative, of class C∞, possesses bounded derivatives
of all orders, and Fα,β(t, ·) → Fα(t, ·) pointwise as β → 0, see [14, Theorem 9.19].
Moreover, Fα,β(t, ·) satisfies Hypothesis 2.1(ii) since it is Lipschitz continuous with
Lipschitz constant 2/α and

|Fα,β(t, 0)| ≤
∫

H

|Fα(t, y)|N 1
2

B−1(e2βB−1)(dy) ≤ 2

α

∫
H

|y|N 1
2

B−1(e2βB−1)(dy).

3.1 m-dissipativity of Lp − α/p

We assume here that Hypotheses 1.2 and 3.1 hold fo some p ∈ [1,∞). As in the
regular case, (3.2) implies that (Lp − α/p, D(L0)) is dissipative, hence closable in
Lp([0, T ]×H, ν) for all p ∈ [1,∞). We shall denote its closure with domain D(Lp)
by Lp − α/p. We are going to show that Lp is m-dissipative.

Let us consider the approximating equation

λuα,β − V uα,β − 〈Fα,β, Dxuα,β〉 = f, α, β > 0, (3.3)

where λ > 0 and f ∈ C([0, T ]; C1
u(H)). In view of Lemma 2.5, equation (3.3) has a

unique solution uα,β ∈ D(V ) ∩ C([0, T ]; C1
u(H)) given by

uα,β(t, x) =

∫ T

t

e−λ(s−t)E[f(s, Xα,β(s, t, x))]ds, t ∈ R, x ∈ H,

where Xα,β is the mild solution of the problem dXα,β(s, t, x) = (AXα,β(s, t, x) + Fα,β(t,Xα,β(s, t, x)))ds +
√

C dW (s),

Xα,β(t, t, x) = x ∈ H.
(3.4)
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For all h ∈ H we have

〈Dxuα,β(t, x), h〉 =

∫ T

t

e−λ(s−t)E[〈Dxf(s, Xα,β(s, t, x)), ηh
α,β(s, t, x)〉]ds, (3.5)

where ηh
α,β(s, t, x) := 〈DxXα,β(s, t, x), h〉 is the mild solution of the problem

d

ds
ηh

α,β(s, t, x) = Aηh
α,β(s, t, x) + DxFα,β(s, Xα,β(s, t, x))ηh

α,β(s, t, x), s ≥ t,

ηh
α,β(t, t, x) = h.

By a standard argument, based on approximations (see e.g. [9, Section 3.2]) and on
the Gronwall lemma, we see that for some constant c > 0 one has

|ηh
α,β(s, t, x)| ≤ ec(s−t) |h|, T ≥ s ≥ t ≥ 0.

Consequently, by (3.5) it follows that for λ > c we have

|Dxuα,β(t, x)| ≤ 1

λ− c
sup

t∈[0,T ],x∈H

|Dxf(t, x)|, t ∈ [0, T ], x ∈ H. (3.6)

Now we can prove the main result of this section.

Theorem 3.3 Under Hypotheses 1.2 and 3.1, Lp−α/p is m-dissipative in the space
Lp([0, T ] × H, ν). Hence Lp generates a C0-semigroup eτLp , τ ≥ 0, on the space
Lp([0, T ] ×H, ν). Furthermore, this semigroup is Markov, i.e. positivity preserving
and eτLp1l = 1l for all τ ≥ 0. Finally, the resolvent set ρ(Lp) of Lp coincides with R.

Proof. Let f ∈ C([0, T ]; C1
u(H)) and let uα,β be the solution to equation (3.3).

Claim 1 One has

lim
α→0

lim sup
β→0

〈Fα,β(t, ·)− F0(t, ·), Dxuα,β〉 = 0 in Lp([0, T ]×H, ν).

In fact, it follows by (3.6) that for λ > c

Iα,β :=

∫ T

0

dt

∫
H

|〈Fα,β(t, ·)− F0, Dxuα,β(t, ·)〉|pdν

≤ 1

(λ− c)p
sup

t∈[0,T ],x∈H

|Dxf(t, x)|p
∫ T

0

dt

∫
H

|Fα,β(t, ·)− F0(t, ·)|pdνt.

