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Abstract

We prove that the solutions to fast diffusion stochastic porous media equa-
tions have finite time extinction with strictly positive probability. To cite this
article: V. Barbu, G. Da Prato, M. Röckner, C. Acad. Sci. Paris,....

Résumé

Nous prouvons l’extinction avec une probabilité strictement positive
pour les solutions des équations des milieux poreux avec diffusion
rapide. Pour citer cet article: V. Barbu, G. Da Prato, M. Röckner,
C. Acad. Sci. Paris,....

1 Introduction

Consider the stochastic porous media equation{
dX(t)− ρ∆(|X|α(t) sign X(t))dt−∆(Ψ̃(X(t))dt = σ(X(t))dW (t), in (0,∞)×O,
X = 0 on (0,∞)× ∂O, X(0, x) = x on O,

(1)
where ρ > 0, α ∈ (0, 1), Ψ̃ is a continuous monotonically non decreasing function of
linear growth and σ(X)dW =

∑∞
k=1 µkXekdβk, t ≥ 0, where {βk} is a sequence

of independent real Brownian motions on a filtered probability space (Ω,F , {Ft},P)
and {ek} is an orthormal basis in L2(O) which for convenience will be taken as the
eigenfunction system for the Laplace operator with Dirichlet boundary conditions,
i.e., −∆ek = λkek in O, ek = 0 on ∂O, where O is an open and bounded subset of
Rd, with smooth boundary ∂O. We shall assume that

∑∞
k=1 µ

2
kλ

2
k < ∞. Equation

(1) for 0 < α < 1 is relevant in the mathematical modelling of the dynamics of
an ideal gas in a porous medium and, in particular, in a plasma fast diffusion
model (for α = 1/2) (see e.g. [4]). The existence and uniqueness of a strong
solution in the sense to be defined below was studied in [1],[2],[3],[5] for more general
nonlinear stochastic equations of the form (1). In [3] (see also [1]) it was also
proven that for α = 0 and d = 1 the solution X = X(t, x) to (1) has the finite
extinction property: P(τ ≤ n) ≥ 1 − |x|−1

ργ

(∫ n
0
e−CNsds

)−1
for |x|−1 < C−1

N ργ

where τ = inf{t ≥ 0 : |X(t, x)|−1 = 0} = sup{t ≥ 0 : |X(t, x)|−1 > 0} and CN , γ
are constants related to the Wiener process W and respectively to the domain
O ⊂ R1.

The following notations will be used in the sequel. H = L2(O), p ≥ 1, with the
norm denoted by | · |2 and scalar product 〈·, ·〉. H−1(O) is the dual of the Sobolev
space H1

0 (O) and is endowed with the scalar product 〈u, v〉−1 = 〈u, (−∆)−1v〉,
where ∆ is the Laplace operator with domain H2(O) ∩H1

0 (O). All processes X =
X(t) arising here are adapted with respect to the filtration {Ft}. For a Banach
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space E, LpW (0, T ;E) denotes the space of all adapted processes in Lp(0, T ;E). We
shall use standard notation for Sobolev spaces and spaces of integrable functions on
O.

2 The main result

Definition 2.1 Let x ∈ H. An H-valued continuous (Ft)-adapted process X =
X(t, x) is called a solution to (1) on [0, T ] if X ∈ Lp(Ω×(0, T )×O)∩L2(0, T ;L2(Ω, H)), p ≥
2, such that P-a.s. ∀ j ∈ N, t ∈ [0, T ],

〈X(t, x), ej〉 = 〈x, ej〉+
∫ t
0

∫
O(ρ|X(s, x)(ξ)|α sign X(s, x)(ξ) + Ψ̃(X(s, x)(ξ)))∆ej(ξ)dξds

+
∑∞
k=1 µk

∫ t
0
〈X(s, x)ek, ej〉dβk(s),

(2)

For x ∈ Lp(O), p ≥ 4 and d = 1, 2, 3 there is a unique solutionX ∈ L∞W (0, T ;Lp(Ω, H))
to (1) in the sense of Definition 2.1. Moreover, if x ≥ 0 a.e. in O then X ≥ 0 a.e.
in Ω× [0, T ]×O).

By the proof of [3, Theorem 2.2] and [3, Proposition 3.4] we also know that for
λ→ 0,{

Xλ → X strongly both in L2(0, T ;L2(Ω, L2(O))) and in L2(Ω;C([0, T ];H)),
weakly in Lp(Ω× (0, T )×O), and weak∗ in L∞(0, T ;Lp(Ω;Lp(O))),

(3)
where Xλ, λ > 0, is the solution to approximating equation dXλ(t)−∆(Ψλ(Xλ(t)) + λXλ(t) + Ψ̃(Xλ(t)))dt = σ(Xλ(t))dW (t),

Ψλ(Xλ) + λXλ + Ψ̃(Xλ) = 0 on ∂O, Xλ(0, x) = x,
Ψλ(x) = 1

λ (x− (1 + λΨ0)−1(x)) = Ψ0((1 + λΨ0)−1(x)), Ψ0(x) = ρ|x|α sign x.
(4)

Everywhere in the sequel X = X(t, x) is the solution to (1) in the sense of Def-
inition 2.1 where x ∈ L4(O). Below γ shall denote the minimal constant aris-
ing in the Sobolev embedding Lα+1(O) ⊂ H−1(O) (see (7) below) and C∗ =∑∞
k=1 µ

2
k |ek|2H1

0 (O)
=
∑∞
k=1 µ

2
k λ

2
k. Theorem 2.2 is the main result of the paper.

