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The goal of this work is to prove the existence of a solution to the following
nonlinear evolution equation for probability measures on a separable Hilbert spaceX
with an orthonormal basis {ei}:

∂tµt +
∞∑
i=1

∂ei
(bi(µ, · , · )µt) = 0, µ0 = ν, (1)

where

bi : P(X × [0, 1])×X × [0, 1] → R1, i ∈ N,
are Borel functions and P(X × [0, 1]) is the space of Borel probability measures on
X × [0, 1] equipped with the weak topology (in Theorem 2 we consider the weak
topology on the space of measures corresponding to the weak topology w on X, i.e.,
we deal with (X,w), and in Theorems 3 and 4 we are concerned with the usual weak
topology on the space of measures).

We shall say that a family µ := (µt)t∈[0,1] of Borel probability measures on X
(regarded also as a measure on X × [0, 1] through the identification µ := µt dt)
satisfies equation (1) if

bi(µ, · , · ) ∈ L1(µ)

and, for all t ∈ [0, 1], one has∫
X

ϕdµt −
∫

X

ϕdν =

∫ t

0

∫
X

m∑
i=1

bi(µ, x, s)∂ei
ϕ(x)µs(dx) ds (2)

for every function ϕ of the form

ϕ(x) = ϕ0(x1, . . . , xm), xi = (x, ei), ϕ0 ∈ C∞b (Rm), m ∈ N.

The class of all such functions will be denoted by FC∞({ei}).
The finite dimensional case has been studied in [9]. We recall the main result

of [9]. In the finite dimensional case we deal with the equation

∂tµt + divx(b(µ, · , · )µt) = 0, µ0 = ν, (3)

where

b = (bi)d
i=1 : P(Rd × [0, 1])× Rd × [0, 1] → Rd

is a Borel mapping. A family µ := (µt)t∈[0,1] of Borel probability measures on Rd

(regarded also as a measure on Rd × [0, 1] as above) satisfies equation (3) if

bi(µ, · , · ) ∈ L1(S × [0, 1], µt(dx) dt)
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for every compact set S ⊂ Rd, that is, the function (x, t) 7→ |b(µ, x, t)| is integrable
with respect to |µ| on every compact set in Rd × [0, 1], and the following identity
holds for all t ∈ [0, 1]:∫

Rd

ϕdµt −
∫

Rd

ϕdν =

∫ t

0

∫
Rd

(b(µ, · , · ),∇ϕ) dµs ds ∀ϕ ∈ C∞0 (Rd), (4)

where ( · , · ) denotes the Euclidean inner product on Rd.
This equation has been an object of intensive studies over the past decade. For

recent surveys, see [1], [2], [11], and [12]. In particular, the nonlinear equation has
been considered in [11]. A typical condition on b in the linear case is the inclusion
b ∈ L1([0, 1],W 1,∞(Rd)) or the requirement that b is a BV function with respect
to x (see [1], [2]). In [9], the existence has been established assuming only some
conditions on the growth of b. Namely, the following result has been proved.

Theorem 1. Let ν be a probability measure on Rd. Suppose that
(A1) for every fixed measure µ ∈ P(Rd × [0, 1]), the mapping x 7→ b(µ, x, t) is

continuous for a.e. t and one has uniform convergence b(µj, · , · ) → b(µ, · , · ) on
compact sets whenever µj → µ weakly;

(B1) there exist numbers c ∈ (0,∞) and κ ≥ 2 such that for all (x, t) ∈ Rd× [0, 1]
and µ ∈ P(Rd × [0, 1]) one has

(b(µ, x, t), x) ≤ c(1 + |x|2),

|b(µ, x, t)| ≤ c(1 + |x|κ),
∫

Rd

|x|κ ν(dx) <∞.

Then there exists a family µ = (µt)t∈[0,1] of probability measures satisfying (1). More-
over,

sup
t∈[0,1]

∫
Rd

|x|κ µt(dx) ≤M <∞,

where M depends only on c and the moment of ν of order κ.

