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The goal of this work is to prove the existence of a solution to the following transport
equation:

∂tµt + divx(b(µ, · , · )µt) = 0, µ0 = ν, (1)

where

b = (bi)d
i=1 : M0(Rd × [0, 1])× Rd × [0, 1] → Rd

is a Borel mapping and M0(Rd× [0, 1]) is the space of finite Borel measures on Rd× [0, 1]
equipped with the weak topology.

We shall say that a family µ := (µt)t∈[0,1] of finite Borel measures (regarded also as the
measure µt(dx) dt on Rd×[0, 1]) satisfies equation (1) if b(µ, · , · ) ∈ L1(S×[0, 1], µt(dx) dt)
for every compact set S ⊂ Rd, that is, the function |b(µ, · , · )| is integrable with respect
to |µ| on every compact set in Rd× [0, 1], and for all t ∈ [0, 1] the following identity holds:∫

Rd

ϕ(x) µt(dx)−
∫

Rd

ϕ(x) ν(dx) =

=

∫ t

0

∫
Rd

(b(µ, x, s),∇ϕ(x)) µs(dx) ds ∀ϕ ∈ C∞
0 (Rd). (2)

This equation has been an object of intensive studies over the past decade. For recent
surveys, see [1], [2], [3], and [4]; in particular, nonlinear equations are considered in [4].
A typical condition on b in the linear case is the inclusion b ∈ L1([0, 1], W 1,∞(Rd)) or
the requirement that b is a BV function with respect to x (see [1], [2]). Our aim is to
prove the existence assuming only some conditions on the growth of b. In this paper we
only consider probability measures. The spaces of probability measures on Rd × [0, 1]
and Rd equipped with the weak topology will be denoted by P(Rd × [0, 1]) and P(Rd),
respectively. Our main result is the following theorem.

Theorem 1. Let ν be a probability measure on Rd. Suppose that
(i) for every fixed measure µ ∈ P(Rd × [0, 1]), the mapping x 7→ b(µ, x, t) is continuous

for almost every t and one has uniform convergence b(µj, x, t) → b(µ, x, t) on compact
sets whenever µj → µ weakly;

(ii) there exist numbers c ∈ (0,∞) and k ∈ N such that for all (x, t) ∈ Rd × [0, 1] and
all µ ∈ P(Rd × [0, 1]) one has

(b(µ, x, t), x) ≤ c(1 + |x|2),

|b(µ, x, t)| ≤ c(1 + |x|2k),

∫
Rd

|x|2k ν(dx) < ∞.

Then there exists a family µ = (µt)t∈[0,1] of probability measures satisfying (1).

Under condition (ii), condition (i) can be reformulated as follows: for every fixed mea-
sure µ, the mapping x 7→ b(µ, x, t) is continuous for a.e. t and for each compact set S ⊂ Rd,
the mapping b generates a continuous mapping

F : P(Rd × [0, 1]) → L∞([0, 1], C(S))

defined by F (µ)(t)(x) := b(µ, x, t).
Our approach is based on the well-known method of “vanishing viscosity” (see, e.g.,

[5, Theorem 4]) combined with the Schauder theorem. We replace equation (1) by the
parabolic equation

∂tµt − ε∆µt + divx(b(µ, · , · )µt) = 0, µ0 = ν, (3)
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understood as the following integral identity for all t ∈ [0, 1]:∫
Rd

ϕ dµt −
∫

Rd

ϕ dν =

∫ t

0

∫
Rd

[ε∆ϕ + (b,∇ϕ)] dµs ds ∀ϕ ∈ C∞
0 (Rd). (4)

Under our assumptions on b in the case where b is independent of µ, the next proposition
follows from the results established in [6] and [7] (see [6, Corollary 3.3, Lemma 2.1,
Lemma 2.2] and [7, Theorem 3.3]).

Proposition 1. Suppose that a probability measure ν on Rd has a density %0 ∈ C∞
0 (Rd),

the coefficient b does not depend on µ, and there exist numbers c ∈ (0,∞) and k ≥ 1 such
that for all (x, t) ∈ Rd × [0, 1] one has

(b(x, t), x) ≤ c(1 + |x|2),

|b(x, t)| ≤ c(1 + |x|2k),

∫
Rd

|x|2k ν(dx) < ∞.

Then there exists a unique family µ = (µt)t∈[0,1] of probability measures on Rd solving
equation (3). Moreover, there exists a number N depending only on c, k and

∫
Rd |x|2k dν

such that

sup
t∈[0,1]

∫
Rd

|x|2k dµt < N.

