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is known. We prove, under suitable assumptions, existence of a mea-
sure valued solution, for the corresponding Fokker–Planck equation.
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1 Introduction

Let us consider a stochastic differential equation on a separable Hilbert space
H (with norm | · | and inner product 〈·, ·〉) of the form dX(t) = [AX(t) + F (t,X(t))]dt+

√
CdW (t),

X(0) = x,
(1.1)

where A : D(A) ⊂ H → H is a self-adjoint operator, C : H → H is linear
self-adjoint and nonnegative, F (t, ·) : Y ⊂ H → H (where Y is a subspace of
H), t ∈ [0, T ], form a family of non linear mappings and W (t) is a cylindrical
Wiener process in H defined on a stochastic basis (Ω,F , (Ft)t≥0,P).

The Kolmogorov operator L0 corresponding to (1.1) reads as follows

L0u(t, x) = Dtu(t, x) +
1

2
Tr [CD2

xu(t, x)]

+ 〈x,ADxu(t, x)〉+ 〈F (t, x), Dxu(t, x)〉. (1.2)

The operator L0 is defined on the space D(L0) := EA([0, T ]×H), the linear
span of all real parts of functions uφ,h of the form

uφ,h(t, x) = φ(t)ei〈x,h(t)〉, t ∈ [0, T ], x ∈ H,

where φ ∈ C1([0, T ]), h ∈ C1([0, T ];D(A)) and φ(T ) = 0.
We are interested in the following Fokker–Planck equation
d

dt

∫
H

u(t, x)µt(dx) =

∫
H

L0u(t, x)µt(dx) for dt-a.e. t ∈ (0, T ], ∀ u ∈ D(L0)

lim
t→0

∫
H

ϕ(x)µt(dx) =

∫
H

ϕ(x)ζ(dx), ∀ ϕ ∈ EA(H),

(1.3)
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where d
dt

denotes the weak derivative on [0, T ]. Here EA(H) is the linear span
of all real parts of functions of the form

ϕ(x) = ei〈x,h〉, x ∈ H, h ∈ D(A),

and, as in (1.4) and (1.5) (see also (2.4) below), we always implicitly assume
that ∫

[0,T ]×H
(|x|+ |F (t, x)|)µt(dx)dt <∞,

so that L0u ∈ L1([0, T ]×H,µ) for all u ∈ D(L0), where µ(dt, dx) = µt(dx)dt.
Furthermore, ζ ∈ P(H) is given and µt(dx), t ∈ [0, T ], is a kernel

of probability measure (shortly probability kernel) (1) from (H,B(H)) to
([0, T ], B([0, T ])), in particular the mapping t 7→

∫
H
u(t, x)µt(dx) is measur-

able for any bounded measurable function u. By P(H) we mean the set of
all Borel probability measures on H.

We can also write equation (1.3) in the integral form∫
H

u(t, x)µt(dx) =

∫
H

u(0, x)ζ(dx) +

∫ t

0

ds

∫
H

L0u(s, x)µs(dx),

for dt-a.e. t ∈ [0, T ], ∀ u ∈ D(L0), (1.4)

or also, setting t = T as,∫
[0,T ]×H

L0u(s, x)µ(ds, dx) = −
∫
H

u(0, x)ζ(dx), ∀ u ∈ D(L0). (1.5)

Let us set our assumptions. Concerning the linear operators A and C we
shall assume that

Hypothesis 1.1 (i) A is self-adjoint.

(ii) C is bounded, symmetric, nonnegative and such that C−1 ∈ L(H).

(iii) There exists δ ∈ (0, 1/2) such that (−A)−2δ is of trace class.

Let us notice that from (iii) it follows that the embedding D(A) ⊂ H is
compact.

