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Abstract

In this paper we investigate some regularity property for the solution to SPDE.
Under certain assumptions we prove that the solution of an SPDE takes values in
some subspace of the original state space if the initial condition does. As examples,
the main results are applied to different types of SPDE such as stochastic reaction-
diffusion equations, the stochastic p-Laplace equation, stochastic porous media and
fast diffusion equations in Hilbert space.
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1 Introduction

The variational approach has been used intensively for analyzing SPDE in recent years.
It gives a unified framework to deal with a large class of nonlinear SPDE of evolutionary
type, which model all kinds of dynamics with random influence. This approach was first
used by Bensoussan and Temam in [5, 6] to study SPDE with additive noise, later this
approach was further developed in the works of Pardoux [19], Krylov and Rozovoskii [14] for
more general case. For more general result on the existence and uniqueness of solution to
SPDE we refer to [11, 21, 27]. Within this framework different types of properties has been
established by many authors, e.g. see [9, 15, 24, 22] for the small noise asymptotic property
(i.e. large deviation principle), [16, 17, 18, 26] for the Harnack inequality and consequent
ergodicity, compactness and contractivity for the associated transition semigroup. As one
typical example of SPDE in this framework, stochastic porous media equations have been
intensively investigated by Kim [13] and Röckner et al in [1, 2, 3, 4, 10, 23].
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Let
V ⊂ H ≡ H∗ ⊂ V ∗

be a Gelfand triple, i.e. (H, 〈·, ·〉H) is a separable Hilbert space and identified with its dual
space H∗ by the Riesz isomorphism, V is a reflexive and separable Banach space such that
it is continuously and densely embedded into H. V ∗〈·, ·〉V denotes the dualization between
V and its dual space V ∗. {Wt} is a cylindrical Wiener process on a separable Hilbert space
U w.r.t. a complete filtered probability space (Ω,F ,Ft,P) and L2(U ;H) is the space of
all Hilbert-Schmidt operators from U to H. Consider the following stochastic evolution
equation

(1.1) dXt = A(t,Xt)dt+B(t,Xt)dWt,

where A : [0, T ] × V × Ω → V ∗ and B : [0, T ] × V × Ω → L2(U,H) are progressively
measurable. By assuming the coefficients A,B satisfy the standard monotone and coercive
conditions (see Theorem 3.5 in the Appendix) we know (1.1) has a unique strong solution
{Xt}t∈[0,T ], which is a H-valued continuous process and satisfies

E

(
sup
t∈[0,T ]

‖Xt‖2
H +

∫ T

0

‖Xt‖αV dt

)
<∞.

Recently, Röckner and Wang proved in [23] the L2-invariance of the solution for the
stochastic porous media equations (r > 1)

dXt = ∆(|Xt|r−1Xt)dt+B(t,Xt)dWt,

i.e. the solution takes values in the L2 space (note that the original state space is W−1,2)
and has right continuous paths in L2 (almost surely). This type of regularity is very useful
for the further study of corresponding random dynamical systems. For example, it was used
crucially to investigate the existence of the random attractor for stochastic porous media
equations (cf.[7]).

In this work we establish this type of regularity properties for a large class of SPDE
within the variational framework. Assume (S, ‖ · ‖S) is a subspace of H and Tn are positive
definite self-adjoint operators on H such that

〈x, y〉n := 〈x, Tny〉H , x, y ∈ H

are a sequence of new inner products on H. Suppose the induced norms ‖ · ‖n are all
equivalent to ‖ · ‖H and

∀x ∈ S, ‖x‖n ↑ ‖x‖S (n→∞).

Let Hn := (H, 〈·, ·〉n), then we get a sequence of new Gelfand triples

V ⊆ Hn ≡ H∗n ⊆ V ∗.

Now we formulate the main result of this paper.
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Theorem 1.1. Suppose the assumptions (H1)− (H4) in Theorem 3.5 hold, Tn : V → V is
continuous and there exist a constant C and an adapted process f ∈ L1([0, T ] × Ω; dt × P)
such that for n ≥ 1

(1.2) 2V ∗〈A(t, v), Tnv〉V + ‖B(t, v)‖2
L2(U,Hn) ≤ C‖v‖2

n + ft, v ∈ V, 0 ≤ t ≤ T, P− a.s..