Certainly, the same is true for any interval [0, T ] in place of [0, 1].
First we prove our main result in the case of b independent of µ by letting ε → 0.

This case is simpler than the general one, but the proof can be extended to the infinite-
dimensional case. So we assume that b does not depend on µ, the mapping x 7→ b(x, t) is
continuous for almost every t, and condition (ii) of Theorem 1 is fulfilled.

Let us fix a Borel probability measure ν on Rd and a sequence of probability measures
νn = %n(x) dx, where %n ∈ C∞

0 (Rd), such that {νn} converges weakly to ν and one has

sup
n

∫
Rd

|x|2k dνn < ∞.

According to Proposition 1, for each n, there exists a unique family µn = (µn
t )t∈[0,1] of

probability measures on Rd satisfying the equation

∂tµ
n
t − n−1∆µn

t + divx(bµ
n
t ) = 0, µn

0 = νn

in the sense that for all ϕ ∈ C∞
0 (Rd) and t ∈ [0, 1] one has∫

Rd

ϕ dµn
t −

∫
Rd

ϕ dνn =

∫ t

0

∫
Rd

[n−1∆ϕ + (b,∇ϕ)] dµn
s ds. (5)

Moreover, there exists a number C independent of n such that

sup
t∈[0,1]

∫
Rd

|x|2k dµn
t < C,

where k is the number from condition (ii) in Theorem 1. Therefore, the set of measures

{µn
t : t ∈ [0, 1], n ∈ N}

is uniformly tight on Rd. Now we fix a countable dense set F ∈ C∞
0 (Rd) (the latter

space is equipped with the topology of uniform convergence of all derivatives on compact
sets) and take a countable dense set T ⊂ [0, 1]. We can find a subsequence {µnk

t } which
converges weakly to a probability measure µt for each t ∈ T . Let us prove that

lim
n→∞

∫
Rd

ϕ(x) dµnk
t =

∫
Rd

ϕ(x) dµt (6)



3

for all t ∈ [0, 1] and all ϕ ∈ F . Let us fix a function ϕ ∈ F . Then there is a number B
such that |b(x, t)| ≤ B for all x ∈ supp ϕ and t ∈ [0, 1], so we have∣∣∣∫

Rd

ϕ dµεk
t −

∫
Rd

ϕ dµεk
s

∣∣∣ ≤ (‖∆ϕ‖∞ + B‖∇ϕ‖∞)|t− s|.

Let us fix a point t ∈ [0, 1]. For any ε > 0 there are a number r ∈ T and a natural number
N such that for all numbers k > N one has∣∣∣∫

Rd

ϕ dµnk
t −

∫
Rd

ϕ dµnk
r

∣∣∣ ≤ ε/3,
∣∣∣∫

Rd

ϕ dµnk
r −

∫
Rd

ϕ dµr

∣∣∣ ≤ ε/6.

Then, for all k, l > N , we have∣∣∣∫
Rd

ϕ dµnk
t −

∫
Rd

ϕ dµnl
t

∣∣∣
≤

∣∣∣∫
Rd

ϕ dµnk
t −

∫
Rd

ϕ dµnk
r

∣∣∣ +
∣∣∣∫

Rd

ϕ dµnk
r −

∫
Rd

ϕ dµnl
r

∣∣∣ +
∣∣∣∫

Rd

ϕ dµnl
r −

∫
Rd

ϕ dµnl
t

∣∣∣ ≤ ε.

Hence the sequence µnk
t on Rd is weakly fundamental and uniformly tight. Therefore, we

obtain (6) for all t and all ϕ ∈ F . Then equality (6) holds for all continuous functions ϕ
with compact support. Letting k →∞ in (5) we obtain the equality∫

Rd

ϕ dµt −
∫

Rd

ϕ dν =

∫ t

0

∫
Rd

(b,∇ϕ) dµs ds

because, for almost every fixed s, by the continuity of x 7→ b(x, s), we have∫
Rd

(b(x, s),∇ϕ(x)) dµnk
s →

∫
Rd

(b(x, s),∇ϕ(x)) dµs

and the left-hand side is uniformly bounded, which enables us to integrate in s and obtain
the aforementioned equality. This gives Theorem 1 in the linear case.