(1)We recall that a probability kernel is a family µt, t ∈ [0, T ], of probability measures
on (H,B(H)) such that for all A ∈ B(H) the map t 7→ µt(A) is B([0, T ])-measurable.
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Remark 1.2 (i) Since we have used this also in our previous papers, let
us explain in detail in what precise sense (1.3),(1.4) and (1.5) are really
equivalent. So, let µt(dx), t ∈ [0, T ], be a probability kernel as above and let
µ(dt, dx) = µt(dx)dt be the corresponding measure on ([0, T ]×H,B([0, T ]×
H)). Then by definition µ solves (1.3) if the first equation in (1.3) holds and
after a possible change of the map t 7→ µt(dx) on a set of dt-measure zero
also the second equation in (1.3) holds. In this case, obviously, µ(dt, dx) =
µt(dx)dt solves (1.4) and (1.5), and such a µ obviously solves (1.4) if and
only if it satisfies (1.5). Much more subtle is the fact that if such a µ solves
(1.4) (equivalently (1.5)), it also solves the second equation in (1.3) in the
above sense. The reason is that the above dt modification of t 7→ µt(dx)
cannot be obtained from (1.4) by just defining it so that

∫
H
ϕdµt is equal to

the right hand side of (1.4) for ϕ ∈ EA(H) (since then the second equation
in (1.3) trivially holds), because the dt-zero set would firstly depend on ϕ
(and there are uncountably many of them) and secondly the right hand side
of (1.4) does not per se define a positive measure acting on ϕ. So, a more
involved argument is required.

To this end we fix µ as above solving (1.4). Then clearly the first equation
in (1.3) holds. Let us prove that the second holds for a dt-modification of
t 7→ µt(dx). By Hypothesis 1.1(iii), there exists an eigenbasis {ek : k ∈ N}
of H for A. Define

FC∞b ({ek}) = {g(〈e1, ·〉, ..., 〈eN , ·〉) : N ∈ N, g ∈ C∞b (RN)

and

FC∞0 ({ek}) = linear span {g(〈e1, ·〉, ..., 〈eN , ·〉) : N ∈ N, g ∈ C∞0 (RN),

where C∞b (RN), C∞0 (RN) denote the set of all bounded smooth real valued
functions on RN with all partial derivatives bounded, respectively of compact
support.

Claim There exist ϕn ∈ FC∞0 ({ek}), n ∈ N, such that µ satisfies (1.4)
with ϕn replacing u ∈ D(L0) for every n ∈ N, and such that if µ satisfies
(1.4) with ϕn replacing u ∈ D(L0) for a fixed t ∈ [0, T ] for all n ∈ N then µ
satisfies (1.4) for this t with ϕ replacing u ∈ D(L0) for all ϕ ∈ EA(H).

Proof. Let ϕ = g(〈e1, ·〉, ..., 〈eN , ·〉) ∈ FC∞0 ({ek}). Writing its base func-
tion g ∈ C∞0 (RN) as the Fourier transform of a Schwartz test function and
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discretizing the Fourier integral, one sees by taking the limit in (1.4) that µ
satisfies (1.4) with ϕ replacing u ∈ D(L0). But C∞0 (RN) is separable with
respect to the norm

‖g‖∞,2 := ‖g‖∞ + ‖Dg‖∞ + ‖D2g‖∞, g ∈ C∞0 (RN).

Hence we can find {ϕk : k ∈ N} ∈ FC∞0 ({ek}) such that if µ satisfies (1.4)
for some t ∈ [0, T ] with ϕk replacing u ∈ D(L0) for all k ∈ N, then it does
so for this t and all ϕ ∈ FC∞0 ({ek}) replacing u ∈ D(L0), and by an easy
localization argument it does so also for all ϕ ∈ FC∞b ({ek}). A further easy
approximation then proves the Claim. �

Now we can easily define the required modification of t 7→ µt(dx). Let

M := {t ∈ [0, T ] : (1.4) holds for t and ϕk replacing u ∈ D(L0) for all k ∈ N},

where ϕk, k ∈ N, are as in the Claim. Define

µ̃t(dx) =

{
µt(dx) if t ∈M
ζ if t ∈ [0, T ] \M.

Then by the Claim (1.4) holds with µ̃t replacing µt for all ϕ ∈ EA(H) replac-
ing u ∈ D(L0) and all t ∈ M . Hence the second equation in (1.3) holds for
the dt-modification µ̃t(dx), t ∈ [0, T ], since it is equal to ζ on [0, T ] \M .