(i) If E‖X0‖2
S <∞, then for any p ∈ [1, 2) we have

E sup
t∈[0,T ]

‖Xt‖pS <∞.

(ii) If E‖X0‖pS <∞ for some p ≥ 2 and

(1.3) ‖B(t, v)‖2
L2(U,Hn) ≤ C‖v‖2

n + ft, v ∈ V, 0 ≤ t ≤ T, P− a.s.,

where f ∈ L p
2 ([0, T ]× Ω; dt×P), then there exists a constant Cp such that

E sup
t∈[0,T ]

‖Xt‖pS ≤ Cp

(
E‖X0‖pS + E

∫ T

0

f
p/2
t ds

)
.

Moreover, {Xt}t∈[0,T ] is right continuous in S.

Remark 1.1. (1) This type of regularity has been required in [12] for establishing the con-
vergence rate of implicit approximations for stochastic evolution equations and in [9] for
deriving the LDP for semilinear SPDE. Hence this result gives a sufficient condition for ver-
ifying this type of regularity. In section 3 we apply this result to many examples such as
stochastic reaction-diffusion equations, the stochastic p-Laplace equation, stochastic porous
media and fast diffusion equations in Hilbert space.

(2) The idea of using equivalent norms ‖ · ‖n to approximate ‖ · ‖S has been used in [23]
for establishing the L2-invariance of the solution to stochastic porous media equations. In
order to apply Itô’s formula to the equation on different Gelfand triples, we introduce the
continuous operator In in the proof to transfer the equation between different triples. Hence
our proof is much simpler by avoiding some technical lemmas (see section 2.2) used in [23].

2 Proof of Theorem 1.1

Firstly, we give two lemmas as the preparations for the proof of the main result. Note that
we use different Riesz maps in to identify Hn ≡ H∗n in the new Gelfand triples, and i denotes
the Riesz map for identifying H ≡ H∗.

Lemma 2.1. If Tn : V → V is continuous, then in ◦ i−1 : H∗ → H∗n is continuous w.r.t.
‖ · ‖V ∗. Therefore, there exists a unique continuous extension In of in ◦ i−1 on V ∗ such that

(2.1) V ∗〈Inf, v〉V = V ∗〈f, Tnv〉V , f ∈ V ∗, v ∈ V.
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Proof. For any f ∈ H∗ ⊂ V ∗, we know in ◦ i−1f ∈ H∗n and

‖in ◦ i−1f‖V ∗ = sup
v∈V,‖v‖V =1

|V ∗〈in ◦ i−1f, v〉V | = sup
v∈V,‖v‖V =1

|〈i−1f, v〉n|

= sup
v∈V,‖v‖V =1

|〈i−1f, Tnv〉H | = sup
v∈V,‖v‖V =1

|V ∗〈f, Tnv〉V |

≤ sup
v∈V,‖v‖V ≤cn

|V ∗〈f, v〉V | ≤ cn‖f‖V ∗ ,

(2.2)

where cn is the operator norm of Tn from V to V . Obviously we also have

V ∗〈in ◦ i−1f, v〉V = V ∗〈f, Tnv〉V , f ∈ H∗, v ∈ V.

Then it is well known that in ◦ i−1 can be uniquely extended to a continuous operator on V ∗

such that (2.1) holds.

Since we want to apply the Itô formula to the solution of (1.1) in different Gelfand triples,
we need to write down the Itô formula for the square norm of the solution in a more precise
way by involving the corresponding Riesz map explicitly.