Now, since for fixed α > 0, Fα,β(t, ·) is Lipschitz continuous with Lipschitz constant
2/α, we see that for any α > 0 there is cα > 0 such that

|Fα,β(t, x)| ≤ cα(1 + |x|), x ∈ H,

and so

lim sup
β→0

Iα,β ≤
1

(λ− c)p
sup

t≥0,x∈H
|Dxf(t, x)|p

∫ T

0

dt

∫
H

|Fα(t, ·)− F0(t, ·)|pdνt.

Now the claim follows, in view of the dominated convergence theorem.
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Claim 2 One has uα,β ∈ D(Lp) and for λ > c

λuα,β − Lpuα,β = f + 〈Fα,β − F0, Dxuα,β〉. (3.7)

Applying Corollary 2.6 with L being the Kolmogorov operator corresponding to
(3.4) we can find un ∈ E([0, T ]×H), n ∈ N, such that

un → uα,β, Dxun → Dxuα,β, and V0un → V uα,β in ν-measure

and for all (t, x) ∈ [0, T ]×H one has

|un(t, x)|+ |V0un(t, x)|+ |Dxun(t, x)| ≤ c1(1 + |x|2).

By Hypothesis 3.1(ii) it follows that the sequence {L0un} is bounded in the space
Lp([0, T ]×H, ν). Hence Claim 2 follows by the closability of L0 on Lp([0, T ]×H, ν).

Claim 3 One has f ∈ R(λ− Lp) for λ > c.

Claim 3 immediately follows from Claim 1 and (3.7).

Since C([0, T ]; C1
u(H)) is dense in Lp([0, T ]×H, ν) the first assertion of the theo-

rem follows. The second one follows from the well-known Lumer–Phillips Theorem.
The final statement is now a consequence of [17, Lemma 1.9] and the fact that
Lp1l = 0.

Claim 4 ρ(Lp) = R.

Let β ∈ R and λ > 0 such that λ + β > α
p
. Let f ∈ Lp([0, T ] ×H, ν). Then by

what we proved above there exists v ∈ D(Lp) such that

(β + λ− Lp)v = eλf,

where eλ(t, x) := eλt, (t, x) ∈ [0, T ] ×H. Define u := e−λv. Then an easy approxi-
mation argument proves that u ∈ D(Lp) and

(β − Lp)u = e−λ(β + λ− Lp)v = f.

So, (β−Lp, D(Lp)) is surjective. It is also injective because so is (β+λ−Lp, D(Lp)).
Hence β ∈ ρ(Lp), since (β − Lp, D(Lp)) is closed. �

Remark 3.4 It immediately follows from Claim 1 above that

lim
α,β→0

uα,β = (λ− Lp)
−1f in Lp([0, T ]×H, ν),

that is, the space-time resolvent corresponding to (3.4) converges to the one of (1.1)
in Lp([0, T ]×H, ν) on functions in C([0, T ]; C1

u(H)).
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3.2 Uniqueness for problem (1.5) in the irregular case

Let us fix a Borel probability measure ν0 on H. We introduce the set Mν0 of all
Borel measures ν on [0, T ]×H having the following properties:

(i) ν(dt dx) = νt(dx)dt, where for t ∈ [0, T ], νt is a Borel probability on H such
that νt(D(F (t, ·)) = 1 for all t ∈ [0, T ].

(ii) L0u ∈ L1([0, T ]×H, ν) for all u ∈ EA([0, T ]×H) and (νt)t∈[0,T ] satisfies (1.5).

(iii)

∫ T

0

∫
H

(|x|2 + |F0(t, x)|+ |x|2|F0(t, x)|)νt(dx)dt < ∞.

The aim of this subsection is to prove that under Hypotheses 1.2 and 3.1 Mν0

contains at most one element, i.e. #Mν0 ≤ 1.