(ii) We note that applying (1.4) to a countable subset of functions φ ∈
C1([0, T ]) replacing u ∈ D(L0) with φ(T ) = 0, which is dense with respect
to ‖ · ‖∞, it follows that µt(H) = 1 for dt-a.e. t ∈ [0, T ]. Hence by e.g.
setting µt = ζ for those t for which this does not hold, we see that the
requirement that for a solution µ = µt(dx)dt of (1.4) the µt(dx) are all
probability measures automatically holds after a dt-modification of the map
t 7→ µt(dx).

It is well known that, under Hypothesis 1.1(iii) the stochastic convolution

WA(t) =

∫ t

0

e(t−s)A
√
CdW (s), t ≥ 0,

is a well defined mean square continuous process inH with values inD((−A)δ)
and that

sup
t∈[0,T ]

E|(−A)δWA(t)|2 ≤ ‖C‖ Tr [(−A)−2δ] := cδ. (1.6)

Concerning the nonlinear operators F (t, ·), t ∈ [0, T ], we shall assume
that
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Hypothesis 1.3 (i) There exists a measurable mapping a : Y → R and
c > 0 such that

〈F (t, y + z), y〉 ≤ a(z)|y|+ c|y|2, ∀ y, z ∈ Y, t ∈ [0, T ]. (1.7)

(ii) There exists κ > 0 such that setting a :=∞ on H\Y we have

E
[
a(WA(t))2 + |WA(t)|2

]
≤ κ ∀ t ∈ [0, T ]. (1.8)

(iii) For each α > 0 there exists a continuous mapping Fα : [0, T ]×H → H,
such that for all t ∈ [0, T ], x ∈ H,

lim
α→0

Fα(t, x) = F (t, x), (1.9)

|Fα(t, x)| ≤ |F (t, x)|, (1.10)

|F (t, x)− Fα(t, x)| ≤ α|F (t, x)|2. (1.11)

Example 1.4 Let H = L2(0, 1), Ax = D2x for all x ∈ H2(0, 1) such that
x(0) = x(1) = 0, C = I. Moreover, let p be a polynomial of odd degree d > 1
and such that

p′(ξ) ≤ β, ∀ ξ ∈ R,
where β ∈ R. Finally, let h : R× R→ R be bounded and continuous. Then
set

F (t, x)(ξ) = p(x(ξ)) + h(t, x(ξ)), x ∈ L2d(0, 1), ξ ∈ [0, 1],

and Y = L2d(0, 1). It is easy to see that Hypotheses 1.1 and 1.3 are fulfilled
with

a(z) = |p(z)|+ sup
(t,s)∈R×R

|h(t, s)|, ∀ z ∈ Y

and c = β (cf. Section 3 for details).

Remark 1.5 Under Hypotheses 1.1 and 1.3 we do not know whether equa-
tion (1.1) has a solution or not. Notice that (1.7) is a weaker condition than
quasi-monotonicity of F (t, ·).

In a series of papers [1], [2], [3] and [4] we considered parabolic equations
for measures on Rd. In [5] and [6] (see also [9] for the case when F is inde-
pendent of t) we were concerned with similar problems in infinite dimensions.
Here we present a different existence result.
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2 Existence

It is convenient to introduce a family of approximating stochastic equations dXα(t) = [AXα(t) + Fα(t,Xα(t))]dt+
√
CdW (t),

Xα(0) = x.
(2.1)

For each α ∈ (0, 1], Fα : [0, T ]×H is well defined and continuous by Hypoth-
esis 1.3(iii).

Since C−1 ∈ L(H), by Girsanov’s theorem it follows that equation (2.1)
has a unique weak solution which we denote by Xα(·, x). Let us introduce
the transition evolution operator

Pα
0,tϕ(x) = E[ϕ(Xα(t, x))], t > 0, ϕ ∈ Bb(H). (2.2)

The Kolmogorov operator Lα corresponding to (2.1) is for u ∈ D(L0) given
by

Lαu(t, x) = Dtu(t, x) +
1

2
Tr [CD2

xu(t, x)]

