Existence results for Fokker-Planck equations in Hilbert spaces

Vladimir Bogachev*,
Department of Mechanics and Mathematics, Moscow State University, 119991 Moscow, Russia,
Giuseppe Da Prato ${ }^{\dagger}$, Scuola Normale Superiore di Pisa, Italy and
Michael Röckner ${ }^{\ddagger}$
Faculty of Mathematics, University of Bielefeld, Germany
and
Department of Mathematics and Statistics, Purdue University, W. Lafayette, 47906, IN, U. S. A.

March 182009

Abstract

We consider a stochastic differential equation in a Hilbert space with time-dependent coefficients for which no general existence result

[^0]is known. We prove, under suitable assumptions, existence of a measure valued solution, for the corresponding Fokker-Planck equation.

2000 Mathematics Subject Classification AMS: 60H15, 60J35, 60J60, 47D07
Key words : Kolmogorov operators, stochastic PDEs, parabolic equations for measures, Fokker-Planck equations.

1 Introduction

Let us consider a stochastic differential equation on a separable Hilbert space H (with norm $|\cdot|$ and inner product $\langle\cdot, \cdot\rangle$) of the form

$$
\left\{\begin{array}{l}
d X(t)=[A X(t)+F(t, X(t))] d t+\sqrt{C} d W(t) \tag{1.1}\\
X(0)=x
\end{array}\right.
$$

where $A: D(A) \subset H \rightarrow H$ is a self-adjoint operator, $C: H \rightarrow H$ is linear self-adjoint and nonnegative, $F(t, \cdot): Y \subset H \rightarrow H$ (where Y is a subspace of $H), t \in[0, T]$, form a family of non linear mappings and $W(t)$ is a cylindrical Wiener process in H defined on a stochastic basis $\left(\Omega, \mathscr{F},\left(\mathscr{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$.

The Kolmogorov operator L_{0} corresponding to (1.1) reads as follows

$$
\begin{align*}
L_{0} u(t, x)=D_{t} u(t, x)+\frac{1}{2} \operatorname{Tr} & {\left[C D_{x}^{2} u(t, x)\right] } \\
& +\left\langle x, A D_{x} u(t, x)\right\rangle+\left\langle F(t, x), D_{x} u(t, x)\right\rangle . \tag{1.2}
\end{align*}
$$

The operator L_{0} is defined on the space $D\left(L_{0}\right):=\mathscr{E}_{A}([0, T] \times H)$, the linear span of all real parts of functions $u_{\phi, h}$ of the form

$$
u_{\phi, h}(t, x)=\phi(t) e^{i\langle x, h(t)\rangle}, \quad t \in[0, T], x \in H,
$$

where $\phi \in C^{1}([0, T]), h \in C^{1}([0, T] ; D(A))$ and $\phi(T)=0$.
We are interested in the following Fokker-Planck equation

$$
\left\{\begin{array}{l}
\frac{d}{d t} \int_{H} u(t, x) \mu_{t}(d x)=\int_{H} L_{0} u(t, x) \mu_{t}(d x) \text { for } d t \text {-a.e. } \quad t \in(0, T], \forall u \in D\left(L_{0}\right) \tag{1.3}\\
\lim _{t \rightarrow 0} \int_{H} \varphi(x) \mu_{t}(d x)=\int_{H} \varphi(x) \zeta(d x), \quad \forall \varphi \in \mathscr{E}_{A}(H),
\end{array}\right.
$$

where $\frac{d}{d t}$ denotes the weak derivative on $[0, T]$. Here $\mathscr{E}_{A}(H)$ is the linear span of all real parts of functions of the form

$$
\varphi(x)=e^{i\langle x, h\rangle}, \quad x \in H, h \in D(A)
$$

and, as in (1.4) and (1.5) (see also (2.4) below), we always implicitly assume that

$$
\int_{[0, T] \times H}(|x|+|F(t, x)|) \mu_{t}(d x) d t<\infty
$$

so that $L_{0} u \in L^{1}([0, T] \times H, \mu)$ for all $u \in D\left(L_{0}\right)$, where $\mu(d t, d x)=\mu_{t}(d x) d t$.
Furthermore, $\zeta \in \mathscr{P}(H)$ is given and $\mu_{t}(d x), t \in[0, T]$, is a kernel of probability measure (shortly probability kernel) ${ }^{(1)}$ from $(H, \mathscr{B}(H))$ to $([0, T], \mathscr{B}([0, T]))$, in particular the mapping $t \mapsto \int_{H} u(t, x) \mu_{t}(d x)$ is measurable for any bounded measurable function u. By $\mathscr{P}(H)$ we mean the set of all Borel probability measures on H.

We can also write equation (1.3) in the integral form

$$
\begin{array}{r}
\int_{H} u(t, x) \mu_{t}(d x)=\int_{H} u(0, x) \zeta(d x)+\int_{0}^{t} d s \int_{H} L_{0} u(s, x) \mu_{s}(d x) \\
\text { for } d t \text {-a.e. } t \in[0, T], \forall u \in D\left(L_{0}\right) \tag{1.4}
\end{array}
$$

or also, setting $t=T$ as,

$$
\begin{equation*}
\int_{[0, T] \times H} L_{0} u(s, x) \mu(d s, d x)=-\int_{H} u(0, x) \zeta(d x), \quad \forall u \in D\left(L_{0}\right) . \tag{1.5}
\end{equation*}
$$

Let us set our assumptions. Concerning the linear operators A and C we shall assume that

Hypothesis 1.1 (i) A is self-adjoint.
(ii) C is bounded, symmetric, nonnegative and such that $C^{-1} \in L(H)$.
(iii) There exists $\delta \in(0,1 / 2)$ such that $(-A)^{-2 \delta}$ is of trace class.