Remark 3.5 As mentioned above, the existence of solutions of (1.5) under suitable
conditions has been proved in [4]. There, however, (1.5) has been written equiva-
lently as follows: ∫ T

0

∫
H

L0u(t, x) νt(dx) dt = 0

for all u ∈ EA([0, T ]×H) such that u(t, x) = 0 if t ≤ ε or t ≥ T − ε for some ε > 0
and

lim
t→0

∫
H

ζ(x) νt(dx) =

∫
H

ζ(x) ν0(dx), ∀ ζ ∈ EA(H).

The same proof as that of [5, Lemma 2.7] shows that this formulation is indeed
equivalent to (1.5). Clearly, the above formulation is nothing but a generalization
of the classical Fokker–Planck equation corresponding to the Kolmogorov operator
L0. So, as already mentioned in the introduction, our results can be summarized
as follows: first solve the Fokker–Planck equation (for measures) corresponding to
L0 and using its solution solve the Kolmogorov equation for L0 on Lp([0, T ]×H, ν)
(for functions) which is possible according to Theorem 3.3 above.

Theorem 3.6 Let ν0 be a Borel probability measure on H. Under Hypotheses 1.2
and 3.1(i) we have #Mν0 ≤ 1.

Proof. Let ν(1), ν(2) ∈Mν0 and set

µ :=
1

2
ν(1) +

1

2
ν(2).

Then µ ∈Mν0 and ν(i) = σi µ for some measurable functions σi : [0, T ]×H → [0, 2].
By (1.6) we have∫

[0,T ]×H

L0u dν(1) =

∫
[0,T ]×H

L0u dν(2), ∀ u ∈ D(L0),

that is ∫
[0,T ]×H

L0u (σ1 − σ2)dµ = 0, ∀ u ∈ D(L0).

Since by the last statement of Theorem 3.3, the range of (L0, D(L0)) is dense in
L1([0, T ]×H, µ) and (σ1 − σ2) is bounded, we conclude that σ1 = σ2. �
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4 Application to reaction-diffusion equations

We shall consider here a stochastic heat equation perturbed by a polynomial drift,
with time dependent coefficients, of odd degree d > 1 of the form

λξ − p(t, ξ), ξ ∈ R, t ∈ [0, T ],

where λ ∈ R is given, p(t, 0) = 0 and Dξp(t, ξ) ≥ 0 for all ξ ∈ R and t ∈ [0, T ].
We set H = L2(O) where O = (0, 1)n, n ∈ N, and denote by ∂O the boundary

of O.
We are concerned with the following stochastic PDE on O:


dX(t, s, ξ) = [∆ξX(t, s, ξ) + λX(t, s, ξ)− p(t,X(t, s, ξ))]dt +

√
C dW (t, ξ),

X(t, s, ξ) = 0, t ≥ s, ξ ∈ ∂O,

X(s, s, ξ) = x(ξ), ξ ∈ O, x ∈ H,
(4.1)

where ∆ξ is the Laplace operator, C ∈ L(H) is positive, and W is a cylindrical
Wiener process with respect to (Ft)t∈R in H defined on a filtered probability space
(Ω,F , (Ft)t∈R, P). We choose W of the form

W (t, ξ) =
∞∑

k=1

ek(ξ)βk(t), ξ ∈ O, t ≥ 0,

where (ek) is a complete orthonormal system in H and (βk) is a sequence of indepen-
dent standard Brownian motions on a probability space (Ω,F , P). Then we extend
W (t) to (−∞, 0) by symmetry.

Let us write problem (4.1) as a stochastic differential equation in the Hilbert
space H. For this we denote by A the realization of the Laplace operator with
Dirichlet boundary conditions, i.e.,

Ax = ∆ξx, x ∈ D(A),

D(A) = H2(O) ∩H1
0 (O).

The operator A is self–adjoint and possesses a complete orthonormal system of
eigenfunctions, namely

ek(ξ) = (2/π)n/2 sin(πk1ξ1) · · · (sin πknξn), ξ = (ξ1, ..., ξn) ∈ Rn,

where k = (k1, ..., kn), ki ∈ N.
For any x ∈ H we set xk = 〈x, ek〉, k ∈ Nn. Notice that

Aek = −π2|k|2ek, k ∈ Nn, |k|2 = k2
1 + · · ·+ k2

n.

