Existence results for Fokker–Planck equations in Hilbert spaces

Vladimir Bogachev^{*}, Department of Mechanics and Mathematics, Moscow State University, 119991 Moscow, Russia,

> Giuseppe Da Prato[†], Scuola Normale Superiore di Pisa, Italy and

Michael Röckner[‡] Faculty of Mathematics, University of Bielefeld, Germany and

Department of Mathematics and Statistics, Purdue University, W. Lafayette, 47906, IN, U. S. A.

March 18 2009

Abstract

We consider a stochastic differential equation in a Hilbert space with time-dependent coefficients for which no general existence result

*Supported in part by the RFBR project 07-01-00536, the Russian–Japanese Grant 08-01-91205-JF, the Russian–Chinese Grant 06-01-39003, ARC Discovery Grant DP0663153, the DFG Grant 436 RUS 113/343/0(R), SFB 701 at the University of Bielefeld

 $^{^\}dagger Supported in part by "Equazioni di Kolmogorov" from the Italian "Ministero della Ricerca Scientifica e Tecnologica"$

 $^{^{\}ddagger}\mathrm{Supported}$ by the DFG through SFB-701 and IRTG 1132 as well as the BIBOS-Research Center.

is known. We prove, under suitable assumptions, existence of a measure valued solution, for the corresponding Fokker–Planck equation.

2000 Mathematics Subject Classification AMS: 60H15, 60J35, 60J60, 47D07

Key words : Kolmogorov operators, stochastic PDEs, parabolic equations for measures, Fokker–Planck equations.

1 Introduction

Let us consider a stochastic differential equation on a separable Hilbert space H (with norm $|\cdot|$ and inner product $\langle \cdot, \cdot \rangle$) of the form

$$\begin{cases} dX(t) = [AX(t) + F(t, X(t))]dt + \sqrt{C}dW(t), \\ X(0) = x, \end{cases}$$
(1.1)

where $A : D(A) \subset H \to H$ is a self-adjoint operator, $C : H \to H$ is linear self-adjoint and nonnegative, $F(t, \cdot) : Y \subset H \to H$ (where Y is a subspace of H), $t \in [0, T]$, form a family of non linear mappings and W(t) is a cylindrical Wiener process in H defined on a stochastic basis $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t>0}, \mathbb{P})$.

The Kolmogorov operator L_0 corresponding to (1.1) reads as follows

$$L_{0}u(t,x) = D_{t}u(t,x) + \frac{1}{2} \operatorname{Tr} [CD_{x}^{2}u(t,x)] + \langle x, AD_{x}u(t,x) \rangle + \langle F(t,x), D_{x}u(t,x) \rangle.$$
(1.2)

The operator L_0 is defined on the space $D(L_0) := \mathscr{E}_A([0,T] \times H)$, the linear span of all real parts of functions $u_{\phi,h}$ of the form

$$u_{\phi,h}(t,x) = \phi(t)e^{i\langle x,h(t)\rangle}, \quad t \in [0,T], \ x \in H,$$

where $\phi \in C^1([0,T])$, $h \in C^1([0,T]; D(A))$ and $\phi(T) = 0$. We are interested in the following Fokker–Planck equation

$$\begin{cases} \frac{d}{dt} \int_{H} u(t,x)\mu_{t}(dx) = \int_{H} L_{0}u(t,x)\mu_{t}(dx) \text{ for } dt\text{-a.e.} \quad t \in (0,T], \ \forall \ u \in D(L_{0}) \\\\ \lim_{t \to 0} \int_{H} \varphi(x)\mu_{t}(dx) = \int_{H} \varphi(x)\zeta(dx), \quad \forall \ \varphi \in \mathscr{E}_{A}(H), \end{cases}$$
(1.3)

where $\frac{d}{dt}$ denotes the weak derivative on [0, T]. Here $\mathscr{E}_A(H)$ is the linear span of all real parts of functions of the form

$$\varphi(x) = e^{i\langle x,h\rangle}, \quad x \in H, \ h \in D(A),$$

and, as in (1.4) and (1.5) (see also (2.4) below), we always implicitly assume that

$$\int_{[0,T]\times H} (|x| + |F(t,x)|)\mu_t(dx)dt < \infty,$$

so that $L_0 u \in L^1([0,T] \times H, \mu)$ for all $u \in D(L_0)$, where $\mu(dt, dx) = \mu_t(dx)dt$.

Furthermore, $\zeta \in \mathscr{P}(H)$ is given and $\mu_t(dx)$, $t \in [0, T]$, is a kernel of probability measure (shortly probability kernel) ⁽¹⁾ from $(H, \mathscr{B}(H))$ to $([0, T], \mathscr{B}([0, T]))$, in particular the mapping $t \mapsto \int_H u(t, x)\mu_t(dx)$ is measurable for any bounded measurable function u. By $\mathscr{P}(H)$ we mean the set of all Borel probability measures on H.