+ 〈x,A∗Dxu(t, x)〉+ 〈Fα(t, x), Dxu(t, x)〉. (2.3)

and the Fokker–Planck equation looks like∫
H

u(t, x)µαt (dx) =

∫
H

u(0, x)ζ(dx) +

∫ t

0

ds

∫
H

Lαu(s, x)µαs (dx),

for all t ∈ [0, T ], ∀ u ∈ D(L0), (2.4)

or∫ T

0

ds

∫
[0,T ]×H

Lαu(s, x)µα(dt, dx) = −
∫
H

u(0, x)ζ(dx), ∀ u ∈ D(L0),

(2.5)

where µα(dt, dx) = µαt (dx)dt.
We need a further assumption.

Hypothesis 2.1 There exist K > 0 and a lower semicontinuous function
F̃ : [0, T ] × H → [0,∞] such that |F | + |x| ≤ F̃ on [0, T ] × H, where
|F | :=∞ on [0, T ]× (H \ Y ), and

E|F̃ (t,Xα(t, x))|2 ≤ K(1 + |F̃ (t, x)|2), ∀ x ∈ Y, α ∈ (0, 1], t ∈ [0, T ].
(2.6)
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Define

c1(t) :=

∫ t

0

∫
H

|F̃ (s, x)|2dsζ(dx), t ∈ [0, T ]. (2.7)

Arguing as in [4], [6] one can show that if ζ ∈P(H) is such that

c1(T ) < +∞,

then equation (2.5) has a solution µαt which is determined by the identity∫
H

ϕ(x)µαt (dx) =

∫
H

Pα
0,tϕ(x)ζ(dx), ∀ ϕ ∈ EA(H). (2.8)

Lemma 2.2 Assume that Hypothesis 2.1 is fulfilled. Then we have∫ t

0

∫
H

|F̃ (s, x)|2µα(ds, dx) ≤ K(t+ c1(t)), ∀ α ∈ (0, 1], t ∈ [0, T ]. (2.9)

Proof. Taking into account (2.8) and (2.6) we have for all α ∈ (0, 1], t ∈
[0, T ],∫ t

0

∫
H

|F̃ (s, x)|2µα(ds, dx) =

∫ t

0

∫
H

Pα
0,t(|F̃ (s, ·)|2)(x)ζ(dx)ds

=

∫ t

0

∫
H

E|F̃ (s,Xα(s, x))|2ζ(dx)ds

≤
∫

[0,T ]×H
K(1 + |F̃ (s, x)|2)ζ(dx)ds ≤ K(t+ c1(t)),

so that (2.9) follows. �

We note that indeed Lαu ∈ L1([0, T ]×H,µα) for all u ∈ D(L0) by Lemma
2.2. Furthermore, by (2.8) the map t 7→

∫
H
u(t, x)µαt (dx) is continuous on

[0, T ] for all u ∈ D(L0). Hence since the right hand side of (2.4) is so, too,
we have (2.4) for all t ∈ [0, T ] in this case.

Our aim is to pass to the limit as α→ 0 in (2.5), proving existence for the
Fokker–Planck equation (1.5). This will be done in the following two steps
showing that

Step 1 {µα}α>0 is tight.
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Step 2 If µ is a cluster point of {µα}α>0 there exists αk ↓ 0 such that

lim
k→∞

∫
[0,T ]×H

Lαk
u dµαk =

∫
[0,T ]×H

L0u dµ, ∀ u ∈ EA([0, T ]×H), (2.10)

and µ(dt, dx) = µt(dx)dt.

We note that Step 2 and Remark 1.2(i) imply that µ satisfies (1.4), hence
by Remark 1.2(ii) after a possible modification each µt is a probability mea-
sure.

Let us first prove tightness of {µα}α>0.

Proposition 2.3 Assume that Hypotheses 1.1 and 1.3 are fulfilled. Let ζ ∈
P(H) such that

∫
H
|x|2dζ <∞. Then (µα)α∈(0,1] is tight.

Proof. Set Yα(t) = Xα(t)−WA(t). Then (in the mild sense)

d

dt
Yα(t) = AYα(t) + Fα(t,Xα(t)), t ≥ 0.

