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Abstract. We study the long-time behavior of solutions of the initial-boundary value (IBV)
problem for the Camassa–Holm (CH) equation ut − utxx + 2ux + 3uux = 2uxuxx + uuxxx
on the half-line x ≥ 0. The paper continues our study of the IBV problems for the CH
equation [9], the key tool of which is the formulation and analysis of the associated Riemann-
Hilbert factorization problem. We specify the regions in the quarter space-time plane x > 0,
t > 0 having qualitatively different asymptotic pictures, and give the main terms of the
asymptotics in terms of the spectral data associated with the initial and boundary values.

1. Introduction

The Camassa–Holm (CH) equation [13]

ut − utxx + 2ωux + 3uux = 2uxuxx + uuxxx, (1.1)

where ω ≥ 0 is a parameter, and u ≡ u(x, t), has attracted considerable attention recently, due
to a number of interesting, distinguished features. Particularly, being considered as a model
of unidirectional wave propagation [13, 14, 18, 20, 35], it accounts for both waves existing
globally for all t and waves blowing up at a certain finite critical time t = tcr, depending
on the form of the initial data. For ω > 0, it possesses analytic solitary waves — solitons
[16, 36, 39]; moreover, any initial data from a large class of decreasing, as |x| → ∞, functions
evolves, for large time, into a train of solitons [10]. For ω = 0, the equation supports weak,
non-analytic solutions, called “peakons”, which are stable patterns interacting like solitons
[13, 21, 1, 2].

Although there are plenty of results concerning the initial value problem for (1.1), where
the equation is supplemented by the initial conditions u(x, 0) = u0(x), x ∈ (−∞,∞), much
less is known for initial boundary value (IBV) problems, where, for example, in the case of
the half-line setting, the data are
– the initial conditions u0(x), x ≥ 0, and
– a set of boundary data prescribed at x = 0, consisting of (a subset of) the boundary values
u(0, t) = v0(t), ux(0, t) = v1(t), and uxx(0, t) = v2(t).

It is not obvious how many boundary values can be prescribed without overdetermining the
IBV problem. In [38], the existence and uniqueness of strong solutions to the IBV problem
with boundary condition u(0, t) ≡ 0 and decaying initial data from certain functional classes
has been studied for the case ω = 0. In [15] the authors demonstrated that the IBV problem
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with boundary data u(0, t) = v0(t) is well-posed in the case v0(t) ≤ 0, in the sense that a
strong solution, if it exists up to a certain time, is unique.

The CH equation is known to be formally integrable: it has a Lax pair representation as
a compatibility condition for the system of linear equations

ψxx =
1
4
ψ + λ(m+ ω)ψ,

ψt =
( 1

2λ
− u
)
ψx +

1
2
uxψ,

(1.2)

where ψ = ψ(x, t, λ), λ ∈ C and m ≡ m(x, t) := u − uxx. This has been exploited in a
number of papers dealing with initial value problems, see, e.g., [16, 17, 19, 37]. In [9], we
have developed an inverse scattering approach to the IBV problems for the CH equation with
ω 6= 0, which is based on the simultaneous spectral analysis of the two eigenvalue equations
of the Lax pair (1.2) in the domain 0 ≤ x < +∞, 0 ≤ t ≤ T <∞.

A general approach, allowing the inverse scattering technique to study the IBV problems,
was initiated by Fokas [27, 28] and further developed by several authors; see [4, 7, 31]. On
the boundary of the (x, t) domain, the analysis leads to spectral problems for both equations
of the Lax pair, the x-equation (for t = 0) and the t-equation (for x = 0). In [9] we provide
a characterization of the solution of the initial boundary value problem for the CH equation
(1.1) in terms of the solution of a matrix Riemann–Hilbert (RH) factorization problem in
the complex plane of the spectral parameter, for which the data is determined in terms of
spectral functions associated with the initial and boundary values of the solution.

In the present paper, we continue our study of the IBV problem for the CH equation
started in [9] and present the results of the analysis of the long-time behavior of a solution
of this problem announced in [9]. In what follows, we assume that ω = 1, the analysis being
valid, by simple rescaling, for all ω 6= 0. Our approach is based on the long-time analysis of
the associated RH problem [9], and is, in fact, an adaptation of the nonlinear steepest descent
method for studying asymptotics of solutions of integrable nonlinear equations introduced by
Deift and Zhou [23]. Recently [10] we have applied such an approach to the study of the
long-time behavior of the solution of the initial value problem for the CH equation (on the
whole x line). We have shown that the asymptotic picture in the case of the CH equation
is richer than that for the (closely related) KdV equation, containing more qualitatively
different phenomena. Moreover, the asymptotic picture in the case of the CH equation,
being restricted to the quarter plane x > 0, t > 0, shows all the distinctive regions, with
qualitatively different behavior, presented on the whole half-plane −∞ < x < ∞, t > 0 for
the KdV case [22]: there are

(i) a soliton region,
(ii) a similarity region (region of decaying modulated oscillations),
(iii) a self-similar region (described in terms of Painlevé transcendents),
and possibly
(iv) a collisionless shock region.

We show that the solution of the IBV problem for the CH equation with decaying boundary
values in the case v0(t) ≤ 0, assuming that it exists for all t and satisfies the inequality
m(x, t) + 1 > 0 for all x ≥ 0 and t ≥ 0, exhibits all these regions, and that the precise
values of the parameters involved in the leading asymptotic terms are determined in terms
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Figure 1. The different regions in the (x, t)-quarter-plane, ζ := x
t .

of spectral functions associated with the initial data u0(x) and the boundary values vj(t),
j = 0, 1, 2.

The paper is organized as follows. In Section 2 we present an appropriate Riemann–Hilbert
formalism for the IBV problem. Section 3 deals with the soliton region. In Sections 4 and
5, we present the decaying asymptotics in the similarity region and the self-similar region,
respectively. Section 6 discusses the “collisionless shock” region. The asymptotics in these
regions are given in Theorems 3.2, 4.2, 5.1, and 6.1, respectively.

2. The RH formalism for the IBV problem

The “building blocks” for the construction of a RH problem, whose solution is then used to
give a representation of the solution to the IBV problem in question, are dedicated solutions
of the associated Lax pair (“eigenfunctions”) with good control on the Riemann sphere of the
spectral parameter [4, 5, 9]. Here we present a brief account of the needed solutions and their
properties (more details are given in [9]) and give a Riemann–Hilbert formalism, different
from that used in [9]: we will see that the new formalism is better adapted for the long time
study that follows.

2.1. Assumptions. Before presenting the formalism, we comment on assumptions we made
in Section 1:
• v0(t) ≤ 0,
• m(x, t) + 1 > 0 for all x ≥ 0 and t ≥ 0.
Both assumptions ensure that the dedicated solutions of the Lax pair, see (2.9) below, have a
well-controlled behavior, as functions of the spectral parameter, simultaneously for all x ≥ 0
and t ≥ 0 (see the expressions in the exponentials in (2.9)).

While v0(t) ≤ 0 is a condition on the boundary data, the assumption m(x, t) + 1 > 0 is
about the solution of the IBV problem. With this respect, we notice that for the problem on
the whole line x ∈ (−∞,∞), if the initial condition is such that m(x, 0)+1 > 0 for all x (and
that m(x, 0) vanishes to 0 sufficiently fast as x→ ±∞), then there is a unique global solution
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for this problem such that m(x, t) + 1 > 0 for all x ≥ 0 and t ≥ 0, see [16]. To the best of our
knowledge, there are no such results for IBV problems with general boundary data. On the
other hand, the global existence of a solution satisfying m(x, t) + 1 > 0 can be established
under the assumption of global solvability (for all x ≥ 0 and t ≥ 0) of the Riemann–Hilbert
problem constructed below, see Proposition 2.7.

Thus, assuming that there exists a smooth solution u(x, t) of the CH equation, x > 0,
t > 0, decaying sufficiently fast as x→ +∞ (for all t) and satisfying the assumptions above,
we are looking for a representation of this solution in terms of the solution of an associated
RH problem, in the complex plane of an appropriate spectral parameter, the data for which
(the jump matrix and possibly residue conditions, in the case of a singular RH problem) are
determined by the initial and boundary values of u(x, t) (for t = 0 and for x = 0).