Let us notice that from (iii) it follows that the embedding $D(A) \subset H$ is compact.

[^1]Remark 1.2 (i) Since we have used this also in our previous papers, let us explain in detail in what precise sense (1.3),(1.4) and (1.5) are really equivalent. So, let $\mu_{t}(d x), t \in[0, T]$, be a probability kernel as above and let $\mu(d t, d x)=\mu_{t}(d x) d t$ be the corresponding measure on $([0, T] \times H, \mathscr{B}([0, T] \times$ $H)$). Then by definition μ solves (1.3) if the first equation in (1.3) holds and after a possible change of the map $t \mapsto \mu_{t}(d x)$ on a set of $d t$-measure zero also the second equation in (1.3) holds. In this case, obviously, $\mu(d t, d x)=$ $\mu_{t}(d x) d t$ solves (1.4) and (1.5), and such a μ obviously solves (1.4) if and only if it satisfies (1.5). Much more subtle is the fact that if such a μ solves (1.4) (equivalently (1.5)), it also solves the second equation in (1.3) in the above sense. The reason is that the above $d t$ modification of $t \mapsto \mu_{t}(d x)$ cannot be obtained from (1.4) by just defining it so that $\int_{H} \varphi d \mu_{t}$ is equal to the right hand side of (1.4) for $\varphi \in \mathscr{E}_{A}(H)$ (since then the second equation in (1.3) trivially holds), because the $d t$-zero set would firstly depend on φ (and there are uncountably many of them) and secondly the right hand side of (1.4) does not per se define a positive measure acting on φ. So, a more involved argument is required.

To this end we fix μ as above solving (1.4). Then clearly the first equation in (1.3) holds. Let us prove that the second holds for a $d t$-modification of $t \mapsto \mu_{t}(d x)$. By Hypothesis 1.1(iii), there exists an eigenbasis $\left\{e_{k}: k \in \mathbb{N}\right\}$ of H for A. Define

$$
\mathscr{F} C_{b}^{\infty}\left(\left\{e_{k}\right\}\right)=\left\{g\left(\left\langle e_{1}, \cdot\right\rangle, \ldots,\left\langle e_{N}, \cdot\right\rangle\right): N \in \mathbb{N}, g \in C_{b}^{\infty}\left(\mathbb{R}^{N}\right)\right.
$$

and

$$
\mathscr{F} C_{0}^{\infty}\left(\left\{e_{k}\right\}\right)=\text { linear span }\left\{g\left(\left\langle e_{1}, \cdot\right\rangle, \ldots,\left\langle e_{N}, \cdot\right\rangle\right): N \in \mathbb{N}, g \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right),\right.
$$

where $C_{b}^{\infty}\left(\mathbb{R}^{N}\right), C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ denote the set of all bounded smooth real valued functions on \mathbb{R}^{N} with all partial derivatives bounded, respectively of compact support.

Claim There exist $\varphi_{n} \in \mathscr{F} C_{0}^{\infty}\left(\left\{e_{k}\right\}\right), n \in \mathbb{N}$, such that μ satisfies (1.4) with φ_{n} replacing $u \in D\left(L_{0}\right)$ for every $n \in \mathbb{N}$, and such that if μ satisfies (1.4) with φ_{n} replacing $u \in D\left(L_{0}\right)$ for a fixed $t \in[0, T]$ for all $n \in \mathbb{N}$ then μ satisfies (1.4) for this t with φ replacing $u \in D\left(L_{0}\right)$ for all $\varphi \in \mathscr{E}_{A}(H)$.

Proof. Let $\varphi=g\left(\left\langle e_{1}, \cdot\right\rangle, \ldots,\left\langle e_{N}, \cdot\right\rangle\right) \in \mathscr{F} C_{0}^{\infty}\left(\left\{e_{k}\right\}\right)$. Writing its base function $g \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ as the Fourier transform of a Schwartz test function and
discretizing the Fourier integral, one sees by taking the limit in (1.4) that μ satisfies (1.4) with φ replacing $u \in D\left(L_{0}\right)$. But $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ is separable with respect to the norm

$$
\|g\|_{\infty, 2}:=\|g\|_{\infty}+\|D g\|_{\infty}+\left\|D^{2} g\right\|_{\infty}, \quad g \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)
$$

Hence we can find $\left\{\varphi_{k}: k \in \mathbb{N}\right\} \in \mathscr{F} C_{0}^{\infty}\left(\left\{e_{k}\right\}\right)$ such that if μ satisfies (1.4) for some $t \in[0, T]$ with φ_{k} replacing $u \in D\left(L_{0}\right)$ for all $k \in \mathbb{N}$, then it does so for this t and all $\varphi \in \mathscr{F} C_{0}^{\infty}\left(\left\{e_{k}\right\}\right)$ replacing $u \in D\left(L_{0}\right)$, and by an easy localization argument it does so also for all $\varphi \in \mathscr{F} C_{b}^{\infty}\left(\left\{e_{k}\right\}\right)$. A further easy approximation then proves the Claim.