Lemma 2.2. ([21], Theorem A.2) Let K := Lα([0, T ] × Ω → V ; dt × P)(α > 1) and
X0 ∈ L2(Ω→ H;F0; P). Suppose we have a H-valued process Xt which satisfies

iXt = iX0 +

∫ t

0

Ysds+ i

(∫ t

0

ZsdWs

)
, t ∈ [0, T ],

where Y ∈ K∗ = Lα/(α−1)([0, T ]×Ω→ V ∗; dt×P) and Z ∈ L2([0, T ]×Ω→ L2(U ;H); dt×P)
are two adapted processes. If there exists an element X̄ in K such that X = X̄ dt×P, a.s.,
then Xt is a continuous adapted process on H such that E sup

t∈[0,T ]

‖Xt‖2
H <∞ and

(2.3) ‖Xt‖2
H = ‖X0‖2

H +

∫ t

0

(2V ∗〈Ys, X̄s〉V + ‖Zs‖2
L2(U ;H))ds+ 2

∫ t

0

〈Xs, ZsdWs〉H

holds P-a.s. for all t ∈ [0, T ]. We can replace X̄s by Xs in (2.3) if we set V ∗〈Ys, Xs〉V = 0
for Xs /∈ V .

Proof of Theorem 1.1: (i) It follows from the definition that the solution Xt to (1.1)
satisfies

(2.4) iXt = iX0 +

∫ t

0

A(s,Xs)ds+ i

(∫ t

0

B(s,Xs)dWs

)
, t ∈ [0, T ].

According to Lemma 2.1, by applying the continuous operator In to (2.4) we have

inXt = inX0 +

∫ t

0

InA(s,Xs)ds+ in

(∫ t

0

B(s,Xs)dWs

)
, t ∈ [0, T ].
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By Lemma 2.2 we can apply the Itô formula on the new Gelfand triple V ⊆ Hn ≡ H∗n ⊆ V ∗

to obtain

‖Xt‖2
n =‖X0‖2

n +

∫ t

0

(
2 V ∗〈InA(s,Xs), Xs〉V + ‖B(s,Xs)‖2

L2(U ;Hn)

)
ds

+ 2

∫ t

0

〈Xs, B(s,Xs)dWs〉n

≤‖X0‖2
n +

∫ t

0

(
C‖Xs‖2

n + fs
)

ds+ 2

∫ t

0

〈Xs, B(s,Xs)dWs〉n.

(2.5)

Hence

(2.6) e−Ct‖Xt‖2
n ≤ ‖X0‖2

n +

∫ t

0

e−Csfsds+ 2

∫ t

0

e−Cs〈Xs, B(s,Xs)dWs〉n =: Nt.

It is easy to show that Nt is a local submartingale, i.e. the sum of an increasing process and
a local martingale. Hence by a standard localization argument we know for any p ∈ [1, 2)

P
(

sup
t∈[0,T ]

‖Xt‖pn ≥ r
)

= P
(

sup
t∈[0,T ]

‖Xt‖2
n ≥ r2/p

)
≤ P

(
sup
t∈[0,T ]

Nt ≥ e−CT r2/p
)
≤ r−2/peCTENT <∞,

(2.7)

since ENT ≤ E‖X0‖2
S + E

∫ T
0

e−Csfsds <∞. Then

E sup
t∈[0,T ]

‖Xt‖pn =

∫ ∞
0

P
(

sup
t∈[0,T ]

‖Xt‖pn ≥ r
)
dr

≤
∫ 1

0

P
(

sup
t∈[0,T ]

‖Xt‖pn ≥ r
)
dr +

∫ ∞
1

P
(

sup
t∈[0,T ]

‖Xt‖pn ≥ r
)
dr

≤ 1 +

∫ ∞
1

r−2/peCTENTdr = 1 +
p

2− p
eCTENT .

Let n→∞, by the monotone convergence theorem and Fatou’s lemma we have

E sup
t∈[0,T ]

‖Xt‖pS = E lim
n→∞

sup
t∈[0,T ]

‖Xt‖pn

≤ lim inf
n→∞

E sup
t∈[0,T ]

‖Xt‖pn ≤ 1 +
p

2− p
eCTENT <∞.