2.2. Spectral functions. Since the Lax pair equations have apparently different structure
near the singular points, λ = 0 and λ =∞, it turns to be useful to work with two variants of
the Lax pair, the first having an appropriate form near λ = ∞ and the second, near λ = 0.
These Lax pairs are found to be in the form of 2×2 systems of first order differential equations
[8, 11, 10, 9, 12],

Φ̃∞x + ikpxσ3Φ̃∞ = U∞Φ̃∞,

Φ̃∞t + ikptσ3Φ̃∞ = V∞Φ̃∞,
(2.1)

and
Φ̃0x + ikσ3Φ̃0 = U0Φ̃0,

Φ̃0t +
ik
2λ
σ3Φ̃0 = V0Φ̃0,

(2.2)

where
k2 = −λ− 1

4
, (2.3)

px =
√
m+ 1, pt =

1
2λ
− u
√
m+ 1, (2.4)

U∞(x, t, k) =
1
4

mx

m+ 1

(
0 1
1 0

)
− 1

8ik
m√
m+ 1

(
−1 −1
1 1

)
, (2.5a)

V∞(x, t, k) =
[

mt

4(m+ 1)
+
ux
2

](
0 1
1 0

)
+

1
8ik

u(m+ 2)√
m+ 1

(
−1 −1
1 1

)
+

ik
4λ

{√
m+ 1

(
−1 1
−1 1

)
+

1√
m+ 1

(
−1 −1
1 1

)}
+

ik
2λ
σ3, (2.5b)

U0(x, t, k) =
λ

2ik
m(x, t)

(
−1 −1
1 1

)
, (2.6a)

V0(x, t, k) =
ux
2

(
0 1
1 0

)
+

u

4ik

(
0 −1
1 0

)
+
λu

2ik

{
2σ3 −m

(
−1 −1
1 1

)}
. (2.6b)

These forms of the Lax pair follow from (1.2) if we define

Φ̃∞ := G∞
( ψ
ψx

)
, Φ̃0 := G0

( ψ
ψx

)
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with

G0(k) =
1
2

(
1 − 1

ik

1 1
ik

)
, G∞(x, t, k) = G0(k)

(
(m+ 1)1/4 0

0 (m+ 1)−1/4

)
.

Remarks 2.1. (a) At λ = 0, i.e., at k = ± i
2 , we have U0(x, t, k)

∣∣
k=±i/2

= 0 for all (x, t).
(b) Both expressions in (2.4) are consistent because of(√

m+ 1
)
t

= −
(
u
√
m+ 1

)
x
, (2.7)

which is an equivalent form of (1.1). This allows us to define p satisfying (2.4) by

p(x, t, k) =
∫ x

0

√
m(ξ, t) + 1 dξ −

∫ t

0
u(0, ζ)

√
m(0, ζ) + 1 dζ +

t

2λ
, (2.8)

thus specifying p by the condition p(0, 0, k) = 0.
(c) The assumption u(0, t) ≤ 0 implies that p(x, t, k)− t

2λ ≥ 0 for all x, t.

The fact that U∞, V∞ in (2.5) are such that U∞, V∞ = O(1) as k → ∞ and the terms
of order k0 in U∞ and V∞ are off-diagonal and that U∞, V∞ = o(1) as x → +∞, allows us
to define solutions to (2.5), Φ̃∞j(x, t, k), j = 1, 2, 3, analytic in the corresponding domains
in the k-plane (relative to the contour {Im k = 0} ∪ {|k| = 1

2}) and having well-controlled
properties as k →∞, via:

Φ̃∞j(x, t, k) := Φ∞je−ikp(x,t,λ)σ3 ,

where the Φ∞j are solutions of associated Volterra integral equations

Φ∞j(x, t, k) = (2.9)

I +
∫ (x,t)

(xj ,tj)
e−ik(p(x,t,k)−p(y,τ,k))σ̂3 {U∞(y, τ, k)Φ∞j(y, τ, k)dy + V∞(y, τ, k)Φ∞j(y, τ, k)dτ}

with (x1, t1) = (0,+∞), (x2, t2) = (0, 0), and (x3, t3) = (+∞, t) (for more details see [9]).

Notations. We use the following standard notations:

σ1 =
(

0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
, and eσ̂3A := eσ3Ae−σ3

for any 2× 2 matrix A.

Similarly, define

Φ̃0j := Φ0je−i(kx+ k
2λ
t),

where the Φ0j are solutions of the integral equations

Φ0j(x, t, k) = (2.10)

I +
∫ (x,t)

(xj ,tj)
e−ik[(x−y)+ ik

2λ
(t−τ)]σ̂3 {U0j(y, τ, k)Φ0j(y, τ, k)dy + V0(y, τ, k)Φ0j(y, τ, k)dτ} .

The spectral functions appear naturally when relating the eigenfunctions introduced above.
Indeed, since the eigenfunctions Φ∞j and Φ0j are solutions of systems of differential equations
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originating from the same system (1.2), they are related (in the domain where they are
defined) by matrices independent of (x, t). Introducing the spectral matrices

S(k) = Φ01(0, 0, k), S̃(k) = Φ∞1(0, 0, k),

s(k) = Φ∞3(0, 0, k), s̃(k) = Φ03(0, 0, k)
(2.11)

and taking into account the normalization conditions at (x, t) = (xj , tj), we have:

Φ01(x, t, k) = Φ02(x, t, k)e−i(kx+ k
2λ
t)σ̂3S(k),

Φ03(x, t, k) = Φ02(x, t, k)e−i(kx+ k
2λ
t)σ̂3 s̃(k),

Φ∞1(x, t, k) = Φ∞2(x, t, k)e−ikp(x,t,λ)σ̂3S̃(k),

Φ∞3(x, t, k) = Φ∞2(x, t, k)e−ikp(x,t,λ)σ̂3s(k).

(2.12)

Obviously, detS = det S̃ = det s = det s̃ ≡ 1. Since the matrices W = U0, V0, U∞, U∞ satisfy
the symmetry relations

W ( · , · , k̄) = W ( · , · ,−k) =
(

0 1
1 0

)
W ( · , · , k)

(
0 1
1 0

)
, (2.13)

the spectral matrices S(k), s(k), S̃(k), and s̃(k) can be written as

s(k) =

(
a(k̄) b(k)
b(k̄) a(k)

)
, S(k) =

(
A(k̄) B(k)
B(k̄) A(k)

)
,

s̃(k) =

(
ã(k̄) b̃(k)
b̃(k̄) ã(k)

)
, S̃(k) =

(
Ã(k̄) B̃(k)
B̃(k̄) Ã(k)

)
,

(2.14)

where a(−k) = a(k̄), A(−k) = A(k̄), b(−k) = b(k̄), B(−k) = B(k̄), and similarly for the
entries of S̃ and s̃.

The direct spectral mapping

{u(x, 0)} 7−→ {a(k), b(k)}
is determined via the solution Φ∞3(x, 0, k) of the integral equation

Φ∞3(x, 0, k) = I −
∫ ∞
x

eik
R y
x

√
m(ξ,0)+1 dξσ̂3(U∞Φ∞3)(y, 0, k)dy (2.15)

taken at x = 0.
In a similar way, the direct spectral mapping

{u(j)(0, t)}2j=0 7−→ {A(k), B(k)}
is defined via the solution of the integral equation

Φ01(0, t, k) = I −
∫ ∞
t

e−
ik
2λ

(t−τ)σ̂3(V0Φ01)(0, τ, k)dτ (2.16)

taken at t = 0.
The spectral matrices introduced above are obviously not independent. Indeed, by the

definitions, Φ0j and Φ∞j are related to the same system of ODEs (1.2). Hence they are related
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by certain matrices Cj(k) independent of (x, t) (they are defined by the normalizations in
(2.9) and (2.10)):

Φ∞j(x, t, k) = Q(x, t)Φ0j(x, t, k)e−i(kx+ k
2λ
t)Cj(k)eikp(x,t,k), j = 1, 2, 3,

where

Q(x, t) := G∞(x, t, k)G−1
0 (k) =

1
2

(
κ + κ−1 κ − κ−1

κ − κ−1 κ + κ−1

)
(2.17)

with
κ = κ(x, t) = [m(x, t) + 1]1/4.

Consequently, the spectral matrices are related by

S̃(k) = Q(0, 0)S(k)e−ikν(0)σ3 , (2.18a)

s(k) = Q(0, 0)s̃(k)e−ikν(0)σ3 , (2.18b)

where we have introduced

ν(t) :=
∫ ∞

0

(√
m(ξ, t) + 1− 1

)
dξ. (2.19)

Introducing also

p̃(t) := −
∫ t

0
u(0, ζ)

√
m(0, ζ) + 1 dζ, (2.20)

notice the conservation law
ν(t) + p̃(t) = ν(0), (2.21)

that follows from (2.7).

2.3. Direct analysis. Analytic properties, in the complex k-plane, of the eigenfunctions,
see [9], allow us, given the spectral functions {a(k), b(k), A(k), B(k)}, to construct a family
of piece-wise (relative to a certain contour Σ) meromorphic, 2 × 2 matrix-valued functions
parametrized by (x, t) such that:

(i) its limiting values on the contour are related by the spectral functions defined above;
(ii) the residue conditions at the poles are also expressed in terms of the spectral functions;

(iii) being evaluated at a certain point of the k-plane, it gives a solution of the Camassa-Holm
equation, u(x, t);

(iv) the limiting values of u(x, t) at t = 0 and at x = 0 generate, via the direct scat-
tering mappings, the spectral functions used in the construction of the jump condi-
tions and the residue conditions; more specifically, u(x, 0) generates {a(k), b(k)} and
u(0, t), ux(0, t), uxx(0, t) generate {A(k), B(k)}.