Multiplying both sides by Yα(t), yields

1

2

d

dt
|Yα(t)|2 + |(−A)1/2Yα(t)|2 = 〈Fα(t, Yα(t) +WA(t)), Yα(t)〉.

By (1.10) and (1.7) we obtain

1

2

d

dt
|Yα(t)|2 + |(−A)1/2Yα(t)|2 ≤ a(WA(t)) |Yα(t)|+ c|Yα(t)|2

which yields

d

dt
|Yα(t)|2 + 2|(−A)1/2Yα(t)|2 ≤ (1 + c)|Yα(t)|2 + |a(WA(t))|2. (2.11)

It follows that

|Yα(t)|2 ≤ e(1+c)t|x|2 +

∫ t

0

e(1+c)(t−s)|a(WA(t))|2ds

from which, taking expectation and recalling (1.8),

E|Yα(t)|2 ≤ e(1+c)T (|x|2 + κ). (2.12)
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Consequently,

E|Xα(t, x)|2 ≤ 2e(1+c)T (|x|2 + κ) + 2E|WA(t)|2

≤ 2e(1+c)T (|x|2 + κ) + 2κ =: κ1(|x|2 + 1). (2.13)

This is equivalent to
Pα

0,t(|x|2) ≤ κ1(|x|2 + 1).

By (2.8) it follows that∫
H

|x|2µαt (dx) =

∫
H

Pα
0,t(|x|2)ζ(dx) ≤ κ1

∫
H

|x|2ζ(dx) + κ1. (2.14)

Moreover, by (2.11) we get

2

∫ T

0

|(−A)1/2Yα(t)|2dt ≤ |x|2 + (1 + c)

∫ T

0

|Yα(t)|2dt+

∫ T

0

|a(WA(t))|2dt,

which implies∫ T

0

|(−A)δYα(t)|2dt

≤ ‖(−A)−1/2+δ‖
(
|x|2 + (1 + c)

∫ T

0

|Yα(t)|2dt+

∫ T

0

|a(WA(t))|2dt
)

and then, taking expectation by (1.6) we obtain∫ T

0

E|(−A)δXα(t, x)|2dt

≤ 2‖(−A)−1/2+δ‖
(
|x|2 + (1 + c)

∫ T

0

E|Yα(t)|2dt+

∫ T

0

E|a(WA(t))|2dt
)

+2cδT.

Now (1.8) and (2.12) imply∫ T

0

E|(−A)δXα(t, x)|2dt

≤ 2‖(−A)−1/2+δ‖
(
|x|2 + (1 + c)

∫ T

0

(e(1+c)T (|x|2 + κ))dt+ Tκ

)
+ 2cδT

=: κ2(1 + |x|2).
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Consequently, ∫ T

0

Pα
0,t(|(−A)δx|2)dt ≤ κ2(1 + |x|2).

Again by(2.8) follows that∫
[0,T ]×H

|(−A)δx|2µα(dt, dx) =

∫
[0,T ]×H

Pα
0,t(|(−A)δx|2)dtζ(dx)

≤ κ2

(∫
H

|x|2ζ(dx) + 1

)
.

Since (−A)−δ is compact, the tightness of (µα)α∈(0,1] follows by a standard
argument. �

We are now ready to prove

Theorem 2.4 Assume that Hypotheses 1.1, 1.3 and 2.1 hold and that

c1(T ) =

∫ T

0

dt

∫
H

(|x|2 + |F (t, x)|2)ζ(dx) <∞.

Let µ be a cluster point of (µα)α∈(0,1]. Then µ is a solution of the Fokker–
Planck equation (1.5).

