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1 IntrodutionThere are basially two main approahes to de�ne the mark to market of a ontingent laim: one relying onthe no-arbitrage assumption and the other related to a hedging portfolio, those two approahes onvergingin the spei� ase of omplete markets. A simple introdution to the di�erent hedging and priing modelsin inomplete markets an be found in hapter 10 of [16℄.The fundamental theorem of Asset Priing [18℄ implies that a priing rule without arbitrage that moreoversatis�es some usual onditions (linearity non antiipativity . . . ) an always be written as an expetationunder a martingale measure. In general, the resulting prie is not linked with a hedging strategy exept insome spei� ases suh as omplete markets. More preisely, it is proved [18℄ that the market ompletenessis equivalent to uniqueness of the equivalent martingale measure. Hene, when the market is not omplete,there exist several equivalent martingale measures (possibly an in�nity) and one has to speify a riterionto selet one spei� priing measure: to reover some given option pries (by alibration) [27℄; to simplifyalulus and obtain a simple proess under the priing measure; to maintain the struture of the real worlddynamis; to minimize a distane to the objetive probability (entropy [26℄) . . . In this framework, thedi�ulty is to understand in a pratial way the impat of the hoie of the martingale measure on theresulting pries.If the resulting prie is in general not onneted to a hedging strategy, yet it is possible to onsider thehedging question in a seond step, optimizing the hedging strategy for the given prie. In this framework,one approah onsists in deriving the hedging strategy minimizing the global quadrati hedging error underthe priing measure where the martingale property of the underlying highly simpli�es alulations. Thisapproah, is developed in [16℄, in the ase of exponential-Lévy models: the optimal quadrati hedge isthen expressed as a solution of an integro-di�erential equation involving the Lévy measure. Unfortunately,minimizing the quadrati hedging error under the priing measure has no lear interpretation sine theresulting hedging strategy an lead to huge quadrati error under the objetive measure.Alternatively, one an de�ne option pries as a by produt of the hedging strategy. In the ase of ompletemarkets, any option an be repliated perfetly by a self-�naned hedging portfolio ontinuously rebalaned,then the option hedging value an be de�ned as the ost of the hedging strategy. When the market is notomplete, it is not possible, in general, to hedge perfetly an option. One has to speify a risk riteria, andonsider the hedging strategy that minimizes the distane (in terms of the given riteria) between the pay-o�of the option and the terminal value of the hedging portfolio. Then, the prie of the option is related to theost of this imperfet hedging strategy to whih is added in pratie another prime related to the residualrisk indued by inompleteness.Several riteria an be adopted. The aim of super-hedging is to hedge all ases. This approah yields ingeneral pries that are too expensive to be realisti [21℄. Quantile hedging modi�es this approah allowing fora limited probability of loss [23℄. Indi�erene Utility priing introdued by [29℄ de�nes the prie of an optionto sell (resp. to buy) as the minimum initial value s.t. the hedging portfolio with the option sold (resp.bought) is equivalent (in term of utility) to the initial portfolio. Quadrati hedging is developed in [48℄, [50℄.The quadrati distane between the hedging portfolio and the pay-o� is minimized. Then, ontrarily to thease of utility maximization, losses and gains are treated in a symmetri manner, whih yields a fair priefor both the buyer and the seller of the option.In this paper, we follow this last approah and our developments an be used in both the no-arbitrage valueand the hedging value framework: either to derive the hedging strategy minimizing the global quadratihedging error under the objetive measure, for a given priing rule; or to derive both the prie and the2



hedging strategy minimizing the global quadrati hedging error under the objetive measure.We spend now some words related to the global quadrati hedging approah whih is also alled mean-variane hedging or global risk minimization. Given a square integrable r.v. H , we say that the pair (V0, ϕ)is optimal if (c, v) = (V0, ϕ) minimizes the funtional E

(
H − c−

∫ T
0
vdS

)2. The prie V0 represents theprie of the ontingent laim H and ϕ is the optimal strategy.Tehnially speaking, the global risk minimization problem, is based on the so-alled Föllmer-Shweizerdeomposition (or FS deomposition) of a square integrable random variable (representing the ontingentlaim) with respet to an (Ft)-semimartingale S = M + A modeling the asset prie. M is an (Ft)-loalmartingale and A is a bounded variation proess with A0 = 0. Mathematially, the FS deomposition,onstitutes the generalisation of the martingale representation theorem (Kunita-Watanabe representation)when S is a Brownian motion or a martingale. Given square integrable random variable H , the problemonsists in expressing H as H0 +
∫ T
0 ξdS + LT where ξ is preditable and LT is the terminal value of anorthogonal martingale L to M , i.e. the martingale part of S. The seminal paper is [24℄ where the problemis treated in the ase that S is ontinuous. In the general ase S is said to have the struture ondition(SC) ondition if there is a preditable proess α suh that At =

∫ t
0
αsd〈M〉s and ∫ T0 α2

sd〈M〉s < ∞ a.s. Inthe sequel most of ontributions were produed in the multidimensional ase. Here for simpliity we willformulate all the results in the one-dimensional ase.An interesting onnetion with the theory of bakward stohasti di�erential equations (BSDEs) in the senseof [39℄, was proposed in [48℄. [39℄ onsidered BSDEs driven by Brownian motion; in [48℄ the Brownian motionis in fat replaed by M . The �rst author who onsidered a BSDE driven by a martingale was [11℄. Supposethat Vt =
∫ t
0
αsd〈M〉s. The BSDE problem onsists in �nding a triple (V, ξ, L) where

Vt = H −
∫ T

t

ξsdMs −
∫ T

t

ξsαsd〈M〉s − (LT − Lt),and L is an (Ft)-loal martingale orthogonal to M .In fat, this deomposition provides the solution to the so alled loal risk minimization problem, see [24℄.In this ase, Vt represents the prie of the ontingent laim at time t and the prie V0 onstitutes in fatthe expetation under the so alled variane optimal measure (VOM), as it will be explained at Setion 2.5,with referenes to [51℄, [3℄ and [2℄.In the framework of FS deomposition, a proess whih plays a signi�ant role is the so-alledmean varianetradeo� (MVT) proess K. This notion is inspired by the theory in disrete time started by [46℄; in theontinuous time ase K is de�ned as Kt =
∫ t
0
α2
sd〈M〉s, t ∈ [0, T ]. [48℄ shows the existene of the mean-variane hedging problem if the MVT proess is deterministi. In fat, a slight more general ondition wasthe (ESC) ondition and the EMVT proess but we will not disuss here further details. We remark that inthe ontinuous ase, treated by [24℄, no need of any ondition on K is required. When the MVT proess isdeterministi, [48℄ is able to solve the global quadrati variation problem and provides an e�ient relation,see Theorem 5.2 with the FS deomposition. He also shows that, for the obtention of the mentioned relation,previous ondition is not far from being optimal. The next important step was done in [38℄ where under theonly ondition that K is uniformly bounded, the FS deomposition of any square integrable random variableadmits existene and uniqueness and the global minimization problem admits a solution.More reently has appeared an inredible amount of papers in the framework of global (resp. loal) riskminimization, so that it is impossible to list all of them and it is beyond our sope. Two signi�ant papersontaining a good list of referenes are [51℄, [7℄ and [12℄. The present paper puts emphasis on proesses withindependent inrements (PII) and exponential of those proesses. It provides expliit FS deompositions3



when the proess S is of that type when the ontingent laims are provided by some Fourier transform (resp.Laplae-Fourier transform) of a �nite measure. Some results of [31℄ onerning exponential of Lévy proessesare generalized trying to investigate some peuliar properties behind and to onsider the ase of PII withpossibly non stationary inrements. The motivation ame from hedging problems in the eletriity market.Beause of non-storability of eletriity, the hedging instrument is in that ase, a forward ontrat withvalue S0
t = e−r(Td−t)(FTdt − FTd0 ) where FTdt is the forward prie given at time t ≤ Td for delivery of 1MWhat time Td. Hene, the dynami of the underlying S0 is diretly related to the dynami of forward pries.Now, forward pries show a volatility term struture that requires the use of models with non stationaryinrements and motivates the generalization of the priing and hedging approah developed in [31℄ for Lévyproesses to the ase of PII with possibly non stationary inrements.The paper is organized as follows. After this introdution and some generalities about semimartingales, weintrodue the notion of FS deomposition and desribe loal and global risk minimization. Then, we examineat Chapter 3 (resp. 4) the expliit FS deomposition for PII proesses (resp. exponential of PII proesses).Chapter 5 is devoted to the solution to the global minimization problem and Chapter 6 to the ase of a modelintervening in the eletriity market. Chapter 7 is devoted to simulations. This paper will be followed by aompanion paper, i. e. [28℄ whih onentrates on the disrete time ase leaving more spae to numerialimplementations.2 Generalities on semimartingales and Föllmer-Shweizer deom-positionIn the whole paper, T > 0, will be a �xed terminal time and we will denote by (Ω,F , (Ft)t∈[0,T ], P ) a �lteredprobability spae, ful�lling the usual onditions.2.1 Generating funtionsLet X = (Xt)t∈[0,T ] be a real valued stohasti proess.De�nition 2.1. The harateristi funtion of (the law of) Xt is the ontinuous mapping

ϕXt : R → C with ϕXt(u) = E[eiuXt ] .In the sequel, when there will be no ambiguity on the underlying proess X, we will use the shortened notation
ϕt for ϕXt .De�nition 2.2. The umulant generating funtion of (the law of) Xt is the mapping z 7→ Log(E[ezXt ])where Log(w) = log(|w|) + iArg(w) where Arg(w) is the Argument of w, hosen in ] − π, π]; Log is theprinipal value logarithm. In partiular we have

κXt : D → C with eκXt(z) = E[ezXt ] ,where D := {z ∈ C | E[eRe(z)Xt ] <∞, ∀t ∈ [0, T ]}.In the sequel, when there will be no ambiguity on the underlying proess X, we will use the shortenednotation κt for κXt .We observe that D inludes the imaginary axis. 4



Remark 2.3. 1. For all z ∈ D, κt(z̄) = κt(z) , where z̄ denotes the onjugate omplex of z ∈ C. Indeed,for any z ∈ D,
exp(κt(z̄)) = E[exp(z̄Xt)] = E[exp(zXt)] = E[exp(zXt)] = exp(κt(z)) = exp(κt(z)) .2. For all z ∈ D ∩ R , κt(z) ∈ R .2.2 SemimartingalesAn (Ft)-semimartingale X = (Xt)t∈[0,T ] is a proess of the form X = M + A, where M is an (Ft)-loalmartingale and A is a bounded variation adapted proess vanishing at zero. ||A||T will denote the totalvariation of A on [0, T ]. Given two (Ft)- loal martingalesM and N , 〈M,N〉 will denote the angle braket of

M and N , i.e. the unique bounded variation preditable proess vanishing at zero suh that MN − 〈M,N〉is an (Ft)-loal martingale. If X and Y are (Ft)-semimartingales, [X,Y ] denotes the square braket of Xand Y , i.e. the quadrati ovariation of X and Y . In the sequel, if there is no onfusion about the underlying�ltration (Ft), we will simply speak about semimartingales, loal martingales, martingales. All the loalmartingales admit a àdlàg version. By default, when we speak about loal martingales we always refer totheir àdlàg version.More details about previous notions are given in hapter I.1. of [35℄.Remark 2.4. 1. All along this paper we will onsider C-valued martingales (resp. loal martingales,semimartingales). Given two C-valued loal martingales M1,M2 then M1,M2 are still loal martin-gales. Moreover 〈M1,M2〉 = 〈M1,M2〉 .2. If M is a C-valued martingale then 〈M,M〉 is a real valued inreasing proess.Theorem 2.5. (Xt)t∈[0,T ] is a real semimartingale i� the harateristi funtion, t 7→ ϕt(u), has boundedvariation over all �nite intervals, for all u ∈ R.Remark 2.6. Aording to Theorem I.4.18 of [35℄, any loal martingale M admits a unique (up to indis-tinguishability) deomposition,
M = M0 +M c +Md ,where M c

0 = Md
0 = 0, M c is a ontinuous loal martingale and Md is a purely disontinuous loal martingalein the sense that 〈N,Md〉 = 0 for all ontinuous loal martingales N . M c is alled the ontinuous part of