Properties (i)–(iii) allow interpreting this construction as a Riemann–Hilbert problem, with
data given on the contour and at the poles. Property (iv) then allows determining the
solution of the Camassa–Holm equation with given initial data u(x, 0) and boundary data
u(0, t), ux(0, t), uxx(0, t), and thus allows reducing the long time analysis of u(x, t) to the long
time analysis of the associated RH problem.
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Thus, assuming that u(x, t) satisfies the CH equation, let us define a matrix-valued function
M(x, t, k) by using appropriate solutions of the Lax pair equations (eigenfunctions) as follows.
Let

D1 = {k | |k| < 1
2 , Im k > 0},

D2 = {k | |k − i
2 | < ε, |k| > 1

2}.

• For Im k > 0,

M(x, t, k) =



(
Φ(1)
∞1(x, t, k)
â(k)

Φ(2)
∞3(x, t, k)

)
if k ∈ D1,

Q(x, t)

(
Φ(1)

02 (x, t, k)
ã(k)

Φ(2)
03 (x, t, k)

)
E(x, t, k) if k ∈ D2,(

Φ(1)
∞2(x, t, k)
a(k)

Φ(2)
∞3(x, t, k)

)
if

{
Im k > 0,
k /∈ D1 ∪D2,

(2.22)

where Q(x, t) is given by (2.17), and

E(x, t, k) = eik(p(x,t,k)−x− t
2λ
−ν(0))σ3 ,

â = (S̃−1s)22 = a ¯̃A− b ¯̃B.

• For Im k < 0,

M(x, t, k) =
(

0 1
1 0

)
M(x, t, k̄)

(
0 1
1 0

)
.

Let Σ be the following contour, see Fig. 2:

Σ = R ∪
{
k | |k| = 1

2

}
∪
{
k | |k| ≥ 1

2
,
∣∣∣k − i

2

∣∣∣ = ε
}
∪
{
k | |k| ≥ 1

2
,
∣∣∣k +

i
2

∣∣∣ = ε
}
. (2.23)

Then M(x, t, k) has the following properties (cf. [9]):
(a) Symmetry properties:

M(x, t, k̄) = M(x, t,−k) =
(

0 1
1 0

)
M(x, t, k)

(
0 1
1 0

)
. (2.24)

(b) Analyticity : M(x, t, k) is meromorphic in C \ Σ and continuous up to the boundary of
each connected component of C \ Σ except possibly at k = 0, where

(c) Residue conditions: we assume that â(k) has at most a finite number of purely imaginary
zeros in D1, at k = iνj , 0 < νj <

1
2 , j = 1, . . . , N ; then

Resk=iνj M
(1)(x, t, k) = iγje−2νjp(x,t,iνj)M (2)(x, t, iνj),

Resk=−iνj M
(2)(x, t, k) = −iγje−2νjp(x,t,iνj)M (1)(x, t,−iνj),

where

γj = −i
¯̃B(iνj)

˙̂a(iνj)a(iνj)
.

We assume γj > 0 for all j. Concerning these new assumptions, see the Remark below.
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Figure 2. Contour Σ.

(d) Behavior at k = 0:

M(x, t, k) =
δ(x, t)

ik

(
0 −1
0 1

)
+ O(1), k → 0, Im k > 0, (2.25)

with some δ(x, t) ∈ R.
(e) Behavior at k =∞:

M(x, t, k) = I + O
(

1
k

)
, k →∞. (2.26)

(f) Jump relation across Σ:

M−(x, t, k) = M+(x, t, k)J(x, t, k), k ∈ Σ \ {0}, (2.27)

where M±(x, t, k) are the limits of M(x, t, k′) when k′ ∈ C \ Σ approaches k ∈ Σ from
the ± side of the contour, and

J(x, t, k) = e−ikp(x,t,k)σ3J0(k)eikp(x,t,k)σ3

where J0(k) is defined as follows.
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• For Im k ≥ 0,

J0(k) =



(
1 0

R(k) 1

)
|k − i

2 | > ε, |k| = 1
2(

1 0
−H(k) 1

)
|k − i

2 | = ε, |k| > 1
2 ,(

1 0
R(k) +H(k) 1

)
|k − i

2 | < ε, |k| = 1
2 ,(

1 r̄(k)
−r(k) 1− |r(k)|2

)
Im k = 0, |k| > 1

2 ,(
1 r̄(k)− R̄(k)

−r(k) +R(k) 1− |r(k)−R(k)|2

)
Im k = 0, |k| < 1

2 ,

(2.28)

where

H(k) =
κ0 − κ−1

0

2a(k)ã(k)
e−ikν(0), R(k) = −

¯̃B(k)
a(k)â(k)

(2.29)

• For Im k < 0,

J0(k) =
(

0 1
1 0

)(
J0(k̄)

)−1
(

0 1
1 0

)
. (2.30)

(g) Behavior at k = i
2 :

M
(
x, t, i

2

)
= Q(x, t)e

1
2

R∞
x (
√
m(ξ,t)+1−1)dξσ3 . (2.31)

Remark 2.2. The contour we use here is well adapted for the long time study. Namely, the
trigonal structure of the jump matrix on Σ \R provides that as t→ +∞, these jumps decay
to the identity matrix, which is of primary importance for the long time analysis. The price
for this, however, is that we deal now with a piecewise meromorphic function (instead of
the piecewise holomorphic one, as in [9]), with prescribed residue conditions. The particular
structure of the poles and residue conditions assumed above is also related to the long time
analysis: violating these assumptions would lead to singularities for u(x, t) (the situation here
is similar to that for the KdV equation, see, e.g., [29]).

2.4. Formulation of the RH-problem. The construction above suggests introducing a
new scale, (x, t) 7→ (z(x, t), t), as follows:

z(x, t) =
∫ x

0

√
m(ξ, t) + 1 dξ.

Indeed, in terms of this scale, the jump matrix J becomes explicitly given in terms of the
spectral functions and the boundary values:

J(x, t, k) = J(z, t, k)
∣∣
z=z(x,t)

,

if one defines
J(z, t, k) := e−ik(z+p̃(t)+ t

2λ
)σ3J0(k)eik(z+p̃(t)+ t

2λ
)σ3 . (2.32)
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Now the properties of M stated above suggest the representation of u(x, t), the solution to
the CH equation, in terms of the solution of a Riemann–Hilbert problem, for which the data
(jump matrices and residue relations) are determined by the initial values u(x, 0) and the
boundary values u(0, t), ux(0, t), uxx(0, t), via the associated spectral functions.

The Riemann–Hilbert problem is as follows.

RH-problem 2.3. Given {a(k), b(k), A(k), B(k)}, for all z ≥ 0 and t ≥ 0, find a 2-vector
function µ(z, t, k) ≡

(
µ1(z, t, k) µ2(z, t, k)

)
such that

• µ(z, t, k) is meromorphic in C \ Σ and continuous up to the boundary in each connected
component of C \ Σ.
• µ−(z, t, k) = µ+(z, t, k)J(z, t, k) for k ∈ Σ, where µ±(z, t, k) are the limits of µ(z, t, k′) as
k′ ∈ C \ Σ approaches k ∈ Σ from the corresponding side.
• µ(z, t, k) has poles at zeros of â(k), k = iνj , j = 1, . . . , N , and at their conjugate, with the

residue conditions

Resk=iνj µ1(z, t, k) = iγje
−2νj(z+p̃(t)+

2t

−1+4ν2
j

)
µ2(z, t, iνj),

Resk=−iνj µ2(z, t, k) = −iγje
−2νj(z+p̃(t)+

2t

−1+4ν2
j

)
µ1(z, t,−iνj),

(2.33)

where

γj = −i
¯̃B(iνj)

˙̂a(iνj)a(iνj)
> 0.

• µ1(z, t,−k) = µ2(z, t, k).
• µ(z, t, k) = (1 1) + O

(
1
k

)
as k →∞.

2.5. Solution of the IBV problem.

Proposition 2.4. Let u(x, t), x > 0, t > 0 be a solution of the CH equation satisfying the
above assumptions. Let {a(k), b(k), A(k), B(k)} be the spectral functions associated with the
initial and boundary values of u, see (2.15) and (2.16).

Then u can be represented in terms of the unique solution µ(z, t, k) ≡
(
µ1(z, t, k) µ2(z, t, k)

)
of the above Riemann–Hilbert problem as follows:

x(z, t) = z + log
µ1(z, t, i

2)
µ2(z, t, i

2)
−
∫ t

0
u(0, τ)

√
u(0, τ)− uxx(0, τ) + 1dτ − ν(0), (2.34)

u(z, t) = ∂t log
µ1(z, t, i

2)
µ2(z, t, i

2)
+
( 1
µ2

1(z, t, i
2)µ2

2(z, t, i
2)
− 1
)
u(0, t)

√
u(0, t)− uxx(0, t) + 1.

Remark 2.5. The spectral functions Ã, B̃, ã involved in the construction of the jump matrix
and the residue conditions above are determined by the given spectral functions {a(k), b(k)}
and {A(k), B(k)} via (2.18), taking into account that

a
( i

2

)
=

κ0 + κ−1
0

2
e−

ν(0)
2 , b

( i
2

)
=

κ0 − κ−1
0

2
e−

ν(0)
2 ,

where κ0 = (m(0, 0) + 1)1/4, see [9].
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Remark 2.6. The representation formulas (2.34) follow from (2.31) and the relationship be-
tween the scales, see [9].