Therefore, we have
‖etA‖ ≤ e−π2t, t ≥ 0.
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Concerning the operator C, we shall assume for simplicity that C = (−A)−γ with
n/2− 1 < γ < 1 (which implies n < 4). Now it is easy to check that Hypothesis 1.2
is fulfilled. In fact we have

Qtx =

∫ t

0

esACesA∗xds =

∫ t

0

(−A)−γe2sAxds

=
1

2
(−A)−(1+γ)(1− e2tA)x, t ≥ 0, x ∈ H.

Then
Tr [(−A)−(1+γ)] =

∑
k∈Nn

|k|−2(1+γ) < +∞,

since γ > n
2
− 1. Similarly, one obtains that for any α ∈ (0, 1/2)

Tr

∫ 1

0

s−2αesACesA∗
ds < +∞,

Hence part (i) and (ii) of Hypothesis 1.2 hold. Part (iii) can also be derived easily.
We refer to [7] for details.

Now, setting X(t, s) = X(t, s, ·) and W (t) = W (t, ·), we shall write problem
(4.1) as  dX(t, s) = [AX(t, s) + F (t,X(t, s))]dt + (−A)−γ/2dW (t),

X(s, s) = x.
(4.2)

where F is the mapping

F : D(F ) = [0, T ]× L2d(O) ⊂ [0, T ]×H → H, x(ξ) 7→ λξ − p(t, x(ξ)).

It is convenient, following [14], to introduce two different notions of solution of
(4.2). For this purpose, for any s ∈ [0, T ), we consider the space

CW ([s, T ]; H)) := CW ([s, T ]; L2(Ω,F , P; H))

consisting of all continuous mappings F : [s, T ] → L2(Ω,F , P; H) adapted to the
filtration (Ft)t∈R, endowed with the norm

‖F‖CW ([s,T ];H)) =
(

sup
t∈[s,T ]

E(|F (t)|2)
)1/2

;

the space CW ([s, T ]; H)) is complete.

Definition 4.1 (i) Let x ∈ L2d(O). We say that X( · s, x) ∈ CW ([s, T ]; H) is a mild
solution of problem (4.1) if X(t, s, x) ∈ L2d(O) for all t ∈ [s, T ] and the following
integral equation holds:

X(t, s, x) = e(t−s)Ax +

∫ t

s

e(t−r)AF (r, X(r, s, x))dr + WA(s, t), t ≥ s,

where WA(s, t) is the stochastic convolution

WA(s, t) =

∫ t

s

e(t−r)A(−A)−γ/2dW (s), t ≥ s.
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(ii) Let x ∈ H and s ∈ [0, T ]. We say that X( · s, x) ∈ CW ([s, T ]; H) is a generalized
solution of problem (4.2) if there exists a sequence (xn) ⊂ L2d(O) such that

lim
n→∞

xn = x in H

and the mappings X( · , s, xn) from (i) satisfy

lim
n→∞

X( · , s, xn) = X( · , s, x) in CW ([s, T ]; H).

One can show that Definition 4.1(ii) does not depend on (xn), see [8, §4.2].
We shall denote both mild and generalized solutions of (4.1) by X(t, s, x).

The following result can be proved arguing as in [14], see also [8, Theorem 4.8].

Theorem 4.2 The following statements are true.

(i) If x ∈ L2d(O), problem (4.2) has a unique mild solution X(·, s, x). Moreover,
for any m ∈ N there is cm,d,T > 0 such that

E
(
|X(t, s, x)|2m

L2d(O)

)
≤ cm,d,T

(
1 + |x|2m

L2d(O)

)
, 0 ≤ s ≤ t ≤ T.

(ii) If x ∈ H, problem (4.1) has a unique generalized solution X(·, s, x).

For any 0 ≤ s ≤ t ≤ T , let us consider the transition evolution operator

Ps,tϕ(x) = E[ϕ(X(t, s, x))], ϕ ∈ Cu(H),

where X(t, s, x) is a generalized solution of (4.2).
Then, given ν0 ∈ P(H), as in Section 2 we set

νt := P ∗
0,tν0, t ∈ [0, T ]. (4.3)

By Theorem 4.2 we find immediately the following result.

