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The purpose of this paper is to estimate from below the decreasing rate at infinity of the
density of a solution to the elliptic equation

L∗µ = 0 (1)

with respect to a Borel probability measure µ on Rd, where

Lϕ(x) = ∂xi

(
aij(x)∂xj

ϕ(x)
)

+ bi(x)∂xi
ϕ(x),

and the summation is taken over repeated indices, and the equation is understood in the
following sense: a measure µ satisfies (1) if the coefficients aij and bi are locally µ-integrable
and for every function ϕ ∈ C∞

0 (Rd) the equality∫
Rd

Lϕdµ = 0

is fulfilled. Throughout we assume that the matrix A(x) = (aij(x))1≤i,j≤d is symmetric and
satisfies the following condition:

(C1) for some p > d the functions aij belong to the class W p,1
loc (Rd) and there exist numbers

m,M > 0 such that for all x, y ∈ Rd we have

m|y|2 ≤
∑

1≤i,j≤d

aij(x)yiyj ≤M |y|2.

If in addition to Condition (C1) we have bi ∈ Lploc(µ) (or bi ∈ Lploc(Rd)), then µ is given by a

continuous density % ∈ W 1,p
loc (Rd) (see [1]), which we shall deal with. Equation (1) can then be

rewritten as

∂xi

(
aij∂xj

%
)
− ∂xi

(bi%) = 0,

understood in the weak sense. In the case where the coefficient b is locally bounded, in [2]
the following estimate from below for the density % as |x| → +∞ was obtained (earlier in [3]
more special estimates of exponential type were obtained). Let W be a continuous increasing
function on [0,∞) and W (0) > 0. Suppose that |b(x)| ≤ W (|x|/θ), where θ > 1. Then there
exists a positive number C = C(d,m,M, θ) such that the continuous version of the function %
satisfies the inequality

%(x) ≥ %(0) exp
{
−C

(
1 +W (|x|)|x|

)}
.

The main idea of obtaining this estimate is to apply Harnack’s inequality

sup
x∈K

%(x) ≤ C(K) inf
x∈K

%(x)

for compact sets K. For obtaining lower bounds, dependence of C on the coefficients of the
equation and on K is investigated in [2]. However, this approach is impossible in the case of
locally unbounded b. It turns out that without any restrictions on the growth of b one can
obtain estimates of the form

%(x) ≥ e−f(c1|x|+ c2), (2)

where c1, c2 are some positive numbers and the function f ∈ C2
(
[0,∞)

)
satisfies the conditions

(H1) f(z) > 0, f ′(z) > 0, f ′′(z) > 0 if z > 0;
(H2) the function e−f(z) is convex (that is, (e−f )′′ ≥ 0) on the set z > z0 for some z0 ≥ 0

and it decreases to 0 as z → +∞.
Namely, for obtaining estimate (2) it suffices, in addition to (C1), to require the following

conditions:
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(C2) |b| exp(ψ(|b|)) ∈ Lp(µ), where p > min{2, d} and ψ is a nonnegative strictly increasing
continuous function mapping [0,∞) onto [0,∞) such that for some N > 0 and all z > 0 one
has the inequality

(H3) ψ−1(z) ≤ Nf ′(f−1(z)).
Let us give several typical examples of functions f and ψ. Let δ > 0 be a given number. If

f(z) = ez, then one can take ψ(z) = δ · z for ψ. In this case we obtain the estimate

%(x) ≥ exp(−c̃2 exp(c̃1|x|)).
If f(z) = zr/(r−1) with r > 1, then ψ(z) = δ · zr is suitable. Then

%(x) ≥ c̃2 exp(−c̃1|x|r/(r−1)).

In the case where d = 1, A = I and b = %′/%, such estimates were obtained in [4]. Deriving
(2) we show on the way that the solution density is strictly positive under a condition weaker
than the exponential integrability of b (sufficiency of the latter condition was proved in [5]).

For example, if we set f(z) = ee
z

and ψ(z) = δ · z

| ln z|κ
for z > 2 and 0 < κ < 1, then we

obtain a condition that is sufficient for the strict positivity but is weaker than the exponential
integrability of b. If d = 1, A = 1 and b = %′/%, then this new sufficient condition for positivity
is close to the one obtained in [6], and the latter cannot be improved in a sense.