M and Md the purely disontinuous part.De�nition 2.7. An (Ft)-speial semimartingale is an (Ft)-semimartingale X with the deomposition
X = M +A, where M is a loal martingale and A is a bounded variation preditable proess starting at zero.Remark 2.8. The deomposition of a speial semimartingale of the form X = M + A is unique, see [35℄de�nition 4.22.For any speial semimartingale X we de�ne

||X ||2δ2 = E [[M,M ]T ] + E
(
||A||2T

)
.The set δ2 is the set of (Ft)-speial semimartingale X for whih ||X ||2δ2 is �nite.A trunation funtion de�ned on R is a bounded funtion h : R → R with ompat support suh that

h(x) = x in a neighbourhood of 0. 5



An important notion, in the theory of semimartingales, is the notion of harateristis, de�ned in de�nitionII.2.6 of [35℄. Let X = M + A be a real-valued semimartingale. A harateristi is a triplet, (b, c, ν),depending on a �xed trunation funtion, where1. b is a preditable proess with bounded variation;2. c = 〈M c,M c〉, M c being the ontinuous part of M aording to Remark 2.6;3. ν is a preditable random measure on R+ × R, namely the ompensator of the random measure µXassoiated to the jumps of X.2.3 Föllmer-Shweizer Struture ConditionLet X = (Xt)t∈[0,T ] be a real-valued speial semimartingale with anonial deomposition,
X = M +A .For the larity of the reader, we formulate in dimension one, the onepts appearing in the literature, seee.g. [48℄ in the multidimensional ase.De�nition 2.9. For a given loal martingale M , the spae L2(M) onsists of all preditable R-valued pro-esses v = (vt)t∈[0,T ] suh that

E

[∫ T

0

|vs|2d 〈M〉s

]
<∞ .For a given preditable bounded variation proess A, the spae L2(A) onsists of all preditable R-valuedproesses v = (vt)t∈[0,T ] suh that

E

[
(

∫ T

0

|vs|d||A||s)2
]
<∞ .Finally, we set

Θ := L2(M) ∩ L2(A) .For any v ∈ Θ, the stohasti integral proess
Gt(v) :=

∫ t

0

vsdXs, for all t ∈ [0, T ] ,is therefore well-de�ned and is a semimartingale in δ2 with anonial deomposition
Gt(v) =

∫ t

0

vsdMs +

∫ t

0

vsdAs , for all t ∈ [0, T ] .We an view this stohasti integral proess as the gain proess assoiated with strategy v on the underlyingproess X .De�nition 2.10. The minimization problem we aim to study is the following.Given H ∈ L2, an admissible strategy pair (V0, ϕ) will be alled optimal if (c, v) = (V0, ϕ) minimizes theexpeted squared hedging error
E[(H − c−GT (v))2] , (2.1)over all admisible strategy pairs (c, v) ∈ R × Θ. V0 will represent the prie of the ontingent laim H attime zero. 6



De�nition 2.11. Let X = (Xt)t∈[0,T ] be a real-valued speial semimartingale. X is said to satisfy thestruture ondition (SC) if there is a preditable R-valued proess α = (αt)t∈[0,T ] suh that the followingproperties are veri�ed.1. At =
∫ t
0
αsd 〈M〉s , for all t ∈ [0, T ], so that dA≪ d 〈M〉.2. ∫ T

0

α2
sd 〈M〉s <∞ , P−a.s.De�nition 2.12. From now on, we will denote by K = (Kt)t∈[0,T ] the àdlàg proess

Kt =

∫ t

0

α2
sd 〈M〉s , for all t ∈ [0, T ] .This proess will be alled the mean-variane tradeo� (MVT) proess.Remark 2.13. In [48℄, the proess (Kt)t∈[0,T ] is denoted by (K̂t)t∈[0,T ].We provide here a tehnial proposition whih allows to make the lass Θ of integration of X expliit.Proposition 2.14. If X satis�es (SC) suh that E[KT ] <∞, then Θ = L2(M).Proof. Assume that E[KT ] <∞, we will prove that L2(M) ⊆ L2(A). Let us onsider a proess v ∈ L2(M),then

E

(∫ T

0

|vs|d||A||s
)2

= E

(∫ T

0

|vs||αs|d 〈M〉s

)2

≤
[
E

(∫ T

0

|vs|2d 〈M〉s

)
E

(∫ T

0

|α|2d 〈M〉s

)] 1
2

,

=

(
E

(∫ T

0

|vs|2d 〈M〉s

)
E(KT )

) 1
2

<∞ .Shweizer in [48℄ also introdued the extended struture ondition (ESC) on X and he provided theFöllmer-Shweizer deomposition in this more extended framework. We reall that notion (in dimension 1).Given a real àdlàg stohasti proess X , the quantity ∆Xt will represent the jump Xt −Xt−.De�nition 2.15. Let X = (Xt)t∈[0,T ] be a real-valued speial semimartingale. X is said to satisfy theextended struture ondition (ESC) if there is a preditable R-valued proess α = (αt)t∈[0,T ] with thefollowing properties.1. At =
∫ t
0 αsd 〈M〉s , for all t ∈ [0, T ] , so that dA≪ 〈dM〉.2. The quantity ∫ T

0

α2
s

1 + α2
s∆〈M〉s

d 〈M〉sis �nite.If ondition (ESC) is ful�lled, then the proess
K̃t :=

∫ t

0

α2
s

1 + α2
s∆〈M〉s

, for all t ∈ [0, T ] ,is well-de�ned. It is alled extended mean-variane tradeo� (EMVT) proess.7



Remark 2.16. 1. (SC) implies (ESC).2. If 〈M〉 is ontinuous then (ESC) and (SC) are equivalent and K = K̃.3. K̃t =

∫ t

0

|αs|2
1 + ∆Ks

d 〈M〉s =

∫ t

0

1

1 + ∆Ks
dKs , for all t ∈ [0, T ] .4. Kt =

∫ t

0

1

1 − ∆K̃s

dK̃s , for all t ∈ [0, T ] .5. If K is deterministi then K̃ is deterministi.The struture ondition (SC) appears quite naturally in appliations to �nanial mathematis. In fat,it is mildly related to the no arbitrage ondition. In fat (SC) is a natural extension of the existene of anequivalent martingale measure from the ase where X is ontinuous. Next proposition will show that everyadapted ontinuous proess X admitting an equivalent martingale measure satis�es (SC). In our appliations(ESC) will be equivalent to (SC) sine in Setion 3.2 and Setion 4.2, 〈M〉 will always be ontinuous.Proposition 2.17. Let X be a (P,Ft) ontinuous semimartingale. Suppose the existene of a loally equiv-alent probability Q ∼ P under whih X is an (Q,Ft)-loal martingale, then (SC) is veri�ed.Proof. Let (Dt)t∈[0,T ] be the stritly positive ontinuous Q-loal martingale suh that dP = DTdQ. ByTheorem VIII.1.7 of [42℄, M = X − 〈X,L〉 is a ontinuous P -loal martingale, where L is the ontinuous
Q-loal martingale assoiated to the density proess i.e.

Dt = exp{Lt −
1

2
〈L〉t} , for all t ∈ [0, T ] .Aording to Lemma IV.4.2 in [42℄, there is a progressively measurable proess R suh that for all t ∈ [0, T ],

Lt =

∫ t

0

RsdXs +Ot and ∫ T

0

R2
sd 〈X〉s <∞ , Q− a.s. ,where O is a Q-loal martingale suh that 〈X,O〉 = 0. Hene,

〈X,L〉t =

∫ t

0

Rsd〈X〉s and Xt = Mt +

∫ t

0

Rsd[X ]s , for all t ∈ [0, T ].We end the proof by setting αt =
d〈X,L〉t
d〈X〉t

= Rt .2.4 Föllmer-Shweizer Deomposition and variane optimal hedgingThroughout this setion, as in Setion 2.3, X is supposed to be an (Ft)-speial semimartingale ful�lling the(SC) ondition.We reall here the de�nition stated in Chapter IV.3 p. 179 of [40℄.De�nition 2.18. Two (Ft)-martingales M,N are said to be strongly orthogonal if MN is a uniformlyintegrable martingale.Remark 2.19. IfM,N are strongly orthogonal, then they are (weakly) orthogonal in the sene that E[MTNT ] =

0 .Lemma 2.20. Let M,N be two square integrable martingales. Then M and N are strongly orthogonal ifand only if 〈M,N〉 = 0. 8



Proof. Let S(M) be the stable subspae generated by M. S(M) inludes the spae of martingales of the form
Mf
t :=

∫ t

0

f(s)dMs , for all t ∈ [0, T ] ,where f ∈ L2(dM) is deterministi. Aording to Lemma IV.3.2 of [40℄, it is enough to show that, for any
f ∈ L2(dM), g ∈ L2(dN), Mf and Ng are weakly orthogonal in the sense that E[Mf

TN
g
T ] = 0. This is learsine previous expetation equals

E[
〈
Mf , Ng

〉
T
] = E

(∫ T

0

fgd 〈M,N〉
)

= 0if 〈M,N〉 = 0. This shows the onverse impliation.The diret impliation follows from the fat that MN is a martingale, the de�nition of the angle braketand uniqueness of speial semimartingale deomposition.De�nition 2.21. We say that a random variable H ∈ L2(Ω,F , P ) admits a Föllmer-Shweizer (FS)deomposition, if it an be written as
H = H0 +

∫ T

0

ξHs dXs + LHT , P − a.s. , (2.2)where H0 ∈ R is a onstant, ξH ∈ Θ and LH = (LHt )t∈[0,T ] is a square integrable martingale, with E[LH0 ] = 0and strongly orthogonal to M .We formulate for this setion one basi assumption.Assumption 1. We assume that X satis�es (SC) and that the MVT proess K is uniformly bounded in tand ω.The �rst result below gives the existene and the uniqueness of the Föllmer-Shweizer deomposition fora random variable H ∈ L2(Ω,F , P ). The seond a�rms that subspaes GT (Θ) and {L2(F0) +GT (Θ)} arelosed subspaes of L2 . The last one provides existene and uniqueness of the solution of the minimizationproblem (2.1). We reall Theorem 3.4 of [38℄.Theorem 2.22. Under Assumption 1, every random variable H ∈ L2(Ω,F ,P) admits a FS deomposition.Moreover, this deomposition is unique in the following sense:If
H = H0 +

∫ T

0

ξHs dXs + LHT = H
′

0 +

∫ T

0

ξ
′H
s dXs + L

′H
T ,where (H0, ξ

H , LH) and (H
′

0, ξ
′H , L

′H) satisfy the onditions of the FS deomposition, then




H0 = H
′

0 , P − a.s. ,

ξH = ξ
′H in L2(M) ,

LHT = L
′H
T , P − a.s. .We reall Theorem 4.1 of [38℄.Theorem 2.23. Under Assumption 1, the subspaes GT (Θ) and {L2(F0) +GT (Θ)} are losed subspaes of

L2. 9



So we an projet any random variable H ∈ L2 on GT (Θ). By Theorem 2.22, we have the uniqueness ofthe solution of the minimization problem (2.1). This is given by Theorem 4.6 of [38℄, whih is stated below.Theorem 2.24. We suppose Assumption 1.1. For every H ∈ L2(Ω,F , P ) and every c ∈ L2(F0), there exists a unique strategy ϕ(c) ∈ Θ suh that
E[(H − c−GT (ϕ(c)))2] = min

v∈Θ
E[(H − c−GT (v))2] . (2.3)2. For every H ∈ L2(Ω,F ,P) there exists a unique (c(H), ϕ(H)) ∈ L2(F0) × Θ suh that

E[(H − c(H) −GT (ϕ(H)))2] = min
(c,v)∈L2(F0)×Θ

E[(H − c−GT (v))2] .Next theorem gives the expliit form of the optimal strategy ϕ(c), whih is valid even in the ase whereX satis�es the extended struture ondition (ESC). For the purpose of the present work, this will not beuseful, see onsiderations following Remark 2.16 2.From Föllmer-Shweizer deomposition follows the solution to the global minimization problem (2.1).Theorem 2.25. Suppose that X satisi�es (SC) and that the MVT proess K of X is deterministi. If H ∈ L2admits a FS deomposition of type (2.2), then the minimization problem (2.3) has a solution ϕ(c) ∈ Θ forany c ∈ R, suh that
ϕ

(c)
t = ξHt +

αt
1 + ∆Kt

(Ht− − c−Gt−(ϕ(c))) , for all t ∈ [0, T ] (2.4)where the proess (Ht)t∈[0,T ] is de�ned by
Ht := H0 +

∫ t

0

ξHs dXs + LHt , (2.5)and the proess α is the proess appearing in De�nition 2.11 of (SC).Proof. Theorem 3 of [48℄ states the result under the (ESC) ondition. We reall that (SC) implies (ESC),see Remark 2.16 and the result follows.To obtain the solution to the minimization problem (2.1), we use Corollary 10 of [48℄ that we reall.Corollary 2.26. Under the assumption of Theorem 2.25, the solution of the minimization problem (2.1) isgiven by the pair (H0, ϕ
(H0)) .In the sequel of this paper we will only refer to the struture ondition (SC) and to the MVT proess K.The de�nition below an be found in setion II.8 p. 85 of [40℄.De�nition 2.27. The Doléans-Dade exponential of a semimartingale X is de�ned to be the uniqueàdlàg adapted solution Y to the stohasti di�erential equation,

dYt = Yt−dXt , for all t ∈ [0, T ] with Y0 = 1 .This proess is denoted by E(X).This solution is a semimartingale given by
E(X)t = exp (Xt −X0 − [X ]t/2)

