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MICHAEL RÖCKNER, TUSHENG ZHANG, XICHENG ZHANG

Abstract. In this paper, using weak convergence method, we prove a large deviation
principle of Freidlin-Wentzell type for the stochastic tamed 3D Navier-Stokes equations
driven by multiplicative noise, which was investigated in [21].

1. Introduction

Let D = R3 or T3 (=three dimensional torus). Consider the following stochastic tamed
3D Navier-Stokes equation in D:

du(t) =
[
ν∆u(t)− (u(t) · ∇)u(t) +∇p(t)− gN(|u(t)|2)u(t)

]
dt

+ f(t,u(t))dt +
∞∑

k=1

[
∇p̃k(t) + hk(t,u(t))

]
dW k

t ,

divu(t) = 0, u(0) = u0.

(1)

Here, | · | denotes the Euclidean norm on R3, u = (u1, u2, u3) is the velocity field, p(t, x)
and p̃k(t, x) are unknown scalar functions. The function gN : R+ → R+ is smooth and
satisfies  gN(r) = 0, if r 6 N,

gN(r) = (r −N)/ν, if r > N + 1,
0 6 g′N(r) 6 2/(ν ∧ 1), r > 0.

(2)

{W k
t ; t > 0, k = 1, 2, · · · } is a sequence of independent one dimensional standard Brownian

motions on some complete filtered probability space (Ω,F , P ; (Ft)t>0). The stochastic
integral is understood as Itô’s integral, and the coefficients

R+ × R3 × R3 3 (t, x,u) → f(t, x,u) ∈ R3,

R+ × R3 × R3 3 (t, x,u) → h(t, x,u) ∈ R3 × l2,

satisfy assumptions (H1) and (H2) specified below. Here l2 denotes the Hilbert space
consisting of all sequences of square summable real numbers with standard norm ‖ · ‖l2 .

It was proven in [21] that under (H1) and (H2) below, there exists a unique strong
solution for equation (1) in the sense of PDE and SDE. The ergodicity of equation (1)
was also proved in [21]. By virtue of the presence of the taming function gN , equation
(1) can be considered as a modified stochastic Navier-Stokes equation. Without the term
gN , equation (1) is the stochastic 3D Navier-Stokes equation for which it is well known
that there exists a martingale solution (cf. [15, 13]). But the uniqueness is open, and
one only knows the existence of a locally unique strong solution (cf. [16, 27]). Moreover,
without the term gN , the existence and ergodicity of invariant measures for equation (1)
have already been studied by using Kolmogorov operators (cf. [1, 8, 9]) and the existence
of Markovian selections (cf. [12, 13]). We would like to emphasize that the deterministic
tamed equation has the following feature: if there exists a bounded solution to the classical
3D Navier-Stokes equation, then this solution also solves the tamed equation.
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The purpose of this paper is to study the small noise large deviation for the stochastic
tamed 3D Navier-Stokes equation (1).

The large deviations for stochastic partial differential equations (SPDE) have been
studied by many authors. For example, a large deviation principle (LDP) for stochastic
reaction diffusion equations with non-Lipschitz reaction term was established by Cerrai
and Röckner in [7]. An LDP for a Burgers’-type SPDE was considered by Cardon-Weber
in [6]. A uniform LDP for parabolic SPDE was proved by Chenal and Millet in [5].
An LDP for stochastic reaction diffusion equations was established by Sowers in [23]. A
small time large deviation principle for stochastic parabolic equations was obtained by
the second named author in [24]. For the general theory of large deviations, the reader
is referred to the monograph [10]. Because of the different nature of the nonlinearities
for different types of equations, the large deviations for SPDEs has to be dealt with on
individual bases.

To establish the large deviation principle for the above stochastic tamed Navier-Stokes
equation, we shall adopt the weak convergence method developed by Dupuis-Ellis in
[11, 2, 3]. This method has been proved to be very effective for various types of stochastic
equations (cf. [4, 18, 19, 26, 14, 27]). The main advantage of this method is that one
avoids the use of the usual complicated time discretization and the proof of exponential
tightness. Our proof is inspired by Liu’s method [14] and also works for 2D stochastic
Navier-Stokes equations.

This paper is organized as follows: Section 2 contains preliminaries and the formulation
of our main result. In Section 3, we shall prove the main result by the weak convergence
method.

2. Preliminary and Main Result

Throughout this paper, we fix T > 0 and assume ν = 1. We shall use the following
convention: The letter C with or without subscripts will denote a positive constant, whose
value may change from one place to another.

2.1. An abstract criterion for the Laplace principle. It is well known that there
exists a Hilbert space U so that l2 ⊂ U with Hilbert-Schmidt embedding operator J and
{W k(t), k ∈ N} is a Brownian motion with values in U, whose covariance operator is given
by Q = J ◦ J∗. For example, one can take U as the completion of l2 with respect to the
norm generated by the scalar product

〈h, h′〉U :=
∞∑

k=1

hkh
′
k

k2
, h, h′ ∈ l2.