(ii) By Itô’s formula and Young’s inequality we have

‖Xt‖pn =‖X0‖pn +
p

2

∫ t

0

‖Xs‖p−2
n · 2V ∗〈InA(s,Xs), Xs〉V ds

+ p

∫ t

0

‖Xs‖p−2
n 〈Xs, B(x,Xs)dWs〉n + p(

p

2
− 1)

∫ t

0

‖Xs‖p−4
n ‖Xs ◦B(t,Xs)‖2

L2(U,Hn)dt

≤‖X0‖pn +
p

2

∫ t

0

C(‖Xs‖pn + fs‖Xs‖p−2
n )ds+ p

∫ t

0

‖Xs‖p−2
n 〈Xs, B(x,Xs)dWs〉n

≤‖X0‖pn + C

∫ t

0

(‖Xs‖pn + fp/2s )ds+ p

∫ t

0

‖Xs‖p−2
n 〈Xs, B(x,Xs)dWs〉n,

(2.8)
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where C is a constant which may change from line to line.
Then by the Burkhölder-Davis-Gundy inequality and (1.3) we have

E sup
u∈[0,t]

∣∣∣∣∫ u

0

‖Xs‖p−2
n 〈Xs, B(s,Xs)dWs〉n

∣∣∣∣
≤3E

(∫ t

0

‖Xs‖2p−2
n ‖B(s,Xs)‖2

L2(U ;Hn)ds

)1/2

≤3E

(
sup
s∈[0,t]

‖Xs‖2p−2
n

∫ t

0

(‖Xs‖2
n + fs)ds

)1/2

≤3E

[
ε sup
s∈[0,t]

‖Xs‖pn + Cε

(∫ t

0

(C‖Xs‖2
n + fs)ds

)p/2]

≤3εE sup
s∈[0,t]

‖Xs‖pn + 3 · 2p/2CεE
∫ t

0

(
‖Xs‖pn + fp/2s

)
ds,

(2.9)

where ε > 0 is a small constant and Cε comes from Young’s inequality.
Then combining with (2.8) and Gronwall’s lemma we have for any stopping time τ ≤ T

E sup
t∈[0,τ ]

‖Xt‖pn ≤ C

(
E‖X0‖pn + E

∫ T

0

fp/2s ds

)
,

where C is a constant independent of n.
Therefore, by using a standard localization argument we have

E sup
t∈[0,T ]

‖Xt‖pS = sup
n≥1

E sup
t∈[0,T ]

‖Xt‖pn ≤ C

(
E‖X0‖pS + E

∫ T

0

fp/2s ds

)
.

The right continiuty of {Xt} in S can be derived by using the same argument in [23,
Theorem 2.8].

3 Applications to concrete SPDEs

In this section, we show that (1.2) and (1.3) can be verified for many concrete SPDE in
Hilbert space, hence Theorem 1.1 can be applied to those examples. For simplicity, we
mainly consider the additive type noise (e.g. B ∈ L2([0, T ]× Ω, L2(U, S))) in the examples.
Then it is obvious to see that (1.3) holds. A simple multiplicative noise example such that
(1.3) holds is

B(t, v)u := B0 +
N∑
i=1

ηi(t)〈u, ui〉Uv, u ∈ U, v ∈ V,

where B0 ∈ L2([0, T ]× Ω, L2(U, S)) is progressively measurable, ui ∈ U , ηi : [0, T ]× Ω→ R
is progressively measurable and bounded for 1 ≤ i ≤ N .
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Example 3.1. Let Λ be an open bounded domain in Rd and Lp := Lp(Λ). Consider the
following triple

Lp ⊆ L2 ⊆ (Lp)∗ ≡ L
p

p−1

and the stochastic equation

(3.1) dXt =
(
−|Xt|p−2Xt + ηtXt

)
dt+BtdWt, t ∈ [0, T ],

where p ≥ 2, η is a bounded process and Wt is a cylindrical Wiener process on L2. If
S = W 1,2

0 , X0 ∈ L2(Ω, S) and B ∈ L2([0, T ] × Ω, L2(L2, S)), then there exists a constant C
such that

E sup
t∈[0,T ]

‖Xt‖2
S ≤ C

(
E‖X0‖2

S + E

∫ T

0

‖Bt‖2
L2

dt

)
.