∏

s≤t

(1 + ∆Xs) exp(−∆Xs) .Theorem below is stated in [48℄. 10



Theorem 2.28. Under the assumptions of Theorem 2.25, for any c ∈ R, we have
min
v∈Θ

E[(H − c−GT (v))2] = E(−K̃T )

(
(H0 − c)2 + E[(LH0 )2] +

∫ T

0

1

E(−K̃s)
d
(
E[
〈
LH
〉
s
]
)
)

. (2.6)Proof. See the proof of Corollary 9 of [48℄ with Remark 2.16.Corollary 2.29. If 〈M,M〉 is ontinuous
min
v∈Θ

E[(H − c−GT (v))2] = exp(−KT )
(
(H0 − c)2 + E[(LH0 )2]

)

+E

[∫ T

0

exp{−(KT −Ks)}d
〈
LH
〉
s

]
. (2.7)Proof. Remark 2.16 implies that K = K̃. Sine K is ontinuous and with bounded variation, its Doléans-Dade exponential oinides with the lassial exponential. The result follows from Theorem 2.28.In the sequel, we will �nd an expliit expression of the FS deomposition for a large lass of squareintegrable random variables, when the underlying proess is a proess with independent inrements, or isan exponential of proess with independent inrements. For this, the �rst step will onsist in verifying (SC)and the boundedness ondition on the MVT proess, see Assumption 1.2.5 Link with the equivalent signed martingale measure2.5.1 The Variane optimal martingale (VOM) measureDe�nition 2.30. 1. A signed measure, Q, on (Ω,FT ), is alled a signed Θ-martingale measure, if(a) Q(Ω) = 1 ;(b) Q≪ P with dQ

dP
∈ L2(P ) ;() E[

dQ

dP
GT (v)] = 0 for all v ∈ Θ.We denote by Ps(Θ), the set of all suh signed Θ-martingale measures. Moreover, we de�ne

Pe(Θ) := {Q ∈ Ps(Θ) | Q ∼ P and Q is a probability measure} ,and introdue the losed onvex set,
Dd := {D ∈ L2(P ) | D =

dQ

dP
for some Q ∈ Ps(Θ)} .2. A signed martingale measure P̃ ∈ Ps(Θ) is alled variane-optimal martingale (VOM) measure if

D̃ = argminD∈DdV ar[D
2] = argminD∈Dd

(
E[D2] − 1

), where D̃ =
dP̃

dP
.The spae GT (Θ) := {GT (v) | v ∈ Θ} is a linear subspae of L2(P ). Then, we denote by GT (Θ)⊥ itsorthogonal omplement, that is,

GT (Θ)⊥ := {D ∈ L2(P ) | E[DGT (v)] = 0 for any v ∈ Θ} .Furthermore,GT (Θ)⊥⊥ denotes the orthogonal omplement ofGT (Θ)⊥, whih is the L2(P )-losure ofGT (Θ).A simple example when Pe(Θ) is non empty is given by the following proposition, that antiipates somematerial treated in the next setion. 11



Proposition 2.31. Let X be a proess with independent inrements suh that
• Xt has the same law as −Xt, for any t ∈ [0, T ];
• 1

2 belongs to the domain D of the umulative generating funtion (t, z) 7→ κt(z).Then, there is a probability Q ∼ P suh that St = exp(Xt) is a martingale.Proof. For all t ∈ [0, T ], we set Dt = exp{−Xt
2 −κt(− 1

2 )}. Notie that D is a martingale so that the measure
Q on (Ω,FT ) de�ned by dQ = DTdP is an (equivalent) probability to P . On the other hand, the symmetryof the law of Xt implies for all t ∈ [0, T ],

StDt = exp{Xt

2
− κt(−

1

2
)} = exp{Xt

2
− κt(

1

2
)} .So SD is also a martingale. Aording to [35℄, hapter III, Proposition 3.8 a), S is a Q-martingale and so Sis a Q-martingale.Example 2.32. Let Y be a proess with independent inrements. We onsider two opies Y 1 of Y and Y 2of −Y . We set X = Y 1 + Y 2. Then X has the same law of −X.For simpliity, we suppose from now that Assumption 1 is veri�ed, even if one ould onsider a moregeneral framework, see [3℄ Therorem 1.28. This ensures that the linear spae GT (Θ) is losed in L2(Ω),therefore GT (Θ) = GT (Θ) = GT (Θ)⊥⊥. Moreover, Proposition 2.14 ensures that Θ = L2(M). We reall analmost known fat ited in [3℄. For ompleteness, we give a proof.Proposition 2.33. Ps(Θ) 6= ∅ is equivalent to 1 /∈ GT (Θ) .Proof. Let us prove the two impliations.

• Let Q ∈ Ps(Θ). If 1 ∈ GT (Θ), then Q(Ω) = E
Q(1) = 0 whih leads to a ontradition sine Q is aprobability. Hene 1 /∈ GT (Θ).

• Suppose that 1 /∈ GT (Θ). We denote by f the orthogonal projetion of 1 on GT (Θ). Sine E[f(1−f)] =

0, then E[1− f ] = E[(1− f)2]. Reall that 1 6= f ∈ GT (Θ), hene we have E[f ] 6= 1. Therefore, we ande�ne the signed measure P̃ by setting
P̃ (A) =

∫

A

D̃dP , with D̃ =
1 − f

1 − E[f ]
. (2.8)We hek now that P̃ ∈ Ps(Θ).� Trivially P̃ (Ω) = E(D̃) = 1 ;� P̃ ≪ P , by onstrution.� Let v ∈ Θ, E[D̃GT (v)] =

1

1 − E[f ]
(E[(1 − f)GT (v)]) = 0 , sine 1 − f ∈ GT (Θ)⊥.Hene, P̃ ∈ Ps(Θ) whih onludes the proof of the Proposition.Remark 2.34. If 1 is orthogonal to GT (Θ), then f = 0 and P ∈ Ps(Θ) so Ps(Θ) 6= ∅.In fat, P̃ onstruted in the proof of Proposition 2.33 oinides with the VOM measure.12



Proposition 2.35. Let P̃ be the signed measure de�ned in (2.8). Then,
D̃ = argmin

D∈Dd

E[D2] = argmin
D∈Dd

V ar[D] .Proof. Let D ∈ Dd and Q suh that dQ = DdP . We have to show that E[D2] ≥ E[D̃2]. We write
E[D2] = E[(D − D̃)2] + E[D̃2] +

2

1 − E[f ]
E[(D − D̃)(1 − f)] .Moreover, sine f ∈ GT (Θ) yields

E[(D − D̃)(1 − f)] = E[D] − E[D̃] − E[Df ] + E[D̃f ] ,

= Q(Ω) − Q̃(Ω) .

= 0 .Remark 2.36. 1. Arai [2℄ gives su�ient onditions under whih the VOM measure is a probability, seeTheorem 3.4 in [2℄.2. Taking in aount Proposition 2.33, the property 1 /∈ GT (Θ) may be viewed as non-arbitrage ondition.In fat, in [18℄, the existene of a martingale measure whih is a probability is equivalent to a no freelunh ondition.Next proposition an be easily dedued for a more general formulation, see [51℄.Proposition 2.37. We assume Assumption 1. Let H ∈ L2(Ω) and onsider the solution (cH , ϕH) of theminimization problem (2.1). Then, the prie cH equals the expetation under the VOM measure P̃ of H.Proof. We have
H = cH +GT (ϕH) +R ,where R is orthogonal to GT (Θ) and E[R] = 0. Sine P̃ ∈ Ps(Θ), taking the expetation with respet to P̃ ,denoted by Ẽ we obtain

Ẽ[H ] = cH + Ẽ[R] .From the proof of Proposition 2.33, we have
Ẽ[R] =

E[(1 − f)R]

1 − E[f ]
=

1

1 − E[f ]
(E[R] − E[fR]) .Sine f ∈ GT (Θ) and R is orthogonal to GT (Θ), we get Ẽ[R] = 0 .3 Proesses with independent inrements (PII)This setion deals with the ase of Proesses with Independent Inrements. The preliminary part reallssome useful properties of suh proesses. Then, we obtain a su�ient ondition on the harateristi funtionfor the existene of the FS deomposition. Moreover, an expliit FS deomposition is derived.13



Beyond its own theoretial interest, this work is motivated by its possible appliation to hedging andpriing energy derivatives and spei�ally eletriity derivatives. Indeed, one way of modeling eletriityforward pries is to use arithmeti models suh as the Bahelier model whih was developed for standard�nanial assets. The reason for using arithmeti models, is that the usual hedging intrument available oneletriity markets are swap ontrats whih give a �xed prie for the delivery of eletriity over a ontratedtime period. Hene, eletrity swaps an be viewed as a strip of forwards for eah hour of the delivery period.In this framework, arithmeti models have the signi�ant advantage to yield losed priing formula for swapswhih is not the ase of geometri models.However, in whole generality, an arithmeti model allows negative pries whih ould be underisable.Nevertheless, in the eletriity market, negative pries may our beause it an be more expensive for aproduer to swith o� some generators than to pay someone to onsume the resulting exess of prodution.Still, in [6℄, is introdued a lass of arithmeti models where the positivity of spot pries is ensured, using aspei� hoie of inreasing Lévy proess. The parameters estimation of this kind of model is studied in [37℄.3.1 PreliminariesDe�nition 3.1. X = (Xt)t∈[0,T ] is a (real) proess with independent inrements (PII) i�1. X is adapted to the �ltration (Ft)t∈[0,T ] and has àdlàg paths.2. X0 = 0.3. Xt −Xs is independent of Fs for 0 ≤ s < t ≤ T .Moreover we will also suppose4. X is ontinuous in probability, i.e. X has no �xed time of disontinuties.We reall Theorem II.4.15 of [35℄.Theorem 3.2. Let (Xt)t∈[0,T ] be a real-valued speial semimartingale, with X0 = 0. Then, X is a proesswith independent inrements, i� there is a version (b, c, ν) of its harateristis that is deterministi.Remark 3.3. In partiular, ν is a (deterministi non-negative) measure on the Borel σ-�eld of [0, T ]× R.From now on, given two reals a, b, we denote by a ∨ b (resp. a ∧ b) the maximum (resp. minimum)between a and b.Proposition 3.4. Suppose X is a semimartingale with independent inrements with harateristis (b, c, ν),then there exists an inreasing funtion t 7→ at suh that
dbt ≪ dat , dct ≪ dat and ν(dt, dx) = F̃t(dx)dat , (3.1)where F̃t(dx) is a non-negative kernel from (

[0, T ],B([0, T ])
) into (R,B) verifying

∫

R

(|x|2 ∧ 1)F̃t(dx) ≤ 1 , ∀t ∈ [0, T ]. (3.2)and
at = ||b||t + ct +

∫

R

(|x|2 ∧ 1)ν([0, t], dx) , (3.3)14



Proof. The existene of (at) as a proess ful�lling (3.3) and F̃ ful�lling (3.2) is provided by the statementand the proof of Proposition II. 2.9 of [35℄. (3.3) and Theorem 3.2 guarantee that (at) is deterministi.Remark 3.5. In partiular, (bt), (ct) and t 7→
∫
[0,t]×B

(|x|2 ∧ 1)ν(ds, dx) has bounded variation for any
B ∈ B.The proposition below provides the so alled Lévy-Khinhine Deomposition.Proposition 3.6. Assume that (Xt)t∈[0,T ] is a proess with independent inrements. Then

ϕt(u) = eΨt(u) , for all u ∈ R , (3.4)
Ψt, is given by the Lévy-Khinhine deomposition of the proess X,

Ψt(u) = iubt −
u2

2
ct +

∫

R

(eiux − 1 − iuh(x))Ft(dx) , for all u ∈ R , (3.5)where B 7→ Ft(B) is the positive measure ν([0, t] ×B) whih integrates 1 ∧ |x|2 for any t ∈ [0, T ].We introdue here a simplifying hypothesis for this setion.Assumption 2. For any t > 0, Xt is never deterministi.Remark 3.7. We suppose Assumption 2.1. Up to a 2πi addition of κt(e), we an write Ψt(u) = κt(iu), ∀u ∈ R. From now on we will alwaysmake use of this modi�ation.2. ϕt(u) is never a negative number. Otherwise, there would be u ∈ R∗, t > 0 suh that E(cos(uXt)) = −1.Sine cos(uXt) + 1 ≥ 0 a.s. then cos(uXt) = −1 a.s. and this is not possible sine Xt is non-deterministi.3. Previous point implies that all the di�erentiability properties of u 7→ ϕt(u) are equivalent to those of
u 7→ Ψt(u).4. If E[|Xt|2] <∞, then for all u ∈ R, Ψ

′

t(u) and Ψ
′′

t (u) exist.We ome bak to the umulant generating funtion κ and its domain D.Remark 3.8. In the ase where the underlying proess is a PII, then
D := {z ∈ C | E[eRe(z)Xt ] <∞, ∀t ∈ [0, T ]} = {z ∈ C | E[eRe(z)XT ] <∞} .In fat, for given t ∈ [0, T ], γ ∈ R we have