Proposition 4.3 Let m ∈ N and assume that ν0 ∈ P(H) satisfies∫
H

|x|2m
L2d(O)ν0(dx) < +∞. (4.4)

Then we have ∫
H

|x|2m
L2d(O)νt(dx) ≤ cm,d,T

∫
H

|x|2m
L2d(O)ν0(dx). (4.5)

Now let us consider the operator L0 defined by (1.2), (1.3) and associated with (4.2).
Notice that if u ∈ EA([0, T ] × H) then L0u does not belong to C([0, T ]; Cu(H))
in general. However, if ν0 ∈ P(H) satisfies (4.4), then by (4.5) one has L0u ∈
L2([0, T ]×H, ν), where ν(dt, dx) = νx(dt)dt.

By Proposition 4.3 the family (νt)t∈[0,T ] obviously satisfies Hypothesis 3.1 for
p = 2, provided ν0 satisfies (4.4) with m = 2d. Then by Theorems 3.3 and 3.6 we
deduce the following result.

Theorem 4.4 Assume that ν0 ∈ P(H) satisfies (4.4) with m = 2d. Then the
operator L0 with domain D(L0) = EA([0, T ] × H) associated with (4.2) is closable
on L2([0, T ] × H; ν), where ν(dt, dx) = νx(dt)dt and νt is defined by (4.3), and its
closure L2 is m-dissipative. Furthermore, L2 generates a Markov C0-semigroup of
contractions on L2([0, T ]×H; ν) and ν is the unique measure satisfying the Fokker–
Planck equation (1.5) and having properties (i)–(iii) in Subsection 3.2.
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A The Ornstein–Uhlenbeck semigroup

In this section Hypothesis 1.2 is still in force. We denote by Rt the Ornstein–
Uhlenbeck semigroup

Rtϕ(x) :=

∫
H

ϕ(etAx + y)NQt(dy), ϕ ∈ Cu,2(H),

where

Qtx :=

∫ t

0

esACesA∗
xds, x ∈ H, t ≥ 0,

and NQt is the Gaussian measure in H with mean 0 and covariance operator Qt.
Then (cf. [12]) we have

Rtϕ(x) = E[ϕ(Z(t, 0, x))].

We shall consider Rt acting in the Banach space Cu,2(H) defined in Section 2.
This will be needed in the proof of Proposition A.2 below.

Let us define the infinitesimal generator U of Rt through its resolvent by setting,

following [6], U := λ− G̃λ

−1
, D(U) = G̃λ(Cu,2(H)), where

G̃λf(x) =

∫ +∞

0

e−λtRtf(x)dt, x ∈ H, λ > 0, f ∈ Cu,2(H).

It is easy to see that for any h ∈ D(A∗) the function ϕh(x) = ei〈x,h〉 belongs to the
domain of U in Cu,2(H) and we have

Uϕh =
1

2
Tr [CD2ϕh] + 〈x, A∗Dϕh〉. (A.1)

A.1 The strong Feller property

The following identity for the derivative of Rtϕ is well known, see [16]:

〈DxRtϕ(x), h〉 =

∫
H

〈Λth,Q
−1/2
t y〉ϕ(etAx + y)NQt(dy), ϕ ∈ Cu,2(H), (A.2)

where Λt = Q
−1/2
t etA. By Hölder’s inequality it follows that

|〈DxRtϕ(x), h〉|2 ≤ |Λth|2
∫

H

ϕ2(etAx + y)NQt(dy).

So, since h is arbitrary, one has

|DxRtϕ(x)|2| ≤ ‖Λt‖2

∫
H

ϕ2(etAx + y)NQt(dy).

It follows that

|DxRtϕ(x)|2|2

(1 + |x|2)2
≤ ‖Λ(t)‖2

∫
H

ϕ2(etAx + y)

(1 + |x|2)2
NQt(dy)

≤ ‖Λ(t)‖2‖ϕ‖2
Cu,2(H)

∫
H

(1 + |etAx + y|)2

(1 + |x|2)2
NQt(dy)

≤ 4‖Λ(t)‖2‖ϕ‖2
Cu,2(H)

∫
H

(1 + |y|2)2NQt(dy)

≤ 4c2
1‖Λ(t)‖2‖ϕ‖2

Cu,2(H),
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where c1 is a positive constant. Now, recalling Hypothesis 1.2(iii) and using the
Laplace transform we obtain the following result.