Note that, under (B1), condition (A1) can be reformulated as follows: for every
fixed measure µ, the mapping x 7→ b(µ, x, t) is continuous for a.e. t and for each
compact set S ⊂ Rd, the mapping b generates a continuous mapping F from the
space P(Rd × [0, 1]) to L∞([0, 1], C(S)) defined by F (µ)(t)(x) := b(µ, x, t).

The approach in [9] is based on the well-known method of “vanishing viscosity”
(see, e.g., [10]). One considers the parabolic equation

∂tµt − ε∆µt + divx(b(µ, · , · )µt) = 0, µ0 = ν, (5)

understood as the integral identity∫
Rd

ϕdµt−
∫

Rd

ϕdν =

∫ t

0

∫
Rd

[ε∆ϕ+(b,∇ϕ)] dµs ds ∀ϕ ∈ C∞0 (Rd), t ∈ [0, 1]. (6)

According to [5], [4], under the stated assumptions this equation has a unique solu-
tion for any given mapping b independent of µ. Hence, for any given µ, we obtain
the corresponding drift b(µ, · , · ) generating a solution to (6) with that b(µ, · , · ).
By using this result and Schauder’s fixed point theorem, it has been shown in [9]
that (5) is solvable in the presence of dependence on b on the required solution µ.
Finally, letting ε→ 0, one obtains a solution to (4) in the limit.

Let us proceed to the infinite-dimensional case.
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Let {ei} be an orthonormal basis in X. Set

Pnx :=
n∑

i=1

xiei, Xn := Pn(X).

We shall identify Xn with Rn.
Let us introduce the following two conditions on b.

(A2) for every fixed measure µ ∈ P(X × [0, 1]) and every fixed i, the functions

x 7→ bi(µ, x, t)

are weakly continuous on balls for a.e. t and one has uniform convergence

bi(µj, x, t) → bi(µ, x, t)

on bounded sets in Rd × [0, 1] whenever µj → µ weakly with respect to the weak
topology on X;

(B2) there exist numbers α > 0, ci > 0 and κ ≥ 2 such that for all (x, t) ∈ X×[0, 1]
and µ ∈ P(X × [0, 1]) one has

n∑
i=1

bi(µ, x, t)xi ≤ α(1 + |x|2) ∀x ∈ Xn, n ∈ N,

|bi(µ, x, t)| ≤ ci(1 + |x|κ).

The first inequality in (B2) actually means that we use the Lyapunov function
V (x) = (x, x) (or its power) in order to get an estimate LV ≤ c+cV , where L is the
first-order operator generated by b. Such estimates ensure certain a priori bounds
for solutions, on which our existence results are based (see [5] and [8] concerning
techniques of Lyapunov functions).

We recall that the requirement of weak continuity on balls simply means that
bi(µ, xj, t) → bi(µ, x, t) whenever xj → x weakly.

We also recall that weak convergence νj → ν in P(X) with respect to the weak
topology on X is weaker than the usual weak convergence (associated with the norm
topology on X) and is equivalent to the following two conditions: for every bounded
continuous function f of finitely many variables the integrals of f with respect to
νj converge to the integral with respect to ν and, for every ε > 0, there is a ball
Uε ⊂ X with

νj(X\Uε) < ε for all j.

The situation is similar for weak convergence µj → µ in P(X × [0, 1]) with respect
to the weak topology on X, but the last condition is replaced by

µj((X\Uε)× [0, 1]) < ε for all j.

It should be noted that we do not assume that b = (bi) corresponds to a vector
field in X: it is merely a collection of scalar functions bi.

Theorem 2. Let ν be a Borel probability measure on X such that for some p > κ
one has ∫

X

|x|p ν(dx) <∞.
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Let the collection b = (bi) have properties (A2) and (B2) above. Then there exists a
family µ = (µt)t∈[0,1] of probability measures satisfying (1). Moreover, one has

sup
t∈[0,1]

∫
X

|x|p µt(dx) <∞.

Proof. It follows from our assumptions that, for every fixed n, the mapping

Bn : (µ, x, t) 7→ (b1(µ, x, t), . . . , bn(µ, x, t)), P(Xn × [0, 1])×Xn × [0, 1] → Xn,

satisfies the hypotheses of Theorem 1. Therefore, for every Borel probability measure
νn on Xn with finite moment of order κ there exists a solution µn = (µn

t )t∈[0,1] of
equation (1) with µn

0 = νn. In particular, this is true if we take νn = ν ◦ P−1
n .