Let us proceed to the general case where b may depend on µ. We construct a solution
to (1) as a weak limit of solutions to approximating nondegenerate parabolic equations
with the extra terms −ε∆µt, where the coefficient b satisfies condition (ii) of Theorem 1,
but in place of condition (i) we impose the following much weaker condition:

(i)′ the mapping b is defined on the space Pabs×Rd×[0, 1], where the space Pabs consists
of all absolutely continuous probability measures on Rd × [0, 1] and is equipped with
variation distance, and for Lebesgue a.e. (x, t), the mapping µ 7→ b(µ, x, t) is continuous
in the variation distance.

In fact, we need even less: it suffices that b be defined only for µ from the subset in
Pabs consisting of measures of the form %(x, t) dx dt such that x 7→ %(x, t) is a probability
density for each t ∈ [0, 1].

Let us consider the following nonlinear parabolic equation:

∂tµt − ε∆µt + divx(b(µ, · , · )µt) = 0, µ0 = ν, (7)

where ν = %0(x) dx and %0 ∈ C∞
0 (Rd).

First we prove the existence of a solution to equation (7). Suppose that we are given real
numbers α > 0 and c1 > 0 and that, for each closed interval Jr = [r, 1−r] and each closed
ball BR = {x ∈ Rd : |x| ≤ R}, where r, R > 0 we are given a number c2(r, R) > 0. Let
k be the number from condition (ii) and let Cα(E) denote the Banach space of α-Hölder
functions on E with its natural norm.

Let us consider the set K ⊂ L1(Rd × [0, 1]) of all functions % satisfying the following
conditions:

% ≥ 0,

∫
R

%(x, t) dx = 1,

∫
Rd

|x|2k%(x, t) dx ≤ c1 ∀ t ∈ [0, 1],
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‖%‖Cα(Jr×BR) ≤ c2(r, R) ∀ r, R > 0,

%(x, 0) = %0(x) a.e. and for each ϕ ∈ C∞
0 (Rd) the function

t 7→
∫

Rd

ϕ(x)%(x, t) dx

is Lipschitzian with some constant C(ϕ).

Lemma 1. The set K is convex and compact in the Banach space L1([0, 1]× Rd).

Proof. Indeed, given a sequence in K, by a diagonal argument we choose a subsequence
{%n} that converges uniformly on compact sets in Rd× (0, 1) (here we use the bounds on
the Hölder norms). Since ∫

Rd

|x|2k%(x, t) dx ≤ c1 ∀ t ∈ [0, 1],

the set of probability measures %(x, t) dx on Rd, where % ∈ K and t ∈ [0, 1], is uniformly
tight. Hence, for each fixed t ∈ [0, 1], the measures %n(x, t) dx on Rd converge weakly to
a probability measure µt on Rd, where µ0 = ν. Locally uniform convergence of densities
shows that µ = µt dt has a density %, which is locally Hölder continuous on Rd × (0, 1)
and satisfies the equality µt = %(x, t) dx. For each fixed ϕ ∈ C∞

0 (Rd) we have∫
Rd

ϕ(x) %(x, t) dx = lim
n→∞

∫
Rd

ϕ(x) %n(x, t) dx, t ∈ [0, 1],

hence the left-hand side is Lipschitzian with constant C(ϕ). Therefore, % ∈ K. Hence
%n → % in the norm of L1(Rd× [0, 1]); we recall that pointwise convergence of probability
densities to a probability density yields convergence in mean, see [8, Theorem 2.8.9].
Obviously, K is convex. �

It should be noted that we obtain a convex compact set even if we omit the last
condition in the definition of K regulating the behavior in t and specifying the value
at t = 0. However, for subsequent applications to parabolic equations the introduced
class turns out to be more convenient. The probability measure with density % ∈ K on
Rd × [0, 1] will be denoted by the same symbol % and %t will denote both the probability
density x 7→ %(x, t) on Rd and the measure with this density.

Now we define a mapping T : K → K as follows:

χ = T (%) ⇐⇒ ∂tχt − ε∆χt + divx(b(%, · , · )χt) = 0, χ0 = ν.

According to Proposition 1 and [9, Corollary 3.9], the mapping T is well-defined. Note
that the Lipschitzness of the integral of ϕ ∈ C∞

0 (Rd) with respect to χt(dx) follows from
(4) due to the uniform boundedness of b(%, x, t) on supp ϕ× [0, 1].

Lemma 2. The mapping T is continuous.