For a Polish space B, we denote by B(B) the Borel σ-field, and by CT (B) the continuous
function space from [0, T ] to B, which is endowed with the uniform distance so that CT (B)
is again a Polish space. Define

H :=

{
h =

∫ ·

0

ḣ(s)ds : ḣ ∈ L2(0, T ; l2)

}
(3)

with the norm

‖h‖H :=

(∫ T

0

‖ḣ(s)‖2
l2ds

)1/2

,

where the dot denotes the weak derivative. Let µ be the law of the Brownian motion W
in CT (U) with covariance space l2. Then

(CT (U), H , µ)
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forms an abstract Wiener space.
For T,M > 0, set

DM := {h ∈ H : ‖h‖H 6 M}
and

AT
M :=

{
h : [0, T ] → l2 is a continuous and (Ft)-adapted

process, and for almost all ω, h(·, ω) ∈ DM

}
. (4)

We equip DM with the weak topology in H . Then

DM is a compact Polish space. (5)

Let S be a Polish space and let I : S → [0,∞] be given.

Definition 2.1. The function I is called a rate function if for every a < ∞, the set
{f ∈ S : I(f) 6 a} is compact in S.

Let {Zε : CT (U) → S, ε ∈ (0, 1)} be a family of measurable mappings. Assume that
there is a measurable map Z0 : H 7→ S such that

(LD)1 For any M > 0, if a family {hε, ε ∈ (0, 1)} ⊂ AT
M as random variables in DM

converges in distribution to h ∈ AT
M , then for some subsequence εk, Zεk

(
·+hεk (·)√

εk

)
converges in distribution to Z0(h) in S.

(LD)2 For any M > 0, Z0 : DM → S is weakly continuous. Equivalently, if {hn, n ∈
N} ⊂ DM weakly converges to h ∈ H , then for some subsequence hnk

, Z0(hnk
)

converges to Z0(h) in S.

For each f ∈ S, define

I(f) :=
1

2
inf

{h∈H : f=Z0(h)}
‖h‖2

H , (6)

where inf ∅ = ∞ by convention. Then under (LD)2, I(f) obviously is a rate function.
We recall the following result from [3] (see also [28, Theorem 4.4]).

Theorem 2.2. Under (LD)1 and (LD)2, {Zε, ε ∈ (0, 1)} satisfies the Laplace principle
with the rate function I(f) given by (6). More precisely, for each real bounded continuous
function g on S:

lim
ε→0

ε log Eµ

(
exp

[
−g(Zε)

ε

])
= − inf

f∈S
{g(f) + I(f)}, (7)

where Eµ denotes expectation with respect to µ. In particular, the family of {Zε, ε ∈ (0, 1)}
satisfies the large deviation principle in (S,B(S)) with rate function I(f). More precisely,
let νε be the law of Zε in (S,B(S)), then for any A ∈ B(S)

− inf
f∈Ao

I(f) 6 lim inf
ε→0

ε log νε(A) 6 lim sup
ε→0

ε log νε(A) 6 − inf
f∈Ā

I(f),

where the closure and the interior are taken in S, and I(f) is defined by (6).

2.2. Statement of the Main Result. In order to formulate our result, we need to
introduce some functional analytic framework.

To simplify the notations we simultaneously use D to denote the whole space R3 or the
three dimensional torus T3. We assume that the reader can distinguish these two cases
below.

Let C∞
0 (D; R3) denote the set of all smooth functions from D to R3 with compact

supports. For p > 1, let Lp(D; R3) be the vector valued Lp-space in which the norm is
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denoted by ‖ · ‖Lp . For α > 0, let Hα be the usual Sobolev space on D with values in R3,
i.e., the closure of C∞

0 (D; R3) with respect to the norm:

‖u‖Hα =

(∫
D
|(I −∆)α/2u|2dx

)1/2

.

Here as usual, (I−∆)α/2 is defined by Fourier transform. For two separable Hilbert spaces
K and H, L2(K; H) will denote the space of all Hilbert-Schmidt operators from K to H
with norm ‖ · ‖L2(K;H).

Set for α > 0

Hα := {u ∈ Hα : div(u) = 0}, (8)

where the divergence is taken in the sense of Schwartz distributions. Then (Hα, ‖ · ‖Hα) is
a separable Hilbert space. We shall denote the norm ‖ · ‖Hα in Hα by ‖ · ‖Hα . We remark
that H0 is a closed linear subspace of the Hilbert space L2(R3; R3) = H0.