The advantage of the RH problem above for the long time study is that for all z, t with
z
t > ε and for all points k ∈ Σ \ R, the jump matrix J(z, t, k) decays to the identity matrix
as t → +∞, which suggests that this part of the contour does not contribute to the leading
asymptotic terms. However, since this decay is not uniform as k approaches the real axis,
one expects that the contribution of (small) neighborhoods of the intersection point k = ±1

2
may be significant [23] in the regions where the asymptotics is generally decaying to 0.
Actually, we will see in the next sections that in particular regions of the (x, t) quadrant,
contour deformations (specific to each region) allow us to determine precisely which points
do contribute to the leading asymptotic terms.

Notice that the “hats” in Figure 2, i.e., the domain D2 and its complex conjugate, are
relevant in the general case when κ0 6= 1 (that corresponds to m(0, 0) 6= 0). Introducing
the “hats” regularizes the RH problem in the sense that J0(k) is continuous near k = ± i

2

(actually, J0(k) → I as k → ± i
2). In the particular case m(0, 0) = 0, one does not need

“hats”: M(x, t, k) can be defined by the same formula for all k such that Im k > 0 and
|k| > 1

2 (similarly for k such that Im k < 0 and |k| < 1
2), that simplifies the contour reducing

it to the union of the circle |k| = 1
2 and the real axis.

The analysis of the construction above leads (the details are similar to those in [9]) to the
following proposition characterizing the existence of the global solution of the CH equation
in terms of the existence of a solution of the Riemann–Hilbert problem.

Proposition 2.7. Let {u0(x), x ≥ 0; {vj(t)}2j=0, t ≥ 0} be a set of smooth, decaying functions
satisfying

(i) (∂jxu0)(0) = vj(0), j = 0, 1, 2.
(ii) m0(x) + 1 ≡ u0(x)− u0xx(x) + 1 > 0 for all x.

(iii) v0(t)− v2(t) + 1 > 0 for all t.
(iv) v0(t) ≤ 0 for all t.
(v) The associated spectral functions satisfy the “global relation”:

a(k)B̃(k)− Ã(k)b(k) = 0 if Im k > 0 and |k| > 1
2
.

Assume that the above Riemann–Hilbert problem has a solution (µ1(z, t, k) µ2(z, t, k)) for all
z ≥ 0 and t ≥ 0 such that µ1(z, t, i

2) > 0 and µ2(z, t, i
2) > 0 are related by(

1 + 2∂z log f(z, t)
)
q2(z, t) = 1 for all (z, t), (2.35)

where

f(z, t) :=
(
µ1(z, t, i

2)
µ2(z, t, i

2)

) 1
2

, q(z, t) :=
(
µ1

(
z, t,

i
2

)
µ2

(
z, t,

i
2

)) 1
2
.

Then the initial boundary value problem

ut − utxx + 2ux + 3uux = 2uxuxx + uuxxx, for x > 0, 0 < t < T, (2.36)

u(x, 0) = u0(x), for x > 0, (2.37)

(∂x)ju(0, t) = vj(t), j = 0, 1, 2, for 0 < t < T, (2.38)
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has a unique solution, u(x, t), that vanishes as x→ +∞ for all t and such that m(x, t) + 1 ≡
u(x, t) − uxx(x, t) + 1 > 0 for all (x, t). This solution can be represented in terms of the
solution of the associated Riemann–Hilbert problem in the parametric form (2.34).

Remark 2.8. Assuming that u(x, t) exists, condition (2.35) is necessarily satisfied by the
solution of the associated RH problem, as it follows from (2.31). On the other hand, this
condition is an important part of the characterization of the functions {a(k), b(k), A(k), B(k)}
as “admissible” spectral functions (i.e., associated with the functions {u0(x)}, x ≥ 0 and
{vj(t)}2j=0, t ≥ 0 which are indeed the boundary values of a certain solution of the CH
equation). Another form of this condition (again as a restriction on the behavior of the
solution of a RH problem at k = i

2) is given in [9].

3. The soliton region: x
t > 2 + ε

Following the nonlinear steepest descent method [23], the study of the long-time behavior
of u(x, t) is reduced to the study of the long-time behavior of the solution of the (oscillatory)
Riemann–Hilbert problem. In turn, the latter is treated via a series of “deformations” of the
RH problem, which involves deformations of the contour, approximations of the jump matrix
with well-controlled error, and absorption of a part of the jump matrix into the solution,
aimed at reducing to an exactly solvable RH problem [25, 23, 22]. In this and the next
section, we will closely follow [10] mainly emphasizing the impact of the boundary conditions
on the scheme applied in the whole line case.

The primary deformation of the contour is dictated by the “signature table”, which is the
decomposition of the complex k-plane into the regions where the exponents involved in the
jump matrix decay to 0 as t → +∞. The entries of the jump matrix J(z, t; k), see (2.32),
for the RH problem for the Camassa–Holm equation involve the exponentials e±2itθ in the
off-diagonal matrix entries, where

θ(z, t; k) = ζ̂k − 2k
1 + 4k2

+
p̃(t)
t
k with ζ̂ =

z

t
. (3.1)

Since p̃(t)→ p̃(∞) = ν(0), the last term in (3.1) vanishes as t→ +∞ and thus the “signature
table” indicating the regions of the complex k-plane where Im θ(k) keeps its sign is the same
as in the case of the initial value problem [10].

In the case ζ̂ > 2 + ε for any ε > 0, the signature table allows deforming the contour of the
RH problem in such a way that the part Σ \R is separated, on one hand, from the real axis,
and on the other hand, from the domain with Im θ(k) · Im k < 0 (where the exponentials in
J are growing with t), see Figure 3.

Particularly, if {iνj}Nj=1 are the zeros of â(k), with 0 < ν1 < · · · < νN < 1
2 , then for

0 < ε < ε0, where ν1 = 1
2

√
ε0

2+ε0
, the separating distance is δ =

√
ε

4
√

2
.

In the modified RH problem (which is exactly equivalent to the original one), the domain
D1 shrinks to D̃1 and thus the jump conditions on R have the same form along the whole
axis as in line 4 of (2.28), i.e., it involves r only, as in the case of the initial value problem
[10]. Now the jump matrix on Σ \ R decays uniformly, exponentially fast (as e−2δt), to the
identity matrix and thus does not contribute to the leading term of the asymptotics, only the
error term depending on ε. Consequently, one can proceed exactly as in the case of the initial



14 A. BOUTET DE MONVEL AND D. SHEPELSKY

Figure 3. Deformed contour of the RH problem for the soliton region ζ̂ > 2+
ε. The filled domains are those with “bad” sign of Im θ, where the exponentials
in J(z, t, k) are growing: Im θ(k) < 0 for Im k > 0 and Im θ(k) > 0 for
Im k < 0.

value problem [10]. Specifically, the solution of the RH problem with poles can be written as
(cf. [29]) (

(µ1(z, t, k) µ2(z, t, k)
)

=
(
1 1

) N∏
j=1

(
kI −Bj(z, t)

)
Mreg(z, t, k)D(k), (3.2)

where

diag
{ N∏
j=1

1
k − iνj

,
N∏
j=1

1
k + iνj

}
and Mreg(z, t, k) is the solution of the 2 × 2 matrix-valued regular (piecewise holomorphic)
RH problem with jump matrix Jreg = DJD−1 (J is the jump matrix of the original RH
problem) and normalized by Mreg → I as k → ∞. The 2 × 2 matrices Bj are determined
recursively, by solving linear algebraic equations, in the same way as in the case of the KdV
equation, see [29]:

(iνjI +Bj)M̃j−1(z, t, iνj)
(

1
−dj(z, t)

)
= 0,

(−iνjI +Bj)M̃j−1(z, t,−iνj)
(
−dj(z, t)

1

)
= 0, j = 1, . . . , N,

(3.3)

where

M̃j(z, t, k) = (kI −Bj(z, t)) M̃j−1(z, t, k), j = 1, . . . , N − 1, M̃0 = Mreg,
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and

dj(z, t) = γj

∏N
l=1,l 6=j(νj − νl)∏N
l=1(νj + νl)

e
−2νj(z− 2

1−4ν2
j

t+p̃(t))
.

Remark 3.1. Notice that it is only when the poles are purely imaginary and γj > 0 in the
residue conditions that the solutions of these algebraic equations lead to (µ1 µ2) which is
non-singular for all (z, t) (the solutions itselves are singular, but the singularities cancel when
multiplying from the left by the vector (1 1)). Hence this justifies the assumptions on the
poles and residue conditions made above in order that the spectral functions correspond to
a globally non-singular solution of the CH equation (this is in a complete analogy with the
KdV equation [29]).