Lemma A.1 Let ϕ ∈ D(U). Then there exists c2 > 0 such that

|Dxϕ(x)| ≤ c2(‖ϕ‖Cu,2(H) + ‖Uϕ‖Cu,2(H))(1 + |x|2), x ∈ H.

A.2 The Ornstein–Uhlenbeck semigroup
in C([0, T ]; Cu,2(H))

Let
V0u(t, x) = Dtu(t, x) + Uu(t, x), u ∈ EA([0, T ]×H).

It is clear that V0u ∈ C([0, T ]; Cu,2(H)) (note that Uu(t, x) contains a term growing
as |x|). Let us introduce an extension of the operator V0. For any λ ∈ R set

Gλf(t, x) =

∫ T

t

e−λ(s−t)Rt−sf(s, x)ds, f ∈ C([0, T ]; Cu,1(H)).

It is easy to see that Gλ satisfies the resolvent identity, so that there exists a unique
linear closed operator V in C([0, T ]; Cu,1(H)) such that

Gλ = (λ− V )−1, D(V ) = Gλ(C([0, T ]; Cu,2(H))), λ ∈ R. (A.3)

It is clear that V is an extension of V0.
Finally, it is easy to check that the semigroup Rτ , τ ≥ 0, generated by V in

CT ([0, T ]; Cu,1(H)) := {u ∈ CT ([0, T ]; Cu,1(H)) : u(T, x) = 0} is given by

Rτf(t, x) =

{
Rτf(t + τ, ·)(x) if t + τ ≤ T
0 otherwise.

(A.4)

Arguing as in [19] one can show that u ∈ D(V ) and V u = f if and only if
(i) lim

h→0

1

h
(Rhu(t, x)− u(t, x)) = f(t, x), ∀ (t, x) ∈ [0, T ]×H,

(ii) sup
h∈(0,1],(t,x)∈[0,T ]×H

(1 + |x|2)−1

h
|Rhu(t, x)− u(t, x)| < +∞.

(A.5)

A.3 A core for V

The following result is a generalization of [13].

Proposition A.2 Let u ∈ D(V ) and let ν be a finite nonnegative Borel measure
on [0, t]×H. Then there exists a sequence (un) ⊂ EA([0, T ]×H) such that for some
c1 > 0 one has

|un(t, x)|+ |V0un(t, x)| ≤ c1(1 + |x|2), ∀ (t, x) ∈ [0, T ]×H

and un → u, V0un → V0u in measure ν.
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Proof. Let f ∈ C([0, T ; Cu(H)) and set u = V −1f so that

u(t, x) = −
∫ T

t

Rs−tf(s, x)ds = −
∫ 1

0

R(T−t)rf((T − t)r + t, x)dr.

Arguing as in the proof of Proposition 1.2 in [8], it is easy to find a sequence
(fn1,n2) ⊂ EA([0, T ]×H) such that

lim
n1→∞

lim
n2→∞

fn1,n2(t, x) = f(t, x), |fn1,n2(t, x)| ≤ c1, (A.6)

where c1 is independent of n1, n2. Set

un1,n2(t, x) = −
∫ T

t

Rs−tfn1,n2(s, x)ds

= −
∫ 1

0

R(T−t)rfn1,n2((T − t)r + t, x)dr,

so that V un1,n2 = fn1,n2 . By (A.6) it follows that

lim
n1→∞

lim
n2→∞

un1,n2(t, x) = u(t, x), |un1,n2(t, x)| ≤ c1T. (A.7)

Moreover,

V un1,n2(t, x) = −
∫ T

t

Rs−tV fn1,n2(s, x)ds

= −
∫ 1

0

R(T−t)rV fn1,n2((T − t)r + t, x)dr,

so that
lim

n1→∞
lim

n2→∞
V un1,n2(t, x) = V u(t, x), |V un1,n2(t, x)| ≤ c1T. (A.8)

Now we want to approximate un1,n2 by functions from EA([0, T ] ×H). For this we
consider the set Σ of all partitions σ = {t0, t1, ..., tN} of [0, 1] with 0 = t0 < t1 <
· · · < tN−1 < tN = T . We set

|σ| = max
1≤i≤n

|ti − ti−1|

and endow Σ with the usual partial ordering

σ1 < σ2 if and only if |σ1| < |σ2|.