Proof. Note that S = W 1,2
0 = D(

√
−∆), where ∆ is the Laplace operator on L2 with the

Dirichlet boundary condition. Then we define Tn = −∆(1 − ∆
n

)−1 which is the Yosida
approximation of ∆. It is well known that the heat semigroup {Pt}t≥0 (generated by ∆)
is a contractive semigroup and Tn are continuous operators on Lp. Therefore, by using the
Hölder inequality and the contraction property of Pt on Lp we have

V ∗〈A(t, u), Tnu〉V = V ∗〈−|u|p−2u,−∆(1− ∆

n
)−1u〉V + ηt‖u‖2

n

=V ∗〈−|u|p−2u, nu− n(1− ∆

n
)−1u〉V + ηt‖u‖2

n

=− n
∫ ∞

0

e−tV ∗〈|u|p−2u, u− P t
n
u〉V dt+ ηt‖u‖2

n

≤− n
∫ ∞

0

e−t
[∫

Λ

(|u|p − |u|p−2uP t
n
u)dξ

]
dt

≤C‖u‖2
n, u ∈ Lp,

(3.2)

where C is a constant.
Hence (1.2) holds and the conclusion follows from Theorem 1.1.

Example 3.2. (Stochastic reaction-diffusion equation)
Let Λ be an open bounded domain in Rd. We consider the following triple

W 1,2
0 (Λ) ∩ Lp(Λ) ⊆ L2(Λ) ⊆ (W 1,2

0 (Λ) ∩ Lp(Λ))∗

and the stochastic reaction-diffusion equation

(3.3) dXt = (∆Xt − |Xt|p−2Xt + ηtXt)dt+BtdWt,

where p ≥ 2, η is a bounded process and Wt is a cylindrical Wiener process on L2(Λ). If
S = W 1,2

0 (Λ), X0 ∈ L2(Ω, S) and B ∈ L2([0, T ]×Ω, L2(L2(Λ), S), then there exists a constant
C such that

E sup
t∈[0,T ]

‖Xt‖2
S ≤ C

(
E‖X0‖2

S + E

∫ T

0

‖Bt‖2
L2

dt

)
.
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Proof. Let ∆ be the Laplace operator on L2(Λ) with the Dirichlet boundary condition,
then we define Tn = −∆(1− ∆

n
)−1, {Pt}t≥0 and E denote the corresponding semigroup and

Dirichlet form of ∆. It is easy to show that Tn are continuous operators on W 1,2
0 (Λ) since

Tn = n

(
I −

(
I − ∆

n

)−1
)
.

Then we have

V ∗〈∆u,−∆(1− ∆

n
)−1u〉V

= V ∗〈∆u, nu− n(1− ∆

n
)−1u〉V

= −n
∫ ∞

0

e−t〈∇u,∇u−∇P t
n
u〉L2(Λ)dt

≤ −n
∫ ∞

0

e−t(E(u, u)− E(u, P t
n
u))dt

≤ 0,

where the last step follows from the contraction property of the Dirichlet form E .
Therefore, combining with (3.2) we know that (1.2) holds and the conclusion follows from

Theorem 1.1.

Remark 3.1. (1) This regularity property is used in [12] (see assumption (T3)) for establishing
the convergence rate of the implicit approximations for stochastic evolution equations.

(2) In the above example one can replace ∆ by a more general negative definite self-
adjoint operator L and obtain a similar result for S = D(

√
−L). This type of regularity

has been used in [9, Lemma 3.2] for establishing the large deviation principle for semilinear
SPDEs.