Now we can easily define the required modification of $t \mapsto \mu_{t}(d x)$. Let $M:=\left\{t \in[0, T]:(1.4)\right.$ holds for t and φ_{k} replacing $u \in D\left(L_{0}\right)$ for all $\left.k \in \mathbb{N}\right\}$, where $\varphi_{k}, k \in \mathbb{N}$, are as in the Claim. Define

$$
\widetilde{\mu}_{t}(d x)= \begin{cases}\mu_{t}(d x) \quad \text { if } t \in M \\ \zeta & \text { if } t \in[0, T] \backslash M\end{cases}
$$

Then by the Claim (1.4) holds with $\widetilde{\mu_{t}}$ replacing μ_{t} for all $\varphi \in \mathscr{E}_{A}(H)$ replacing $u \in D\left(L_{0}\right)$ and all $t \in M$. Hence the second equation in (1.3) holds for the $d t$-modification $\widetilde{\mu}_{t}(d x), t \in[0, T]$, since it is equal to ζ on $[0, T] \backslash M$.
(ii) We note that applying (1.4) to a countable subset of functions $\phi \in$ $C^{1}([0, T])$ replacing $u \in D\left(L_{0}\right)$ with $\phi(T)=0$, which is dense with respect to $\|\cdot\|_{\infty}$, it follows that $\mu_{t}(H)=1$ for $d t$-a.e. $t \in[0, T]$. Hence by e.g. setting $\mu_{t}=\zeta$ for those t for which this does not hold, we see that the requirement that for a solution $\mu=\mu_{t}(d x) d t$ of (1.4) the $\mu_{t}(d x)$ are all probability measures automatically holds after a $d t$-modification of the map $t \mapsto \mu_{t}(d x)$.

It is well known that, under Hypothesis 1.1(iii) the stochastic convolution

$$
W_{A}(t)=\int_{0}^{t} e^{(t-s) A} \sqrt{C} d W(s), \quad t \geq 0
$$

is a well defined mean square continuous process in H with values in $D\left((-A)^{\delta}\right)$ and that

$$
\begin{equation*}
\sup _{t \in[0, T]} \mathbb{E}\left|(-A)^{\delta} W_{A}(t)\right|^{2} \leq\|C\| \operatorname{Tr}\left[(-A)^{-2 \delta}\right]:=c_{\delta} \tag{1.6}
\end{equation*}
$$

Concerning the nonlinear operators $F(t, \cdot), t \in[0, T]$, we shall assume that

Hypothesis 1.3 (i) There exists a measurable mapping $a: Y \rightarrow \mathbb{R}$ and $c>0$ such that

$$
\begin{equation*}
\langle F(t, y+z), y\rangle \leq a(z)|y|+c|y|^{2}, \quad \forall y, z \in Y, t \in[0, T] . \tag{1.7}
\end{equation*}
$$

(ii) There exists $\kappa>0$ such that setting $a:=\infty$ on $H \backslash Y$ we have

$$
\begin{equation*}
\mathbb{E}\left[a\left(W_{A}(t)\right)^{2}+\left|W_{A}(t)\right|^{2}\right] \leq \kappa \quad \forall t \in[0, T] . \tag{1.8}
\end{equation*}
$$

(iii) For each $\alpha>0$ there exists a continuous mapping $F_{\alpha}:[0, T] \times H \rightarrow H$, such that for all $t \in[0, T], x \in H$,

$$
\begin{gather*}
\lim _{\alpha \rightarrow 0} F_{\alpha}(t, x)=F(t, x), \tag{1.9}\\
\left|F_{\alpha}(t, x)\right| \leq|F(t, x)| \tag{1.10}\\
\left|F(t, x)-F_{\alpha}(t, x)\right| \leq \alpha|F(t, x)|^{2} \tag{1.11}
\end{gather*}
$$

Example 1.4 Let $H=L^{2}(0,1), A x=D^{2} x$ for all $x \in H^{2}(0,1)$ such that $x(0)=x(1)=0, C=I$. Moreover, let p be a polynomial of odd degree $d>1$ and such that

$$
p^{\prime}(\xi) \leq \beta, \quad \forall \xi \in \mathbb{R}
$$

where $\beta \in \mathbb{R}$. Finally, let $h: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be bounded and continuous. Then set

$$
F(t, x)(\xi)=p(x(\xi))+h(t, x(\xi)), \quad x \in L^{2 d}(0,1), \xi \in[0,1]
$$

and $Y=L^{2 d}(0,1)$. It is easy to see that Hypotheses 1.1 and 1.3 are fulfilled with

$$
a(z)=|p(z)|+\sup _{(t, s) \in \mathbb{R} \times \mathbb{R}}|h(t, s)|, \quad \forall z \in Y
$$

and $c=\beta$ (cf. Section 3 for details).
Remark 1.5 Under Hypotheses 1.1 and 1.3 we do not know whether equation (1.1) has a solution or not. Notice that (1.7) is a weaker condition than quasi-monotonicity of $F(t, \cdot)$.

In a series of papers [1], [2], [3] and [4] we considered parabolic equations for measures on \mathbb{R}^{d}. In [5] and [6] (see also [9] for the case when F is independent of t) we were concerned with similar problems in infinite dimensions. Here we present a different existence result.

2 Existence

It is convenient to introduce a family of approximating stochastic equations

$$
\left\{\begin{array}{l}
d X_{\alpha}(t)=\left[A X_{\alpha}(t)+F_{\alpha}\left(t, X_{\alpha}(t)\right)\right] d t+\sqrt{C} d W(t) \tag{2.1}\\
X_{\alpha}(0)=x
\end{array}\right.
$$

For each $\alpha \in(0,1], F_{\alpha}:[0, T] \times H$ is well defined and continuous by Hypothesis 1.3(iii).