We can also write equation (1.3) in the integral form

$$\int_{H} u(t,x)\mu_{t}(dx) = \int_{H} u(0,x)\zeta(dx) + \int_{0}^{t} ds \int_{H} L_{0}u(s,x)\mu_{s}(dx),$$

for *dt*-a.e. $t \in [0,T], \ \forall \ u \in D(L_{0}), \quad (1.4)$

or also, setting t = T as,

$$\int_{[0,T]\times H} L_0 u(s,x) \mu(ds,dx) = -\int_H u(0,x) \zeta(dx), \quad \forall \ u \in D(L_0).$$
(1.5)

Let us set our assumptions. Concerning the linear operators A and C we shall assume that

Hypothesis 1.1 (i) A is self-adjoint.

- (ii) C is bounded, symmetric, nonnegative and such that $C^{-1} \in L(H)$.
- (iii) There exists $\delta \in (0, 1/2)$ such that $(-A)^{-2\delta}$ is of trace class.

Let us notice that from (iii) it follows that the embedding $D(A) \subset H$ is compact.

⁽¹⁾We recall that a probability kernel is a family $\mu_t, t \in [0, T]$, of probability measures on $(H, \mathscr{B}(H))$ such that for all $A \in \mathscr{B}(H)$ the map $t \mapsto \mu_t(A)$ is $\mathscr{B}([0, T])$ -measurable.

Remark 1.2 (i) Since we have used this also in our previous papers, let us explain in detail in what precise sense (1.3), (1.4) and (1.5) are really equivalent. So, let $\mu_t(dx), t \in [0, T]$, be a probability kernel as above and let $\mu(dt, dx) = \mu_t(dx)dt$ be the corresponding measure on $([0, T] \times H, \mathscr{B}([0, T] \times H))$ H)). Then by definition μ solves (1.3) if the first equation in (1.3) holds and after a possible change of the map $t \mapsto \mu_t(dx)$ on a set of dt-measure zero also the second equation in (1.3) holds. In this case, obviously, $\mu(dt, dx) =$ $\mu_t(dx)dt$ solves (1.4) and (1.5), and such a μ obviously solves (1.4) if and only if it satisfies (1.5). Much more subtle is the fact that if such a μ solves (1.4) (equivalently (1.5)), it also solves the second equation in (1.3) in the above sense. The reason is that the above dt modification of $t \mapsto \mu_t(dx)$ cannot be obtained from (1.4) by just defining it so that $\int_H \varphi d\mu_t$ is equal to the right hand side of (1.4) for $\varphi \in \mathscr{E}_A(H)$ (since then the second equation in (1.3) trivially holds), because the dt-zero set would firstly depend on φ (and there are uncountably many of them) and secondly the right hand side of (1.4) does not per se define a positive measure acting on φ . So, a more involved argument is required.

To this end we fix μ as above solving (1.4). Then clearly the first equation in (1.3) holds. Let us prove that the second holds for a *dt*-modification of $t \mapsto \mu_t(dx)$. By Hypothesis 1.1(iii), there exists an eigenbasis $\{e_k : k \in \mathbb{N}\}$ of *H* for *A*. Define

$$\mathscr{F}C_b^{\infty}(\{e_k\}) = \{g(\langle e_1, \cdot \rangle, ..., \langle e_N, \cdot \rangle) : N \in \mathbb{N}, g \in C_b^{\infty}(\mathbb{R}^N)\}$$

and

$$\mathscr{F}C_0^{\infty}(\{e_k\}) = \text{linear span } \{g(\langle e_1, \cdot \rangle, ..., \langle e_N, \cdot \rangle) : N \in \mathbb{N}, g \in C_0^{\infty}(\mathbb{R}^N), \}$$

where $C_b^{\infty}(\mathbb{R}^N)$, $C_0^{\infty}(\mathbb{R}^N)$ denote the set of all bounded smooth real valued functions on \mathbb{R}^N with all partial derivatives bounded, respectively of compact support.

Claim There exist $\varphi_n \in \mathscr{F}C_0^{\infty}(\{e_k\})$, $n \in \mathbb{N}$, such that μ satisfies (1.4) with φ_n replacing $u \in D(L_0)$ for every $n \in \mathbb{N}$, and such that if μ satisfies (1.4) with φ_n replacing $u \in D(L_0)$ for a fixed $t \in [0,T]$ for all $n \in \mathbb{N}$ then μ satisfies (1.4) for this t with φ replacing $u \in D(L_0)$ for all $\varphi \in \mathscr{E}_A(H)$.