Let P be the orthogonal projection from L2(D; R3) to H0. Since we are considering the
torus or the full space, it is well known that P commutes with the derivative operators,
and that P can be restricted to a bounded linear operator from Hm to Hm. For any
u ∈ H2, define

A(u) := P∆u−P((u · ∇)u)−P(gN(|u|2)u) (9)

and for k ∈ N

B(t,u) := (Phk(t,u))k∈N. (10)

Letting the operator P act on both sides of equation (1), system (1) can be written as
the following equivalent abstract stochastic evolution equation: du(t) =

[
A(u(t)) + Pf(t,u(t))

]
dt + B(t,u(t))dWt,

u(0) = u0 ∈ H1.
(11)

Consider the following small perturbation of equation (11): duε(t) =
[
A(uε(t)) + Pf(t,uε(t))

]
dt +

√
εB(t,uε(t))dWt,

uε(0) = u0 ∈ H1,
(12)

and assume that

(H1) There exist a constant CT,f > 0 and a function Hf (t, x) ∈ L1([0, T ]× D) such that
for any t ∈ [0, T ], x ∈ D,u ∈ R3 and j = 1, 2, 3

|∂xj f(t, x,u)|2 + |f(t, x,u)|2 6 CT,f · |u|2 + Hf (t, x),

|∂uj f(t, x,u)| 6 CT,f .

(H2) There exist a constant CT,h > 0 and a function Hh(t, x) ∈ L1([0, T ]×D) such that
for any t ∈ [0, T ], x ∈ D,u ∈ R3 and i, j = 1, 2, 3

‖h(t, x,u)‖2
l2 + ‖∂xjh(t, x,u)‖2

l2 + ‖∂2
xjh(t, x,u)‖2

l2 6 CT,h · |u|2 + Hh(t, x)

and

‖∂ujh(t, x,u)‖l2 + ‖∂xj∂uih(t, x,u)‖2
l2 + ‖∂2

ujuih(t, x,u)‖l2 6 CT,h.
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It was proved in [21, 20] that under (H1) and (H2), there exists a unique functional

Φε : CT (U) → CT (H1) (13)

such that uε(t, ω) := Φε(W (·, ω))(t) satisfies

uε(·, ω) ∈ L2(0, T ; H2) for P -almost all ω ∈ Ω (14)

and

uε(t) = u0 +

∫ t

0

[
A(uε(s)) + Pf(s,uε(s))

]
ds +

√
ε

∫ t

0

B(s,uε(s))dWs.

Our main result is the following:

Theorem 2.3. Assume (H1) and (H2) hold. Then {uε, ε ∈ (0, 1)} satisfies the large
deviation principle in CT (H1) ∩ L2(0, T ; H2) with rate function I given by

I(f) :=
1

2
inf

{h∈H : f=uh}
‖h‖2

H , (15)

where uh solves the following equation:

uh(t) = u0 +

∫ t

0

[A(uh) + P(f(s,uh))]ds +

∫ t

0

B(s,uh(t))ḣ(s)ds. (16)

Remark 2.4. The existence and uniqueness of strong solutions in the sense of PDE of
equation (16) can be proved as done in [22].

2.3. Some Estimates. For any u,v ∈ H2, write

JA(u),vK := 〈A(u), (I −∆)v〉H0 . (17)

We first recall the following result (cf. [21, Lemma 2.3]). For the reader’s convenience,
a proof is provided here.

Lemma 2.5. For any u ∈ H2, we have

‖A(u)‖H0 6 C(1 + ‖u‖6
H0 + ‖u‖2

H2) (18)

and

JA(u),uK 6 −1

2
‖u‖2

H2 −
1

2
‖|u| · |∇u|‖2

L2 + N‖∇u‖2
H0 + ‖u‖2

H0 . (19)

Proof. First of all, by Gagliado-Nirenberge’s inequality and Young’s inequality, we have

‖A(u)‖H0 6 ‖u‖H2 + C‖u‖L∞‖∇u‖H0 + C‖u‖3
L6

6 ‖u‖H2 + C‖u‖3/4

H0 ‖u‖5/4

H2 + C‖u‖3/2

H0 ‖u‖3/2

H2

6 C(1 + ‖u‖2
H2 + ‖u‖6

H0).

which gives the first assertion.
For inequality (19), we have

〈P∆u, (I −∆)u〉H0 = −‖(I −∆)u‖2
H0 + 〈u, (I −∆)u〉H0

= −‖u‖2
H2 + ‖∇u‖2

H0 + ‖u‖2
H0 ,

and by Young’s inequality

〈 −P((u · ∇)u), (I −∆)u〉H0 6
1

2
‖(I −∆)u‖2

H0 +
1

2
‖(u · ∇)u‖2

L2

6
1

2
‖u‖2

H2 +
1

2
‖|u| · |∇u|‖2

L2 ,
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where

|u|2 =
3∑

k=1

|uk|2, |∇u|2 =
3∑

k,i=1

|∂iu
k|2.