We shall prove that there is a subsequence {nj} such that, for each t ∈ [0, 1], the
measures µ

nj

t converge weakly on (X,w) to a Borel probability measure µt and the
obtained family µ = (µt)t∈[0,1] satisfies equation (1). First we observe that there is
a number M independent of n such that for all n one has

sup
t∈[0,1]

∫
Xn

|x|p µn
t (dx) ≤M. (7)

Therefore, there is a subsequence {nj} such that, for every rational number t ∈ [0, 1],
the sequence of measures µ

nj

t converges weakly on (X,w) to a Borel probability
measure µt. Clearly, one has ∫

X

|x|p µt(dx) ≤M. (8)

Let us prove that along with (7) this yields weak convergence on (X,w) for each
t ∈ [0, 1]. Let bj = b(µnj , · , · ) and b = b(µ, · , · ). Let ϕ ∈ FC∞. The function ϕ
depends on x1, . . . , xm. For each j we have

ψj(t) :=

∫
X

ϕdµ
nj

t −
∫

X

ϕdνnj =

∫ t

0

∫
X

(bj,∇ϕ) dµnj
s ds. (9)

We know that the functions ψj converge at all rational points of [0, 1]. Let us show
that they converge at every point. To this end, it suffices to observe that they are
uniformly Lipschitzian on [0, 1]. This is seen from the estimate∣∣∣∫

X

(bj,∇ϕ) dµnj
s

∣∣∣ ≤ C1(ϕ)

∫
X

c(1 + |x|κ) dµnj
s ≤ C2(ϕ),

where C1(ϕ) and C2(ϕ) are independent of j (these numbers depend only on the
number m, the constants c1, . . . , cm from condition (ii), and supx |∇ϕ(x)|). Further-
more, we have ∣∣∣(bj(x, t),∇ϕ(x))

∣∣∣ ≤ K1 +K2‖x‖κ,∣∣∣(b(x, t),∇ϕ(x))
∣∣∣ ≤ K1 +K2‖x‖κ,

where K1 and K2 are independent of j, t, x. Since the function x 7→ (b(x, s),∇ϕ(x))
is weakly continuous on bounded sets in X for almost every s ∈ [0, 1], we obtain∫

X

(b(x, t),∇ϕ(x))µs(dx) = lim
j→∞

∫
X

(b(x, t),∇ϕ(x))µnj
s (dx)
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for almost every s ∈ [0, 1] (see, e.g., [3, Lemma 8.4.3]). Along with the previous
estimates and (7) this yields that∫ t

0

∫
X

(b(x, s),∇ϕ(x))µs(dx) = lim
j→∞

∫ t

0

∫
X

(b(x, s),∇ϕ(x))µnj
s (dx).

Therefore,∫ t

0

∫
X

(b(x, t),∇ϕ(x))µs(dx) = lim
j→∞

∫ t

0

∫
X

(bj(x, t),∇ϕ(x))µnj
s (dx).

Indeed, for any fixed ball U in X we have∣∣∣∫ t

0

∫
X

(b(x, s),∇ϕ(x))µnj
s (dx)−

∫ t

0

∫
X

(bj(x, s),∇ϕ(x))µnj
s (dx)

∣∣∣
≤ sup

(x,s)∈U×[0,t]

|(b(x, s),∇ϕ(x))−(bj(x, s),∇ϕ(x))|+
∫ t

0

∫
X\U

[K1+K2‖x‖κ]µnj
s (dx).

Given ε > 0, we apply (7) to find a ball U such that the second integral on the right
is less than ε/2 for all j. Then we find j0 such that for all j ≥ j0 one has

sup
(x,s)∈U×[0,t]

|(b(x, s),∇ϕ(x))− (bj(x, s),∇ϕ(x))| ≤ ε/2.