E(eγXT ) = E(eγXt)E(eγ(XT−Xt)) <∞.Sine eah fator is positive, and if the left-hand side is �nite, then E(eγXt) is also �nite.We need now a result whih extends the Lévy-Khinhine deomposition to the umulant generatingfuntion. Similarly to Theorem 25.17 of [45℄ we have.Proposition 3.9. Let D0 =
{
c ∈ R |

∫
[0,T ]×{|x|>1}

ecxν(dt, dx) <∞
}. Then,1. D0 is onvex and ontains the origin. 15



2. D0 = D ∩ R.3. If z ∈ C suh that Re(z) ∈ D0, i.e. z ∈ D, then
κt(z) = zbt +

z2

2
ct +

∫

[0,t]×R

(ezx − 1 − zh(x))ν(ds, dx) . (3.6)Proof. 1. is a onsequene of Hölder inequality similarly as i) in Theorem 25.17 of [45℄ .2. The harateristi funtion of the law of Xt is given by (3.5). Aording to Theorem II.8.1 (iii)of Sato [45℄, there is an in�nitely divisible distribution with harateristis (bt, ct, Ft(dx)), ful�lling
Ft({0}) = 0 and ∫ (1 ∧ x2)Ft(dx) < ∞ and ct ≥ 0. By uniqueness of the harateristi funtion, thatlaw is preisely the law of Xt. By Corollary II.11.6, in [45℄, there is a Lévy proess (Lts, 0 ≤ s ≤ 1)suh that Lt1 and Xt are identially distributed. We de�ne

Ct0 = {c ∈ R |
∫

{|x|>1}

ecxFt(dx) <∞} and Ct = {z ∈ C | E
[
exp(Re(zLt1)

]
<∞} .Remark 3.8 says that CT = D, moreover learly CT0 = D0. Theorem V.25.17 of [45℄ impliesD0 = D∩R,i.e. point 2. is established.3. Let t ∈ [0, T ] be �xed; let w ∈ D. We apply point (iii) of Theorem V.25.17 of [45℄ to the Lévy proess

Lt.Proposition 3.10. Let X be a semimartingale with independent inrements. For all z ∈ D, t 7→ κt(z) hasbounded variation and
κdt(z) ≪ dat . (3.7)Proof. Using (3.6), it remains to prove that

t 7→
∫

[0,T ]×R

(ezx − 1 − zh(x))ν(ds, dx)is absolutely ontinuous with respet to (dat). We an onlude
κt(z) =

∫ t

0

dbs
das

das +
z2

2

∫ t

0

dcs
das

das +

∫ t

0

das

∫

R

(ezx − 1 − zh(x)) F̃s(dx) ,if we show that
∫ T

0

das

∫

R

|ezx − 1 − zh(x)|F̃s(dx) <∞ . (3.8)Without restrition of generality we an suppose h(x) = x1|x|≤1. (3.8) an be bounded by the sum I1+I2+I3where
I1 =

∫ T

0

das

∫

|x|>1

|ezx|F̃s(dx) , I2 =

∫ T

0

das

∫

|x|>1

F̃s(dx) , and I3 =

∫ T

0

das

∫

|x|≤1

|ezx−1−zx|F̃s(dx) .Using Proposition 3.4, we have
I1 =

∫ T

0

das

∫

|x|>1

|ezx|F̃s(dx)

=

∫ T

0

das

∫

|x|>1

|eRe(z)x|F̃s(dx)

=

∫

[0,T ]×|x|>1

|eRe(z)x|ν(ds, dx);16



this quantity is �nite beause Re(z) ∈ D0 taking into aount Proposition 3.9. Conerning I2 we have
I2 =

∫ T

0

das

∫

|x|>1

F̃s(dx)

=

∫ T

0

das

∫

|x|>1

(1 ∧ |x2|)F̃s(dx)

≤ aTbeause of (3.2). As far as I3 is onerned, we have
I3 ≤ eRe(z)

z2

2

∫

[0,T ]×|x|≤1

das(x
2 ∧ 1)F̃s(dx)

= eRe(z)
z2

2
aTagain beause of (3.2). This onludes the proof the Proposition.The onverse of the �rst part of previous orollary also holds. For this purpose we formulate �rst a simpleremark.Remark 3.11. For every z ∈ D, (exp(zXt − κt(z))) is a martingale. In fat, for all 0 ≤ s ≤ t ≤ T , wehave

E[exp(z(Xt −Xs))] = exp(κt(z) − κs(z)) . (3.9)Proposition 3.12. Let X be a PII. Let z ∈ D ∩ R⋆. (Xt)t∈[0,T ] is a semimartingale i� t 7→ κt(z) hasbounded variation.Proof. It remains to prove the onverse impliation.If t 7→ κt(z) has bounded variation then t 7→ eκt(z)) has the same property. Remark 3.11 says that ezXt =

Mte
κt(z) where (Mt) is a martingale. Finally, (ezXt) is a semimartingale and taking the logarithm (zXt) hasthe same property.Remark 3.13. Let z ∈ D. If (Xt) is a semimartingale with independent inrements then (ezXt) is nees-sarily a speial semimartingale sine it is the produt of a martingale and a bounded variation ontinuousdeterministi funtion, by use of integration by parts.Lemma 3.14. Suppose that (Xt) is a semimartingale with independent inrements. Then for every z ∈

Int(D), t 7→ κt(z) is ontinuous.Remark 3.15. The onlusion remains true for any proess whih is ontinuous in probability, whenever
t 7→ κt(z) is (loally) bounded.Proof of Lemma 3.14. Sine z ∈ Int(D), there is γ > 1 suh that γz ∈ D; so

E[exp(zγXt)] = exp(κt(γz)) ≤ exp(sup
t≤T

(κt(γz))) ,beause t 7→ κt(γz) is bounded, being of bounded variation. This implies that (exp(zXt))t∈[0,T ] is uniformlyintegrable. Sine (Xt) is ontinuous in probability, then (exp(zXt)) is ontinuous in L1. The result easilyfollows. 17



Proposition 3.16. The funtion (t, z) 7→ κt(z) is ontinuous. In partiular, (t, z) 7→ κt(z), t ∈ [0, T ], zbelonging to a ompat real subset, is bounded.Proof. • Proposition 3.9 implies that z 7→ κt(z) is ontinuous uniformly with respet to t ∈ [0, T ].
• By Lemma 3.14, for z ∈ IntD, t 7→ κt(z) is ontinuous.
• To onlude it is enough to show that t 7→ κt(z) is ontinuous for every z ∈ D. Sine D̄ = IntD, thereis a sequene (zn) in the interior of D onverging to z. Sine a uniform limit of ontinuous funtionson [0, T ] onverges to a ontinuous funtion, the result follows.3.2 Struture ondition for PII (whih are semimartingales)Let X = (Xt)t∈[0,T ] be a real-valued semimartingale with independent inrements and X0 = 0. We assumethat E[|Xt|2] <∞. We denote by ϕt(u) = E[exp(iuXt)] the harateristi funtion of Xt and by u 7→ Ψt(u)its log-harateristi funtion introdued in Proposition 3.6. We reall that ϕt(u) = exp(Ψt(u)).

X has the property of independent inrements; therefore
exp(iuXt)/E[exp(iuXt)] = exp(iuXt)/ exp(Ψt(u)) , (3.10)is a martingale.Remark 3.17. Notie that the two �rst order moments of X are related to the log-harateristi funtionof X, as follows

E[Xt] = −iΨ′

t(0) , E[Xt −Xs] = −i(Ψ′

t(0) − Ψ
′

s(0)), (3.11)
V ar(Xt) = −Ψ

′′

t (0) , V ar(Xt −Xs) = −[Ψ
′′

t (0) − Ψ
′′

s (0)] . (3.12)Proposition 3.18. Let X = (Xt)t∈[0,T ] be a real-valued semimartingale with independent inrements.1. X is a speial semimartingale with deomposition X = M +A with the following properties:
〈M〉t = −Ψ

′′

t (0) and At = −iΨ′

t(0) . (3.13)In partiular t 7→ −Ψ
′′

t (0) is inreasing and therefore of bounded variation.2. X satis�es ondition (SC) of De�nition 2.11 if and only if
Ψ

′

t(0) ≪ Ψ
′′

t (0) and ∫ T

0

∣∣∣∣∣
dtΨ

′

s

dtΨ
′′

s

(0)

∣∣∣∣∣

2

|dΨ′′

s (0)| <∞ . (3.14)In that ase
At =

∫ t

0

αsd 〈M〉s with αt = i
dtΨ

′

t(0)

dtΨ
′′

t (0)
for all t ∈ [0, T ] . (3.15)3. Under ondition (3.14), FS deomposition exists (and it is unique) for every square integrable randomvariable.In the sequel, we will provide an expliit deomposition for a lass of ontingent laims, under ondi-tion (3.14). 18



Proof. 1. Let us �rst determine A and M in terms of the log-harateristi funtion of X . Using (3.11)of Remark 3.17, we get
E[Xt|Fs] = E[Xt −Xs +Xs | Fs] ,= E[Xt −Xs] +Xs ,

= −iΨ′

t(0) + iΨ
′

s(0) +Xs , then ,
E[Xt + iΨ

′

t(0)|Fs] = Xs + iΨ
′

s(0) .Hene, (Xt + iΨ
′

t(0)) is a martingale and the anonial deomposition of X follows
Xt = Xt + iΨ

′

t(0)︸ ︷︷ ︸
Mt

−iΨ′

t(0)︸ ︷︷ ︸
At

,whereM is a loal martingale and A is a loally bounded variation proess thanks to the semimartingaleproperty of X . Let us now determine 〈M〉, in terms of the log-harateristi funtion of X .
M2
t = [Xt + iΨ

′

t(0)]2 ,

E[M2
t |Fs] = E[(Xt + iΨ

′

t(0))2|Fs] ,

= E[(Xs + iΨ
′

s(0) +Xt −Xs + iΨ
′

t(0) − iΨ
′

s(0))2|Fs] ,

= E[(Ms +Xt −Xs + i(Ψ
′

t(0) − Ψ
′

s(0)))2|Fs] ,Using (3.11) and (3.12) of Remark 3.17, yields
M2
t = E[(Ms − E[Xt −Xs] +Xt −Xs)

2] ,

= M2
s + V ar(Xt −Xs) = M2

s − Ψ
′′

t (0) + Ψ
′′

s (0) .Hene, (M2
t + Ψ

′′

t (0)) is a (Ft)-martingale, and point 1. is established.
At =

∫ t

0

αsd 〈M〉s with αt = i
dtΨ

′

t(0)

dtΨ
′′

t (0)
for all t ∈ [0, T ] .2. is a onsequene of point 1. and of De�nition 2.11.3. follows from Theorem 2.22. In fatKt = −

∫ T

0

(
dtΨ

′

s

dtΨ
′′

s

(0)

)2

dΨ
′′

s (0) is deterministi and so Assumption1 is ful�lled.3.3 Examples3.3.1 A ontinuous proess exampleLet ψ : [0, T ] → R be a ontinuous stritly inreasing funtion, γ : [0, T ] → R be a bounded variation funtionsuh that dγ ≪ dψ. We set Xt = Wψ(t) + γ(t), where W is the standard Brownian motion on R. Clearly,
Xt = Mt + γ(t), where Mt = Wψ(t), de�nes a ontinuous martingale, suh that 〈M〉t = [M ]t = ψ(t). Sine
Xt ∼ N (γ(t), ψ(t)) for all u ∈ R and t ∈ [0, T ], we have

Ψt(u) = iγ(t)u− u2ψ(t)

2
,19



whih yields
Ψ

′

t(0) = iγ(t) and Ψ
′′

t (0) = −ψ(t) ,Therefore, if dγ
dψ

∈ L2(dψ), then X satis�es ondition (SC) of De�nition 2.11 with
At =

∫ t

0

αsd 〈M〉s and αt =
dγ

dψ

∣∣∣∣
t

for all t ∈ [0, T ] .3.3.2 Proesses with independent and stationary inrements (Lévy proesses)De�nition 3.19. X = (Xt)t∈[0,T ] is alled Lévy proess or proess with stationary and independentinrements if the following properties hold.1. X is adapted to the �ltration (Ft)t∈[0,T ] and has àdlàg trajetories.2. X0 = 0.3. The distribution of Xt −Xs depends only on t− s for 0 ≤ s ≤ t ≤ T .4. Xt −Xs is independent of Fs for 0 ≤ s ≤ t ≤ T .5. X is ontinuous in probability.For details on Lévy proesses, we refer the reader to [40℄, [45℄ and [35℄.Let X = (Xt)t∈[0,T ] be a real-valued Lévy proess, with X0 = 0. We assume that E[|Xt|2] < ∞ and we donot onsider the trivial ase where L1 is deterministi.Remark 3.20. 1. Sine X = (Xt)t∈[0,T ] is a Lévy proess then Ψt(u) = tΨ1(u). In the sequel, we willuse the shortened notation Ψ := Ψ1.2. Ψ is a funtion of lass C2 and Ψ
′′