Noting that

gN(|u|2) > |u|2 −N and g′N(|u|2) > 0, (20)

we have

〈 −P(gN(|u|2)u), (I −∆)u〉H0

= −〈∇(gN(|u|2)u),∇u〉L2 − 〈gN(|u|2)u,u〉L2

= −
3∑

k,i=1

∫
R3

∂iu
k · ∂i(gN(|u|2)uk)dx−

∫
R3

|u|2 · gN(|u|2)dx

6 −
3∑

k,i=1

∫
R3

∂iu
k ·
(
gN(|u|2) · ∂iu

k − g′N(|u|2)∂i|u|2 · uk
)
dx

= −
∫

R3

|∇u|2 · gN(|u|2)dx− 1

2

∫
R3

g′N(|u|2)|∇|u|2|2dx

6 −
∫

R3

|∇u|2 · |u|2dx + N‖∇u‖2
H0 .

Combining the above calculations yields (19). �

We also need the following lemmas.

Lemma 2.6. For any u,v ∈ H2 and α ∈ (3/2, 2), we have

JA(u)− A(v),u− vK 6 −1

2
‖u− v‖2

H2 + C‖u− v‖2
Hα · (1 + ‖u‖4

H1 + ‖v‖4
H1). (21)

Proof. By (17) and ab 6 1
4
a2 + b2, we have

JA(u)− A(v),u− vK = 〈∆(u− v), (I −∆)(u− v)〉H0

−〈(u · ∇)u− (v · ∇)v, (I −∆)(u− v)〉L2

−〈gN(|u|2)u− gN(|v|2)v, (I −∆)(u− v)〉L2

6 −1

2
‖u− v‖2

H2 + ‖u− v‖2
H1

+‖(u · ∇)u− (v · ∇)v‖2
L2

+‖gN(|u|2)u− gN(|v|2)v‖2
L2 .

By Hölder’s inequality and Sobolev’s embedding theorem we have, for any α ∈ (3/2, 2)

‖(u · ∇)u− (v · ∇)v‖2
L2 6 2‖u− v‖2

L∞ · ‖∇u‖2
L2 + 2‖v‖2

L6 · ‖∇(u− v)‖2
L3

6 C‖u− v‖2
Hα · ‖u‖2

H1 + C‖v‖2
H1 · ‖u− v‖2

Hα

and by |g′N(r)| 6 2 (ν = 1)

‖gN(|u|2)u− gN(|v|2)v‖2
L2 6 C‖u− v‖2

L6 · ‖|u|2 + |v|2‖2
L3

6 C‖u− v‖2
H1 · (‖u‖4

H1 + ‖v‖4
H1).

Combining the above calculations, we obtain (21). �
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Lemma 2.7. There exists a constant C > 0 such that for every u ∈ H2 and t ∈ [0, T ]

‖P(f(t,u))‖2
H0 6 C‖u‖2

H0 + ‖Hf (t)‖L1(D), (22)

‖B(t,u)‖2
L2(l2;H0) 6 C‖u‖2

H0 + ‖Hh(t)‖L1(D), (23)

‖B(t,u)‖2
L2(l2;H1) 6 C(‖u‖2

H1 + ‖Hh(t)‖L1(D)), (24)

‖B(t,u)‖2
L2(l2;H2) 6 C(‖u‖2

H2 + ‖u‖4
H1 + ‖Hh(t)‖L1(D)). (25)

Proof. We only prove the last one. The others are easier. Since P is a bounded linear
operator from Hm to Hm, by (H2) we have

‖B(t,u)‖2
L2(l2;H2) 6 C(‖h(t,u)‖2

L2(l2;L2) + ‖∇2h(t,u)‖2
L2(l2;L2))

6 C(‖u‖2
H0 + ‖Hh(t)‖L1(D) + ‖∇2h(t,u)‖2

L2(l2;L2)),

where ∇ = (∂x1 , ∂x2 , ∂x3).
Noting that

∇2h(t,u) = (∇2
xh)(t,u) + 2(∇x∂uih)(t,u)∇ui

+(∂uih)(t,u)∇2ui + (∂2
uiujh)(t,u)∇ui ⊗∇uj,

by (H2) we have

‖∇2h(t,u)‖2
L2(l2;L2) 6 C(‖u‖2

H0 + ‖Hh(t)‖L1(D) + ‖u‖2
H1 + ‖u‖2

H2 + ‖u‖4
H1)

6 C(‖u‖2
H2 + ‖Hh(t)‖L1(D) + ‖u‖4

H1).

(25) now follows by combining the above calculations. �

The following lemma is a direct consequence of (H1) and (H2).