Therefore, µ satisfies (2). �

A possible disadvantage of our hypotheses can be the requirement of weak con-
tinuity of the functions bi on balls. For example, this excludes functions depending
on the norm since the latter is not weakly sequentially continuous. We have not yet
clarified whether this hypothesis is really needed, but it is used in our proof in the
last step where we verify that the obtained weak limit satisfies the desired equation.
In addition, this hypothesis is naturally connected with the other assumption that bi

is weakly continuous in µ with respect to the weak topology, which again is stronger
than the continuity associated with the norm topology. Our second main result re-
laxes these two assumptions to probably more natural continuities associated with
the norm topology at the expense of certain stronger dissipativity of the drift.

Let us consider the Borel function

V (x) =
∞∑

n=1

λix
2
i , where λi > 0 and λi → +∞,

defined on the compactly embedded weighted Hilbert spaceXV of sequences x = (xi)
with finite norm V 1/2.

Let us modify our previous assumptions (A2) and (B2) as follows.

(A3) for every fixed measure µ ∈ P(X × [0, 1]) and every fixed i, the functions

x 7→ bi(µ, x, t)

are defined and continuous on the compacts sets {V ≤ R} with respect to the norm
on X for a.e. t and one has uniform convergence

bi(µj, x, t) → b(µ, x, t)

on the sets {V ≤ R} × [0, 1] whenever µj → µ weakly with respect to the norm
topology on X;
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(B3) there exist numbers α > 0, ci > 0, and κ ≥ 1 such that for all (x, t) ∈
XV × [0, 1] and µ ∈ P(X × [0, 1]) one has

n∑
i=1

λib
i(µ, x, t)xi ≤ α(1 + V (x)) ∀x ∈ Xn, n ∈ N,

|bi(µ, x, t)| ≤ ci(1 + V (x)κ).

Theorem 3. Let ν be a Borel probability measure on X such that for some p > κ
one has ∫

X

V (x)p ν(dx) <∞.

Then, under assumptions (A3) and (B3), there exists a family µ = (µt)t∈[0,1] of
probability measures satisfying (1). Moreover, one has µt(XV ) = 1 for all t,

sup
t∈[0,1]

∫
X

V (x)p µt(dx) <∞.

Proof. The only difference with the previous theorem is that now we want to con-
struct a sequence of finite-dimensional solutions µj which would converge weakly
with respect to the norm topology on X. To this end, we have to ensure the uni-
form tightness of the constructed measures with respect to the norm topology. Due
to our assumption that λi → +∞ the sets {x : V (x) ≤ R} are compact in X with
respect to the norm topology. Hence it suffices to establish a uniform estimate

sup
t∈[0,1]

∫
X

V (x)p µn
t (dx) ≤Mp <∞. (10)

This estimate holds indeed due to [5, Lemma 2.2] since, for every n and the differ-
ential operator

L =
n∑

i=1

bi∂xi
,

we have the following inequality on Rn for the function Ψ(x) :=
(∑n

i=1 λix
2
i

)p

:

LΨ(x) = 2p
n∑

i=1

λixib
i(µ, x, t)

( n∑
i=1

λix
2
i

)p−1

≤ 4pα(1 + Ψ(x)).

It follows that µt(XV ) = 1 for every t ∈ [0, 1]. Clearly, estimate (10) remains valid
for the limiting measures µt. In order to justify (1) for µ we use the continuity of
the functions bi on the sets {V ≤ R} and [3, Lemma 8.4.3]. �

In some situations (as in the example below), assumption (B3) is less convenient
than (B2) in its first part since the Lyapunov function behind is not the inner
product in X but the inner product in XV . However, it is possible to modify this
part of (B3) as follows.

(B4) There exist numbers α > 0, ci > 0, and κ ≥ 1 such that for all (x, t) ∈
XV × [0, 1] and µ ∈ P(X × [0, 1]) one has

n∑
i=1

bi(µ, x, t)xi ≤ α− αV (x) ∀x ∈ Xn, n ∈ N,

|bi(µ, x, t)| ≤ ci(1 + V (x)‖x‖κ).
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Theorem 4. Let ν be a Borel probability measure on X such that for some p > κ
one has ∫

X

V (x)‖x‖2p ν(dx) <∞.