(0) = V ar(X1) whih is stritly positive if X has no stationaryinrements.3.4 Cumulative and harateristi funtionals in some partiular asesWe reall some umulant and log-arateristi funtions of some typial Lévy proesses.Remark 3.21. 1. Poisson Case: If X is a Poisson proess with intensity λ, we have that κΛ(z) = λ(ez−
1). Moreover, in this ase the set D = C.Conerning the log-harateristi funtion we have

Ψ(u) = λ(eiu − 1) , Ψ
′

(0) = iλ and Ψ
′′

(0) = −λ, u ∈ R.2. NIG Case: This proess was introdued by Barndor�-Nielsen in [4℄. Then X is a Lévy proess with
X1 ∼ NIG(α, β, δ, µ), with α > |β| > 0, δ > 0 and µ ∈ R. We have κΛ(z) = µz + δ(γ0 − γz) and
γz =

√
α2 − (β + z)2, D =] − α− β, α− β[+iR .Therefore

Ψ(u) = µiu+ δ(γ0 − γiu) , where γiu =
√
α2 − (β + iu)2 .20



By derivation, one gets
Ψ

′

(0) = iµ+ δ
iβ

γ0
and Ψ

′′

(0) = −δ( 1

γ0
+
β2

γ3
0

),Whih yields α = i
Ψ

′

(0)

Ψ′′(0)
=
γ2
0(γ0µ+ δβ)

δ(γ2
0 + β)

.3. Variane Gamma ase: Let α, β > 0, δ 6= 0. If X is a Variane Gamma proess with X1 ∼ V G(α, β, δ, µ)with κΛ(z) = µz + δLog

(
α

α−βz− z2

2

)
, where Log is again the prinipal value omplex logarithm de-�ned in Setion 2. The expression of κΛ(z) an be found in [31, 36℄ or also [16℄, table IV.4.5 inthe partiular ase µ = 0. In partiular an easy alulation shows that we need z ∈ C suh that

Re(z) ∈] − β −
√
β2 + 2α,−β +

√
β2 + 2α[ so that κΛ(z) is well de�ned so that

D =] − β −
√
β2 + 2α,−β +

√
β2 + 2α[+iR.Finally we obtain

Ψ(u) = µiu+ δLog

(
α

α− βiu+ u2

2

)
.After derivation it follows

Ψ
′

(0) = i(µ− δβ), Ψ
′′

(0) =
δ

α
(α2 − β2).3.5 Struture ondition in the Lévy aseBy appliation of Proposition 3.18 and Remark 3.20, we get the following result.Corollary 3.22. Let X = M +A be the anonial deomposition of X, then for all t ∈ [0, T ],

〈M〉t = −tΨ′′

(0) and At = −itΨ′

(0) . (3.16)Moreover X satis�es ondition (SC) of De�nition 2.11 with
At =

∫ t

0

αd 〈M〉s with α = i
Ψ

′

(0)

Ψ′′(0)
for all t ∈ [0, T ] . (3.17)Hene, FS deomposition exists for every square integrable random variable.Remark 3.23. We have the following in previous three examples of subsubsetion 3.41. Poisson ase: α = 1.2. NIG proess: α =

γ2
0(γ0µ+ δβ)

δ(γ2
0 + β)

.3. VG proess: α =
µ− δβ

α2 − β2

α

δ
.
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3.5.1 Wiener integrals of Lévy proessesWe take Xt =
∫ t
0 γsdΛs, where Λ is a square integrable Lévy proess as in Setion 3.3.2. Then, ∫ T0 γsdΛs iswell-de�ned for at least γ ∈ L∞([0, T ]). It is then possible to alulate the harateristi funtion and theumulative funtion of ∫ ·

0 γsdΛs. Let (t, z) 7→ tΨΛ(z), (resp. (t, z) 7→ tκΛ(z)) denoting the log-harateristifuntion (resp. the umulant generating funtion) of Λ.Lemma 3.24. Let γ : [0, T ] → R be a Borel bounded funtion.1. The log-harateristi funtion of Xt is suh that for all u ∈ R,
ΨXt(u) =

∫ t

0

ΨΛ(uγs)ds , where E[exp(iuXt)] = exp
(
ΨXt(u)

)
;2. Let DΛ be the domain related to κΛ in the sense of De�nition 2.2. The umulant generating funtionof Xt is suh that for all z ∈ {z |Rezγt ∈ DΛ for all t ∈ [0, T ]},

κXt(z) =

∫ t

0

κΛ(zγs)ds.Proof. We only prove 1. sine 2. follows similarly. Suppose �rst γ to be ontinuous, then ∫ T
0
γsdΛs is thelimit in probability of∑p−1

j=0 γtj (Λtj+1 −Λtj) where 0 = t0 < t1 < ... < tp = T is a subdivision of [0, T ] whosemesh onverges to zero. Using the independene of the inrements, we have
E


exp{i

p−1∑

j=0

γtj (Λtj+1 − Λtj )}


 =

p−1∏

j=0

E
[
exp{iγtj(Λtj+1 − Λtj )}

]
,

=

p−1∏

j=0

exp{ΨΛ(γtj )(tj+1 − tj)} ,

= exp{
p−1∑

j=0

(tj+1 − tj)ΨΛ(γtj )} .This onverges to exp
(∫ T

0 ΨΛ(γs)ds
), when the mesh of the subdivision goes to zero.Suppose now that γ is only bounded and onsider, using onvolution, a sequene γn of ontinuous funtions,suh that γn → γ a.e. and supt∈[0,T ] |γn(t)| ≤ supt∈[0,T ] |γ(t)|. We have proved that

E

[
exp

(
i

∫ T

0

γn(s)dΛs

)]
= exp

(∫ T

0

ΨΛ(γn(s))ds

) (3.18)Now, ΨΛ is ontinuous therefore bounded, so Lebesgue dominated onvergene and ontinuity of stohastiintegral imply statement 1.Remark 3.25. 1. Previous proof, whih is left to the reader, also applies for statement 2. This statementin a slight di�erent form is proved in [9℄2. We prefer to formulate a diret proof. In partiular statement 1. holds with the same proof even if Λhas no moment ondition and γ is a ontinuous funtion with bounded variation. Stohasti integralsare then de�ned using integration by parts. 22



We suppose now that Λ is a Lévy proess suh that Λ1 is not deterministi. In partiular V ar(Λ1) 6= 0and so Ψ′′
Λ 6= 0.In this ase

Ψ
′

t(u) =

∫ t

0

Ψ
′

Λ(uγs)γsds and Ψ
′′

t (u) =

∫ t

0

Ψ
′′

Λ(uγs)γ
2
sds .So

Ψ
′

t(0) = Ψ
′

Λ(0)

∫ t

0

γsds and Ψ
′′

t (0) = Ψ
′′

Λ(0)

∫ t

0

γ2
sds .Condition (SC) is veri�ed sine dΨ′

t(0) ≪ dΨ
′′

t (0) with
αt = i

dΨ
′

t(0)

dΨ
′′

t (0)
=

Ψ
′

Λ(0)

Ψ
′′

Λ(0)

i

γt
1{γt 6=0} and ∫ T

0

α2
s |Ψ

′′

s (0)|γ2
sds = T

|Ψ′

Λ(0)|2
|Ψ′′

Λ(0)| <∞ .3.6 Expliit Föllmer-Shweizer deomposition in the PII ase3.6.1 PreliminariesLet X = (Xt)t∈[0,T ] be a semimartingale with independent inrements with log-harateristi funtion
(t, u) 7→ Ψt(u). We assume that (Xt)t∈[0,T ] is square integrable and satis�es Assumption 2.Remark 3.26. 1. u 7→ Ψt(u) is of lass C2, for any t ∈ [0, T ] beause Xt is square integrable.2. t 7→ Ψ

′′

t (0) and t 7→ Ψ
′

t(0) have bounded variation beause of Proposition 3.18. Therefore, they arebounded.3. t 7→ Ψ
′

t(u) is ontinuous for every u ∈ R. In fat, �rst t 7→ Xt is ontinuous in probability. Sine
Mt = Xt−Ψ′

t(0) is a square integrable martingale and t 7→ Ψ
′

t(0) is bounded, then the family (E(X2
t ))is bounded and so (Xt) is uniformly integrable. So t 7→ ϕ′

t(u) is ontinuous and the result follows byAssumption 24. t 7→ Ψ
′′

t (0) is ontinuous. In fat, again it is enough to prove t 7→ ϕ′′
t (0) is ontinuous. This followsif we prove that (Mt) is ontinuous in L2. This is true beause M is ontinuous in probability and forany N > 0, t ∈ [0, T ], Chebyshev implies that

P{|M2
t | > N} ≤ Var(Xt)

N
≤ Var(XT )

N
,and so the family (M2

t ) is again uniformly integrable.We suppose the following.Assumption 3. 1. t 7→ Ψ
′

t(u) is absolutely ontinuous with respet to dΨ′′

t (0).2. For every u ∈ R, we suppose that the following quantity
K(u) :=

∫ T

0

∣∣∣∣∣
dΨ

′

t(u)

dΨ
′′

t (0)

∣∣∣∣∣

2

d(−Ψ
′′

s (0)) (3.19)is �nite.Remark 3.27. If u = 0, the previous quantity (3.19) is �nite beause of the (SC) ondition.23



We onsider a ontingent laim whih is given as a Fourier transform of XT ,
H = f(XT ) with f(x) =

∫

R

eiuxµ(du) , for all x ∈ R , (3.20)for some �nite signed measure µ.Assumption 4. ∫

R

K(u)d|µ(u)| <∞.Remark 3.28. We observe that the funtion
(u, t) 7→ exp(ΨT (u) − Ψt(u))is uniformly bounded beause the harateristi funtion is bounded.We will �rst evaluate an expliit Kunita-Watanabe deomposition of H w.r.t. the martingale part M of

X . Later, we will �nally obain the deomposition with respet to X .3.6.2 Expliit elementary Kunita-Watanabe deompositionBy Propostion 3.18, X admits the following semimartingale deomposition, Xt = At +Mt, where
At = −iΨ′

t(0) and 〈M〉t = −Ψ
′′

t (0) . (3.21)Proposition 3.29. Let H = f(XT ) where f is of the form (3.20). We suppose that the PII X satis�esAssumptions 2, 3 and 4. Then, H admits the deomposition
{

Vt = V0 +
∫ t
0
ZsdMs +Ot

VT = H ,
(3.22)with the following properties.1. For all t ∈ [0, T ],

Zt = i

∫

R

eiuXt−
d
(
Ψ

′

t(u) − Ψ
′

t(0)
)

dΨ
′′

t (0)
exp {ΨT (u) − Ψt(u)} µ(du) ; (3.23)2. O is a square integrable (Ft)-martingale suh that 〈O,M〉 = 0 ;3. H = VT where (Vt)t∈[0,T ] is the (Ft)-martingale de�ned by

Vt = E[H |Ft] =

∫

R

eiuXt exp {ΨT (u) − Ψt(u)}µ(du) . (3.24)Remark 3.30. In partiular,1. V0 = E[H ] ;2. E

[∫ T
0
Z2
sd 〈M〉s

]
<∞ .Proof. We start with the ase µ = δu(dx) for some u ∈ R so that f(x) = eiux. We onsider the (Ft)-martingale Vt = E[f(XT )|Ft] = E[eiuXT |Ft]. 24



1. Clearly V0 = E[eiuXT ] .2. We alulate expliitely Vt, whih gives
Vt = E[eiuXT |Ft] = eiuXtE[eiu(XT−Xt)] = exp(iuXt − Ψt(u)) exp(ΨT (u))

= Ṽt exp(ΨT (u)) ,where Ṽt = exp(iuXt − Ψt(u)) de�nes an (Ft)-martingale.3. We evaluate 〈V,M〉.Lemma 3.31. 〈V,M〉t = −i
∫ t
0
Vs(Ψ

′

ds(u) − Ψ
′

ds(0)) .Proof. We evaluate E[ṼtMt|Fs]. Sine Ṽ and M are (Ft)-martingales and using the property of inde-pendent inrements we get
E[ṼtMt|Fs] = E[ṼtMs|Fs] + E[Ṽt(Mt −Ms)|Fs] ,

= MsṼs + ṼsE[exp{iu(Xt −Xs) − (Ψt(u) − Ψs(u))}(Mt −Ms)] ,

= MsṼs + Ṽse
−(Ψt(u)−Ψs(u))

E[eiu(Xt−Xs)(Mt −Ms)] .Previous expetation gives
E[eiu(Xt−Xs)(Mt −Ms)] = E[eiu(Xt−Xs)(Xt −Xs)] + E[eiu(Xt−Xs)i(Ψ