Since $C^{-1} \in L(H)$, by Girsanov's theorem it follows that equation (2.1) has a unique weak solution which we denote by $X_{\alpha}(\cdot, x)$. Let us introduce the transition evolution operator

$$
\begin{equation*}
P_{0, t}^{\alpha} \varphi(x)=\mathbb{E}\left[\varphi\left(X_{\alpha}(t, x)\right)\right], \quad t>0, \varphi \in B_{b}(H) \tag{2.2}
\end{equation*}
$$

The Kolmogorov operator L_{α} corresponding to (2.1) is for $u \in D\left(L_{0}\right)$ given by

$$
\begin{align*}
L_{\alpha} u(t, x)=D_{t} u(t, x)+\frac{1}{2} & \operatorname{Tr}\left[C D_{x}^{2} u(t, x)\right] \\
& +\left\langle x, A^{*} D_{x} u(t, x)\right\rangle+\left\langle F_{\alpha}(t, x), D_{x} u(t, x)\right\rangle . \tag{2.3}
\end{align*}
$$

and the Fokker-Planck equation looks like

$$
\begin{array}{r}
\int_{H} u(t, x) \mu_{t}^{\alpha}(d x)=\int_{H} u(0, x) \zeta(d x)+\int_{0}^{t} d s \int_{H} L_{\alpha} u(s, x) \mu_{s}^{\alpha}(d x) \\
\text { for all } t \in[0, T], \forall u \in D\left(L_{0}\right) \tag{2.4}
\end{array}
$$

or

$$
\begin{equation*}
\int_{0}^{T} d s \int_{[0, T] \times H} L_{\alpha} u(s, x) \mu^{\alpha}(d t, d x)=-\int_{H} u(0, x) \zeta(d x), \quad \forall u \in D\left(L_{0}\right) \tag{2.5}
\end{equation*}
$$

where $\mu^{\alpha}(d t, d x)=\mu_{t}^{\alpha}(d x) d t$.
We need a further assumption.
Hypothesis 2.1 There exist $K>0$ and a lower semicontinuous function $\tilde{F}:[0, T] \times H \rightarrow[0, \infty]$ such that $|F|+|x| \leq \tilde{F}$ on $[0, T] \times H$, where $|F|:=\infty$ on $[0, T] \times(H \backslash Y)$, and

$$
\begin{equation*}
\mathbb{E}\left|\tilde{F}\left(t, X_{\alpha}(t, x)\right)\right|^{2} \leq K\left(1+|\tilde{F}(t, x)|^{2}\right), \quad \forall x \in Y, \alpha \in(0,1], t \in[0, T] \tag{2.6}
\end{equation*}
$$

Define

$$
\begin{equation*}
c_{1}(t):=\int_{0}^{t} \int_{H}|\tilde{F}(s, x)|^{2} d s \zeta(d x), \quad t \in[0, T] . \tag{2.7}
\end{equation*}
$$

Arguing as in [4], [6] one can show that if $\zeta \in \mathscr{P}(H)$ is such that

$$
c_{1}(T)<+\infty
$$

then equation (2.5) has a solution μ_{t}^{α} which is determined by the identity

$$
\begin{equation*}
\int_{H} \varphi(x) \mu_{t}^{\alpha}(d x)=\int_{H} P_{0, t}^{\alpha} \varphi(x) \zeta(d x), \quad \forall \varphi \in \mathscr{E}_{A}(H) . \tag{2.8}
\end{equation*}
$$

Lemma 2.2 Assume that Hypothesis 2.1 is fulfilled. Then we have

$$
\begin{equation*}
\int_{0}^{t} \int_{H}|\tilde{F}(s, x)|^{2} \mu^{\alpha}(d s, d x) \leq K\left(t+c_{1}(t)\right), \quad \forall \alpha \in(0,1], t \in[0, T] . \tag{2.9}
\end{equation*}
$$

Proof. Taking into account (2.8) and (2.6) we have for all $\alpha \in(0,1], t \in$ $[0, T]$,

$$
\begin{aligned}
& \int_{0}^{t} \int_{H}|\tilde{F}(s, x)|^{2} \mu^{\alpha}(d s, d x)=\int_{0}^{t} \int_{H} P_{0, t}^{\alpha}\left(|\tilde{F}(s, \cdot)|^{2}\right)(x) \zeta(d x) d s \\
&=\int_{0}^{t} \int_{H} \mathbb{E}\left|\tilde{F}\left(s, X_{\alpha}(s, x)\right)\right|^{2} \zeta(d x) d s \\
& \leq \int_{[0, T] \times H} K\left(1+|\tilde{F}(s, x)|^{2}\right) \zeta(d x) d s \leq K\left(t+c_{1}(t)\right)
\end{aligned}
$$

so that (2.9) follows.
We note that indeed $L_{\alpha} u \in L^{1}\left([0, T] \times H, \mu^{\alpha}\right)$ for all $u \in D\left(L_{0}\right)$ by Lemma 2.2. Furthermore, by (2.8) the map $t \mapsto \int_{H} u(t, x) \mu_{t}^{\alpha}(d x)$ is continuous on [$0, T]$ for all $u \in D\left(L_{0}\right)$. Hence since the right hand side of (2.4) is so, too, we have (2.4) for all $t \in[0, T]$ in this case.

Our aim is to pass to the limit as $\alpha \rightarrow 0$ in (2.5), proving existence for the Fokker-Planck equation (1.5). This will be done in the following two steps showing that

Step $1\left\{\mu^{\alpha}\right\}_{\alpha>0}$ is tight.

Step 2 If μ is a cluster point of $\left\{\mu^{\alpha}\right\}_{\alpha>0}$ there exists $\alpha_{k} \downarrow 0$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{[0, T] \times H} L_{\alpha_{k}} u d \mu^{\alpha_{k}}=\int_{[0, T] \times H} L_{0} u d \mu, \quad \forall u \in \mathscr{E}_{A}([0, T] \times H), \tag{2.10}
\end{equation*}
$$

and $\mu(d t, d x)=\mu_{t}(d x) d t$.
We note that Step 2 and Remark 1.2(i) imply that μ satisfies (1.4), hence by Remark 1.2(ii) after a possible modification each μ_{t} is a probability measure.