Proof. Let αk ↓ 0 such that (µαk) weakly converges to µ. Since F̃ is lower
semicontinuous it follows by (2.9) that∫

[0,T ]×H
|F̃ (t, x)|2µ(dt, dx) ≤ K(T + c1(T )),

in particular, µ([0, T ]× Y ) = 1, because F̃ =∞ on H \ Y .
Since∫ T

0

ds

∫
H

Lαk
u(s, x)µαk

s (dx) = −
∫
H

u(0, x)ζ(dx), ∀ u ∈ D(L0),

it is enough to show that

lim
k→∞

∫
[0,T ]×H

〈Fαk
(s, x), Dxu(s, x)〉µαk(ds, dx)

=

∫
[0,T ]×H

〈F (s, x), Dxu(s, x)〉µ(ds, dx), ∀ u ∈ D(L0). (2.15)
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and that

lim
k→∞

∫
[0,T ]×H

〈x,Dxu(s, x)〉µαk(ds, dx)

=

∫
[0,T ]×H

〈x,Dxu(s, x)〉µ(ds, dx), ∀ u ∈ D(L0). (2.16)

We have in fact∣∣∣ ∫
[0,T ]×H

〈Fαk
(t, x), Dxu(s, x)〉 µαk(ds, dx)

−
∫

[0,T ]×H
〈F (s, x), Dxu(s, x)〉µ(ds, dx)

∣∣∣
≤
∣∣∣∣∫

[0,T ]×H
〈(Fαk

(s, x)− F (s, x), Dxu(s, x)〉 µαk(ds, dx)

∣∣∣∣
+
∣∣∣ ∫

[0,T ]×H
〈F (s, x), Dxu(s, x)〉µαk(ds, dx)

−
∫

[0,T ]×H
〈F (s, x), Dxu(s, x)〉µ(ds, dx)

∣∣∣
=: I1 + I2.

(2.17)

In view of (1.11), (2.9) we have

I1 ≤ sup |Dxu|
∫

[0,T ]×H
|Fαk

(s, x)− F (s, x)| µαk(ds, dx)

≤ αk sup |Dxu|
∫

[0,T ]×H
|F̃ (s, x)|2 µαk(ds, dx) ≤ K(T + c1(T ))αk sup |Dxu|.

(2.18)
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Moreover, for any ε > 0,

I2 ≤
∣∣∣ ∫

[0,T ]×H
〈Fε(t, x), Dxu(t, x)〉µαk(dt, dx)

−
∫

[0,T ]×H
〈Fε(t, x), Dxu(t, x)〉µ(dt, dx)

∣∣∣
+ε sup |Dxu|

(∫
[0,T ]×H

|F (t, x)|2dµαk(dt, dx)

+

∫
[0,T ]×H

|F (t, x)|2dµ(dt, dx)|
)

≤
∣∣∣ ∫

[0,T ]×H
〈Fε(t, x), Dxu(t, x)〉dµαk(dt, dx)

−
∫

[0,T ]×H
〈Fε(t, x), Dxu(t, x)〉dµ(dt, dx)

∣∣∣
+2K(T + c1(T ))ε sup |Dxu|.

(2.19)

Now the equation (2.15) follows letting k → ∞ and then ε → 0. (2.16) is
proved analogously.

It remains to prove that µ(dt, dx) = µt(dx)dt. But the projection of µ
onto ([0, T ],B([0, T ])) is Lebesgue measure since it is the weak limit of the
corresponding projections of µαk which are all Lebesgue measure. Hence µ
disintegrates as

µ(dt, dx) = µt(dx)dt

where µt(dx), t ∈ [0, T ], are kernels. �

3 An application

Let H = L2(0, 1), A : D(A) ⊂ H → H be defined by

Ax(ξ) = ∂2
ξx(ξ), D(A) = H2(0, 1) ∩H1

0 (0, 1), ξ ∈ [0, 1].

Let
F (t, x)(ξ) = p(x(ξ)) + h(t, x(ξ)), x ∈ L2m(0, 1), ξ ∈ [0, 1],
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where p is a polynomial of odd degree m > 1 such that p′ ≤ c and h :
R × R → R is bounded and continuous. Under these assumptions we do
not know whether the stochastic equation (1.1) has a solution. Finally, let
C,C−1 ∈ L(H), C symmetric nonnegative

We set Y = L2m(0, 1) and prove that Hypotheses 1.1, 1.3 and 2.1 are
fulfilled.