Proof. Let $\varphi = g(\langle e_1, \cdot \rangle, ..., \langle e_N, \cdot \rangle) \in \mathscr{F}C_0^{\infty}(\{e_k\})$. Writing its base function $g \in C_0^{\infty}(\mathbb{R}^N)$ as the Fourier transform of a Schwartz test function and

discretizing the Fourier integral, one sees by taking the limit in (1.4) that μ satisfies (1.4) with φ replacing $u \in D(L_0)$. But $C_0^{\infty}(\mathbb{R}^N)$ is separable with respect to the norm

$$||g||_{\infty,2} := ||g||_{\infty} + ||Dg||_{\infty} + ||D^2g||_{\infty}, \quad g \in C_0^{\infty}(\mathbb{R}^N).$$

Hence we can find $\{\varphi_k : k \in \mathbb{N}\} \in \mathscr{F}C_0^{\infty}(\{e_k\})$ such that if μ satisfies (1.4) for some $t \in [0, T]$ with φ_k replacing $u \in D(L_0)$ for all $k \in \mathbb{N}$, then it does so for this t and all $\varphi \in \mathscr{F}C_0^{\infty}(\{e_k\})$ replacing $u \in D(L_0)$, and by an easy localization argument it does so also for all $\varphi \in \mathscr{F}C_b^{\infty}(\{e_k\})$. A further easy approximation then proves the Claim. \Box

Now we can easily define the required modification of $t \mapsto \mu_t(dx)$. Let $M := \{t \in [0, T] : (1.4) \text{ holds for } t \text{ and } \varphi_k \text{ replacing } u \in D(L_0) \text{ for all } k \in \mathbb{N}\},$ where $\varphi_k, k \in \mathbb{N}$, are as in the Claim. Define

$$\widetilde{\mu}_t(dx) = \begin{cases} \mu_t(dx) & \text{if } t \in M \\ \zeta & \text{if } t \in [0, T] \setminus M \end{cases}$$

Then by the Claim (1.4) holds with $\tilde{\mu}_t$ replacing μ_t for all $\varphi \in \mathscr{E}_A(H)$ replacing $u \in D(L_0)$ and all $t \in M$. Hence the second equation in (1.3) holds for the *dt*-modification $\tilde{\mu}_t(dx), t \in [0, T]$, since it is equal to ζ on $[0, T] \setminus M$.

(ii) We note that applying (1.4) to a countable subset of functions $\phi \in C^1([0,T])$ replacing $u \in D(L_0)$ with $\phi(T) = 0$, which is dense with respect to $\|\cdot\|_{\infty}$, it follows that $\mu_t(H) = 1$ for dt-a.e. $t \in [0,T]$. Hence by e.g. setting $\mu_t = \zeta$ for those t for which this does not hold, we see that the requirement that for a solution $\mu = \mu_t(dx)dt$ of (1.4) the $\mu_t(dx)$ are all probability measures automatically holds after a dt-modification of the map $t \mapsto \mu_t(dx)$.

It is well known that, under Hypothesis 1.1(iii) the stochastic convolution

$$W_A(t) = \int_0^t e^{(t-s)A} \sqrt{C} dW(s), \quad t \ge 0,$$

is a well defined mean square continuous process in H with values in $D((-A)^{\delta})$ and that

$$\sup_{t \in [0,T]} \mathbb{E} |(-A)^{\delta} W_A(t)|^2 \le ||C|| \operatorname{Tr} [(-A)^{-2\delta}] := c_{\delta}.$$
(1.6)

Concerning the nonlinear operators $F(t, \cdot), t \in [0, T]$, we shall assume that

Hypothesis 1.3 (i) There exists a measurable mapping $a : Y \to \mathbb{R}$ and c > 0 such that

$$\langle F(t, y+z), y \rangle \le a(z)|y| + c|y|^2, \quad \forall y, z \in Y, t \in [0, T].$$
 (1.7)

(ii) There exists $\kappa > 0$ such that setting $a := \infty$ on $H \setminus Y$ we have

$$\mathbb{E}\left[a(W_A(t))^2 + |W_A(t)|^2\right] \le \kappa \quad \forall \ t \in [0, T].$$
(1.8)

(iii) For each $\alpha > 0$ there exists a continuous mapping $F_{\alpha} : [0, T] \times H \to H$, such that for all $t \in [0, T], x \in H$,

$$\lim_{\alpha \to 0} F_{\alpha}(t, x) = F(t, x), \tag{1.9}$$

$$|F_{\alpha}(t,x)| \le |F(t,x)|, \qquad (1.10)$$

$$|F(t,x) - F_{\alpha}(t,x)| \le \alpha |F(t,x)|^{2}.$$
(1.11)

Example 1.4 Let $H = L^2(0,1)$, $Ax = D^2x$ for all $x \in H^2(0,1)$ such that x(0) = x(1) = 0, C = I. Moreover, let p be a polynomial of odd degree d > 1 and such that

$$p'(\xi) \le \beta, \quad \forall \ \xi \in \mathbb{R},$$

where $\beta \in \mathbb{R}$. Finally, let $h : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be bounded and continuous. Then set

$$F(t,x)(\xi) = p(x(\xi)) + h(t,x(\xi)), \quad x \in L^{2d}(0,1), \ \xi \in [0,1],$$

and $Y = L^{2d}(0, 1)$. It is easy to see that Hypotheses 1.1 and 1.3 are fulfilled with

$$a(z) = |p(z)| + \sup_{(t,s) \in \mathbb{R} \times \mathbb{R}} |h(t,s)|, \quad \forall \ z \in Y$$

and $c = \beta$ (cf. Section 3 for details).