Then, under assumptions (A3) and (B4), there exists a family µ = (µt)t∈[0,1] of
probability measures satisfying (1). Moreover, one has µt(XV ) = 1 for all t,

sup
t∈[0,1]

∫
X

V (x)‖x‖2p µt(dx) <∞.

Proof. Essentially the same reasoning as in the previous theorem applies, but in
place of (10) we order obtain the estimate

sup
t∈[0,1]

∫
X

V (x)‖x‖2p µn
t (dx) ≤Mp <∞. (11)

To this end, we employ the Lyapunov function Ψ(x) = ‖x‖2p+1. We have

LΨ(x) = (2p+ 1)‖x‖2p

n∑
i=1

bi(µ, x, t)xi ≤ α′ − α′V (x)‖x‖2p, x ∈ Xn.

By using this estimate and [5, Lemma 2.2] we arrive at (11), which along with the
second inequality in (B4) enables us to show that the limiting measure µ satisfies
the desired equation. �

Example 1. Let U be a bounded domain in R2 with regular boundary, let ∆ be
the Laplacian with zero boundary condition having an eigenbasis {ei} with the
corresponding eigenvalues {λi}. Let X = L2(U) and let

V (x) =

∫
U

|∇x(u)|2 du.

Then XV is the Sobolev class W 2,1
0 (U). Finally, let b be given by a heuristic expres-

sion

b(µ, x, t) = ∆x+ α3(µ, x, t)x
3 + α2(µ, x, t)x

2 + α1(µ, x, t)x+ α0(µ, x, t),

where the functions α3, . . . , α0 are Borel measurable, uniformly bounded, continuous
in x on balls in W 2,1

0 (U) with respect to the L2-norm, and satisfy the estimate

α3(µ, x, t) ≤ −M, where M > 0 is a constant.

Suppose also that if µj → µ weakly, then αk(µj, x, t) → αk(µ, x, t) uniformly in

t ∈ [0, 1] and x from every fixed ball in W 2,1
0 (U), 0 ≤ k ≤ 3.

The corresponding functions bi are defined by

bi(µ, x, t) := λi

∫
U

x(u)ei(u) du+

∫
U

[α3(µ, x, t)x
3(u) + · · ·+ α0(µ, x, t)]ei(u) du.

Then there exists a family µ = (µt)t∈[0,1] of probability measures satisfying (1).
Let us verify conditions (A3) and (B4). The multiplicative Sobolev inequality

provides an estimate∫
U

|x(t)|4 du ≤ C

∫
U

|∇x(u)|2 du
∫

U

|x(u)|2 du,
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which shows that the second inequality in (B4) is fulfilled with κ = 2. The first
estimate required in (B4) follows from the equality∫

U

[x(u)∆x(u) + α3(µ, x, t)x(u)
4 + · · ·+ α0(µ, x, t)x(u)] du

= −
∫

U

|∇x(u)|2 du+

∫
U

[α3(µ, x, t)x(u)
4 + · · ·+ α0(µ, x, t)x(u)] du

on all Xn, where the right-hand side is majorized by

C1 −
∫

U

|∇x(u)|2 du

with some constant C1 since α3(µ, x, t) ≤ −M . The continuity of bi on balls in
W 2,1

0 (U) with respect to the L2-norm follows from our assumptions and the Sobolev
embedding combined with the compactness of the embedding of W 2,1

0 (U) to L2(U).

It is essential in this example that the term involving the Sobolev norm appears
when we apply the operator L to the inner product from L2. Theorem 3 does not
work here because the growth of |bi| is not controlled by powers of the L2-norm,
but once we involve bigger functions, we need stronger dissipativity to control their
moments. Similar results can be proved for more general equations with second
order terms, which will be considered in a separate paper.

This work has been supported by the projects RFBR 07-01-00536, 08-01-91205-
JF, 08-01-90431-Ukr, and the SFB 701 at Bielefeld University.
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[6] Bogachev V.I., Da Prato G., Röckner M. Parabolic equations for measures on infinite-
dimensional spaces. Dokl. Russian Acad. Sci. 2008. V. 421, n 4. P. 439–444; English transl.:
Dokl. Math. 2008. V. 78, n 1. P. 544–549.
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