Since the contribution of Σ\R to the RH problem for Mreg can be neglected for the leading
term, Mreg is asymptotically close to the solution of the RH problem with the jump conditions
on the real axis only, which in turn is the RH problem for the whole line problem [10] in the
case without poles. It follows that Mreg → I as t → +∞, which in turns implies that the
solution of the original RH problem approaches that for the reflectionless (r(k) ≡ 0) case,
and thus

u(x, t) = usoliton(x, t) + o(1), t→ +∞,
where the error term depends on ε and where usoliton(x, t) is a pure N -soliton solution of the
CH equation, which corresponds to the Riemann–Hilbert problem with r(k) ≡ 0 and with
the residue parameters {νj}Nj=1 and {γj}Nj=1.

If N = 1, then (cf. (3.2))(
µ1(z, t; k) µ2(z, t; k)

)
=
(
k−B1(z,t)
k−iν1

k+B1(z,t)
k+iν1

)
+ o(1), (3.4)

where

B1(z, t) = iν1
1− g1(z, t)
1 + g1(z, t)

with

g1(z, t) = exp
{
−2ν1

(
z − 2

1− 4ν2
1

t− z0

)}
and z0 =

1
2ν1

log
γ1

2ν1
− ν(0).

Consequently, the leading term of the long-time asymptotics in this case is given by the
1-soliton solution with parameters determined by ν1, γ1, and ν(0):

u(z, t) = ∂t log
µ1(z, t; i

2)
µ2(z, t; i

2)
=

16ν2
1

1− 4ν2
1

1
1 + 4ν2

1 + (1− 4ν2
1) coshφ1(z, t)

+ o(1),

x(z, t) = z + log
1 + g1

1+2ν
1−2ν1

1 + 1−2ν1
1+2ν1

g1(z, t)
+ o(1),

(3.5)

where

φ1 = −2ν1(z − v1t− z0) and v1 =
2

1− 4ν2
1

.

Notice that since 0 < ν1 < 1/2, the soliton velocity v1 is always greater than 2 and thus
the soliton asymptotics resides only in the region ζ > 2. Since x = z + O(1) in the region
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ζ̂ > 2 + ε, the soliton region can be equivalently described by the relation x
t > 2 + ε with

0 < ε < ε0.
For arbitrary N , one can proceed in the similar way, taking in (3.2) Mreg ≡ I and con-

structing Bj by solving linear systems of algebraic equations. Matsuno [39] has proposed a
convenient representation for the purely N -soliton solutions in the determinant form:

u(z, t) = ∂t log
f2(z, t)
f1(z, t)

,

x(z, t) = z + log
f2(z, t)
f1(z, t)

+ d,

(3.6)

where f1,2 have determinantal expressions f1,2 = detG1,2, for some N × N matrices G1,2,
and d is a constant. This form turns out to be particularly useful for analyzing the long time
behavior of the multisoliton solutions, giving immediately that (as it is supposed to be!), as
t → +∞, the multisoliton solution develops into a sum of 1-soliton solutions. Comparing
(3.6) with our representation formulas (2.34) allows relating the soliton parameters with the
spectral data in the case of the IBV problem, which finally leads to a superposition formula
for the long time asymptotics in the soliton region:

Asymptotics 3.2 (soliton region (i)). Let ε > 0 be sufficiently small. If (x, t) is in the region
ζ := x

t > 2 + ε, then, for t→ +∞,

u(x, t) =
N∑
j=1

Fj(Zj(X))
∣∣∣
X=x−vjt−x̃0j

+ o(1), (3.7)

where

vj =
2

1− 4ν2
j

, (3.8)

Fj(Z) =
16ν2

j

1− 4ν2
j

1
1 + 4ν2

j + (1− 4ν2
j ) cosh(2νjZ)

, (3.9)

Xj(Z) = Z + log
1− 2νj + (1 + 2νj)e−2νjZ

1 + 2νj + (1− 2νj)e−2νjZ
(3.10)

and

x̃0j =
1

2νj
log

γj
2νj

+
1

2νj

j−1∑
l=1

log
(
νj − νl
νj + νl

)2

+log
1 + 2νj
1− 2νj

+
j−1∑
l=1

log
(

1 + 2νl
1− 2νl

)2

−ν(0). (3.11)

Remark 3.3. Alternatively, the asymptotic development of a multisoliton solution can be
done by deforming the singular RH problem into a regular one, by introducing additional
parts of the contour consisting of small circles around the zeros of â(k) and rewriting the
residue conditions as associated jump conditions on this parts, see [6].

Remark 3.4. In the phase shift formula (3.11), the first two terms are similar to those for
the case of the KdV equation [22] whereas the other terms are specific for the CH equation.
More precisely, they originate from the relationship between the scales (x, t) and (z, t).



ASYMPTOTICS FOR CH ON THE HALF-LINE 17

Remark 3.5. The soliton asymptotics for the solution of the IBV problem has the same form
as for the solution of the whole line (Cauchy) problem [10], the difference being that now the
soliton parameters are determined by zeros and residues of functions which are combinations
of the spectral functions associated with both the initial and boundary values. Thus solitons
may occur in situations where the initial data on their own do not generate solitons (being
considered as initial data for an initial value problem): the soliton velocities are determined
by zeros of â(k) but not by zeros of a(k) (as in the case of the whole line problem).

4. The similarity region: ε < x
t < 2− ε

In the case ε < z
t < 2−ε, the signature table (see Figure 4) suggests deforming the contour

for the RH problem in such a way that it passes through the stationary phase points ±κ0,
where

κ2
0 = κ2

0(ζ̂) =

√
1 + 4ζ̂ − 1− ζ̂

4ζ̂
, (4.1)

so that

ζ̂ = 2
1− 4κ2

0

(1 + 4κ2
0)2

.

Thus κ0 varies from 0 (for ζ̂ = 2) to 1/2 (for ζ̂ = 0).

Figure 4. Contour transformation for the similarity region.

Assumption. For simplicity, we will present the asymptotic analysis in this and the other
regions, where the leading terms decay to 0, in the “solitonless” case, i.e, assuming that
â(k) 6= 0 for k ∈ D1.
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Remark 4.1. The presence of solitons affects the asymptotics in these regions in the form of an
additional phase shift. It can be worked out again by using the representation (3.2) in order
to calculate, recursively, the behavior of Bj ’s in the corresponding region. Alternatively, as
in the soliton region, this can be done by working with the regular version of the RH problem
on the augmented contour [6].

The further reasoning is the same as in the case of the whole line problem [10] (the details
are mutatis mutandis as in [23]):

(i) The jump matrices on (−∞,−κ0), (−κ0, κ0), (κ0,∞) are factorized into products of
trigonal matrices.

(ii) The trigonal factors are absorbed into the modified RH problem.
(iii) The contributions from the parts of the contour separated from the real axis can be

neglected, since the jump matrices on them decay rapidly to the identity matrix.
(iv) After appropriate scaling, the resulting “model” problem is formulated on two crosses

centered at ±κ0, with constant jump matrices, which allows solving them explicitly, in
terms of parabolic cylinder functions.

The specific feature of the IBV problem is that on (−κ0, κ0), where the signature table
dictates the use of a lower/diagonal/upper factorization, the jump matrix J0 involves r(k)−
R(k) instead of r(k) as in the case of the whole line problem:

J0(k) =

(
1 r̄−R̄

1−|r|2
0 1

)(
(1− |r −R|2)−1 0

0 1− |r −R|2
)(

1 0
−r+R

1−|r−R|2 1

)
. (4.2)

Now the δ-function removing the diagonal factor is given by (cf.[10])

δ(k) =
(k − κ0

k + κ0

)ih0

eχ(k)

with

h0 = − 1
2π

log
(
1− |r(κ0)−R(κ0)|2

)
,

χ(k) =
1

2πi

∫ κ0

−κ0

log
(

1− |r(s)−R(s)|2

1− |r(κ0)−R(κ0)|2

)
ds
s− k

.
(4.3)

Near k = κ0, the part of the phase

θ̃(k) = ζ̂k − 2k
1 + 4k2

can be written as
θ̃(k) = θ(κ0) + 8f0(k − κ0)2

(
1 + (k − κ0)g(k)

)
, (4.4)

where

g(k) =
16κ3

0k − 12κ0k − 12κ2
0 + 1

κ0(3− 4κ2
0)(1 + 4k2)

,

θ(κ0) = − 16κ3
0

(1 + 4κ2
0)2

, f0 =
κ0(3− 4κ2

0)
(1 + 4κ2

0)3
> 0.

(4.5)
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Thus the factor δ(k)e−itθ(k) near k = κ0 can be approximated as δ(k)e−itθ(k) ≈ δκ0 k̂
ih0e−ik̂2/4,

where k − κ0 = k̂√
32f0t

,

δκ0 =
(

128
κ3

0(3− 4κ2
0)

(1 + 4κ2
0)3

t

)− ih0
2

e
i

16κ3
0

(1+4κ2
0)2

t
eχ(κ0)e−iκ0ν(0) (4.6)

(the last factor comes from eit(θ−θ̃) as t→ +∞) and

χ(κ0) = − 1
2πi

∫ κ0

−κ0

log |κ0 − s| d log(1− |r(s)−R(s)|2). (4.7)

Similarly for k near −κ0.
Notice that the presence of R in this formula is consistent with the absorption of the

triangular factors on R \ [−κ0, κ0] when transforming the contour to the cross at k = 0, since
the jump matrices of the initially modified problem, see Figure 4, on the parts of the contour
intersecting with R at k = ±κ0, involve R(k), see the first line of (2.28).