Remark 1.5 Under Hypotheses 1.1 and 1.3 we do not know whether equation (1.1) has a solution or not. Notice that (1.7) is a weaker condition than quasi-monotonicity of $F(t, \cdot)$.

In a series of papers [1], [2], [3] and [4] we considered parabolic equations for measures on \mathbb{R}^d . In [5] and [6] (see also [9] for the case when F is independent of t) we were concerned with similar problems in infinite dimensions. Here we present a different existence result.

2 Existence

It is convenient to introduce a family of approximating stochastic equations

$$\begin{cases} dX_{\alpha}(t) = [AX_{\alpha}(t) + F_{\alpha}(t, X_{\alpha}(t))]dt + \sqrt{C}dW(t), \\ X_{\alpha}(0) = x. \end{cases}$$
(2.1)

For each $\alpha \in (0, 1]$, $F_{\alpha} : [0, T] \times H$ is well defined and continuous by Hypothesis 1.3(iii).

Since $C^{-1} \in L(H)$, by Girsanov's theorem it follows that equation (2.1) has a unique weak solution which we denote by $X_{\alpha}(\cdot, x)$. Let us introduce the transition evolution operator

$$P_{0,t}^{\alpha}\varphi(x) = \mathbb{E}[\varphi(X_{\alpha}(t,x))], \quad t > 0, \ \varphi \in B_b(H).$$
(2.2)

The Kolmogorov operator L_{α} corresponding to (2.1) is for $u \in D(L_0)$ given by

$$L_{\alpha}u(t,x) = D_t u(t,x) + \frac{1}{2} \operatorname{Tr} \left[CD_x^2 u(t,x)\right] + \langle x, A^* D_x u(t,x) \rangle + \langle F_{\alpha}(t,x), D_x u(t,x) \rangle.$$
(2.3)

and the Fokker–Planck equation looks like

$$\int_{H} u(t,x)\mu_t^{\alpha}(dx) = \int_{H} u(0,x)\zeta(dx) + \int_0^t ds \int_{H} L_{\alpha}u(s,x)\mu_s^{\alpha}(dx),$$

for all $t \in [0,T], \ \forall \ u \in D(L_0), \quad (2.4)$

or

$$\int_{0}^{T} ds \int_{[0,T] \times H} L_{\alpha} u(s,x) \mu^{\alpha}(dt, dx) = -\int_{H} u(0,x) \zeta(dx), \quad \forall \ u \in D(L_{0}),$$
(2.5)

where $\mu^{\alpha}(dt, dx) = \mu^{\alpha}_t(dx)dt$.

We need a further assumption.

Hypothesis 2.1 There exist K > 0 and a lower semicontinuous function $\tilde{F} : [0,T] \times H \rightarrow [0,\infty]$ such that $|F| + |x| \leq \tilde{F}$ on $[0,T] \times H$, where $|F| := \infty$ on $[0,T] \times (H \setminus Y)$, and

$$\mathbb{E}|\tilde{F}(t, X_{\alpha}(t, x))|^{2} \leq K(1 + |\tilde{F}(t, x)|^{2}), \quad \forall x \in Y, \ \alpha \in (0, 1], \ t \in [0, T].$$
(2.6)

Define

$$c_1(t) := \int_0^t \int_H |\tilde{F}(s,x)|^2 ds \zeta(dx), \quad t \in [0,T].$$
(2.7)

Arguing as in [4], [6] one can show that if $\zeta \in \mathscr{P}(H)$ is such that

$$c_1(T) < +\infty,$$

then equation (2.5) has a solution μ_t^{α} which is determined by the identity

$$\int_{H} \varphi(x) \mu_t^{\alpha}(dx) = \int_{H} P_{0,t}^{\alpha} \varphi(x) \zeta(dx), \quad \forall \varphi \in \mathscr{E}_A(H).$$
(2.8)

Lemma 2.2 Assume that Hypothesis 2.1 is fulfilled. Then we have

$$\int_0^t \int_H |\tilde{F}(s,x)|^2 \mu^{\alpha}(ds,dx) \le K(t+c_1(t)), \quad \forall \ \alpha \in (0,1], \ t \in [0,T].$$
(2.9)

Proof. Taking into account (2.8) and (2.6) we have for all $\alpha \in (0, 1]$, $t \in [0, T]$,

$$\begin{split} \int_0^t \int_H |\tilde{F}(s,x)|^2 \mu^{\alpha}(ds,dx) &= \int_0^t \int_H P_{0,t}^{\alpha}(|\tilde{F}(s,\cdot)|^2)(x)\zeta(dx)ds \\ &= \int_0^t \int_H \mathbb{E}|\tilde{F}(s,X_{\alpha}(s,x))|^2\zeta(dx)ds \\ &\leq \int_{[0,T]\times H} K(1+|\tilde{F}(s,x)|^2)\zeta(dx)ds \leq K(t+c_1(t)), \end{split}$$

so that (2.9) follows. \Box

We note that indeed $L_{\alpha}u \in L^1([0,T] \times H, \mu^{\alpha})$ for all $u \in D(L_0)$ by Lemma 2.2. Furthermore, by (2.8) the map $t \mapsto \int_H u(t,x)\mu_t^{\alpha}(dx)$ is continuous on [0,T] for all $u \in D(L_0)$. Hence since the right hand side of (2.4) is so, too, we have (2.4) for all $t \in [0,T]$ in this case.