Example 3.3. (stochastic porous media and fast diffusion equation)
Let Λ be an open bounded domain in Rd. For r > 0, r ≥ d−2

d+2
we consider the following triple

V := Lr+1(Λ) ⊆ H := (W 1
0 (Λ))∗ ⊆ V ∗

and the stochastic porous media( or fast diffusion) equation

(3.4) dXt =
(
∆(|Xt|r−1Xt) + ηtXt

)
dt+BtdWt,

where Wt is a cylindrical Wiener process on L2(Λ) and η is a bounded process. If S = L2(Λ),
X0 ∈ L2(Ω, S) and B ∈ L2([0, T ]× Ω, L2(L2(Λ)), then there exists a constant C such that

E sup
t∈[0,T ]

‖Xt‖2
S ≤ C

(
E‖X0‖2

S + E

∫ T

0

‖Bt‖2
L2

dt

)
.
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Proof. According to [20, Example 4.1.11;Remark 4.1.15] we know the conditions (H1)−(H4)
in Theorem 3.5 hold for r > 0, r ≥ d−2

d+2
. Hence we only need to verify (1.2) in Theorem 1.1

here.
It is well known that the heat semigroup {Pt} is contractive on Lp(Λ) for any p > 1.

Now we define the Yosida approximation operator

Tn = −∆(I − ∆

n
)−1 = n

(
I − (I − ∆

n
)−1

)
,

it’s easy to show that Tn are continuous operators on Lr+1(Λ) by using the formula

(I − ∆

n
)−1u =

∫ ∞
0

e−tP t
n
udt.

Then by the Hölder inequality and the contractivity of {Pt} on Lr+1(Λ) we have

V ∗〈∆(|u|r−1u),−∆(1− ∆

n
)−1u〉V

= 〈|u|r−1u, nu− n(1− ∆

n
)−1u〉L2

= −n
∫ ∞

0

e−t
(∫

Λ

|u|r+1dx−
∫

Λ

|u|r−1u · P t
n
udx

)
dt

≤ 0.

Hence the conclusion follows from the Theorem 1.1.

Remark 3.2. Note that if r > 1, this result has been obtained in [23, Theorem 2.8] where more
general stochastic porous media equations were studied. But under the present framework
our proof is much simpler and the result here also holds for stochastic fast diffusion equations
(i.e. r < 1). In the example we assume r ≥ d−2

d+2
such that the embedding Lr+1(Λ) ⊆ (W 1

0 (Λ))∗

is dense and continuous. For 0 < r < d−2
d+2

one should use the Gelfand triple studied in [21].

Example 3.4. ( Stochastic p-Laplace equation)
Let Λ be an open bounded domain in Rd with convex and smooth boundary. We consider the
following triple

W 1,p(Λ) ⊆ L2(Λ) ⊆ (W 1,p(Λ))∗

and the stochastic p-Laplace equation

(3.5) dXt =
[
div(|∇Xt|p−2∇Xt)− ηt|Xt|p̃−2Xt

]
dt+BtdWt,

where 2 ≤ p <∞, 1 ≤ p̃ ≤ p, Wt is a cylindrical Wiener process on L2(Λ) and η is a positive
bounded process. If S = W 1,2(Λ), X0 ∈ L2(Ω, S) and B ∈ L2([0, T ] × Ω, L2(L2, S)), then
there exists a constant C such that

E sup
t∈[0,T ]

‖Xt‖2
S ≤ C

(
E‖X0‖2

S + E

∫ T

0

‖Bt‖2
L2

dt

)
.
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Proof. According to the results in [20] (e.g. Example 4.1.9), we only need to verify the
assumption (1.2) in Theorem 1.1. Since S = W 1,2(Λ) = D(

√
−∆), where ∆ is the Laplace

operator on L2(Λ) with the Neumann boundary condition. It is well known that the cor-
responding semigroup {Pt} is the Neumann heat semigroup (i.e. the corresponding Markov
process is the Brownian Motion with reflecting boundary) and Pt : L2(Λ)→ W 1,2(Λ). More-
over, we know that Pt maps Lp(Λ) into W 1,p(Λ) continuously (see [8, section 2] for more
general results). Hence for all t ≥ 0, Pt : W 1,p(Λ)→ W 1,p(Λ) is continuous.

Now we define

Tn = −∆(I − ∆

n
)−1 = n

(
I − (I − ∆

n
)−1

)
.

It is easy to show that Tn are also continuous operators on W 1,p(Λ) since

(I − ∆

n
)−1u =

∫ ∞
0

e−tP t
n
udt.