For a domain Ω ⊂ Rd let W q,1(Ω) denote the Sobolev space of functions belonging to Lq(Ω)
along with their first order generalized partial derivatives. Let W q,1

0 (Ω) be the closure with
respect to the standard Sobolev norm in W q,1(Ω) of the class of smooth functions with compact
support in Ω. Let W q,1

loc and Lqloc denote the spaces of functions whose restrictions to every ball
B ⊂ Rd belong toW q,1(B) and Lq(B), respectively. Let B(x,R) be the ball of radius R centered
at x. If a function f is injective, then the inverse function is denoted by f−1.

Since ψ is increasing, for all α ≥ eψ(0), β ≥ 0 we have

αβ ≤ αψ−1(lnα) + βeψ(β). (3)

Set V = ef/f ′.
Since (e−f )′′ = [(f ′)2 − f ′′]e−f ≥ 0 on [z0,+∞), we have V ′ = [(f ′)2 − f ′′]e−f (f ′)−2 ≥ 0 on

[z0,+∞). In addition, V increases to +∞ since the function 1/V = f ′e−f cannot be separated
from zero on [0,+∞). It follows from conditions (H1) and (H3) that f ′(y) → +∞ as y → +∞.
Therefore, there exists y0 > max{z0, 1} such that f ′(y) ≥ 1 and V (y) ≥ eψ(0) whenever y > y0.
Let τ0 := exp{−f(ln y0)}. Then 0 < τ0 < 1. For τ ∈ (0, τ0) and q ≥ 0 we put

hq(τ) := −
∫ τ0

τ

V 2(f−1(| ln s|)) exp{2qf−1(| ln s|)} ds.

Lemma 1. If conditions (H1), (H2), (H3) are fulfilled and τ ∈ (0, τ0), then
(i) the inequality V (y)ψ−1(lnV (y)) ≤ Nef(y) is fulfilled for y > y0;
(ii) there exists a number N1 > 0 such that

1

V (y)

∫ y

y0

V (s) ds ≤ N1, y > y0,

and, in addition,
h2
q(τ)/h

′
q(τ) ≤ N2

1 exp
(
2qf−1(| ln τ |)

)
.

According to (C2), we have |b| ∈ Lp(µ) for some p > d. As we have already noted, in this
case µ is given by a continuous density % ∈ W 1,p

loc (Rd). In addition, ‖%‖L∞(Rd) <∞ (see [3], [7]).
For any k ∈ N we put

Λ := min{τ0(2‖%‖L∞(Rd))
−1, 1}, %k = Λ%+ 1/k, ξk := f−1(| ln %k|).

Then Λ% < 1/2 and %k < τ0 for all natural numbers k > 1/(2τ0). Hence substituting %k in place
of τ in hq and letting y = ξk we have all assertions of Lemma 1.
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Lemma 2. Let µ = % dx be a solution of equation (1), let the coefficient aij, bi satisfy conditions
(C1), (C2), and let conditions (H1), (H2), and (H3) be fulfilled. Let s > 1, s′ = s/(s−1), where
2s′ ≤ p. Suppose we are given a function η ∈ C2

0(Q), where Q is a cube of the edge length 2,
and let |η| ≤ 1. Then the following estimate holds:∫

Q

|∇%|2h′q(%k)η2 dx ≤ N2

[∫
Q

|∇η|2 exp{2qξk} dx+
(∫

Q

exp{2sqξk}η2 dx
)1/s]

,

where N2 is a number depending only on the following quantities:

s, N , N1, τ0, m, M , d, ‖%‖L∞(Rd),

∫
Rd

|b|2s′ exp{2s′ψ(|b|)}% dx.

Proof. For every function ϕ ∈ W 1,2
0 (Q) we have∫

Q

(A∇%,∇ϕ) dx =

∫
Q

(b,∇ϕ)% dx.

Substituting ϕ = hq(%k)η
2, we obtain∫

Q

(A∇%,∇%)h′q(%k)η2 dx = I + J + L,

I = −
∫
Q

2(A∇%,∇η)hq(%k)η dx, J =

∫
Q

2(b,∇η)%hq(%k)η dx,

L =

∫
Q

(b,∇%)h′q(%k)η2% dx.

Let us estimate every summand separately. Let ε > 0. Then

I ≤ ε

∫
Q

|∇%|2h′q(%k)η2 dx+ ε−1M2

∫
Q

|∇η|2
h2
q(%k)

h′q(%k)
dx.

By estimate (ii) in Lemma 1 we have

I ≤ ε

∫
Q

|∇%|2h′q(%k)η2 dx+ ε−1(MN1)
2

∫
Q

|∇η|2e2qf−1(%k) dx.

We estimate J as follows:

J ≤
∫
Q

|∇η|2
h2
q(%k)

h′q(%k)
dx+

∫
Q

|b|2%2h′q(%k)η
2 dx.