Finally, for any σ = {t0, t1, ..., tN} ∈ Σ we set

un1,n2,σ(t, x) =
N∑

k=1

R(T−t)rk
fn1,n2((T − t)rk + t, x)(rk − rk−1), (A.9)

so that

V un1,n2,σ(t, x) =
N∑

k=1

R(T−t)rk
V fn1,n2((T − t)rk + t, x)(rk − rk−1). (A.10)
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By (A.9) taking into account (A.7) it follows that

lim
n1→∞

lim
n2→∞

lim
|σ|→0

un1,n2,σ(t, x) = u(t, x), |un1,n2,σ(t, x)| ≤ c1T.

Similarly we see that

lim
n1→∞

lim
n2→∞

lim
|σ|→0

V un1,n2,σ(t, x) = V u(t, x).

However, (A.10) does not guarantee an estimate

|V un1,n2,σ(t, x)| ≤ c2T,

with c2 independent of n. Then we argue as follows. Note that if z ∈ EA([0, T ]×H),
then the function

F : [0, T ]× [0, T ] → H, (t, s) 7→ Rsz(t, x),

which is not continuous in the topology of Cu(H), is continuous in that of Cu,2(H),
consequently the integral ∫ 1

0

R(T−t)rf((T − t)r + t, x)dr

is convergent in that topology. Therefore, for any ε > 0 there exists δε > 0 such
that if |σ| < δε we have∣∣∣V un1,n2(t, x)−

N∑
k=1

R(T−t)rk
V fn1,n2((T − t)rk + t, x)(rk − rk−1)

∣∣∣ ≤ ε(1 + |x|2).

Consequently,
|V un1,n2,σ(t, x)| ≤ |V un1,n2(t, x)|+ ε(1 + |x|2)

and, taking into account (A.8), we find

|V un1,n2,σ(t, x)| ≤ c1T + ε(1 + |x|2).

Let σn denote the partition formed by the points 0, 2−nT, 21−nT, . . . , T . We can find
functions un1,n2,σn indexed by the triples (n1, n2, σn) such that

un1,n2,σn(t, x) → u(t, x)

in the following sense: keeping n1, n2 fixed, one has

lim
n→∞

un1,n2,σn(t, x) = un1,n2,σn(t, x),

next there is a limit un1 for any n1 fixed as n2 → ∞, and finally, un1 → u as
n1 → ∞. Convergence V0un1,n2,σn → V0u takes place in the same sense. Clearly,
we may assume that |x|2 is ν-integrable (just by multiplying ν by (|x|2 + 1)−1). By
the dominated convergence theorem this yields L1(ν)-convergence un1,n2,σn → u and
V0un1,n2,σn → V0u in the same sense as above (first for any n1, n2 fixed etc.) and
enables us to find a sequence of elements un in the net un1,n2,σn convergent in L1(ν),
hence in measure ν. �

As in the proof of Lemma 2.5 one proves that if u ∈ D(V ) then u is differentiable
in x. Hence the following result is a consequence of (A.2) and Lemma A.1.
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Corollary A.3 Let u ∈ D(V ) and let ν be a finite nonnegative Borel measure on
[0, T ] ×H. Then there exists a sequence (un) ⊂ EA([0, T ] ×H) such that for some
c1 > 0 one has

|un(t, x)|+ |Dxun(t, x)|+ |V0un(t, x)| ≤ c1(1 + |x|2), ∀ (t, x) ∈ [0, T ]×H,

and un → u, Dxun → Dxu, V0un → V u in measure ν.
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