Moreover, since the boundary of the domain is convex and smooth, we have the following
gradient estimate (cf.[25, Theorem 2.5.1])

|∇Ptu| ≤ Pt|∇u|, u ∈ W 1,p(Λ).

Since {Pt} is a contractive semigroup on Lp(Λ), it is easy to see that {Pt} is a contractive
semigroup on W 1,p(Λ). Therefore,

V ∗〈div(|∇u|p−2∇u),−∆(1− ∆

n
)−1u〉V

= V ∗〈div(|∇u|p−2∇u), nu− n(1− ∆

n
)−1u〉V

= n

∫ ∞
0

e−tV ∗〈div(|∇u|p−2∇u), u− P t
n
u〉V dt

= −n
∫ ∞

0

e−t
(∫

Λ

|∇u|pdx−
∫

Λ

|∇u|p−2∇u · ∇P t
n
udx

)
dt

≤ 0,

where in the last step we use the Hölder inequality and the contractivity of {Pt} on W 1,p(Λ)
to conclude ∫

Λ

|∇u|p−2∇u · ∇Psudx

≤
(∫

Λ

|∇u|pdx
) p−1

p

·
(∫

Λ

|∇Psu|pdx
) 1

p

≤
(∫

Λ

|∇u|p
) p−1

p

·
(∫

Λ

|Ps|∇u||pdx
) 1

p

≤
∫

Λ

|∇u|pdx.

Then the conclusion follows from Theorem 1.1.
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Appendix: The existence and uniqueness of solution

We include the classical existence and uniqueness result in [14] for the reader’s convenience.
We first recall the definition of the solution to (1.1).

Definition 3.1. A continuous H-valued (Ft)-adapted process {Xt}t∈[0,T ] is called a solution
of (1.1), if for its dt⊗P-equivalent class X̄ we have

X̄ ∈ Lα([0, T ]× Ω, dt⊗P;V ) ∩ L2([0, T ]× Ω, dt⊗P;H)

and P-a.s.

Xt = X0 +

∫ t

0

A(s, X̄s)ds+

∫ t

0

B(s, X̄s)dWs, t ∈ [0, T ].

Theorem 3.5. ([14] Theorems II.2.1, II.2.2) Suppose for a fixed α > 1 there exist
constants θ > 0, K and a positive adapted process f ∈ L1([0, T ] × Ω; dt × P) such that the
following conditions hold for all v, v1, v2 ∈ V and (t, ω) ∈ [0, T ]× Ω.

(H1) (Hemicontinuity) The map s 7→ V ∗〈A(t, v1 + sv2), v〉V is continuous on R.

(H2) (Monotonicity)

2V ∗〈A(t, v1)− A(t, v2), v1 − v2〉V + ‖B(t, v1)−B(t, v2)‖2
L2(U ;H) ≤ K‖v1 − v2‖2

H .

(H3) (Coercivity)

2V ∗〈A(t, v), v〉V + ‖B(t, v)‖2
L2(U ;H) + θ‖v‖αV ≤ ft +K‖v‖2

H .

(H4) (Boundedness)

‖A(t, v)‖V ∗ ≤ f
(α−1)/α
t +K‖v‖α−1

V .

Then for any X0 ∈ L2(Ω→ H;F0; P) (1.1) has a unique solution {Xt}t∈[0,T ] and satisfies

E sup
t∈[0,T ]

‖Xt‖2
H <∞.

Moreover, we have the following crucial Itô’s formula

‖Xt‖2
H = ‖X0‖2

H+

∫ t

0

(
2V ∗〈A(s,Xs), Xs〉V + ‖B(s,Xs)‖2

L2(U ;H)

)
ds+2

∫ t

0

〈Xs, B(s,Xs)dWs〉H .
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fessor Feng-yu Wang for their valuable discussions and suggestions.

11



References

[1] V. Barbu, G. Da Prato, and M. Röckner, Existence of strong solutions for stochastic
porous media equation under general monotonicity conditions, to appear in Ann. Prob.
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[11] I. Gyöngy, On stochastic equations with respect to semimartingale III, Stochastics 7
(1982), 231–254.
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