Lemma 2.8. There exists a constant C > 0 such that for any u,v ∈ H0 and t ∈ [0, T ]

‖P(f(t,u)− f(t,v))‖H0 6 C‖u− v‖H0 , (26)

‖B(t,u)−B(t,v)‖L2(l2;H0) 6 C‖u− v‖H0 . (27)

3. Proof of Theorem 2.3

For proving Theorem 2.3, the main task is to verify (LD)1 and (LD)2 for

S := CT (H1) ∩ L2(0, T ; H2),

Zε := Φε(W ), ε ∈ (0, 1),

Z0(h) := uh, h ∈ H .

Let hε ∈ AT
M converge as ε → 0 in probability to h ∈ AT

M as random variables in H . Set

uε(t, ω) := Φε

(
W (·, ω) +

1√
ε
hε(·, ω)

)
(t), (28)

where Φε is given by (13). Thanks to hε ∈ AT
M , i.e.,

∫ T

0
‖hε(s, ω)‖2

l2ds 6 M , by Girsanov’s
theorem, uε solves the following control equation:

uε(t) = u0 +

∫ t

0

[
A(uε(s)) + Pf(s,uε(s))

]
ds

+

∫ t

0

B(s,uε(s))ḣε(s)ds +
√

ε

∫ t

0

B(s,uε(s))dWs. (29)

We first prove the following uniform estimate.
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Lemma 3.1. There exists a positive constant CT,M,N,u0 > 0 such that for any ε ∈ [0, 1)

E

(
sup

t∈[0,T ]

‖uε(t)‖2
H1

)
+

∫ T

0

E‖uε(s)‖2
H2ds 6 CT,M,N,u0 . (30)

Here u0(t) := uh(t), where uh(t) solves equation (16).

Proof. We only prove (30) for uε(t) with ε ∈ (0, 1). The case of u0(t) := uh(t) can be
proved similarly. Below, the constant C will be independent of ε.

Consider the evolution triple

H2 ⊂ H1 ⊂ H0.

By Lemmas 2.5, 2.7 and (14) we know∫ T

0

‖A(uε(s))‖H0ds +

∫ T

0

‖B(s,uε(s))‖2
L2(l2;H1)ds < +∞, P − a.s..

Thus, by Itô’s formula (cf. [17]) we have

‖uε(t)‖2
H1 = ‖u0‖2

H1 + 2

∫ t

0

JA(uε(s)),uε(s)Kds + 2

∫ t

0

〈f(s,uε(s)),uε(s)〉H1ds

+2

∫ t

0

〈B(s,uε(s))ḣε(s),u
ε(s)〉H1ds + ε

∫ t

0

‖B(s,uε(s))‖2
L2(l2;H1)ds

+2
√

ε

∫ t

0

〈B(s,uε(s))dWs,u
ε(s)〉H1

=: ‖u0‖2
H1 + Iε

1(t) + Iε
2(t) + Iε

3(t) + Iε
4(t) + Iε

5(t). (31)

For Iε
1, by (19) we have

Iε
1(t) 6 −

∫ t

0

‖uε(s)‖2
H2ds−

∫ t

0

‖|uε(s)| · |∇uε(s)|‖2
L2ds

+N

∫ t

0

‖∇uε(s)‖2
H0ds + 2

∫ t

0

‖uε(s)‖2
H0ds.

For Iε
2, by (22) and Young’s inequality we have

Iε
2(t) 6 2

∫ t

0

‖f(s,uε(s))‖2
H0ds +

1

2

∫ t

0

‖uε(s)‖2
H2ds

6 C

∫ t

0

[
‖uε(s)‖2

H0 + 1
]
ds +

1

2

∫ t

0

‖uε(s)‖2
H2ds.

For Iε
3, recalling hε ∈ DM , by (24) and Young’s inequality we have

Iε
3(t) 6 2

∫ t

0

[
‖B(s,uε(s))‖L2(l2;H1) · ‖ḣε(s)‖l2 · ‖uε(s)‖H1

]
ds

6 2M

(∫ t

0

[
‖B(s,uε(s))‖2

L2(l2;H1) · ‖uε(s)‖2
H1

]
ds

)1/2

6 2M

(
sup

s∈[0,t]

‖uε(s)‖H1

)
·
(∫ t

0

‖B(s,uε(s))‖2
L2(l2;H1)ds

)1/2

6
1

4

(
sup

s∈[0,t]

‖uε(s)‖2
H1

)
+ CM

∫ t

0

[
‖uε(s)‖2

H1 + 1
]
ds.
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Define for R > 0

τ ε
R := inf

{
t ∈ [0, T ] :

∫ t

0

‖B(s, uε(s))‖2
L2(l2;H1)ds > R

}
.

For Iε
5, by Burkholder’s inequality and Young’s inequality, we similarly have

E

(
sup

s∈[0,t∧τε
R]

|Iε
5(s)|2

)
6 CE

(∫ t∧τε
R

0

[
‖B(s,uε(s))‖2

L2(l2;H1) · ‖uε(s)‖2
H1

]
ds

)1/2

6
1

4
E

(
sup

s∈[0,t∧τε
R]

‖uε(s)‖2
H1

)
+ CE

∫ t∧τε
R

0

[
‖uε(s)‖2

H1 + 1
]
ds.