′

t(0) − Ψ
′

s(0))] ,

= −i ∂
∂u

E[eiu(Xt−Xs)] + i(Ψ
′

t(0) − Ψ
′

s(0))E[eiu(Xt−Xs)] ,

= −ieΨt(u)−Ψs(u)(Ψ
′

t(u) − Ψ
′

s(u)) + i(Ψ
′

t(0) − Ψ
′

s(0))eΨt(u)−Ψs(u) .Consequently,
E[ṼtMt|Fs] = MsṼs − iṼs(Ψ

′

t(u) − Ψ
′

s(u)) + iṼs(Ψ
′

t(0) − Ψ
′

s(0))

= MsṼs − iṼs

(
Ψ

′

t(u) − Ψ
′

t(0) − (Ψ
′

s(u) − Ψ
′

s(0))
)
.This implies that (ṼtMt + iṼt(Ψ

′

t(u) − Ψ
′

t(0))
)
t
is an (Ft)-martingale. Then by integration by parts,

Ṽt(Ψ
′

t(u) − Ψ
′

t(0)) =

∫ t

0

Ṽs(Ψ
′

ds(u) − Ψ
′

ds(0)) +

∫ t

0

(Ψ
′

s(u) − Ψ
′

s(0))dṼs .The seond integral term of the right-hand side being a martingale, it follows that
〈
Ṽ ,M

〉
t
= −i

∫ t

0

Ṽs(Ψ
′

ds(u) − Ψ
′

ds(0)) .and so
〈V,M〉t = −i

∫ t

0

Vs(Ψ
′

ds(u) − Ψ
′

ds(0)) . (3.25)25



4. We ontinue the proof of the Proposition 3.29. For given (Zt) we have
〈∫ t

0

ZdM,M

〉

t

=

∫ t

0

Zs−d 〈M〉s = −
∫ t

0

ZsΨ
′′

ds(0) .5. We want to identify
−
∫ t

0

ZsΨ
′′

ds(0) = −i
∫ t

0

Vs(Ψ
′

ds(u) − Ψ
′

ds(0)) .This naturally leads to
Zs = i

d(Ψ
′

s(u) − Ψ
′

s(0))

dΨ′′

s (0)
Vs− . (3.26)6. Finally, we obtain the general ase, for general �nite signed measure µ, similarly to the proof ofTheorem 4.23 (in the sequel) in the ase of exponential of PII proesses. The use of Fubini's theoremis essential.Example 3.32. We take X = M = W the lassial Wiener proess. We have Ψs(u) = −u2s

2 so that
Ψ

′

s(u) = −us and Ψ
′′

s (u) = −s. So Zs = iuVs. We reall that
Vs = E[exp(iuWT )|Fs] = exp(iuWs) exp

(
−u2T − s

2

)
.In partiular, V0 = exp(−u2T

2 ) and so
exp(iuWT ) = i

∫ T

0

u exp(iuWs) exp

(
−u2T − s

2

)
dWs + exp(−u

2T

2
).In fat that expression is lassial and it an be derived from Clark-Oone formula.3.6.3 Expliit Föllmer-Shweizer deompositionWe introdue a quantity whih will be useful in the sequel. For t ∈ [0, T ], u ∈ R we set

η(u, t) =

∫ t

0

d(Ψ
′

s(u) − Ψs
′(0))

d(Ψ′′

s (0))
Ψ

′

ds(0) . (3.27)Remark 3.33. 1. η is de�ned unambiguously sine d(Ψ′

t(u) − Ψ
′

t(0)
) is absolutely ontinuous with re-spet to dΨ′′

t (0) .2. η is well-de�ned, beause for any u ∈ R,
η(u, t) =

∫ t

0

d(Ψ
′

s(u) − Ψs
′(0))

d(Ψ′′

s (0))

d(Ψs
′(0))

d(Ψ′′

s (0))
dΨ

′′

ds(0)is bounded by Cauhy-Shwarz, taking into aount Assumption 3 point 2.We are now able to evaluate the FS deomposition of H = f(XT ) where f is given by (4.27).We introdue now a supplementary hypothesis. 26



Assumption 5. The quantity
sup

u∈suppµ,t∈[0,T ]

(Re(η(u, t)) <∞ .Theorem 3.34. Under the assumptions of Proposition 3.29 and Assumption 5, the FS deomposition of His the following
Ht = H0 +

∫ t

0

ξsdXs + Lt with HT = H (3.28)and
Ht =

∫

R

H(u)tµ(du) , (3.29)
ξt =

∫

R

ξ(u)tµ(du) ,where
ξ(u)t = i

d(Ψ
′

t(u) − Ψ
′

t(0))

dΨ
′′

t (0)
H(u)t− , (3.30)

H(u)t = exp {η(u, T ) − η(u, t) + ΨT (u) − Ψt(u)} eiuXt .Proof. Using Fubini's theorem, we redue the problem to show that
H(u)t = H(u)0 +

∫ t

0

ξ(u)sdXs + L(u)t with H(u)T = exp(iuXT ) ,for �xed u ∈ R where L(u) is a square integrable martingale and 〈L(u),M〉 = 0, where M is the martingalepart of the speial semimartingale X . Notie that by equation (3.30),
H(u)t = H(u)0 + e

R

T

t
η(u,ds)V (u)t with V (u)t = exp(iuXt + ΨT (u) − Ψt(u)) .Integrating by parts, gives

H(u)t = H(u)0 −
∫ t

0

e
R

T

r
η(u,ds)V (u)rη(u, dr) +

∫ t

0

e
R

T

r
η(u,ds)dV (u)r .We denote again by Z(u) the expression provided by (3.26). We reall that

dV (u)r = Z(u)rdMr + dO(u)r = Z(u)r(dXr − dAr) + dO(u)r ,where A is given by (3.21) and O is a square integrable martingale strongly orthogonal to M (i.e. 〈M,O〉. =

0).
H(u)t = H(u)0+L(u)t+

∫ t

0

e
R

T

r
η(u,ds)Z(u)rdXr−

∫ t

0

e
R

T

r
η(u,ds)Z(u)r(−iΨ

′

dr(0))−
∫ t

0

e
R

T

r
η(u,ds)V (u)rη(u, dr) ,where

L(u)t =

∫ t

0

e
R

T

r
η(u,ds)dO(u)r ,is a martingale strongly orthogonal to M . To onlude, we need to hoose η so that

∫ t

0

Z(u)re
R

T

r
η(u,ds)(−iΨ′

dr(0)) =

∫ t

0

e
R

T

r
η(u,ds)V (u)rη(u, dr)) .27



This requires
η(u, dr) =

d(Ψ
′

r(u) − Ψr
′(0))

d(Ψ′′

r (0))
Ψ

′

dr(0) .So we de�ne η as in (3.27).3.6.4 The Lévy aseLet X be a square integrable Lévy proess, with harateristi funtion exp(Ψ(u)t). In partiular, Ψ is oflass C2(R). We have
dΨ

′

t(u)

dΨ
′′

t (0)
=

Ψ
′

(u)

Ψ′′(0)
and η(u, t) = t

Ψ
′

(u) − Ψ
′

(0)

Ψ′′(0)
Ψ

′

(0) .We remark that Assumptions 2 is veri�ed. Conerning Assumption 3, point 1. is trivial; point 2. is veri�edbeause K(u) =

∣∣∣∣∣
Ψ

′

(u)

Ψ′′(u)

∣∣∣∣∣

2

(−TΨ
′′

(u)) . On the other hand Assumption 5 is veri�ed if
Re

(
Ψ

′

(u)Ψ
′

(0)

Ψ′′(0)

)
<∞ . (3.31)Sine Ψ

′

(0) = iE[X1] and Ψ
′′

(0) < 0, (3.31) is ful�lled if
E[X1]Im(Ψ

′

(u)) > −∞ . (3.32)Assumption 4 is veri�ed if
∫

R

∣∣∣Ψ
′

(u)
∣∣∣
2

d|µ(u)| <∞ . (3.33)Example 3.35. We start with the toy model Xt = σWt +mt, σ,m ∈ R. We have Ψ(u) = −u2

2 σ
2 + imuso Ψ

′

(u) = −uσ2 + im and Im(Ψ
′

(u)) = m. Condition (3.32) is always veri�ed and Condition (3.33) isveri�ed if
∫

R

u2dµ(u) <∞ . (3.34)(3.34) is veri�ed for instane in the example of the beginning of subsetion 3.7 sine ∫ c
−∞

u2eudu < ∞for c > 0.Remark 3.36. In the examples introdued in Remark 3.21, we an show that u 7→
∣∣∣Ψ′

(u)
∣∣∣ is bounded andso (3.32) and (3.33) are always veri�ed for the following reasons.1. Poisson aseWe have Ψ

′

(u) = iλeiu .2. NIG aseWe have Ψ′(u) = iµ+ iδ (β + iu)
(
α2 − (β + iu)2

)− 1
2 . Now

|Ψ′(u)| ≤ 2

(
|µ|2 + 2δ

√
β2 + u2

(α2 − β2 + u2)2 + 4u2β2

)
.Sine |α| > |β|, u 7→ |Ψ′(u)| is bounded. 28



3. Variane Gamma aseWe have Ψ
′

(u) = iµ− u−iβ

α−iuβ+u2

2

Clearly |Ψ′(u)| is again bounded.In onlusion, we an apply Theorem 3.34 and we obtain
V (u)t = exp(iuXt + (T − t)Ψ(u)) ,

H(u)t = exp ((T − t)Ψ(u) + η(u, T ) − η(u, t)) eiuXt ,

ξ(u)t = Ht(u)i
Ψ

′

(u) − Ψ
′

(0)

Ψ′′(0)
.3.7 Representation of some ontingent laims by Fourier transformsIn general, it is not possible to �nd a Fourier representation, of the form (3.20), for a given payo� funtionwhih is not neessarily bounded or integrable. Hene, it an be more onvenient to use the bilateralLaplae transform that allows an extended domain of de�nition inluding non integrable funtions. We referto [17℄, [41℄ and more reently [20℄ for suh haraterizations of payo� funtions. This will be done in thenext setion. However, to illustrate the results of this setion restrited to payo� funtions represented aslassial Fourier transforms, we give here two simple examples of suh representation extrated from [20℄:1. A variant of the digital option is the so-alled asset-or-nothing digital, where the option holder reeivesone unit of the asset, instead of urreny, depending on wether the underlying reahes some barrier ornot. Hene, the payo� of the asset-or-nothing digital put with barrier is

f(x) = ex1ex<B and f̂(u) =

∫

R

eiuxf(x) dx =
B1+iu

1 + iu
.2. The payo� of a self quanto put option with strike K is

f(x) = ex(K − ex)+ and f̂(u) =

∫

R

eiuxf(x) dx =
K2+iu

(1 + iu)(2 + iu)
.In both ases the measure µ is �nite.4 Föllmer Shweizer deomposition for exponential of PII proessesIn this setion, we onsisder the ase of exponential of PII orresponding to geometri models (suh as theBlak-Sholes model) muh more used in �nane than arithmeti models (suh as the Bahelier model).The aim of this setion is to generalize the results of [31℄ to the ase of PII with possibly non stationaryinrements. Here again, this generalization is motivated by appliations to energy derivatives where forwardpries show a volatility term struture that requires the use of models with non stationary inrements.4.1 A referene variane measureWe ome bak to the main optimization problem whih was formulated in Setion 2. We assume that theproess S is the disounted prie of the non-dividend paying stok whih is supposed to be of the form,

St = s0 exp(Xt) , for all t ∈ [0, T ] ,where s0 is a stritly positive onstant and X is a semimartingale proess with independent inrements (PII),in the sense of De�nition 3.1, but not neessarily with stationary inrements.29



Remark 4.1. Let γ ∈ R∗,1. E[exp(γ(Xt −Xs))] > 0, sine Xt −Xs > −∞ a.s.2. exp(γ(Xt −Xs)) has a stritly positive variane if (Xt −Xs) is non-deterministi.We introdue a new funtion that will be useful in the sequel.De�nition 4.2. For any t ∈ [0, T ], let ρt denote the omplex valued funtion suh that for all z, y ∈ D

ρt(z, y) = κt(z + y) − κt(z) − κt(y) . (4.1)For all z ∈ D, then z̄ ∈ D and ρt(z, z̄) is well de�ned. To shorten notations ρt will also denote the realvalued funtion de�ned on D suh that,
ρt(z) = ρt(z, z̄) = κt(2Re(z))− 2Re(κt(z)) . (4.2)Notie that the last equality results from Remark 2.3.An important tehnial lemma follows below.Lemma 4.3. Let z ∈ D, with z 6= 0, then, t 7→ ρt(z) is stritly inreasing if and only if X has nodeterministi inrements.Proof. It is enough to show that X has no deterministi inrement if and only if for any 0 ≤ s < t ≤ T , thefollowing quantity is positive,

ρt(z) − ρs(z) =
[
κt
(
2Re(z)

)
− κs

(
2Re(z)

)]
− 2Re

(
κt(z) − κs(z)

)
. (4.3)By Remark 3.11, for all z ∈ D, we have

exp[κt(z) − κs(z)] = E[exp(z∆t
s)] , where ∆t

s = Xt −Xs .Applying this property and Remark 2.3 1., to the exponential of the �rst term on the right-hand side of(4.3) yields
exp

[
κt
(
2Re(z)

)
− κs

(
2Re(z)

)]
= E[exp(2Re(z)∆t

s)] = E[exp((z + z̄)∆t
s)]

= E[
∣∣exp(z∆t

s)
∣∣2] .Similarly, for the exponential of the seond term on the right-hand side di�erene of (4.3), one gets

exp
[
2Re

(
κt(z) − κs(z)

)]
= exp

[(
κt(z) − κs(z)

)
+
(
κt(z) − κs(z)

)]
=
∣∣E[exp(z∆t

s)]
∣∣2 .Hene taking the exponential of ρt(z) − ρs(z) yields

exp[ρt(z) − ρs(z)] − 1 =
E[|exp(z∆t

s)|
2
]

|E[exp(z∆t
s)]|2

− 1 ,

=
E[|Γts(z)|

2
]

|E[Γts(z)]|2
− 1 , where Γts(z) = exp(z∆t

s) ,

=
V ar

[
Re
(
Γts(z)

)]
+ V ar

[
Im
(
Γts(z)

)]

|E[Γts(z)]|2
. (4.4)30



• If X has a deterministi inrement ∆t
s = Xt−Xs, then Γts(z) is again deterministi and (4.4) vanishesand hene t→ ρt(z) is not stritly inreasing.