First, Hypothesis 1.1 holds with ω = π2 because A−1 is of trace class. Let
us check Hypothesis 1.3. Since the polynomial p is decreasing we have for
each y, z ∈ Y

p(y + z)y + h(t, y + z)y = (p(y + z)− p(z))y + p(z)y + h(t, y + z)y

≤ c|y|2 + |p(z)||y|+ ‖h‖∞|y| ≤ c|y|2 + c1(1 + |z|m)|y|, (3.1)

where c1 > 0. Consequently

〈F (t, y + z), y〉 ≤ c|y|2 + c1(1 + |z|mL2m(0,1)) |y|. (3.2)

So, (1.7) holds. Moreover, (1.8) is proved in [8]. For α ∈ (0, 1] define

Fα(t, x)(ξ) =
F (t, x)(ξ)

1 + α|F (t, x)(ξ)|
, ξ ∈ (0, 1).

Hence also Hypothesis 1.3 holds since (iii) is obviously true for Fα. Fi-
nally, Hypothesis 2.1 follows from the proposition below for F̃ (t, x) := C(1+
|x|mL2m(0,1)) and C a large enough constant.

Proposition 3.1 Let α > 0. Then for any m ∈ N there exists cm > 0 such
that

E
(
|Xα(t, x)|2mL2m(0,1)

)
≤ cm(1 + |x|2mL2m(0,1)), t ∈ [0, T ].

Proof. Setting Yα(t) = Xα(t)−WA(t), (2.1) reduces to
Y ′α(t) = AYα(t)− Fα(Yα(t) +WA(t)), t ∈ [0, T ],

Yα(0) = x.

Now, multiplying both sides of the first equation by (Yα(t))2m−1 yields (after
integration by parts)

1

2m

d

dt

∫ 1

0

|Yα(t)|2mdξ + (2m− 1)

∫ 1

0

|Yα(t)|2m−2|∂ξYα(t)|2dξ

=

∫ 1

0

Fα(Yα(t) +WA(t))Yα(t)2m−1dξ.
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Taking into account (3.1) we find

1

2m

d

dt

∫ 1

0

|Yα(t)|2mdξ + (2m− 1)

∫ 1

0

|Yα(t)|2m−2|∂ξYα(t)|2dξ

≤ c

∫ 1

0

|Yα(t)|2mdξ + c1

∫ 1

0

(1 + |WA(t)|m)|Yα(t)|2m−1dξ.

Moreover,∫ 1

0

|Yα(t)|2m−2|∂ξYα(t)|2dξ = m−2

∫ 1

0

|∂ξ(Y m
α (t))|2dξ ≥ 0.

Consequently, there exists constants a1, c̃ > 0 such that

d

dt

∫ 1

0

|Yα(t)|2mdξ ≤ c̃

∫ 1

0

|Yα(t)|2mdξ + a1

∫ 1

0

(1 + |WA(t)|m)2mdξ.

Consequently,

|Yα(t)|2mL2m(0,1)d ≤ ec̃t |x|2mL2m(0,1) + a1

∫ t

0

ec̃(t−s)
∫ 1

0

(1 + |WA(t)|m)2mdξ ds,

and, for a constant a2 > 0,

|Yα(t)|2mL2m(0,1) ≤ ec̃t |x|2mL2m(0,1)+a2 sup
(s,ξ)∈[0,T ]×[0,1]

(1+|WA(s, ξ)|m)2m, ∀ t ∈ [0, T ].

By [8, Theorem 4.8] there exists a3 > 0 such that

E
(
|Yα(t)|2mL2m(0,1)

)
≤ ec̃t |x|2mL2m(0,1) + a3, ∀ t ∈ [0, T ],

and so, there exists a4 > 0 such that

E
(
|Xα(t, x)|2mL2m(0,1)

)
≤ ec̃t |x|2mL2m(0,1) + a4, ∀ t ∈ [0, T ].

Now the conclusion follows. �
In conclusion all assumptions of Theorem 2.4 are fulfilled.
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for probability measures, Dokl. Math. 66, no.2, 192–196, 2002.

[2] V. Bogachev, G. Da Prato, and M. Röckner, Existence of solutions to
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measures on infinite-dimensional spaces, Dokl. Math. 78, No. 1, 544-
549, 2008.

[6] V. Bogachev, G. Da Prato and M. Röckner, Fokker–Planck equations
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