Set

g(t) := E

(
sup

s∈[0,t∧τε
R]

‖uε(s)‖2
H1

)
.

Combining the above calculations we get

g(t) + E
∫ t∧τε

R

0

‖uε(s)‖2
H2ds 6 C‖u0‖2

H1 + CM,NE
∫ t∧τε

R

0

[
‖uε(s)‖2

H1 + 1
]
ds

6 C‖u0‖2
H1 + CM,N

∫ t

0

(g(s) + 1)ds,

which implies by Gronwall’s inequality that

E

(
sup

s∈[0,t∧τε
R]

‖uε(s)‖2
H1

)
+ E

∫ T∧τε
R

0

‖uε(s)‖2
H2ds 6 C.

Since limR→∞ τ ε
R = T , by Fatou’s lemma, we obtain (30). �

Let uh solve equation (16). Set

wε(t) :=

∫ t

0

B(s,uh(s))(ḣε(s)− ḣ(s))ds. (32)

Lemma 3.2. wε converges in probability to zero in CT (H2) as ε → 0.

Proof. Let {ek, k ∈ N} be an orthonormal basis of H2 and Πn the projection from H2 to
H2

n :=span{e1, e2, · · · , en}. Define

wn
ε (t) :=

∫ t

0

ΠnB(s,uh(s))(ḣε(s)− ḣ(s))ds.

Then by Hölder’s inequality and since hε, h ∈ AT
M , we have

E

(
sup

t∈[0,T ]

‖wn
ε (t)−wε(t)‖2

H2

)

6 E
(∫ T

0

‖(I − Πn)B(s,uh(s))(ḣε(s)− ḣ(s))‖H2ds

)2

6 E
(∫ T

0

‖(I − Πn)B(s,uh(s))‖L2(l2;H2) · ‖ḣε(s)− ḣ(s)‖l2ds

)2

6 2M2 · E
(∫ T

0

‖(I − Πn)B(s,uh(s))‖2
L2(l2;H2)ds

)
.
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By the dominated convergence theorem, (25) and (30)(with ε = 0), we get

lim
n→∞

sup
ε∈(0,1)

E

(
sup

t∈[0,T ]

‖wn
ε (t)−wε(t)‖2

H2

)
= 0. (33)

Fix n ∈ N. We have that

H 3 h̃ 7→
∫ t

0

ΠnB(s,uh(s))h̃(s)ds

by (25) and (30)(with ε = 0) is P−a.s. a continuous linear map on H for all t ∈ [0, T ]

with values in H2
n. Hence, if (h̃k) is a sequence of random variables with values in H ,

P -a.s. weakly converging to 0 ∈ H , then∫ t

0

ΠnB(s,uh(s))h̃k(s)ds
k→∞−→ 0, P − a.s.. (34)

Clearly, by (25) and (30)(with ε = 0)

[0, T ] 3 t 7→
∫ t

0

ΠnB(s,uh(s))h̃k(s)ds, k ∈ N

are equi-continuous, P−a.s.. Hence the convergence in (34) is uniform in t ∈ [0, T ], i.e.,
takes place in CT (H2). Since a sequence of random variables in a metric space converges
in probability if and only if any of its subsequences has a subsequence which P−a.s.
converges to the same limit point, from the above we conclude that, since hε converges in
probability to h as random variables in H , wn

ε converges in probability to zero in CT (H2)
as ε → 0.

Note that for any η > 0

P

(
sup

t∈[0,T ]

‖wε(t)‖H2 > 2η

)
6 P

(
sup

t∈[0,T ]

‖wn
ε (t)−wε(t)‖H2 > η

)

+P

(
sup

t∈[0,T ]

‖wn
ε (t)‖H2 > η

)
.

The result now follows by combining this with (33). �

We now prove:

Lemma 3.3. uε defined in (28) converges in probability to u0 := uh, defined by equation
(16), in S = CT (H1) ∩ L2(0, T ; H2) as ε → 0.