• If X has never deterministi inrements, then the nominator is never zero, otherwise Re(Γts(z)),
Im
(
Γts(z)

) and therefore Γts(z) would be deterministi.From now on, we will always suppose the following assumption.Assumption 6. 1. (Xt) has no deterministi inrements.2. 2 ∈ D.Remark 4.4. 1. In partiular for γ ∈ D, γ 6= 0, the funtion t 7→ ρt(γ) is stritly inreasing.2. If z = 1, (4.4) equals V ar( exp(∆t
s)
)

(
E[exp(∆t

s)]
)2 , whih is a mean-variane quantity.We ontinue with a simple observation.Lemma 4.5. Let I be a ompat real interval inluded in D.
sup
γ∈I

sup
t≤T

E[Sγt ] <∞ .Proof. Let t ∈ [0, T ] and γ ∈ I, we have
E[Sγt ] = sγ0 exp{κt(γ)} ≤ max(1, ssup I

0 ) exp( sup
t≤T,γ∈I

|κt(γ)|) .sine κ is ontinuous.We state now a result that will help us to show that κdt(z) is absolutely ontinuous with respet to
ρdt(1) = κdt(2) − 2κdt(1).Lemma 4.6. We onsider two positive �nite non-atomi Borel measures on E ⊂ Rn, µ and ν. We supposethe following:1. µ ≪ ν ;2. µ(I) 6= 0 for every open ball of E.Then dµ

dν
:= h 6= 0 ν a.e. In partiular µ and ν are equivalent.Proof. We onsider the Borel set

B = {x ∈ E|h(x) = 0} .We want to prove that ν(B) = 0. So we suppose that there exists a onstant c > 0 suh that ν(B) = c > 0and another onstant ǫ suh that 0 < ǫ < c. Sine ν is a Radon measure, there are ompat subsets Kǫ and
K ǫ

2
of E suh that

Kǫ ⊂ K ǫ
2
⊂ B and ν(B −Kǫ) < ǫ , ν(B −K ǫ

2
) <

ǫ

2
.31



Setting ǫ = c
2 , we have

ν(Kǫ) >
c

2
and ν(K ǫ

2
) >

3c

4
.By Urysohn lemma, there is a ontinuous funtion ϕ : E → R suh that, 0 ≤ ϕ ≤ 1 with

ϕ = 1 on Kǫ and ϕ = 0 on Kc
ǫ
2
.Now

∫

E

ϕ(x)ν(dx) ≥ ν(Kǫ) >
c

2
> 0 .By ontinuity of ϕ there is an open set O ⊂ E with ϕ(x) > 0 for x ∈ O. Clearly O ⊂ K ǫ

2
⊂ B; sine O isrelatively ompat, it is a ountable union of balls, and so B ontains a ball I. The fat that h = 0 on Iimplies µ(I) = 0 and this ontradits Hypothesis 2. of the statement. Hene the result follows.Remark 4.7. From now on, in this setion, dρt = ρdt will denote the measure

dρt = ρdt(1) = d(κt(2) − 2κt(1)) . (4.5)Aording to Remark 4.4 1., it is a positive measure whih is stritly positive on eah interval. This measurewill play a fundamental role.Remark 4.8. 1. If E = [0, T ], then point 2. of Lemma 4.6 beomes µ(I) 6= 0 for every open interval
I ⊂ [0, T ].2. The result holds for every normal metri loally onneted spae E, provided ν are Radon measures.Proposition 4.9. Under Assumption 6

d(κt(z)) ≪ dρt , for all z ∈ D . (4.6)Proof. We apply Lemma 4.6, with dµ = dρt and dν = dat. Indeed, Corollary 3.10 implies Condition 1. ofLemma 4.6 and Lemma 4.3 implies Condition 2. of Lemma 4.6. Therefore, dat is equivalent to dρt.Remark 4.10. Notie that this result also holds with dρt(y) instead of dρt = dρt(1), for any y ∈ D suhthat Re(y) 6= 0.4.2 On some semimartingale deompositions and ovariationsProposition 4.11. Let y, z ∈ D suh that y + z, 2Re(y), Re(y)+ 1, 2Re(z) and Re(z) + 1 ∈ D. Then Sz isa speial semimartingale whose anonial deomposition Szt = M(z)t +A(z)t satis�es
A(z)t =

∫ t

0

Szu−κdu(z) , 〈M(y),M(z)〉t =

∫ t

0

Sy+zu− ρdu(z, y) , M(z)0 = sz0, (4.7)where dρu(z) is de�ned by equation (4.2). In partiular we have the following:1. 〈M(z),M〉t =
∫ t
0
Sz+1
u− ρdu(z, 1)2. 〈M(z),M(z̄)〉t =
∫ t
0
S

2Re(z)
u− ρdu(z) . 32



Proof. For simpliity, we will only treat the ase y = 1 in (4.7), i.e. statement 1. The general ase will followsimilarly. By Remark 3.11, N(z)t := e−κt(z)Szt is a martingale. Integration by parts yields
Szt = eκt(z)N(z)t = M(z)t +A(z)t with M0(z) = sz0, A(z)t =

∫ t

0

Szu−κdu(z) and
[M(z),M ]t = [Sz, S]t ,

= Szt S
1
t − Sz0S

1
0 −

∫ t

0

Szs−dS
1
s

∫ t

0

S1
s−dS

z
s ,

= Szt S
1
t − Sz0S

1
0 −

∫ t

0

Szs−dMs −
∫ t

0

Szs−dAs −
∫ t

0

S1
s−dM(z)s −

∫ t

0

S1
s−dA(z)s ,

= Sz+1
t − Sz+1

0 −
∫ t

0

Szs−dMs −
∫ t

0

S1
s−dM(z)s −

∫ t

0

Sz+1
s− κds(1) −

∫ t

0

Sz+1
s− κds(z) ,

= M(z + 1)t −
∫ t

0

Szs−dMs −
∫ t

0

Ss−dM(z)s +

∫ t

0

(κds(z + 1) − κds(z) − κds(1))Sz+1
s− .Note that the �rst three terms on the right-hand side are loal martingales. Sine 〈M(z),M〉t is the pre-ditable part of �nite variation of the speial semimartingale M(z)M , equation (1) follows.Remark 4.12. Lemma 4.5 implies that E [| 〈M(y),M(z)〉|] < ∞ and so M(z) is a square integrable mar-tingale for any z ∈ D suh that 2Re(z), Re(z) + 1 ∈ D.4.3 On the Struture ConditionIf we apply Proposition 4.11 with y = z = 1, we obtain S = M +A where M is a martingale and

At =

∫ t

0

Su−κdu(1) , (4.8)and
〈M,M〉t =

∫ t

0

S2
u−(κdu(2) − 2κdu(1)) =

∫ t

0

S2
u−ρdu . (4.9)At this point, the aim is to exhibit a preditable R-valued proess α suh that1. At =

∫ t
0
αsd 〈M〉s ;2. KT =

∫ T
0
α2
sd 〈M〉s is bounded.In that ase, aording Theorem 2.22, there will exist a unique FS deomposition for any H ∈ L2 and so theminimization problem (2.1) will have a unique solution, by Theorem 2.25.Proposition 4.13. Under Assumption 6, we have

At =

∫ t

0

αsd 〈M〉s , (4.10)33



where α is given by
αu :=

λu
Su−

with λu :=
dκu(1)

dρu
, for all u ∈ [0, T ] . (4.11)Moreover the MVT proess is given by

Kt =

∫ t

0

(
d(κu(1))

dρu

)2

dρu . (4.12)Corollary 4.14. Under Assumption 6, the struture ondition (SC) is veri�ed if and only if
KT =

∫ T

0

(
d(κu(1))

dρu

)2

dρu <∞ .In partiular, (Kt) is deterministi therefore bounded.Proof of Proposition 4.13. By Proposition 4.9, dκt(1) is absolutely ontinuous with respet to dρt. Set-ting αu as in (4.11), relation (4.12) follows from Proposition 4.11, expressing Kt =
∫ t
0
α2
ud 〈M〉u.Lemma 4.15. The spae Θ is onstituted by all preditable proesses v suh that

E[

∫ T

0

v2
tS

2
t−dρt] <∞ .Proof. Aording to Proposition 2.14, the fat that K is bounded and S satis�es (SC), then v ∈ Θ holds ifand only if v is preditable and E[

∫ T
0
v2
t d 〈M,M〉t] <∞. Sine
〈M,M〉t =

∫ t

0

S2
s−dρs ,the assertion follows.4.4 Expliit Föllmer-Shweizer deompositionWe denote by D the set of z ∈ D suh that

∫ T

0

∣∣∣∣
dκu(z)

dρu

∣∣∣∣
2

dρu <∞. (4.13)From now on, we formulate another assumption whih will be in fore for the whole setion.Assumption 7. 1 ∈ D.Remark 4.16. 1. Beause of Proposition 4.9, dκt(z)
dρt

exists for every z ∈ D.2. Assumption 7 implies that K is uniformly bounded.The proposition below will onstitute an important step for determining the FS deomposition of theontingent laim H = f(ST ) for a signi�ant lass of funtions f , see Setion 4.5.Proposition 4.17. Let z ∈ D with z + 1 ∈ D and 2Re(z) ∈ D.1. SzT ∈ L2(Ω,FT ). 34



2. We suppose Assumptions 6 and 7 and we de�ne
γ(z, t) :=

d(ρt(z, 1))

dρt
, t ∈ [0, T ]. (4.14)

∫ T
0
|γ(z, t)|2ρdt <∞ and

η(z, t) := κt(z) −
∫ t

0

γ(z, s)κds(1) (4.15)
= κt(z) −

∫ t

0

γ(z, s)
dκs(1)

dρs
ρdsis well-de�ned and η(z, ·) is absolutely ontinuous with respet to ρds and therefore bounded.3. Under the same assumptions H(z) = SzT admits a FS deomposition H(z) = H(z)0 +

∫ T
0 ξ(z)tdSt +

L(z)T where
H(z)t := e

R

T

t
η(z,ds)Szt , (4.16)

ξ(z)t := γ(z, t)e
R

T

t
η(z,ds)Sz−1

t− , (4.17)
L(z)t := H(z)t −H(z)0 −

∫ t

0

ξ(z)udSu . (4.18)Proof. 1. is a onsequene of Lemma 4.5.2. γ(z, ·) is square integrable beause Assumption 7 and z, z + 1 ∈ D. Moreover η is well-de�ned sine
(∫ T

0

|γ(z, s)|
∣∣∣∣
dκs(1)

dρs

∣∣∣∣ ρds
)2

≤
∫ T

0

|γ(z, s)|2ρds
∫ T

0

|dκs(1)

dρs
|2ρds. (4.19)3. In order to prove that (4.16),(4.17) and (4.18) onstitute the FS deomposition of H(z), taking intoaount Remark 2.19 we need to show that(a) H(z)0 is F0-measurable,(b) 〈L(z),M〉 = 0,() ξ(z) ∈ Θ,(d) L(z) is a square integrable martingale.Point (a) is obvious. Partial integration and point 1 of Proposition 4.11 yield

H(z)t = H(z)0 +

∫ t

0

e
R

T

u
η(z,ds)dSzu +

∫ t

0

Szud(e
R

T

u
η(z,ds))

= H(z)0 +

∫ t

0

e
R

T

u
η(z,ds)dM(z)u +

∫ t

0

e
R

T

u
η(z,ds)dA(z)u +

∫ t

0

Szud(e
R

T

u
η(z,ds))