The first term is estimated in the same way as above. Let us consider the second term. By
Hölder’s inequality with exponents s′ and s we have∫

Q

|b|2%2h′q(%k)η
2 dx ≤

(∫
Q

|b|2s′%2s′V (ξk)
2s′η2 dx

)1/s′(∫
Q

exp{2qsξk}η2 dx
)1/s

.

Let us estimate the first factor. Inequality (3) and estimate (i) in Lemma 1 yield

|b|%V (ξk) ≤ %
[
|b|eψ(|b|) + V (ξk)ψ

−1(lnV (ξk))
]
≤ |b|eψ(|b|)%+N/Λ.

By using the inequalities (x+ y)2s′ ≤ 22s′(x2s′ + y2s′) and η2 ≤ 1, we obtain∫
Q

|b|2s′%2s′V (ξk)
2s′η2 dx ≤ 4s

′‖%‖2s′−1
L∞(Rd)

∫
Rd

|b|2s′e2s′ψ(|b|)% dx+ (2N/Λ)2s′|Q|.

Therefore, there exists a number C1 > 0 depending only on the quantities indicated in the
lemma such that

J ≤ C1

[∫
Q

|∇η|2e2qξk dx+
(∫

Q

e2sqξkη2 dx
)1/s]

.
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It remains to estimate the term L. We have

L ≤ ε

∫
Q

|∇%|2h′q(%k)η2 dx+ 4ε−1

∫
Q

|b|2%2h′q(%k)η
2 dx.

Estimating here the second term in the same way as above, we obtain

L ≤ ε

∫
Q

|∇%|2h′q(%k)η2 dx+ 4ε−1C1

(∫
Q

e2sqξkη2 dx
)1/s

.

We observe that

m

∫
Q

|∇%|2h′q(%k)η2 dx ≤
∫
Q

(A∇%,∇%)h′q(%k)η2 dx.

Collecting the obtained estimates and letting ε = m/3 we find∫
Q

|∇%|2h′q(%k)η2 dx ≤ N2

[∫
Q

|∇η|2e2qξk dx+
(∫

Q

e2sqξkη2 dx
)1/s]

.

The lemma is proven. �

For obtaining estimates of type (2) we shall employ Moser’s iteration techniques (see [8], [9]).
The proof of the following result of Moser can be found in [9, Lemma 7.21]. Let Ω be a domain
in Rd. For any integrable function u we put

uΩ = |Ω|−1

∫
Ω

u dx,

where |Ω| is the volume of Ω.

Lemma 3. Let Ω be a convex domain and let v ∈ W 1,1(Ω) be such that there exists K > 0 such
that, for every ball B(x0, R), one has the inequality∫

Ω∩B(x0,R)

|∇v| dx ≤ KRd−1.

Then there exist positive numbers σ0 and C depending only on d such that∫
Ω

exp
( σ
K
|v − vΩ|

)
dx ≤ C(diam Ω)d,

where σ = σ0|Ω|(diam Ω)−d, diam Ω = supx,y∈Ω |x− y|.
Let us fix a cub Q of unit edge.

Theorem 1. Let µ = % dx be a solution of equation (1), where the coefficients aij, bi satisfy
conditions (C1), (C2) and let conditions (H1), (H2), and (H3) be fulfilled. Then there exist
numbers C > 0 and α > 0 such that for every measurable subset E ⊂ Q one has

sup
x∈Q

exp(f−1(| ln(Λ%)|)) ≤ C
(∫

E

exp(−αf(| ln Λ%|))
)−1/α

, (4)

where Λ is defined before Lemma 1, and the numbers C and α depend only on the following
quantities:

p, N , N1, τ0, m, M , d, ‖%‖L∞(Rd),

∫
Rd

|b|pepψ(|b|)% dx.

Proof. Let d > 2. Without loss of generality we may assume that

Q =
d∏
i=1

[
x0
i −

1

2
, x0

i +
1

2

]
, Qn =

d∏
i=1

[
x0
i −

1

2
− 1

2n+1
, x0

i +
1

2
+

1

2n+1

]
.