Proof. Set vε := uε − uh. Then

vε(t) =

∫ t

0

(A(uε(s))− A(uh(s)))ds +

∫ t

0

P(f(s,uε(s))− f(s,uh(s)))ds

+

∫ t

0

(B(s,uε(s))ḣε(s)−B(s,uh(s))ḣ(s))ds +
√

ε

∫ t

0

B(s,uε(s))dWs. (35)

As in Lemma 3.1, by Itô’s formula we have

‖vε(t)‖2
H1 = 2

∫ t

0

JA(uε(s))− A(uh(s)),vε(s)Kds

+2

∫ t

0

〈P(f(s,uε(s))− f(s,uh(s))),vε(s)〉H1ds

10



+2

∫ t

0

〈(B(s,uε(s))−B(s,uh(s)))ḣε(s),vε(s)〉H1ds

+2

∫ t

0

〈B(s,uh(s))(ḣε(s)− ḣ(s)),vε(s)〉H1ds

+2
√

ε

∫ t

0

〈B(s,uε(s))dWs,vε(s)〉H1

+ε

∫ t

0

‖B(s,uε(s))‖2
L2(l2;H1)ds

=: Iε
1(t) + Iε

2(t) + Iε
3(t) + Iε

4(t) + Iε
5(t) + Iε

6(t).

Set for R > 0 and ε ∈ [0, 1)

θε
R := inf

{
t > 0 : ‖uε(t)‖2

H1 +

∫ t

0

‖uε(s)‖2
H2ds > R

}
and

τ ε
R := θε

R ∧ θ0
R.

Then, by (30) we have

sup
ε

P (θε
R < T ) = sup

ε
P

(
sup

t∈[0,T ]

[
‖uε(t)‖2

H1 +

∫ t

0

‖uε(s)‖2
H2ds

]
> R

)

6 sup
ε

E

(
sup

t∈[0,T ]

‖uε(t)‖2
H1 +

∫ T

0

‖uε(s)‖2
H2ds

)
/R

6
CT,M,N,u0

R

and

sup
ε

P (τ ε
R < T ) 6

CT,M,N,u0

R2
. (36)

For Iε
1, by (21) we have

Iε
1(t ∧ τ ε

R) 6 −
∫ t∧τε

R

0

‖vε(s)‖2
H2ds + CR

∫ t∧τε
R

0

‖vε(s)‖2
Hαds

6 −3

4

∫ t∧τε
R

0

‖vε(s)‖2
H2ds + CR

∫ t∧τε
R

0

‖vε(s)‖2
H0ds,

where we have used Young’s inequality and the following interpolation inequality

‖v‖2
Hα 6 Cα‖v‖α

H2 · ‖v‖2−α
H0 , α ∈ (0, 2).

For Iε
2, by Young’s inequality and (26) we have

Iε
2(t ∧ τ ε

R) 6
1

4

∫ t∧τε
R

0

‖vε(s)‖2
H2ds + C

∫ t∧τε
R

0

‖vε(s)‖2
H0ds.

For Iε
3, by (27) we have

Iε
3(t ∧ τ ε

R) 6 C

∫ t∧τε
R

0

‖vε(s)‖H0 · ‖ḣε(s)‖l2 · ‖vε(s)‖H2ds

6
1

4

∫ t∧τε
R

0

‖vε(s)‖2
H2ds + C

∫ t∧τε
R

0

‖ḣε(s)‖2
l2‖vε(s)‖2

H0ds.
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Hence

Iε
1(t ∧ τ ε

R) + Iε
2(t ∧ τ ε

R) + Iε
3(t ∧ τ ε

R) +
1

4

∫ t∧τε
R

0

‖vε(s)‖2
H2ds

6 CR

∫ t∧τε
R

0

(1 + ‖ḣε(s)‖2
l2) · ‖vε(s)‖2

H0ds. (37)

For Iε
5, by Doob’s maximal inequality and (24) we have

E

(
sup

t∈[0,T ]

|Iε
5(t ∧ τ ε

R)|2
)

6 εE
(∫ T∧τε

R

0

‖B(s,uε(s))‖2
L2(l2;H1) · ‖vε(s)‖2

H1ds

)
6 ε · CT,R. (38)

Likewise, for Iε
6 we have

E

(
sup

t∈[0,T ]

|Iε
6(t ∧ τ ε

R)|

)
6 ε · CT,R. (39)

We now deal with the hard term Iε
4. By (32), (35) and Itô’s formula we have

1

2
Iε
4(t) = 〈vε(t),wε(t)〉H1 −

∫ t

0
H2〈wε(s), A(uε(s))− A(uh(s))〉H0ds

−
∫ t

0

〈wε(s), f(s,u
ε(s))− f(s,uh(s))〉H1ds

−
∫ t

0

〈wε(s), B(s,uε(s))ḣε(s)−B(s,uh(s))ḣ(s)〉H1ds

−
√

ε

∫ t

0

〈wε(s), B(s,uε(s))dWs〉H1

=: Iε
41(t) + Iε

42(t) + Iε
43(t) + Iε

44(t) + Iε
45(t).