Our aim is to pass to the limit as $\alpha \to 0$ in (2.5), proving existence for the Fokker–Planck equation (1.5). This will be done in the following two steps showing that

Step 1 $\{\mu^{\alpha}\}_{\alpha>0}$ is tight.

Step 2 If μ is a cluster point of $\{\mu^{\alpha}\}_{\alpha>0}$ there exists $\alpha_k \downarrow 0$ such that

$$\lim_{k \to \infty} \int_{[0,T] \times H} L_{\alpha_k} u \, d\mu^{\alpha_k} = \int_{[0,T] \times H} L_0 u \, d\mu, \quad \forall \ u \in \mathscr{E}_A([0,T] \times H), \quad (2.10)$$

and $\mu(dt, dx) = \mu_t(dx)dt$.

We note that Step 2 and Remark 1.2(i) imply that μ satisfies (1.4), hence by Remark 1.2(ii) after a possible modification each μ_t is a probability measure.

Let us first prove tightness of $\{\mu^{\alpha}\}_{\alpha>0}$.

Proposition 2.3 Assume that Hypotheses 1.1 and 1.3 are fulfilled. Let $\zeta \in \mathscr{P}(H)$ such that $\int_{H} |x|^2 d\zeta < \infty$. Then $(\mu^{\alpha})_{\alpha \in (0,1]}$ is tight.

Proof. Set $Y_{\alpha}(t) = X_{\alpha}(t) - W_A(t)$. Then (in the mild sense)

$$\frac{d}{dt}Y_{\alpha}(t) = AY_{\alpha}(t) + F_{\alpha}(t, X_{\alpha}(t)), \quad t \ge 0.$$

Multiplying both sides by $Y_{\alpha}(t)$, yields

$$\frac{1}{2} \frac{d}{dt} |Y_{\alpha}(t)|^{2} + |(-A)^{1/2} Y_{\alpha}(t)|^{2} = \langle F_{\alpha}(t, Y_{\alpha}(t) + W_{A}(t)), Y_{\alpha}(t) \rangle.$$

By (1.10) and (1.7) we obtain

$$\frac{1}{2} \frac{d}{dt} |Y_{\alpha}(t)|^{2} + |(-A)^{1/2} Y_{\alpha}(t)|^{2} \le a(W_{A}(t)) |Y_{\alpha}(t)| + c|Y_{\alpha}(t)|^{2}$$

which yields

$$\frac{d}{dt} |Y_{\alpha}(t)|^{2} + 2|(-A)^{1/2}Y_{\alpha}(t)|^{2} \le (1+c)|Y_{\alpha}(t)|^{2} + |a(W_{A}(t))|^{2}.$$
(2.11)

It follows that

$$|Y_{\alpha}(t)|^{2} \leq e^{(1+c)t}|x|^{2} + \int_{0}^{t} e^{(1+c)(t-s)}|a(W_{A}(t))|^{2}ds$$

from which, taking expectation and recalling (1.8),

$$\mathbb{E}|Y_{\alpha}(t)|^{2} \le e^{(1+c)T}(|x|^{2} + \kappa).$$
(2.12)

Consequently,

$$\mathbb{E}|X_{\alpha}(t,x)|^{2} \leq 2e^{(1+c)T}(|x|^{2}+\kappa) + 2\mathbb{E}|W_{A}(t)|^{2} \\ \leq 2e^{(1+c)T}(|x|^{2}+\kappa) + 2\kappa =: \kappa_{1}(|x|^{2}+1). \quad (2.13)$$

This is equivalent to

$$P_{0,t}^{\alpha}(|x|^2) \le \kappa_1(|x|^2+1).$$

By (2.8) it follows that

$$\int_{H} |x|^{2} \mu_{t}^{\alpha}(dx) = \int_{H} P_{0,t}^{\alpha}(|x|^{2})\zeta(dx) \le \kappa_{1} \int_{H} |x|^{2}\zeta(dx) + \kappa_{1}.$$
(2.14)