Proceeding in exactly the same way as for the whole line problem [10], one obtains the
leading term for log µ1

µ2

(
i
2

)
in the form

log
µ1

µ2

( i
2

)
− 2 log δ

( i
2

)
=
(

2h0(1 + 4κ2
0)

κ0(3− 4κ2
0)t

) 1
2

cos
(

32κ3
0

(1 + 4κ2
0)2

t− h0 log
(

128κ3
0(3− 4κ2

0)
(1 + 4κ2

0)3
t

)
+ φ0

)
+ o

(
1√
t

)
, (4.8)

where

φ0 =
π

4
− arg(r(κ0)−R(κ0))− 2κ0ν0

+ arg Γ(ih0) +
1
π

∫ κ0

−κ0

log |κ0 − s|d log(1− |r(s)−R(s)|2). (4.9)

Finally, one arrives at the asymptotic formula in the similarity region, in the “solitonless”
case:

Asymptotics 4.2 (similarity region (ii)). Let ε > 0 be sufficiently small. If (x, t) is in the
region ε < ζ := x

t < 2− ε, then, for t→ +∞,

u(x, t) ∼ c1√
t

sin (c2t+ c3 log t+ c4) , (4.10)

where

c1 = −
(

32h0κ0

(3− 4κ2
0)(1 + 4κ2

0)

) 1
2

, c
(0)
2 =

32κ3
0

(1 + 4κ2
0)2

, c
(0)
3 = −h0,

c
(0)
4 = φ0 − h0 log

128κ3
0(3− 4κ2

0)
(1 + 4κ2

0)3
+

4
π
κ0

∫ κ0

−κ0

log(1− |r(s)−R(s)|2)
1 + 4s2

ds.

(4.11)

and κ0 is the function of x/t, see (4.1) with ζ̂ replaced by x/t.
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Remark 4.3. As in the soliton region, the form of the asymptotics is the same as in the
whole line case, the effect of the boundary conditions being seen in the dependence of the
parameters on the boundary values via the spectral functions involved in R(k).

5. The self-similar region:
∣∣x
t − 2

∣∣ t2/3 < C

The approximations adopted in the similarity region require the stationary phase points,
κ0 and −κ0, to be well separated, in order that their contributions to the asymptotics could
be considered separately. This is not the case when ζ becomes close to 2 and thus κ0 and
−κ0 become close to each other (and to 0). This case requires another scaling, which, on one
hand, has to be consistent with ζ → 2 as t→ +∞ and, on the other hand, would approximate
the phase factor eitθ in a form that does not involve any large parameters. Indeed, developing
tθ(k) for k close to 0 and z

t close to 2, one obtains

tθ(k) ≈ 4
3
k̂3 + sk̂, (5.1)

where k̂ is the scaled spectral parameter

k̂ = (6t)1/3k (5.2)

and
s = 6−1/3

(x
t
− 2
)
t2/3. (5.3)

The numerical coefficients in these formulas are chosen in such a way that the form of the
scaled phase factor coincide with that of a familiar RH problem. Since the scaled phase
involves k̂3 and a linear term (with a coefficient s), one can recognize the RH problem for
the Painlevé II equation, whose exponential phase factors, have exactly the same numeric
coefficients as in (5.1), see, e.g., [34].

This suggests that there exists an asymptotic region parametrized by a parameter s taking
finite values from −C to C, for any C > 0. Thus this region can be described as follows:∣∣∣x

t
− 2
∣∣∣ t2/3 < C.

The relevant contour transformnation for the RH problem is shown in Figure 5.
More precisely, one should consider a family of contours of the type shown in Figure 4.

But, since the intersection points ±κ0 collide to 0 as t→ +∞, the factorization of the jump
matrix on R \ [−κ0, κ0] is the same as in the similarity case, whereas one needs not different
factorization (involving a diagonal factor) on (−κ0, κ0): the constant matrix

Ĵ0 :=
(

1 r̄(0)− R̄(0)
−r(0) +R(0) 1− |r(0)−R(0)|2

)
(5.4)

provides an appropriate approximation for all k ∈ (−κ0, κ0). Notice that, as for the similarity
region, the presence of R(0) in this formula is consistent with the absorption of the triangular
factors on R \ [−κ0, κ0] when transforming the contour to the cross at k = 0, since the jump
matrices of the initially deformed RH problem, see Figure 5, on the parts of the contour
intersecting with R at k = 0, involve R(k).
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Figure 5. Contour transformation for the self-similar region.

Thus the “model” RHP, asymptotically equivalent to the original one, is formulated, in
the k̂-plane, on the cross at k̂ = 0,

M̂−(k̂, s) = M̂+(k̂, s)Ĵ(k̂, s) (5.5)

with
Ĵ(k̂, s) = e−i( 4

3
k̂3+sk̂)Ĵ0ei( 4

3
k̂3+sk̂), (5.6)

where Ĵ0 is defined by (5.4).
The solution (µ1 µ2) of the RH problem can be written as (µ1 µ2)(i/2) = (1 1)M(i/2),

where M(k) is the solution of the corresponding 2× 2 matrix problem. The scaling relation
(5.2) indicates that in order to evaluate M(k) at k = i

2 as t → +∞, we have to evaluate
M̂(k̂) as k̂ →∞. Writing M̂(k̂, s) = I + M̂1(s)/k̂ + . . . we have

M
( i

2

)
≈ M̂

( i
2

(6t)1/3
)
≈ I − i

(4
3

)1/3 1
t1/3

M̂1(s)

We observe now that the RHP for M̂ is precisely that for the Painlevé II-type system, see,
e.g., [34] (more details can be found in [30]). The symmetry r(0) = r(0), R(0) = R(0) implies
that the large-k̂ term, M̂1(s), can be expressed as

M̂1(s) =
i
2

(∫ s
u2 −u
u −

∫ s
u2

)
,

where u(s) is a real-valued solution of the Painlevé II equation

u′′(s) = su(s) + 2u3(s).
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In order to specify this solution, one can calculate its large-s asymptotics using again the
nonlinear steepest descent method, this time for the RHP for M̂ . It is shown in [30] that, as
s→ +∞, u(s) ∼ (r(0)−R(0)) 1

2
√
π
s−

1
4 e−

2
3
s3/2 , or, in terms of the classical Airy functions,

u(s) ∼ (r(0)−R(0)) Ai(s).

Now, going back from M̂1(s) to u and using the fact that ∂ts ∼ −2
3

(
4
3

)1/3 1
t1/3

, see (5.3), we
arrive at the asymptotic formula in the self-similar region, and for the “solitonless” case:

Asymptotics 5.1 (self-similar region (iii)). Let C > 0 be arbitrary. If (x, t) is in the region∣∣∣x
t
− 2
∣∣∣ t2/3 < C,

then, for t→ +∞,

u(x, t) = −2
3

(4
3

)2/3 1
t2/3

(
u2(s) + u′(s)

)
(1 + o(1)), (5.7)

where
s = 6−1/3

(x
t
− 2
)
t2/3.

6. The shock wave region

The region between the similarity region and the self-similar region can be described by a
pair of relations amongst x and t:

x

t
− 2→ 0,

(x
t
− 2
)
t2/3 →∞. (6.1)

Thus s→ +∞ (where s is defined in (5.3)), which suggests introducing such a scaling for the
RH problem that the phase factor eitθ takes the form eisθ̂, where the properties of θ̂(k̂) allows
deforming the RH problem in the same spirit as above: through appropriate factorizations,
where certain factors decay to the identity matrix as s→ +∞ and thus can be neglected.

Introducing the scaled spectral variable

k̂ :=
k

κ0
,

the RH problem for M(k), i.e., M−(k) = M+(k)J(k) reduces to a problem for M (1)(k̂) =
M(k):

M
(1)
− (k̂) = M

(1)
+ (k̂)J (1)(k̂)

on a contour similar to that in Figure 4, but with ±κ0 replaced by ±1. As in the previous
cases, the main contribution to the leading terms of the asymptotics for u comes from the
vicinities of the stationary phase points. Due to the chosen scaling, they are k̂ = ±1. Indeed,
the jump matrix on (−∞,−1) and (1,∞) is factorized, as above, into factors exponentially
decaying to the identity matrix. On the other hand, we have

tθ(k) ≈ τ θ̂(k̂)

as κ0 → 0 and s→ +∞, where τ differs from s only by a constant factor:

τ =
1

24
√

6

(
2− z

t

) 3
2
t (6.2)
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and θ̂(k̂) = 4k̂3 − 12k̂. Thus, as κ→ 0 and s→ +∞, the jump matrix J (1)(k̂) = J(k) is well
approximated, on k̂ ∈ (−1, 1), by

J (2)(k̂) = e−iτ θ̂(k̂)σ3

(
1 r̄(κ0k̂)− R̄(κ0k̂)

−r(κ0k̂) +R(κ0k̂) 1− |r(κ0k̂)−R(κ0k̂)|2

)
eiτ θ̂(k̂)σ3 . (6.3)

Notice that the constant factor in (6.2) has been chosen in such a way that the phase factor
θ̂ has exactly the same form as in the case of the KdV equation [22]. Therefore, similarly to
the KdV, one of two scenarios may occur:

i) |r(0) − R(0)| 6= 1. In this case, the central factor in (6.3) admits a factorization as in
(4.2), where the diagonal factor is bounded near k̂ = ±1. Then the signature table
for θ̂(k̂) allows proceeding as in the similarity region, which leads to the fact that the
similarity region asymptotics matches the self-similar region asymptotics and thus new
asymptotic forms do not appear in for the long time behavior of u.

ii) |r(0) − R(0)| = 1. In this case, the diagonal entry (1 − |r(κ0k̂) − R(κ0k̂)|2)−1 in the
factorization (4.2) becomes unbounded as κ0 → 0, which prevents using the same argu-
ments as in the previous case. We will show below, that in this case, a new asymptotic
form indeed occurs.