1. We observe that∫
Q0

|∇ξk|2η2 dx =

∫
Q0

|∇%|2V 2(ξk)η
2 dx =

∫
Q0

|∇%|2h′0(%k)η2 dx.
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Let s = p/(p− 2). Then s < d/(d− 2) and 2s′ = p. Lemma 2 with q = 0 gives∫
Q0

|∇ξk|2η2 dx ≤ N2

[∫
Q0

|∇η|2 dx+
(∫

Q0

η2 dx
)(p−2)/p]

Let us take two balls B(y, r) ⊂ B(y, 2r) ⊂ Q0. Let η(x) = 1 if x ∈ B(y, r) and η(x) = 0 if
x /∈ B(y, 2r). Suppose also that |η| ≤ 1 and |∇η| ≤ c1r

−1 with some constant c1. Substituting
η in the above estimate we find ∫

B(y,r)

|∇ξk|2 dx ≤ C0r
d−2.

Here the number C0 depends only on the parameters indicated in the theorem but does not
depend on y, r, k. Therefore, for every ball B(y, r), by the Cauchy–Buniakowskii inequality we
obtain the estimate ∫

B(y,r)

|∇ξk| dx ≤ (C0ωd)
1/2rd−1,

where ωd is the volume of the d-dimensional unit ball. Applying Lemma 3 we obtain that there
exist constants α > 0 and L > 0 such that∫

Q1

exp
(
α|ξk − (ξk)Q1 |

)
dx ≤ L.

Then ∫
Q1

eαξk dx

∫
Q1

e−αξk dx ≤
(∫

Q1

exp{α|ξk − (ξk)Q1|} dx
)2

≤ L2. (5)

2. We observe that for all η ∈ C2
0(Q1) one has the equality∫

Q1

|∇eqξk |2η2 dx = q2

∫
Q1

|∇%|2V 2(ξk)e
2qξkη2 dx = q2

∫
Q1

|∇%|2h′q(%k)η2 dx.

Applying Lemma 2 with q > 0 we obtain∫
Q1

|∇eqξk |2η2 dx ≤ q2N2

[∫
Q1

|∇η|2e2qξk dx+
(∫

Q1

e2sqξkη2 dx
)1/s]

.

According to the Leibnitz formula ∇(eqξkη) = η∇eqξk + eqξk∇η. Then∫
Q1

|∇(eqξkη)|2 dx ≤ q2N2

[∫
Q1

|∇η|2e2qξk dx+
(∫

Q1

e2sqξkη2 dx
)1/s]

.

Suppose that a smooth function η = ηn vanishes outside Qn and equals 1 on the cube Qn+1.
Let |ηn| ≤ 1 and |∇ηn| ≤ c22

n+1 for some constant c2 independent of n. Applying Hölder’s
inequality with exponents s and s′ we find∫

Q1

|∇(eqξkη)|2 dx ≤ (q2 + 1)Cn
1

(∫
Qn

e2sqξk dx
)1/s

.

By the Sobolev embedding theorem we obtain(∫
Qn+1

|eqξk |2d/(d−2) dx
)(d−2)/d

≤ (q2 + 1)Cn
2

(∫
Qn

e2sqξk dx
)1/s

.

For any measurable set E and t 6= 0 we put

F (t, E) :=
(∫

E

etξk dx
)1/t

, F (+∞, E) = sup
x∈E

eξk .

Therefore,

F (
2qd

d− 2
, Qn+1) ≤ ((q2 + 1)C2)

n/qF (2qs,Qn).
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Set pn = 2qs and pn+1 = ds−1(d − 2)−1pn, p1 = α. For s = p/(p − 2) we obtain s < d/(d − 2),
λ = ds−1(d− 2)−1 > 1, pn = αλn, pn → +∞,

F (pn+1, Qn+1) ≤ Cnλ−n

3 F (pn, Qn).

Since 0 < λ < 1, one has
∑∞

n=1 nλ
−n <∞. Hence there exists C4 > 0 such that

F (pn+1, Qn+1) ≤ Cθ
3F (α,Q1) ≤ C4F (α,Q1), θ =

∞∑
n=1

nλ−n.

It is known that F (+∞, Q) = lim
t→∞

F (t, Q). Therefore, as n→ +∞ we obtain

F (+∞, Q) ≤ C4F (α,Q1).

According to (5) the inequality F (α,Q1) ≤ L2F (−α,Q1) is valid. Letting k →∞ we obtain

sup
x∈Q

exp(f−1(| ln(Λ%)|)) ≤ C4L
2
(∫

Q1

exp(−αf(| ln Λ%|))
)−1/α

.

It remains to observe that replacing Q1 by E increases the right-hand side. Thus, (4) is proven
if d > 2. The cases d = 1 and d = 2 are even simpler because in the Sobolev inequality in place
of the exponent 2d(d− 2)−1 one can take any r > 1. �

Theorem 2. Let µ = % dx be a solution of equation (1), where the coefficients aij, bi satisfy
conditions (C1), (C2) and let conditions (H1), (H2), and (H3) be fulfilled. Then there exist
numbers c1 > 0 and c2 > 0 such that

%(x) ≥ e−f(c1|x|+ c2), x ∈ Rd.