Moreover, by (2.11) we get

$$2\int_0^T |(-A)^{1/2} Y_{\alpha}(t)|^2 dt \le |x|^2 + (1+c)\int_0^T |Y_{\alpha}(t)|^2 dt + \int_0^T |a(W_A(t))|^2 dt,$$

which implies

$$\int_0^T |(-A)^{\delta} Y_{\alpha}(t)|^2 dt$$

$$\leq \|(-A)^{-1/2+\delta}\| \left(|x|^2 + (1+c) \int_0^T |Y_{\alpha}(t)|^2 dt + \int_0^T |a(W_A(t))|^2 dt \right)$$

and then, taking expectation by (1.6) we obtain

$$\int_0^T \mathbb{E} |(-A)^{\delta} X_{\alpha}(t,x)|^2 dt$$

$$\leq 2 ||(-A)^{-1/2+\delta}|| \left(|x|^2 + (1+c) \int_0^T \mathbb{E} |Y_{\alpha}(t)|^2 dt + \int_0^T \mathbb{E} |a(W_A(t))|^2 dt \right) + 2c_{\delta} T.$$

Now (1.8) and (2.12) imply

$$\int_0^T \mathbb{E} |(-A)^{\delta} X_{\alpha}(t,x)|^2 dt$$

$$\leq 2 ||(-A)^{-1/2+\delta}|| \left(|x|^2 + (1+c) \int_0^T (e^{(1+c)T}(|x|^2 + \kappa)) dt + T\kappa \right) + 2c_{\delta}T$$

$$=: \kappa_2 (1+|x|^2).$$

Consequently,

$$\int_0^T P_{0,t}^{\alpha}(|(-A)^{\delta}x|^2)dt \le \kappa_2(1+|x|^2).$$

Again by(2.8) follows that

$$\int_{[0,T]\times H} |(-A)^{\delta} x|^{2} \mu^{\alpha}(dt, dx) = \int_{[0,T]\times H} P_{0,t}^{\alpha}(|(-A)^{\delta} x|^{2}) dt \zeta(dx)$$
$$\leq \kappa_{2} \left(\int_{H} |x|^{2} \zeta(dx) + 1 \right).$$

Since $(-A)^{-\delta}$ is compact, the tightness of $(\mu_{\alpha})_{\alpha \in (0,1]}$ follows by a standard argument. \Box

We are now ready to prove

Theorem 2.4 Assume that Hypotheses 1.1, 1.3 and 2.1 hold and that

$$c_1(T) = \int_0^T dt \int_H (|x|^2 + |F(t,x)|^2)\zeta(dx) < \infty.$$

Let μ be a cluster point of $(\mu^{\alpha})_{\alpha \in (0,1]}$. Then μ is a solution of the Fokker-Planck equation (1.5).

Proof. Let $\alpha_k \downarrow 0$ such that (μ^{α_k}) weakly converges to μ . Since \tilde{F} is lower semicontinuous it follows by (2.9) that

$$\int_{[0,T]\times H} |\tilde{F}(t,x)|^2 \mu(dt,dx) \le K(T+c_1(T)),$$

in particular, $\mu([0,T] \times Y) = 1$, because $\tilde{F} = \infty$ on $H \setminus Y$.

Since

$$\int_0^T ds \int_H L_{\alpha_k} u(s, x) \mu_s^{\alpha_k}(dx) = -\int_H u(0, x) \zeta(dx), \quad \forall \ u \in D(L_0),$$

it is enough to show that

$$\lim_{k \to \infty} \int_{[0,T] \times H} \langle F_{\alpha_k}(s,x), D_x u(s,x) \rangle \mu^{\alpha_k}(ds, dx)$$
$$= \int_{[0,T] \times H} \langle F(s,x), D_x u(s,x) \rangle \mu(ds, dx), \quad \forall \ u \in D(L_0).$$
(2.15)

and that

$$\lim_{k \to \infty} \int_{[0,T] \times H} \langle x, D_x u(s, x) \rangle \mu^{\alpha_k}(ds, dx)$$
$$= \int_{[0,T] \times H} \langle x, D_x u(s, x) \rangle \mu(ds, dx), \quad \forall \ u \in D(L_0).$$
(2.16)

We have in fact

$$\left| \int_{[0,T]\times H} \langle F_{\alpha_{k}}(t,x), D_{x}u(s,x) \rangle \, \mu^{\alpha_{k}}(ds,dx) - \int_{[0,T]\times H} \langle F(s,x), D_{x}u(s,x) \rangle \mu(ds,dx) \right|$$

$$\leq \left| \int_{[0,T]\times H} \langle (F_{\alpha_{k}}(s,x) - F(s,x), D_{x}u(s,x)) \rangle \, \mu^{\alpha_{k}}(ds,dx) \right|$$

$$+ \left| \int_{[0,T]\times H} \langle F(s,x), D_{x}u(s,x) \rangle \mu^{\alpha_{k}}(ds,dx) - \int_{[0,T]\times H} \langle F(s,x), D_{x}u(s,x) \rangle \mu(ds,dx) \right|$$

$$=: I_{1} + I_{2}.$$

$$(2.17)$$

In view of (1.11), (2.9) we have

$$I_{1} \leq \sup |D_{x}u| \int_{[0,T] \times H} |F_{\alpha_{k}}(s,x) - F(s,x)| \ \mu^{\alpha_{k}}(ds,dx)$$

$$\leq \alpha_{k} \sup |D_{x}u| \int_{[0,T] \times H} |\tilde{F}(s,x)|^{2} \ \mu^{\alpha_{k}}(ds,dx) \leq K(T+c_{1}(T))\alpha_{k} \sup |D_{x}u|.$$
(2.18)