Let us first prove tightness of $\left\{\mu^{\alpha}\right\}_{\alpha>0}$.
Proposition 2.3 Assume that Hypotheses 1.1 and 1.3 are fulfilled. Let $\zeta \in$ $\mathscr{P}(H)$ such that $\int_{H}|x|^{2} d \zeta<\infty$. Then $\left(\mu^{\alpha}\right)_{\alpha \in(0,1]}$ is tight.

Proof. Set $Y_{\alpha}(t)=X_{\alpha}(t)-W_{A}(t)$. Then (in the mild sense)

$$
\frac{d}{d t} Y_{\alpha}(t)=A Y_{\alpha}(t)+F_{\alpha}\left(t, X_{\alpha}(t)\right), \quad t \geq 0
$$

Multiplying both sides by $Y_{\alpha}(t)$, yields

$$
\frac{1}{2} \frac{d}{d t}\left|Y_{\alpha}(t)\right|^{2}+\left|(-A)^{1 / 2} Y_{\alpha}(t)\right|^{2}=\left\langle F_{\alpha}\left(t, Y_{\alpha}(t)+W_{A}(t)\right), Y_{\alpha}(t)\right\rangle
$$

By (1.10) and (1.7) we obtain

$$
\frac{1}{2} \frac{d}{d t}\left|Y_{\alpha}(t)\right|^{2}+\left|(-A)^{1 / 2} Y_{\alpha}(t)\right|^{2} \leq a\left(W_{A}(t)\right)\left|Y_{\alpha}(t)\right|+c\left|Y_{\alpha}(t)\right|^{2}
$$

which yields

$$
\begin{equation*}
\frac{d}{d t}\left|Y_{\alpha}(t)\right|^{2}+2\left|(-A)^{1 / 2} Y_{\alpha}(t)\right|^{2} \leq(1+c)\left|Y_{\alpha}(t)\right|^{2}+\left|a\left(W_{A}(t)\right)\right|^{2} \tag{2.11}
\end{equation*}
$$

It follows that

$$
\left|Y_{\alpha}(t)\right|^{2} \leq e^{(1+c) t}|x|^{2}+\int_{0}^{t} e^{(1+c)(t-s)}\left|a\left(W_{A}(t)\right)\right|^{2} d s
$$

from which, taking expectation and recalling (1.8),

$$
\begin{equation*}
\mathbb{E}\left|Y_{\alpha}(t)\right|^{2} \leq e^{(1+c) T}\left(|x|^{2}+\kappa\right) \tag{2.12}
\end{equation*}
$$

Consequently,

$$
\begin{align*}
& \mathbb{E}\left|X_{\alpha}(t, x)\right|^{2} \leq 2 e^{(1+c) T}\left(|x|^{2}+\kappa\right)+2 \mathbb{E}\left|W_{A}(t)\right|^{2} \\
& \leq 2 e^{(1+c) T}\left(|x|^{2}+\kappa\right)+2 \kappa=: \kappa_{1}\left(|x|^{2}+1\right) \tag{2.13}
\end{align*}
$$

This is equivalent to

$$
P_{0, t}^{\alpha}\left(|x|^{2}\right) \leq \kappa_{1}\left(|x|^{2}+1\right)
$$

By (2.8) it follows that

$$
\begin{equation*}
\int_{H}|x|^{2} \mu_{t}^{\alpha}(d x)=\int_{H} P_{0, t}^{\alpha}\left(|x|^{2}\right) \zeta(d x) \leq \kappa_{1} \int_{H}|x|^{2} \zeta(d x)+\kappa_{1} \tag{2.14}
\end{equation*}
$$

Moreover, by (2.11) we get

$$
2 \int_{0}^{T}\left|(-A)^{1 / 2} Y_{\alpha}(t)\right|^{2} d t \leq|x|^{2}+(1+c) \int_{0}^{T}\left|Y_{\alpha}(t)\right|^{2} d t+\int_{0}^{T}\left|a\left(W_{A}(t)\right)\right|^{2} d t
$$

which implies

$$
\begin{aligned}
& \int_{0}^{T}\left|(-A)^{\delta} Y_{\alpha}(t)\right|^{2} d t \\
& \leq\left\|(-A)^{-1 / 2+\delta}\right\|\left(|x|^{2}+(1+c) \int_{0}^{T}\left|Y_{\alpha}(t)\right|^{2} d t+\int_{0}^{T}\left|a\left(W_{A}(t)\right)\right|^{2} d t\right)
\end{aligned}
$$

and then, taking expectation by (1.6) we obtain

$$
\begin{aligned}
& \int_{0}^{T} \mathbb{E}\left|(-A)^{\delta} X_{\alpha}(t, x)\right|^{2} d t \\
\leq & 2\left\|(-A)^{-1 / 2+\delta}\right\|\left(|x|^{2}+(1+c) \int_{0}^{T} \mathbb{E}\left|Y_{\alpha}(t)\right|^{2} d t+\int_{0}^{T} \mathbb{E}\left|a\left(W_{A}(t)\right)\right|^{2} d t\right)+2 c_{\delta} T
\end{aligned}
$$