Notice that, generically, r(0) = −1 and R(0) = 0. Hence, the second case is generic, and
the following analysis will be devoted to this case. First, we notice that, similarly to the
analysis for the self-similar region, the solution of the vector RH problem (µ1 µ2) can be
written as (µ1 µ2)(i/2) = (1 1)M(i/2), where M(k) is the solution of the corresponding
2× 2 matrix problem normalized by the condition M(k)→ I as k →∞. Due to the chosen
scaling of the spectral parameter, in order to evaluate M(k) at k = i/2 as t→ +∞, we have
to evaluate M (1)(k̂) as k̂ →∞. Writing, for j = 1, 2,

M (j)(k̂, κ0, τ) = I +M
(j)
1 (κ0, τ)/k̂ + . . . ,

we have

M
( i

2

)
≈M (1)

(
i
2

1
κ0

)
≈ I − 2iκ0M

(1)
1 (κ0, τ) ≈ I − 2iκ0M

(2)
1 (κ0, τ). (6.4)

Recall that M (2)(k̂, κ0, τ) is the solution of the RH problem in the k̂ plane (relative to the
real axis as a contour), parametrized by the parameters (κ0, τ), and satisfying

I. the jump condition (across the real axis):

M
(2)
− (k̂) = M

(2)
+ (k̂)J (2)(k̂),

II. the normalization condition M (2)(k̂)→ I as k̂ →∞.
The next step in the series of deformations of the RH problem, stipulated by the discussion
above, is to modify the jump conditions near k̂ = ±1 in such a way that:

(i) There is no need to use the factorization of type (4.2) in order to provide the exponential
decay (to I) of the triangular factors after “pushing” them out from the real axis, into
the corresponding half-planes.

(ii) The signature table for the phase factor, away from certain vicinities of k̂ = ±1, is as
for θ̂(k̂).
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An appropriate tool for such a deformation is the “g-function mechanism”: one is looking for
a scalar function g(k̂) to replace the phase 4k̂3 − 12k̂, satisfying certain analytic properties.
Introduce

M (3)(k̂) = M (2)(k̂)e(−iτ4(k̂3−3k̂)+iτg(k̂))σ3 ,

where g(k̂), analytic in C \ R, is still to be defined. Then

M
(3)
− = M

(3)
+ J (3),

where J (3) can be written in three different ways:

J (3) =
(

e−iτ(g+−g−) (r̄ − R̄)e−iτ(g++g−)

(−r +R)eiτ(g++g−) (1− |r −R|2)eiτ(g+−g−)

)
(6.5)

J (3) =

(
1 (r̄−R̄)e−2iτg+

1−|r−R|2
0 1

)(
e−iτ(g+−g−)

1−|r−R|2 0
0 (1− |r −R|2)eiτ(g+−g−)

)(
1 0

(−r+R)e2iτg−

1−|r−R|2 1

)
(6.6)

J (3) =
(

1 0
(−r +R)e2iτg+ 1

)(
e−iτ(g+−g−) 0

0 eiτ(g+−g−)

)(
1 (r̄ − R̄)e−2iτg−

0 1

)
. (6.7)

We are looking for such g that the expression (6.5) is appropriate (in the sense that it gives a
useful representation in the limit τ → +∞) for k̂ near the critical points ±1, i.e., for certain
intervals k̂ ∈ (−b,−a) ∪ (a, b), where 0 < a < 1 and 1 < b <∞, whereas (6.6) is appropriate
for k̂ ∈ (−a, a) and (6.7) is appropriate for k̂ ∈ (−∞,−b) ∪ (b,∞).

1. k̂ ∈ (−b,−a) ∪ (a, b).
Notice that it is of importance here that 1 − |r(κ0k̂) − R(κ0k̂)|2 → 0 as κ0 → 0. More
precisely, 1 − |r(κ0k̂) − R(κ0k̂)|2 ≈ 2γκ2

0k̂
2 for some γ > 0. This suggest choosing g

such that the diagonal entries in (6.5) both vanish as κ0 → 0 and τ → +∞: the (1, 1)
entry decays if we have Im(g+ − g−) < 0 whereas the (2,2) entry should decay due to
the factor κ2

0 → 0, which has to compensate the growth of eiτ(g+−g−). Then, to have the
off-diagonal terms to be (asymptotically) independent of k̂, we require g+ + g− = const on
these intervals.

2. k̂ ∈ (−a, a).
First, to get rid of the trigonal factors in (6.6) (by absorbing them into M (3)), we need
that for k̂ outside (−a, a) but near (−a, a), the following property holds: Im g(k̂)·Im k̂ > 0.
Second, for the diagonal factor in (6.6), it is useful to have g+ − g− = const such that
Im(g+ − g−) < 0 and the growth of eiτ(g+−g−) as τ → +∞ is exactly compensated by the
decay of κ0. Thus we require

κ2
0eiτ(g+−g−) ≡ 1. (6.8)

3. k̂ ∈ (−∞,−b) ∪ (b,∞).
Here we require g+− g− = 0 and Im g(k̂) · Im k̂ < 0 for k̂ just outside these intervals (thus
outside (−b,−a) ∪ (a, b), the sign of Im g behaves as that of Im(4k̂3 − 12k̂)).

4. In order to preserve the normalization condition, we require g(k̂)− (4k̂3 − 12k̂) = O(1/k̂)
as k̂ →∞.
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We know ([22]) that all these properties are fulfilled by

g(z) = 12
∫ z

b

√
(p2 − a2)(p2 − b2)dp+ 12

∫ a

0

√
(p2 − a2)(p2 − b2)dp, (6.9)

for any 0 < a < 1 < b < ∞ such that a2 + b2 = 2, where the branch for the square root is
chosen such that g(z) is analytic in the cut plane with the branch cuts (−b,−a) and (a, b)
and

√
(p2 − a2)(p2 − b2) > 0 for p > b.

Actually, the parameter a specifies the region of applicability of the construction above:
the relation (6.8) becomes

κ2
0e24τ

R b
a

√
(p2−a2)(b2−p2)dp = 1. (6.10)

In order to express this region in terms of the original variables (x, t), from the definitions
(4.1) and (6.2) of κ0 and τ we have (asymptotically):

κ2
0 ≈

1
24

(
2− z

t

)
=
( τ

2t

) 2
3
. (6.11)

On the other hand, from (6.10) it follows that

0 < − log κ0

τ
≤ 8

3
2 (6.12)

(the left bound corresponds to a = 1, b = 1 and the right bound corresponds to a = 0,
b =
√

2). Combining (6.11) with (6.12) we obtain that τ ∼ log t and that the region, where
this asymptotic analysis is applicable, is given by the bounds

√
3 <

(
2− z

t

) 3
2 t

log t
< C (6.13)

for any C > 0. Finally, we notice that in the region in question, x and z are growing with
t whereas x − z, see (2.34), is bounded (this follows from the analysis below), which finally
gives the description of this region in the form

√
3 <

(
2− x

t

) 3
2 t

log t
< C. (6.14)

Now let us return to the asymptotic analysis of the RH problem for M (3) as t → +∞ in
the region (6.14). This problem is exactly the same as in the case of the KdV equation [22].
Let’s provide some details. Due to the properties of g, M (3) is asymptotically equivalent to
M (4), which solves the new RH problem:

• M (4)
− (k̂) = M

(4)
+ (k̂)J (4)(k̂) for k̂ ∈ (−b, b), where

J (4)(k̂) =



(
0 −e−2iτCa

e2iτCa 0

)
k̂ ∈ (a, b),(

1
2γk̂2

0

0 2γk̂2

)
k̂ ∈ (−a, a),(

0 −e2iτCa

e−2iτCa 0

)
k̂ ∈ (−b, a),

(6.15)
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with Ca = 12
∫ a

0

√
(p2 − a2)(b2 − p2)dp > 0

• M (4)(k̂)→ I as k̂ →∞.
Indeed, the trigonal factors in the jump matrices (6.6) and (6.7) can be absorbed into the
solution of an appropriately modified RH problem, the diagonal entries in (6.5) vanish asymp-
totically whereas the diagonal factor in (6.7) equals I and the off-diagonal entries in (6.5) are
independent of k̂.