Moreover, for any $\epsilon > 0$,

$$I_{2} \leq \left| \int_{[0,T]\times H} \langle F_{\epsilon}(t,x), D_{x}u(t,x) \rangle \mu^{\alpha_{k}}(dt,dx) - \int_{[0,T]\times H} \langle F_{\epsilon}(t,x), D_{x}u(t,x) \rangle \mu(dt,dx) \right| +\epsilon \sup |D_{x}u| \left(\int_{[0,T]\times H} |F(t,x)|^{2} d\mu^{\alpha_{k}}(dt,dx) + \int_{[0,T]\times H} |F(t,x)|^{2} d\mu(dt,dx)| \right)$$

$$\leq \left| \int_{[0,T]\times H} \langle F_{\epsilon}(t,x), D_{x}u(t,x) \rangle d\mu^{\alpha_{k}}(dt,dx) - \int_{[0,T]\times H} \langle F_{\epsilon}(t,x), D_{x}u(t,x) \rangle d\mu(dt,dx) \right| +2K(T+c_{1}(T))\epsilon \sup |D_{x}u|.$$

$$(2.19)$$

Now the equation (2.15) follows letting $k \to \infty$ and then $\epsilon \to 0$. (2.16) is proved analogously.

It remains to prove that $\mu(dt, dx) = \mu_t(dx)dt$. But the projection of μ onto $([0, T], \mathscr{B}([0, T]))$ is Lebesgue measure since it is the weak limit of the corresponding projections of μ^{α_k} which are all Lebesgue measure. Hence μ disintegrates as

$$\mu(dt, dx) = \mu_t(dx)dt$$

where $\mu_t(dx), t \in [0, T]$, are kernels. \Box

3 An application

Let $H = L^2(0, 1), A : D(A) \subset H \to H$ be defined by

$$Ax(\xi) = \partial_{\xi}^2 x(\xi), \quad D(A) = H^2(0,1) \cap H_0^1(0,1), \quad \xi \in [0,1].$$

Let

$$F(t,x)(\xi) = p(x(\xi)) + h(t,x(\xi)), \quad x \in L^{2m}(0,1), \ \xi \in [0,1],$$

where p is a polynomial of odd degree m > 1 such that $p' \leq c$ and $h : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is bounded and continuous. Under these assumptions we do not know whether the stochastic equation (1.1) has a solution. Finally, let $C, C^{-1} \in L(H), C$ symmetric nonnegative

We set $Y = L^{2m}(0,1)$ and prove that Hypotheses 1.1, 1.3 and 2.1 are fulfilled.

First, Hypothesis 1.1 holds with $\omega = \pi^2$ because A^{-1} is of trace class. Let us check Hypothesis 1.3. Since the polynomial p is decreasing we have for each $y, z \in Y$

$$p(y+z)y + h(t, y+z)y = (p(y+z) - p(z))y + p(z)y + h(t, y+z)y$$

$$\leq c|y|^2 + |p(z)||y| + ||h||_{\infty}|y| \leq c|y|^2 + c_1(1+|z|^m)|y|, \quad (3.1)$$

where $c_1 > 0$. Consequently

$$\langle F(t, y+z), y \rangle \le c|y|^2 + c_1(1+|z|_{L^{2m}(0,1)}^m)|y|.$$
 (3.2)

So, (1.7) holds. Moreover, (1.8) is proved in [8]. For $\alpha \in (0, 1]$ define

$$F_{\alpha}(t,x)(\xi) = \frac{F(t,x)(\xi)}{1+\alpha|F(t,x)(\xi)|}, \quad \xi \in (0,1).$$

Hence also Hypothesis 1.3 holds since (iii) is obviously true for F_{α} . Finally, Hypothesis 2.1 follows from the proposition below for $\tilde{F}(t, x) := C(1 + |x|_{L^{2m}(0,1)}^m)$ and C a large enough constant.