Now (1.8) and (2.12) imply

$$
\begin{aligned}
& \int_{0}^{T} \mathbb{E}\left|(-A)^{\delta} X_{\alpha}(t, x)\right|^{2} d t \\
& \leq 2\left\|(-A)^{-1 / 2+\delta}\right\|\left(|x|^{2}+(1+c) \int_{0}^{T}\left(e^{(1+c) T}\left(|x|^{2}+\kappa\right)\right) d t+T \kappa\right)+2 c_{\delta} T \\
& =: \kappa_{2}\left(1+|x|^{2}\right)
\end{aligned}
$$

Consequently,

$$
\int_{0}^{T} P_{0, t}^{\alpha}\left(\left|(-A)^{\delta} x\right|^{2}\right) d t \leq \kappa_{2}\left(1+|x|^{2}\right)
$$

Again by (2.8) follows that

$$
\begin{aligned}
& \int_{[0, T] \times H}\left|(-A)^{\delta} x\right|^{2} \mu^{\alpha}(d t, d x)=\int_{[0, T] \times H} P_{0, t}^{\alpha}\left(\left|(-A)^{\delta} x\right|^{2}\right) d t \zeta(d x) \\
& \leq \kappa_{2}\left(\int_{H}|x|^{2} \zeta(d x)+1\right)
\end{aligned}
$$

Since $(-A)^{-\delta}$ is compact, the tightness of $\left(\mu_{\alpha}\right)_{\alpha \in(0,1]}$ follows by a standard argument.

We are now ready to prove
Theorem 2.4 Assume that Hypotheses 1.1, 1.3 and 2.1 hold and that

$$
c_{1}(T)=\int_{0}^{T} d t \int_{H}\left(|x|^{2}+|F(t, x)|^{2}\right) \zeta(d x)<\infty .
$$

Let μ be a cluster point of $\left(\mu^{\alpha}\right)_{\alpha \in(0,1]}$. Then μ is a solution of the FokkerPlanck equation (1.5).

Proof. Let $\alpha_{k} \downarrow 0$ such that ($\mu^{\alpha_{k}}$) weakly converges to μ. Since \tilde{F} is lower semicontinuous it follows by (2.9) that

$$
\int_{[0, T] \times H}|\tilde{F}(t, x)|^{2} \mu(d t, d x) \leq K\left(T+c_{1}(T)\right),
$$

in particular, $\mu([0, T] \times Y)=1$, because $\tilde{F}=\infty$ on $H \backslash Y$.
Since

$$
\int_{0}^{T} d s \int_{H} L_{\alpha_{k}} u(s, x) \mu_{s}^{\alpha_{k}}(d x)=-\int_{H} u(0, x) \zeta(d x), \quad \forall u \in D\left(L_{0}\right)
$$

it is enough to show that

$$
\begin{align*}
\lim _{k \rightarrow \infty} \int_{[0, T] \times H} & \left\langle F_{\alpha_{k}}(s, x), D_{x} u(s, x)\right\rangle \mu^{\alpha_{k}}(d s, d x) \\
& =\int_{[0, T] \times H}\left\langle F(s, x), D_{x} u(s, x)\right\rangle \mu(d s, d x), \quad \forall u \in D\left(L_{0}\right) . \tag{2.15}
\end{align*}
$$

and that

$$
\begin{align*}
& \lim _{k \rightarrow \infty} \int_{[0, T] \times H}\left\langle x, D_{x} u(s, x)\right\rangle \mu^{\alpha_{k}}(d s, d x) \\
&=\int_{[0, T] \times H}\left\langle x, D_{x} u(s, x)\right\rangle \mu(d s, d x), \quad \forall u \in D\left(L_{0}\right) . \tag{2.16}
\end{align*}
$$

We have in fact

$$
\begin{align*}
& \mid \int_{[0, T] \times H}\left\langle F_{\alpha_{k}}(t, x), D_{x} u(s, x)\right\rangle \mu^{\alpha_{k}}(d s, d x) \\
& -\int_{[0, T] \times H}\left\langle F(s, x), D_{x} u(s, x)\right\rangle \mu(d s, d x) \mid \\
& \leq \mid \int_{[0, T] \times H}\left\langle\left(F_{\alpha_{k}}(s, x)-F(s, x), D_{x} u(s, x)\right\rangle \mu^{\alpha_{k}}(d s, d x)\right| \tag{2.17}\\
& +\mid \int_{[0, T] \times H}\left\langle F(s, x), D_{x} u(s, x)\right\rangle \mu^{\alpha_{k}}(d s, d x) \\
& -\int_{[0, T] \times H}\left\langle F(s, x), D_{x} u(s, x)\right\rangle \mu(d s, d x) \mid \\
& =: I_{1}+I_{2} .
\end{align*}
$$

In view of (1.11), (2.9) we have

$$
\begin{align*}
& I_{1} \leq \sup \left|D_{x} u\right| \int_{[0, T] \times H}\left|F_{\alpha_{k}}(s, x)-F(s, x)\right| \mu^{\alpha_{k}}(d s, d x) \\
\leq & \alpha_{k} \sup \left|D_{x} u\right| \int_{[0, T] \times H}|\tilde{F}(s, x)|^{2} \mu^{\alpha_{k}}(d s, d x) \leq K\left(T+c_{1}(T)\right) \alpha_{k} \sup \left|D_{x} u\right| . \tag{2.18}
\end{align*}
$$