Theorem 2.2 Assume that d = 1, 2, 3 and that 0 < α < 1 if d = 1, 2, 1
5 ≤ α <

1 if d = 3. Let τ := inf{t ≥ 0 : |X(t, x)|−1 = 0}. Then we have |X(t, x)|−1 =
0, for t ≥ τ , P-a.s.. Furthermore

P(τ ≤ t) ≥ 1−
|x|1−α−1

(1− α)ργ1+α

(∫ t

0

e−(1−α)C∗sds

)−1

.

In particular, if |x|1−α−1 < ργ1+α

C∗ , then P(τ < ∞) > 0, and if C∗ = 0, then τ ≤
|x|1−α−1

(1−α)ργ1+α .

Remark 1 This result extends to O ⊂ Rd with d ≥ 4, if α ∈ [d−2
d+2 , 1). However, we

have to strengthen the assumption on µk, k ∈ N, see [1, Section 4] and in particular
[6, Remark 2.9(iii)] for a detailed discussion.

3 Proof of Theorem 2.2

We shall proceed as in the proof of [3, Theorem 4.2]. Consider the solution Xλ ∈
L2
W (0, T ;L2(Ω;H1

0 (O))) to equation (4). Then by applying the classical Itô formula
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to the real valued semi-martingale |Xλ(t)|2−1, t ∈ [0, T ], and to the function ϕε(r) =
(r + ε2)(1−α)/2, r ∈ R, we find that

dϕε(|Xλ(t)|2−1) + (1− α)(|Xλ(t)|2−1 + ε2)−(1+α)/2〈Xλ(t),Ψλ(Xλ(t)) + λXλ(t) + Ψ̃λ(Xλ(t))〉dt
= 1

2

∑∞
k=1 µ

2
k(1− α) |Xλ(t)ek|2−1(|Xλ(t)|2−1+ε

2)−(1−α)2|〈Xλ(t)ek,Xλ(t)〉−1|2)
(|Xλ(t)|2−1+ε

2)(3+α)/2 dt

+〈σ(Xλ(t))dW (t), ϕ′ε(|Xλ(t)|2−1)Xλ(t)〉−1

≤ 1
2

∑∞
k=1 µ

2
k

(1−α)|Xλ(t)ek|2−1

(|Xλ(t)|2−1+ε
2)(1+α)/2 dt+ 〈σ(Xλ(t))dW (t), ϕ′ε(|Xλ(t)|2−1)Xλ(t)〉−1

≤ C∗
(1− α)|Xλ(t)ek|2−1

(|Xλ(t)|2−1 + ε2)(1+α)/2
dt+ 〈σ(Xλ(t))dW (t), ϕ′ε(|Xλ(t)|2−1)Xλ(t)〉−1

(5)
Then letting λ→ 0, by (3) we get that

lim inf
λ→0

∫ T

0

〈Ψλ(Xλ(t)), Xλ(t)〉dt ≥ ρ
∫ T

0

|X(t)|1+αL1+α(O)dt, P-a.s.

and hence

ϕε(|X(t)|2−1) + (1− α)ρ
∫ t

r

|X(s)|α+1
Lα+1(O)

(|X(s)|2−1 + ε2)(1+α)/2
ds ≤ ϕε(|X(r)|2−1)

+C∗
∫ t

r

(1− α)|X(s)|2−1

(|X(s)|2−1 + ε2)(1+α)/2
ds

+2
∫ t

r

〈σ(X(s))dW (s), ϕ′ε(|X(s)|2−1)X(s)〉−1, P-a.s., r < t.

(6)

Next by the Sobolev embedding theorem we have

|u|−1 ≤ γ|u|Lα+1(O), ∀ u ∈ Lα+1(O), if d > 2 and α ≥ d−2
d+2 , and ∀ α > 0, if d=1,2.

(7)
Then substituting (7) into (6) we get

ϕε(|X(t)|2−1) + (1− α)ργ1+α

∫ t

r

|X(s)|α+1
−1

(|X(s)|2−1 + ε2)(1+α)/2
ds ≤ ϕε(|X(r)|2−1)

+C∗
∫ t

r

(1− α)|X(s)|2−1

(|X(s)|2−1 + ε2)(1+α)/2
ds

+
∫ t

r

〈σ(X(s))dW (s), ϕ′ε(|X(s)|2−1)X(s)〉−1, P-a.s., r < t.

(8)

Now for ε→ 0 we have

|X(t)|1−α−1 + (1− α)ργ1+α

∫ t

r

1{|X(s)|−1>0}ds ≤ |X(r)|1−α−1 + C∗(1− α)
∫ t

r

|X(s)|1−α−1 ds

+(1− α)
∫ t

r

〈σ(X(s))dW (s), |X(s)|−(α+1)
−1 X(s)〉−1, P-a.s., r < t.

Hence by Itô’s product rule

e−(1−α)C∗t|X(t)|1−α−1 + (1− α)ργ1+α

∫ t

r

e−(1−α)C∗s1{|X(s)|−1>0}ds

≤ e−(1−α)C∗r|X(r)|1−α−1

+(1− α)
∫ t

r

e−(1−α)C∗s〈σ(X(s))dW (s), |X(s)|−(α+1)
−1 X(s)〉−1, P-a.s., r < t.

(9)
From this it immediately follows that e−(1−α)C∗t|X(t)|1−α−1 , t ≥ 0, is an (Ft)-
supermartingale, hence |X(t)|−1 = 0 for all t ≥ τ . So, (9) with r = 0 after taking
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expectation implies that
∫ t
0
e−(1−α)C∗sP(τ > s)ds ≤ |x|1−α−1

(1−α)ργ1+α , t ≥ 0. This im-

plies that P(τ > t) ≤ |x|1−α−1
(1−α)ργ1+α

(∫ t
0
e−(1−α)C∗sds

)−1

, t ≥ 0, and the assertion
follows. �
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