Proposition 3.1 Let $\alpha > 0$. Then for any $m \in \mathbb{N}$ there exists $c_m > 0$ such that

$$\mathbb{E}\left(|X_{\alpha}(t,x)|_{L^{2m}(0,1)}^{2m}\right) \le c_m(1+|x|_{L^{2m}(0,1)}^{2m}), \quad t \in [0,T].$$

Proof. Setting $Y_{\alpha}(t) = X_{\alpha}(t) - W_A(t)$, (2.1) reduces to

$$\begin{cases} Y'_{\alpha}(t) = AY_{\alpha}(t) - F_{\alpha}(Y_{\alpha}(t) + W_A(t)), & t \in [0, T], \\ Y_{\alpha}(0) = x. \end{cases}$$

Now, multiplying both sides of the first equation by $(Y_{\alpha}(t))^{2m-1}$ yields (after integration by parts)

$$\frac{1}{2m} \frac{d}{dt} \int_0^1 |Y_\alpha(t)|^{2m} d\xi + (2m-1) \int_0^1 |Y_\alpha(t)|^{2m-2} |\partial_\xi Y_\alpha(t)|^2 d\xi$$
$$= \int_0^1 F_\alpha(Y_\alpha(t) + W_A(t)) Y_\alpha(t)^{2m-1} d\xi.$$

Taking into account (3.1) we find

$$\frac{1}{2m} \frac{d}{dt} \int_0^1 |Y_\alpha(t)|^{2m} d\xi + (2m-1) \int_0^1 |Y_\alpha(t)|^{2m-2} |\partial_\xi Y_\alpha(t)|^2 d\xi$$
$$\leq c \int_0^1 |Y_\alpha(t)|^{2m} d\xi + c_1 \int_0^1 (1+|W_A(t)|^m) |Y_\alpha(t)|^{2m-1} d\xi.$$

Moreover,

$$\int_0^1 |Y_{\alpha}(t)|^{2m-2} |\partial_{\xi} Y_{\alpha}(t)|^2 d\xi = m^{-2} \int_0^1 |\partial_{\xi}(Y_{\alpha}^m(t))|^2 d\xi \ge 0.$$

Consequently, there exists constants a_1 , $\tilde{c} > 0$ such that

$$\frac{d}{dt} \int_0^1 |Y_{\alpha}(t)|^{2m} d\xi \le \tilde{c} \int_0^1 |Y_{\alpha}(t)|^{2m} d\xi + a_1 \int_0^1 (1+|W_A(t)|^m)^{2m} d\xi.$$

Consequently,

$$|Y_{\alpha}(t)|_{L^{2m}(0,1)}^{2m}d \leq e^{\tilde{c}t} |x|_{L^{2m}(0,1)}^{2m} + a_1 \int_0^t e^{\tilde{c}(t-s)} \int_0^1 (1+|W_A(t)|^m)^{2m} d\xi \, ds,$$

and, for a constant $a_2 > 0$,

$$|Y_{\alpha}(t)|_{L^{2m}(0,1)}^{2m} \leq e^{\tilde{c}t} |x|_{L^{2m}(0,1)}^{2m} + a_2 \sup_{(s,\xi) \in [0,T] \times [0,1]} (1 + |W_A(s,\xi)|^m)^{2m}, \ \forall \ t \in [0,T].$$

By [8, Theorem 4.8] there exists $a_3 > 0$ such that

$$\mathbb{E}\left(|Y_{\alpha}(t)|_{L^{2m}(0,1)}^{2m}\right) \le e^{\tilde{c}t} |x|_{L^{2m}(0,1)}^{2m} + a_3, \ \forall \ t \in [0,T],$$

and so, there exists $a_4 > 0$ such that

$$\mathbb{E}\left(|X_{\alpha}(t,x)|_{L^{2m}(0,1)}^{2m}\right) \le e^{\tilde{c}t} |x|_{L^{2m}(0,1)}^{2m} + a_4, \quad \forall t \in [0,T].$$

Now the conclusion follows. \Box

In conclusion all assumptions of Theorem 2.4 are fulfilled.

References

- V. Bogachev, G. Da Prato, and M. Röckner, On weak parabolic equations for probability measures, Dokl. Math. 66, no.2, 192–196, 2002.
- [2] V. Bogachev, G. Da Prato, and M. Röckner, Existence of solutions to weak parabolic equations for measures, Proc. London Math. Soc., (3), 88, 753-774, 2004.
- [3] V. Bogachev, G. Da Prato, M. Röckner and W. Stannat, Uniqueness of solutions to weak parabolic equations for measures, Bull. London Math. Soc, 631-640, 2007.
- [4] V. Bogachev, G. Da Prato, and M. Röckner, On parabolic equations for measures, Comm. Partial Diff. Equat., 33, 1-22, 2008.
- [5] V. Bogachev, G. Da Prato, and M. Röckner, *Parabolic equations for measures on infinite-dimensional spaces*, Dokl. Math. **78**, No. 1, 544-549, 2008.
- [6] V. Bogachev, G. Da Prato and M. Röckner, Fokker-Planck equations and maximal dissipativity for Kolmogorov operators with time dependent singular drifts in Hilbert spaces. J. Functional Analysis, 256, 12691298, 2009.
- [7] V. Bogachev and M. Röckner, Elliptic equations for measures on infinite dimensional spaces and applications, Probab. Theory Relat. Fields, 120, 445-496, 2001.
- [8] G. Da Prato, Kolmogorov equations for stochastic PDEs, Birkhäuser, 2004.
- [9] L. Manca, Kolmogorov operators in spaces of continuous functions and equations for measures, Thesis S.N.S. Pisa, 2008.