A remarkable feature of the RH problem for M (4) is that its solution can be written
explicitly. To achieve this, it is convenient to proceed in two steps:
1. First, to get rid of the diagonal jump matrix on (−a, a).
2. Then, to solve the resulting RH problem on two slits, (−b,−a) and (a, b), explicitly in

terms of theta-functions of the associated Riemann surface.
When performing the first step, it is important to not “damage” the property of J (4) on
(−b,−a) and (a, b) to be independent of k̂. This can be done by applying the mechanism of
the “g-function type”. We look for a function G(k̂), analytic in C \ [−b, b], such that:

(i) G+ −G− = −i log 2γk̂2 for k̂ ∈ (−a, a);
(ii) G+ +G− = ∆ for k̂ ∈ (a, b), where ∆ is a constant;
(iii) G+ +G− = −∆ for k̂ ∈ (−b,−a);
(iv) G(k̂) = O(1/k̂) as k̂ →∞.

Then
M (5)(k̂) := M (4)(k̂)e−iG(k̂)σ3

will solve the following RH problem: M (5)
− (k̂) = M

(5)
+ (k̂)J (5)(k̂) for k̂ ∈ (−b,−a) ∪ (a, b) and

M (5)(k̂)→ I as k̂ →∞, where

J (5)(k̂) =



(
0 −e−2iτCa+∆

e2iτCa−∆ 0

)
k̂ ∈ (a, b),(

0 −e2iτCa−∆

e−2iτCa+∆ 0

)
k̂ ∈ (−b,−a).

. (6.16)

In order to determine G(k̂), it is sufficient to apply the integral Cauchy formula for the
function h := G

f , where

f(k̂) =
√

(k̂2 − a2)(k̂2 − b2)

and the branch is fixed as in (6.9). Noting that the sum of the limiting values of G in (2)
and (3) is transformed into the difference for h, we have:

G(k̂) =
f(k)
2πi

[∫ −a
−b

−∆dp

(p− k̂)f+(p)
+
∫ a

−a

−i log 2γp2dp

(p− k̂)f(p)
+
∫ b

a

∆dp

(p− k̂)f+(p)

]
. (6.17)

Then the constant ∆ is determined from the requirement that the r.h.s. of (6.17) is O(1/k):
equating the term of order k to zero gives

2
∫ b

a

∆dp
f+(p)

=
∫ a

−a

−i log 2γp2dp
f(p)
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and thus

∆ = i
∫ a

0

log 2γp2dp
f(p)

(∫ b

a

dp
f+(p)

)−1

∈ R. (6.18)

Finally, the explicit solution of the RH for M (5), i.e., the RH problem with piecewise
constant (depending only on external parameters), off-diagonal jump matrix on two slits
comes from the theory of compact Riemann surfaces and associated Riemann theta functions.
Particularly, relevant to the problem under consideration is the two-sheeted Riemann surface
X of genus 1 associated to f(z), the first sheet of which is fixed by the condition f(z) > 0
for z > b on this sheet. We can choose a homology basis {A,B} on X as follows: the cycle
A goes counterclockwise around the interval (−b,−a) on the first sheet, and the cycle B
goes counterclockwise around (−a, a) in such a way that its part in the lower half-place is
on the first sheet whereas the part in the upper half-plane is on the second sheet. The basic
holomorphic differential ω on X is fixed by the condition

∫
A ω = 1 and thus has the form

ω =
e

f(z)
dz with

e =
1
2

(∫ b

a

dp
f+(p)

)−1

.

Let E be the associated B-period:

E = 4e
∫ a

0

dp
f(p)

.

Define the associated Riemann theta function:

θ(s) =
∑
m∈Z

e2πims+Eπim2
.

This function is even and has the following periodicity properties:

θ(s+ 1) = θ(s),

θ(s+ E) = e−2πis−πiEθ(s).

The latter properties allows determining the main “building block” for the solution of the
RH problem for M (5): defining

h(s) =
θ(s+ d+ c)
θ(s+ c)

,

where c and d are arbitrary constants, we have that

h(s+ 1) = h(s),

h(s+ E) = e−2πich(s).

Now introduce

u(z) =
∫ z

b
ω, z ∈ C \ (−b, b),

where the contour of integration is on the first sheet of X, and the values of u are in C/Z.
We have:

(i) u+(z) + u−(z) = 0 for z ∈ (a, b);



28 A. BOUTET DE MONVEL AND D. SHEPELSKY

(ii) u+(z) + u−(z) = −E for z ∈ (−b,−a);
(iii) u+(z)− u−(z) = 1 for z ∈ (−a, a).
Then direct calculations show that the matrix-valued function

M̃(k̂) :=

 ν(k̂)+ν−1(k̂)
2

θ(u(k̂)+E
4
−φ
π

)

θ(u(k̂)+E
4

)

ν(k̂)−ν−1(k̂)
−2i

θ(−u(k̂)+E
4
−φ
π

)

θ(−u(k̂)+E
4

)
e−iφ

ν(k̂)−ν−1(k̂)
2i

θ(u(k̂)−E
4
−φ
π

)

θ(u(k̂)−E
4

)
eiφ ν(k̂)+ν−1(k̂)

2

θ(−u(k̂)−E
4
−φ
π

)

θ(−u(k̂)−E
4

)

 , (6.19)

where

ν(k) =
[

(k − a)(k + b)
(k + a)(k − b)

] 1
4

with branch cuts (−b,−a) and (a, b), ν(∞) = 1, and φ = 2τCa − ∆, satisfies the jump
conditions M̃− = M̃+J

(5). Notice that the function θ(−u(k̂) + E
4 ) has a unique zero at k̂ = 0

(on the first sheet of X), which is also a zero of ν(k̂)−ν−1(k̂). On the other hand, the function
θ(u(k̂) + E

4 ) has no zeros on the first sheet of X (actually, the unique zero of θ(u(k̂) + E
4 )

considered on the whole Riemann surface X is at k̂ = 0 on the second sheet). Hence, M̃ is
holomorphic on C \ ((−b,−a) ∪ (a, b)).

Thus the solution to the RH for M (5) is given by

M (5)(k̂) = M̃(∞)−1M̃(k̂),

where

M̃(∞) =

 θ(u(∞)+E
4
−φ
π

)

θ(u(∞)+E
4

)
0

0 θ(−u(∞)−E
4
−φ
π

)

θ(−u(∞)−E
4

)

 .

The final step consists in relating u, which is originally defined in terms of M(k), to the
constructed solution M (5)(k̂). The asymptotic relationship between the transformations of
the RH problem

M (2)(k̂) ≈M (5)(k̂)eiG(k̂)σ3e−iτ(g(k̂)−(4k̂3−12k̂))σ3

yields
M

(2)
1 ≈M (5)

1 + iG1σ3 − iτg1σ3, (6.20)
where

G(k̂) =
G1

k̂
+ . . . ,

g(k̂)− (4k̂3 − 12k̂)) =
g1

k̂
+ . . . as k̂ →∞,

(6.21)

and

M (5)(k̂) = I +
M

(5)
1

k̂
+ . . . .

From (6.19) it follows that

M
(5)
1 =

 0 − i(a−b)
2

θ(−u(∞)+E
4
−φ
π

)θ(u(∞)+E
4

)

θ(u(∞)+E
4
−φ
π

)θ(−u(∞)+E
4

)
e−iφ

i(a−b)
2

θ(u(∞)−E
4
−φ
π

)θ(−u(∞)−E
4

)

θ(−u(∞)−E
4
−φ
π

)θ(u(∞)−E
4

)
eiφ 0

 (6.22)
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Now, recalling (6.4), we have:

log
µ1

µ2
≈ −2iκ0

[
(M (5)

1 )21 − (M (5)
1 )12 + 2iG1 − 2iτg1

]
.

From (6.11) we have

∂tκ0 ≈ −
1

3 · 2
1
3

τ
1
3

t
4
3

and thus, recalling (2.34), we obtain, always in the “solitonless” case:

Asymptotics 6.1 (shock-wave region (iv)). Let C > 0 be arbitrary. If (x, t) is in the region
described by (6.14):

√
3 <

(
2− x

t

) 3
2 t

log t
< C,

then, for t→ +∞,

u(x, t) =
2

2
3

3
τ

1
3

t
4
3

[
(b− a) Re

{
θ(u(∞)− E

4 −
φ
π )θ(−u(∞)− E

4 )

θ(−u(∞)− E
4 −

φ
π )θ(u(∞)− E

4 )
eiφ

}
− 2G1 + 2τg1

]
(1 + o(1)).

(6.23)

Remark 6.2. Recall that in this region, τ ∼ log t, and g1, G1 are constants determined by
(6.21), and (M (5)

1 )21 and (M (5)
1 )12 oscillate with τ .

Remark 6.3. Notice that, as for the self-similar region, z in the definition (6.2) of the slow
variable τ can be replaced by x.
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