Proof. Let u = exp
(
αf−1(| ln(Λ%)|)

)
, where α and Λ are numbers from (4), Q is an arbitrary

cube of unit edge length. By Theorem 1 we obtain

sup
x∈Q

u(x) ≤ C|Ω|−1 sup
Ω
u(x)

for every measurable set Ω ⊂ Q. Let us fix x ∈ Rd. Let N = [|x|] + 1 and xi = ix/N . Then
x0 = 0, xN = x and |xi−xi−1| ≤ 1. Let Qi denote the cube with center at the point xi and unit
edge parallel to the vector x. For every i we have xi−1 ∈ Qi, |Qi ∩Qi−1| = 1/2 and, therefore,

sup
Qi

u(x) ≤ C|Qi ∩Qi−1|−1 sup
Qi∩Qi−1

u(x) ≤ 2C sup
Qi−1

u(x).

We obtain the inequality

sup
Qi

u(x) ≤ 2C sup
Qi−1

u(x).

Applying this inequality for all i starting with i = N , we find

u(x) = u(xN) ≤ (2C)N sup
Q0

u(x) ≤ (2C)N sup
|x|≤2

u(x).

Since N = [|x|] + 1 ≤ |x|+ 1, for some λ1 > 0 and λ2 > 0 we have

u(x) ≤ exp(λ1|x|+ λ2), x ∈ Rd.

Taking into account that % = Λ−1e−f(α−1 lnu) due to the estimate Λ% < 1/2 and recalling that
Λ−1 ≥ 1 and the function f is increasing, we obtain the desired estimate. �

We observe that this result gives lower bounds for the density of the stationary measure of
the diffusion process with diffusion coefficient

√
2A and drift b. A similar method along with

techniques from [10] can be applied in the parabolic case, which will be considered in a separate
work.
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Example 1. Let conditions (C1) and (C2) be fulfilled and let a number r > 1 be given.
(i) In order to obtain the estimate

%(x) ≥ c̃2 exp(−c̃1|x|r/(r−1)), (6)

it suffices to have exp(δ|b|r) ∈ L1(µ) with some δ > 0.
Indeed, the function ψ(z) = δzr/(2p) satisfies condition (H3) with f(z) = zr/(r−1). There ex-

ists C(δ) > 0 such that |z| ≤ C(δ) exp(δ|z|r/2). Then
(
|b| exp(δ|b|r/(2p))

)p ≤ C(δ)p exp(δ|b|r)
and so |b| exp(δ|b|r/(2p)) ∈ Lp(µ), that is, condition (C2) is fulfilled.

(ii) In order to obtain the estimate

%(x) ≥ exp(−c̃2 exp(c̃1|x|)), (7)

it suffices to have exp(δ|b|) ∈ L1(µ) with some δ > 0.
Indeed, whenever 0 < δ1 < δ, the functions ψ(z) = δ1 · z and f(z) = ez satisfy (H3) with

N = 1/δ1 and (C2) is fulfilled as well.

Example 2. Let µ = % dx be a probability measure, % ∈ W 1,1
loc (Rd). Then µ obviously satisfies

equation (1) with A = I and b = ∇%/%, where b(x) := 0 if %(x) = 0. Therefore, for obtaining
estimate (6) it suffices to have exp(δ|∇%/%|r) ∈ L1(µ) with some δ > 0, and estimate (7) follows
from the inclusion exp(δ|∇%/%|) ∈ L1(µ) with some δ > 0.

For d = 1 the assertion in the last example was obtained in [4] (where in the case r = 1 the for-
mulation contains a minor inaccuracy: c̃1 is replaced by 1; the function %(x) = exp

(
− exp(2|x|)

)
shows that one cannot get rid of c̃1). For d > 1 and r = 1 the assertion of the last example is
given in Exercise 6.8.4 in book [11]; when our work was completed we learnt of the forthcoming
paper [12], where in the situation of the same Example 2 the case r > 1 is considered. However,
the methods of [4] and [12] employ in a very essential way the fact that b is of the special form
∇%/%.

This work has been supported by the projects RFBR 07-01-00536, 08-01-91205-JF, 08-01-
90431-Ukr, 06-01-39003-GFEN, DFG 436 RUS 113/738/0(R) and the SFB 701 at Bielefeld
University.
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