For Iε
41, we have

Iε
41(t ∧ τ ε

R) 6
1

4
‖vε(t ∧ τ ε

R)‖2
H1 + ‖wε(t ∧ τ ε

R)‖2
H1 . (40)

For Iε
42, by (18) we have

Iε
42(t ∧ τ ε

R) 6
∫ t∧τε

R

0

‖wε(s)‖H2 · ‖A(uε(s))− A(uh(s))‖H0ds

6 C

∫ t∧τε
R

0

‖wε(s)‖H2 · (‖uε(s)‖2
H2 + ‖uh(s)‖2

H2 + CR)ds

6 CT,R sup
s∈[0,T ]

‖wε(s)‖H2 . (41)

Similarly, we have

Iε
43(t ∧ τ ε

R) 6 CT,R sup
s∈[0,T ]

‖wε(s)‖H2 . (42)

For Iε
44, by (23) and Hölder’s inequality we have

Iε
44(t ∧ τ ε

R) 6 sup
s∈[0,T ]

‖wε(s)‖H2

∫ t∧τε
R

0

[
‖B(s,uε(s))‖L2(l2;H0)‖ḣε(s)‖l2

+‖B(s,uh(s))‖L2(l2;H0)‖ḣ(s)‖l2

]
ds
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6 CT ·M sup
s∈[0,T ]

‖wε(s)‖H2

(∫ t∧τε
R

0

[
‖uε(s)‖2

H0 + ‖uh(s)‖2
H0 + 1

]
ds

)1/2

6 CT,M,R · sup
s∈[0,T ]

‖wε(s)‖H2 . (43)

Similar to (38), we have

E

(
sup

t∈[0,T ]

|Iε
45(t ∧ τ ε

R)|2
)

6 ε · CT,R. (44)

Combining (37)-(43), we obtain

1

2
‖vε(t ∧ τ ε

R)‖2
H1 +

1

4

∫ t∧τε
R

0

‖vε(s)‖2
H2ds

6 CR

∫ t∧τε
R

0

(1 + ‖ḣε(s)‖2
l2) · ‖vε(s)‖2

H1ds

+CT,M,R · sup
s∈[0,T ]

‖wε(s)‖H2 + ξε,

where

ξε := sup
t∈[0,T ]

|Iε
45(t ∧ τ ε

R)|+ sup
t∈[0,T ]

|Iε
5(t ∧ τ ε

R)|+ sup
t∈[0,T ]

|Iε
6(t ∧ τ ε

R)|.

Set

gε(t) := sup
s∈[0,t]

‖vε(s)‖2
H1 +

∫ t

0

‖vε(s)‖2
H2ds.

Then

gε(t ∧ τ ε
R) 6 CT,M,R ·

(
sup

s∈[0,T ]

‖wε(s)‖H2 + ξε

)
+CR

∫ t

0

(1 + ‖ḣε(s)‖2
l2) · gε(s ∧ τ ε

R)ds.

By Gronwall’s inequality we obtain

gε(T ∧ τ ε
R) 6 CT,M,R ·

(
sup

s∈[0,T ]

‖wε(s)‖H2 + ξε

)
· exp

{
CR

∫ T

0

(1 + ‖ḣε(s)‖2
l2)ds

}

6 CT,M,R ·

(
sup

s∈[0,T ]

‖wε(s)‖H2 + ξε

)
· exp(CR(T + M2)).

Therefore, by Lemma 3.2 and (38), (39) and (44), we have

gε(T ∧ τ ε
R) → 0 in probability as ε → 0. (45)

Lastly, note that for any δ > 0.

P (gε(T ) > δ) 6 P (gε(T ∧ τ ε
R) > δ) + P (τ ε

R < T ).

The desired convergence now follows from (45) and (36). �

Proof of Theorem 2.3:
Let hε be a sequence in AT

N which converges in distribution to h. Since DN is compact
and the law of W is tight, {hε, W} is tight in DN ×CT (U) by the definition of tightness.
Hence for some sequence εk ↓ 0, {hεk

, W} weakly converges to some probability measure ν
on DN ×CT (U). Note that the law of h is just ν(·, CT (U)). By Skorohod’s representation
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theorem, there are random variables h̃εk
, W̃ εk , k ∈ N and h̃, W̃ on a probability space

(Ω̃, P̃ ) such that

(1) (h̃εk
, W̃ εk) a.s. converges to (h̃, W̃ ) in DN × CT (U);

(2) (h̃εk
, W̃ εk) has the same law as (hεk

, W ) for each k ∈ N;

(3) The law of {h̃, W̃} is ν, and the law of h is the same as h̃.

We remark that in the proof of Lemma 3.3, one can replace (hεk
, W ) by (h̃εk

, W̃εk
).

Thus, using Lemma 3.3, we get

Φεk

(
W̃εk

+
h̃εk

(·)
√

εk

)
→ uh̃, in probability,

where Φεk
is the strong solution functional given by (13). From this, we get

Φεk

(
W +

hεk
(·)

√
εk

)
→ uh, in distribution,

hence (LD)1 holds.
(LD)2 can be proved as in Lemma 3.3. The theorem now follows from Theorem 2.2.
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