Moreover, for any $\epsilon>0$,

$$
\begin{align*}
& I_{2} \leq \mid \int_{[0, T] \times H}\left\langle F_{\epsilon}(t, x), D_{x} u(t, x)\right\rangle \mu^{\alpha_{k}}(d t, d x) \\
& -\int_{[0, T] \times H}\left\langle F_{\epsilon}(t, x), D_{x} u(t, x)\right\rangle \mu(d t, d x) \mid \\
& +\epsilon \sup \left|D_{x} u\right|\left(\int_{[0, T] \times H}|F(t, x)|^{2} d \mu^{\alpha_{k}}(d t, d x)\right. \\
& \left.+\int_{[0, T] \times H}|F(t, x)|^{2} d \mu(d t, d x) \mid\right) \tag{2.19}\\
& \leq \mid \int_{[0, T] \times H}\left\langle F_{\epsilon}(t, x), D_{x} u(t, x)\right\rangle d \mu^{\alpha_{k}}(d t, d x) \\
& -\int_{[0, T] \times H}\left\langle F_{\epsilon}(t, x), D_{x} u(t, x)\right\rangle d \mu(d t, d x) \mid \\
& +2 K\left(T+c_{1}(T)\right) \epsilon \sup \left|D_{x} u\right| .
\end{align*}
$$

Now the equation (2.15) follows letting $k \rightarrow \infty$ and then $\epsilon \rightarrow 0$. (2.16) is proved analogously.

It remains to prove that $\mu(d t, d x)=\mu_{t}(d x) d t$. But the projection of μ onto $([0, T], \mathscr{B}([0, T]))$ is Lebesgue measure since it is the weak limit of the corresponding projections of $\mu^{\alpha_{k}}$ which are all Lebesgue measure. Hence μ disintegrates as

$$
\mu(d t, d x)=\mu_{t}(d x) d t
$$

where $\mu_{t}(d x), t \in[0, T]$, are kernels.

3 An application

Let $H=L^{2}(0,1), A: D(A) \subset H \rightarrow H$ be defined by

$$
A x(\xi)=\partial_{\xi}^{2} x(\xi), \quad D(A)=H^{2}(0,1) \cap H_{0}^{1}(0,1), \quad \xi \in[0,1] .
$$

Let

$$
F(t, x)(\xi)=p(x(\xi))+h(t, x(\xi)), \quad x \in L^{2 m}(0,1), \xi \in[0,1]
$$

where p is a polynomial of odd degree $m>1$ such that $p^{\prime} \leq c$ and h : $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is bounded and continuous. Under these assumptions we do not know whether the stochastic equation (1.1) has a solution. Finally, let $C, C^{-1} \in L(H), C$ symmetric nonnegative

We set $Y=L^{2 m}(0,1)$ and prove that Hypotheses 1.1, 1.3 and 2.1 are fulfilled.

First, Hypothesis 1.1 holds with $\omega=\pi^{2}$ because A^{-1} is of trace class. Let us check Hypothesis 1.3. Since the polynomial p is decreasing we have for each $y, z \in Y$

$$
\begin{array}{r}
p(y+z) y+h(t, y+z) y=(p(y+z)-p(z)) y+p(z) y+h(t, y+z) y \\
\leq c|y|^{2}+|p(z)||y|+\|h\|_{\infty}|y| \leq c|y|^{2}+c_{1}\left(1+|z|^{m}\right)|y| \tag{3.1}
\end{array}
$$

where $c_{1}>0$. Consequently

$$
\begin{equation*}
\langle F(t, y+z), y\rangle \leq c|y|^{2}+c_{1}\left(1+|z|_{L^{2 m}(0,1)}^{m}\right)|y| \tag{3.2}
\end{equation*}
$$

So, (1.7) holds. Moreover, (1.8) is proved in [8]. For $\alpha \in(0,1]$ define

$$
F_{\alpha}(t, x)(\xi)=\frac{F(t, x)(\xi)}{1+\alpha|F(t, x)(\xi)|}, \quad \xi \in(0,1)
$$

Hence also Hypothesis 1.3 holds since (iii) is obviously true for F_{α}. Finally, Hypothesis 2.1 follows from the proposition below for $\tilde{F}(t, x):=C(1+$ $\left.|x|_{L^{2 m}(0,1)}^{m}\right)$ and C a large enough constant.
Proposition 3.1 Let $\alpha>0$. Then for any $m \in \mathbb{N}$ there exists $c_{m}>0$ such that

$$
\mathbb{E}\left(\left|X_{\alpha}(t, x)\right|_{L^{2 m}(0,1)}^{2 m}\right) \leq c_{m}\left(1+|x|_{L^{2 m}(0,1)}^{2 m}\right), \quad t \in[0, T]
$$

Proof. Setting $Y_{\alpha}(t)=X_{\alpha}(t)-W_{A}(t)$, (2.1) reduces to

$$
\left\{\begin{array}{l}
Y_{\alpha}^{\prime}(t)=A Y_{\alpha}(t)-F_{\alpha}\left(Y_{\alpha}(t)+W_{A}(t)\right), \quad t \in[0, T] \\
Y_{\alpha}(0)=x
\end{array}\right.
$$

Now, multiplying both sides of the first equation by $\left(Y_{\alpha}(t)\right)^{2 m-1}$ yields (after integration by parts)

$$
\begin{aligned}
& \frac{1}{2 m} \frac{d}{d t} \int_{0}^{1}\left|Y_{\alpha}(t)\right|^{2 m} d \xi+(2 m-1) \int_{0}^{1}\left|Y_{\alpha}(t)\right|^{2 m-2}\left|\partial_{\xi} Y_{\alpha}(t)\right|^{2} d \xi \\
& =\int_{0}^{1} F_{\alpha}\left(Y_{\alpha}(t)+W_{A}(t)\right) Y_{\alpha}(t)^{2 m-1} d \xi
\end{aligned}
$$