Proof. Let %n, % ∈ K, ‖%n − %‖L1 → 0 and χn = T (%n). Since K is compact, we can find
a convergent subsequence {χnk}. We prove that χ := lim

k→∞
χnk satisfies equation (7) with

b = b(%, · , · ). For every ϕ ∈ C∞
0 (Rd) we have the identity∫

Rd

ϕ(x)χnk(x, t) dx−
∫

Rd

ϕ(x) ν(dx) = ε

∫ t

0

∫
Rd

∆ϕ(x)χnk(x, s) dx ds+

+

∫ t

0

∫
Rd

(b(%nk , x, s),∇ϕ(x))χnk(x, s) dx ds. (8)

Set S := supp ϕ. Since |b(%nk , x, t)| is uniformly bounded on S × [0, 1] and

‖χnk − χ‖L1 → 0, ‖%nk − %‖L1 → 0, |b(%nk , x, t)− b(%, x, t)| → 0 a.e.,
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we can let k →∞ in (8) and obtain for all t ∈ [0, 1]∫
Rd

ϕ(x)χ(x, t) dx−
∫

Rd

ϕ(x) ν(dx) = ε

∫ t

0

∫
Rd

∆ϕ(x)χ(x, s) dx ds+

+

∫ t

0

∫
Rd

(b(%, x, s),∇ϕ(x))χ(x, s) dx ds.

This shows that χ = T (%). According to the uniqueness assertion in Proposition 1 we
conclude that each subsequence in {χn} contains a subsequence convergent to χ. This
yields that χn → χ, hence T is continuous. �

Applying Schauder’s fixed point theorem we conclude that there exists % ∈ K such that
% = T (%) and the family of measures µt = %(x, t) dx satisfies equation (7). Hence we
arrive at the following assertion.

Proposition 2. Suppose that a probability measure ν has a density from C∞
0 (Rd) and b

and ν satisfy condition (ii) of Theorem 1 and condition (i)′ above. Then there exists a
family µ = (µt)t∈[0,1] of probability measures on Rd satisfying (7). Moreover, there exists
a number N depending only on c, k and

∫
Rd |x|2k dν such that

sup
t∈[0,1]

∫
Rd

|x|2k dµt < N.

Now we prove Theorem 1. Let us fix a probability measure ν. We can find probability
measures νn = %n(x) dx weakly convergent to the measure ν such that %n ∈ L∞(Rd) and

sup
n

∫
Rd

|x|2k dνn < ∞.

For each ε = n−1 we take the solution (µn
t )t∈[0,1] to equation (7) with µn

0 = νn. Repeating
our reasoning from the linear case we find a sequence {nk} such that {µnk

t } converges
weakly to µt for all t ∈ [0, 1]. Denote b(µ, · , · ) and b(µnk , · , · ) by b and bk respectively.
We have the identity∫

Rd

ϕ dµnk
t −

∫
Rd

ϕ dνnk =

∫ t

0

∫
Rd

[n−1
k ∆ϕ + (bk,∇ϕ)] dµnk

s ds.

Let S := supp ϕ. Note that∣∣∣∫ t

0

∫
Rd

(bk,∇ϕ) dµnk
s ds−

∫ t

0

∫
Rd

(b,∇ϕ) dµs ds
∣∣∣ ≤

≤ ‖bk − b‖L∞(S×[0,1])‖∇ϕ‖∞+

+
∣∣∣∫ t

0

∫
Rd

(b,∇ϕ) dµnk
s ds−

∫ t

0

∫
Rd

(b,∇ϕ) dµs ds
∣∣∣.

Letting k →∞ we obtain∫
Rd

ϕ dµt −
∫

Rd

ϕ dν =

∫ t

0

∫
Rd

(b(µ, · , · ),∇ϕ) dµs ds

since by our assumption the mapping x 7→ b(µ, x, s) is continuous for a.e. s ∈ [0, 1] and
the function (x, s) 7→ |(b(µ, x, s),∇ϕ(x))| is uniformly bounded. This completes the proof
of Theorem 1.

It is worth noting that, according to (2), since the function (b(µ, x, t),∇ϕ(x)) has
bounded support and is uniformly bounded for each ϕ ∈ C∞

0 (Rd), the function

t 7→
∫

Rd

ϕ(x) µt(dx)
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is Lipschitzian. This function is continuously differentiable if b is continuous in t.
Finally, we observe that positivity of measures is essential for our a priori estimates

employed in the proof. The same techniques apply to much more general second order
elliptic operators in place of the Laplacian: we only need the assumptions from [6], [7],
and [9]. Extensions to the infinite-dimensional case in the spirit of [10] will be considered
in a forthcoming paper.
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