Taking into account (3.1) we find

$$
\begin{aligned}
& \frac{1}{2 m} \frac{d}{d t} \int_{0}^{1}\left|Y_{\alpha}(t)\right|^{2 m} d \xi+(2 m-1) \int_{0}^{1}\left|Y_{\alpha}(t)\right|^{2 m-2}\left|\partial_{\xi} Y_{\alpha}(t)\right|^{2} d \xi \\
& \quad \leq c \int_{0}^{1}\left|Y_{\alpha}(t)\right|^{2 m} d \xi+c_{1} \int_{0}^{1}\left(1+\left|W_{A}(t)\right|^{m}\right)\left|Y_{\alpha}(t)\right|^{2 m-1} d \xi
\end{aligned}
$$

Moreover,

$$
\int_{0}^{1}\left|Y_{\alpha}(t)\right|^{2 m-2}\left|\partial_{\xi} Y_{\alpha}(t)\right|^{2} d \xi=m^{-2} \int_{0}^{1}\left|\partial_{\xi}\left(Y_{\alpha}^{m}(t)\right)\right|^{2} d \xi \geq 0
$$

Consequently, there exists constants $a_{1}, \tilde{c}>0$ such that

$$
\frac{d}{d t} \int_{0}^{1}\left|Y_{\alpha}(t)\right|^{2 m} d \xi \leq \tilde{c} \int_{0}^{1}\left|Y_{\alpha}(t)\right|^{2 m} d \xi+a_{1} \int_{0}^{1}\left(1+\left|W_{A}(t)\right|^{m}\right)^{2 m} d \xi
$$

Consequently,

$$
\left|Y_{\alpha}(t)\right|_{L^{2 m}(0,1)}^{2 m} d \leq e^{\tilde{c} t}|x|_{L^{2 m}(0,1)}^{2 m}+a_{1} \int_{0}^{t} e^{\tilde{c}(t-s)} \int_{0}^{1}\left(1+\left|W_{A}(t)\right|^{m}\right)^{2 m} d \xi d s
$$

and, for a constant $a_{2}>0$,
$\left|Y_{\alpha}(t)\right|_{L^{2 m}(0,1)}^{2 m} \leq e^{\tilde{c} t}|x|_{L^{2 m}(0,1)}^{2 m}+a_{2} \sup _{(s, \xi) \in[0, T] \times[0,1]}\left(1+\left|W_{A}(s, \xi)\right|^{m}\right)^{2 m}, \forall t \in[0, T]$.
By [8, Theorem 4.8] there exists $a_{3}>0$ such that

$$
\mathbb{E}\left(\left|Y_{\alpha}(t)\right|_{L^{2 m}(0,1)}^{2 m}\right) \leq e^{\tilde{c} t}|x|_{L^{2 m}(0,1)}^{2 m}+a_{3}, \forall t \in[0, T]
$$

and so, there exists $a_{4}>0$ such that

$$
\mathbb{E}\left(\left|X_{\alpha}(t, x)\right|_{L^{2 m}(0,1)}^{2 m}\right) \leq e^{\tilde{c} t}|x|_{L^{2 m}(0,1)}^{2 m}+a_{4}, \quad \forall t \in[0, T]
$$

Now the conclusion follows.
In conclusion all assumptions of Theorem 2.4 are fulfilled.

References

[1] V. Bogachev, G. Da Prato, and M. Röckner, On weak parabolic equations for probability measures, Dokl. Math. 66, no.2, 192-196, 2002.
[2] V. Bogachev, G. Da Prato, and M. Röckner, Existence of solutions to weak parabolic equations for measures, Proc. London Math. Soc., (3), 88, 753-774, 2004.
[3] V. Bogachev, G. Da Prato, M. Röckner and W. Stannat, Uniqueness of solutions to weak parabolic equations for measures, Bull. London Math. Soc, 631-640, 2007.
[4] V. Bogachev, G. Da Prato, and M. Röckner, On parabolic equations for measures, Comm. Partial Diff. Equat., 33, 1-22, 2008.
[5] V. Bogachev, G. Da Prato, and M. Röckner, Parabolic equations for measures on infinite-dimensional spaces, Dokl. Math. 78, No. 1, 544549, 2008.
[6] V. Bogachev, G. Da Prato and M. Röckner, Fokker-Planck equations and maximal dissipativity for Kolmogorov operators with time dependent singular drifts in Hilbert spaces. J. Functional Analysis, 256, 12691298, 2009.
[7] V. Bogachev and M. Röckner, Elliptic equations for measures on infinite dimensional spaces and applications, Probab. Theory Relat. Fields, 120, 445-496, 2001.
[8] G. Da Prato, Kolmogorov equations for stochastic PDEs, Birkhäuser, 2004.
[9] L. Manca, Kolmogorov operators in spaces of continuous functions and equations for measures, Thesis S.N.S. Pisa, 2008.

[^0]: *Supported in part by the RFBR project 07-01-00536, the Russian-Japanese Grant 08-01-91205-JF, the Russian-Chinese Grant 06-01-39003, ARC Discovery Grant DP0663153, the DFG Grant 436 RUS 113/343/0(R), SFB 701 at the University of Bielefeld
 †Supported in part by "Equazioni di Kolmogorov" from the Italian "Ministero della Ricerca Scientifica e Tecnologica"
 ${ }^{\ddagger}$ Supported by the DFG through SFB-701 and IRTG 1132 as well as the BIBOSResearch Center.

[^1]: ${ }^{(1)}$ We recall that a probability kernel is a family $\mu_{t}, t \in[0, T]$, of probability measures on $(H, \mathscr{B}(H))$ such that for all $A \in \mathscr{B}(H)$ the map $t \mapsto \mu_{t}(A)$ is $\mathscr{B}([0, T])$-measurable.