= H(z)0 +

∫ t

0

e
R

T

u
η(z,ds)dM(z)u +

∫ t

0

e
R

T

u
η(z,ds)dA(z)u −

∫ t

0

e
R

T

u
η(z,ds)Szuη(z, du)

= H(z)0 +

∫ t

0

e
R

T

u
η(z,ds)dM(z)u −

∫ t

0

e
R

T

u
η(z,ds)Szuη(z, du) +

∫ t

0

e
R

T

u
η(z,ds)Szu−κdu(z) .35



On the other hand
∫ t

0

ξ(z)udSu =

∫ t

0

ξ(z)udMu +

∫ t

0

ξ(z)udAu ,

=

∫ t

0

ξ(z)udMu +

∫ t

0

ξ(z)uSu−κdu(1) ,

=

∫ t

0

ξ(z)udMu +

∫ t

0

γ(z, u)e
R

T

u
η(z,ds)Szu−κdu(1) .Hene,

L(z)t = H(z)t −H(z)0 −
∫ t

0

ξ(z)udSu ,

=

∫ t

0

e
R

T

u
η(z,ds)dM(z)u −

∫ t

0

e
R

T

u
η(z,ds)Szuη(z, du) +

∫ t

0

e
R

T

u
η(z,ds)Szu−κdu(z)

−
∫ t

0

ξ(z)udMu −
∫ t

0

γ(z, u)e
R

T

u
η(z,ds)Szu−κdu(1) ,

=

∫ t

0

e
R

T

u
η(z,ds)dM(z)u −

∫ t

0

ξ(z)udMu

+

∫ t

0

e
R

T

u
η(z,ds)Szu−[κdu(z) − η(z, du) − γ(z, u)κdu(1)].Then, by de�nition of η in (4.15), η(z, du) = κdu(z) − γ(z, u)κdu(1) , hene,

L(z)t =

∫ t

0

e
R

T

u
η(z,ds)dM(z)u −

∫ t

0

ξ(z)udMu , (4.20)whih implies that L(z) is a loal martingale.From point 1 of Proposition 4.11, it follows that
〈L(z),M〉t =

∫ t

0

e
R

T

u
η(z,ds)d 〈M(z),M〉u −

∫ t

0

ξ(z)ud 〈M,M〉u ,

=

∫ t

0

e
R

T

u
η(z,ds)Sz+1

u− ρdu(z, 1)−
∫ t

0

ξ(z)uS
2
u−ρdu ,

=

∫ t

0

e
R

T

u
η(z,ds)Sz+1

u− ρdu(z, 1)−
∫ t

0

γ(z, u)e
R

T

u
η(z,ds)Sz+1

u− ρdu .Consequently,
〈L(z),M〉t =

∫ t

0

e
R

T

u
η(z,ds)Sz+1

u− [ρdu(z, 1) − γ(z, u)ρdu] .Then by de�nition of γ in (4.14), ρdt(z, 1) = γ(z, t)ρdt , whih yields,
〈L(z),M〉t = 0 . (4.21)Consequently, point (b) follows. To ontinue the proof of this proposition we need the lemma below.36



Lemma 4.18. For all z ∈ C as in Proposition 4.17, dρt a.e. we have1. γ(z, t) = γ(z̄, t) ;2. η(z, t) = η(z̄, t) .Proof. Using Remark 2.3 1) we observe z̄, z̄ + 1 ∈ D.1. By de�nition of γ in (4.14), γ(z, t)ρdt = ρdt(z, 1) . Then, taking the omplex onjugate of the integralfrom 0 to t and using Remark 2.3.1 yields,
∫ t

0

γ(z, s)ρds =

∫ t

0

γ(z, s)ρds ,

= ρt(z, 1) = κt(z + 1) − κt(z) − κt(1) ,

= = κt(z̄ + 1) − κt(z̄) − κt(1) = ρt(z̄, 1) ,

=

∫ t

0

γ(z̄, s)ρds .2. By de�nition of η in (4.15), η(z, t) = κt(z) −
∫ t
0
γ(z, u)κdu(1) , so taking the omplex onjugate,

η(z, t) = κt(z̄) −
∫ t

0

γ(z, s)κds(1) ,

= κt(z̄) −
∫ t

0

γ(z̄, s)κds(1) ,

= η(z̄, t) .We ontinue with the proof of point 3. of Proposition 4.17. It remains to prove that L(z) is a square-integrable martingale for all z ∈ D and that Re(ξ(z)) and Im(ξ(z)) are in Θ. (4.20) says that
L(z)t =

∫ t

0

e
R

T

s
η(z,du)dMs(z) −

∫ t

0

ξ(z)sdMs .By Proposition 4.11 and Lemma 4.18, it follows
L(z)t = L(z̄)t , (4.22)hene,

〈
L(z), L(z)

〉
t

= 〈L(z), L(z̄)〉t ,

=

〈
L(z),

∫ .

0

e
R

T

s
η(z̄,du)dMs(z̄)

〉

t

, (4.23)
=

∫ t

0

e
R

T

s
η(z,du)e

R

T

s
η(z̄,du)d 〈M(z),M(z̄)〉s

−
∫ t

0

ξ(z)se
R

T

s
η(z̄,du)d 〈M,M(z̄)〉s .
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By Proposition 4.11 we have
〈
L(z), L(z)

〉
t

=

∫ t

0

e
R

T

s
η(z,du)e

R

T

s
η(z̄,du)S

2Re(z)
s− ρds(z)

−
∫ t

0

ξ(z)se
R

T

s
η(z̄,du)S1+z̄

s− ρds(z̄, 1) .Using Lemma 4.18 and expressions (4.14), and (4.17) of γ(z, s) and ξ(z)s, we have
〈
L(z), L(z)

〉
t

=

∫ t

0

e
R

T

s
2Re(η(z,du))S

2Re(z)
s− ρds(z) −

∫ t

0

ξ(z)se
R

T

s
η(z̄,du)S1+z̄

s− γ(z̄, s)ρds(1) ,

=

∫ t

0

e
R

T

s
2Re(η(z,du))S

2Re(z)
s− ρds(z) −

∫ t

0

γ(z, s)e
R

T

s
2Re(η(z,du))S

2Re(z)
s− γ(z̄, s)ρds ,

=

∫ t

0

e
R

T

s
2Re(η(z,du))S

2Re(z)
s− ρds(z) −

∫ t

0

e
R

T

s
2Re(η(z,du))S

2Re(z)
s− |γ(z, s)|2ρds .Consequently

〈
L(z), L(z)

〉
t
=

∫ t

0

e
R

T

s
2Re(η(z,du))S

2Re(z)
s− [ρds(z) − |γ(z, s)|2ρds] . (4.24)Then, point 2. implies

∫ T

0

|ξ(z)s|2S2
s−ρds =

∫ T

0

ξ(z)sξ(z̄)sS
2
s−ρds

=

∫ T

0

γ(z, s)e
R

T

s
η(z,du)Sz−1

s− γ(z̄, s)e
R

T

s
η(z̄,du)S z̄−1

s− S2
s−ρds , (4.25)

=

∫ T

0

|γ(z, s)|2e
R

T

t
2Re(η(z,du))S

2Re(z)
s− ρds .Taking the expetation in (4.25), using again point 2., (4.14), (4.15) and Lemma 4.5, we obtain

E

[〈
L(z), L(z)

〉
T

]
<∞ . (4.26)Therefore, L is a square-integrable martingale. Similarly, (4.25) yields that Re(ξ(z)) ∈ Θ and Im(ξ(z)) ∈ Θ.This onludes the proof of Proposition 4.17.4.5 FS deomposition of speial ontingent laimsNow, we will proeed to the FS deomposition of more general ontingent laims. We onsider now optionsof the type

H = f(ST ) with f(s) =

∫

C

szΠ(dz) , (4.27)where Π is a (�nite) omplex measure in the sense of Rudin [44℄, Setion 6.1. An integral representation ofsome basi European alls an be found later.We need now the new following assumption.Assumption 8. Let I0 = suppΠ ∩ R. We denote I := [inf I0 ∧ 2 inf I0, 2 sup I0 ∨ sup I0 + 1] .1. ∀z ∈ suppΠ, z, z + 1 ∈ D. 38



2. I ⊂ D and supx∈I∪{1}

∥∥∥d(κt(x))dρt

∥∥∥
∞
<∞.Remark 4.19. 1. Point 2. of Assumption 8 implies supz∈I+iR ‖κdt(Re(z))‖T <∞ .2. Under Assumption 8, H = f(ST ) is square integrable. In partiular it admits an FS deomposition.3. Beause of (4.6) in Proposition 4.9, the Radon-Nykodim derivative at Point 2. of Assumption 8, alwaysexists.We need now to obtain upper bounds on z for the quantity (4.26). We will �rst need the following lemma.Lemma 4.20. There are positive onstants c1, c2, c3 suh that dρs a.e.1.

sup
z∈suppΠ

dRe(η(z, s))

dρs
≤ c1.2. For any z ∈ suppΠ

|γ(z, s)|2 ≤ dρs(z)

dρs
≤ c2 − c3

dRe(η(z, s))

dρs3.
− sup
z∈suppΠ

∫ T

0

2Re(η(z, dt)) exp(

∫ T

t

Re(η(z, ds))) <∞.Remark 4.21. Aording to Proposition 4.17, t 7→ Re(η(z, t)) is absolutely ontinuous with respet to dρt.Proof (of Lemma 4.20).The proof is inspired by Lemma 3.9 of [31℄. Aording to Point 2. of Assumption 8 we denote
c11 := sup

x∈I

∥∥∥∥
d(κt(x))

dρt

∥∥∥∥
∞

. (4.28)For z ∈ suppΠ, t ∈ [0, T ], we have
η(z, t) = κt(z) −

∫ t

0

γ(z, s)dκs(1) and η(z̄, t) = κt(z̄) −
∫ t

0

γ(z̄, s)dκs(1).Then, we get Re(η(z, t)) = Re(κt(z)) −
∫ t
0 Re(γ(z, s))dκs(1) . We obtain

∫ T

t

Re(η(z, ds)) ≤ Re (κT (z) − κt(z)) +

∣∣∣∣∣

∫ T

t

γ(z, s)dκs(1)

∣∣∣∣∣ (4.29)
=

∫ T

t

Re(dκs(z))

dρs
dρs +

∣∣∣∣∣

∫ T

t

γ(z, s)dκs(1)

∣∣∣∣∣ .Sine 〈L(z), L(z)
〉
t
is inreasing, and taking into aount (4.24), the measure, (dρs(z) − |γ(z, s)|2dρs

), isnon-negative. It follows that
dρs(z)

dρs
− |γ(z, s)|2 ≥ 0 , dρs a.e. (4.30)
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Remark 4.22. By Lemma (4.30), in partiular the density dρs(z)

dρs
is non-negative dρs a.e.Consequently,

2
dRe(κs(z))

dρs
≤ dκs(2Re(z))

dρs
, dρs a.e. (4.31)In order to prove 1. it is enough to verify that, for some c0 > 0,

dRe(η(z, s))

dρs
≤ c0 +

1

2

dRe(κs(z))

dρs
dρs a.e. (4.32)In fat, (4.31) and Assumption 8 point 2. and (4.28), imply that

dRe(η(z, s))

dρs
≤ c0 +

1

2
c11 =: c1. (4.33)To prove (4.32) it is enough to show that

Re(η(z, T ) − η(z, t)) ≤ c0(ρT − ρt) +
1

2
Re(κT (z) − κt(z)), ∀t ∈ [0, T ]. (4.34)Again Assumption 8 point 2. implies that

∣∣∣∣∣

∫ T

t

γ(z, s)dκs(1)

∣∣∣∣∣ ≤ c12

∫ T

t

|γ(z, s)|dρs , (4.35)where c12 = ‖ dκs(1)dρs
‖∞. Using (4.30), and Assumption 8 it follows

|γ(z, s)|2 ≤ dρs(z)

dρs
=
dκ(2Re(z))

dρs
− 2dRe(κs(z))

dρs
, (4.36)

≤ c11 −
2dRe(κs(z))

dρs
.This implies that

c212 |γ(z, s)|2 ≤
(
c213 +

1

4

(
dRe(κs(z))

dρs

)2
)
,where c13 > 0 is hosen suh that c213 ≥ 4c412 + c212c11. Consequently

∣∣∣∣∣

∫ T

t

γ(z, s)dκs(1)

∣∣∣∣∣ ≤
∫ T

t

dρs

(
c13 +

1

2

∣∣∣∣
dRe(κs(z))

dρs

∣∣∣∣
)
.Coming bak to (4.29), we obtain

Re(η(z, T )− η(z, t)) ≤
∫ T

t

(
Re(dκs(z))

dρs
+ c13 +

1

2

∣∣∣∣
Re(dκs(z))

dρs

∣∣∣∣
)
dρs

≤
∫ T

t

(
1

2

Re(dκs(z))

dρs
+

(
Re(dκs(z))

dρs

)+

+ c13

)
dρs(4.31) and Assumption 8 allow to establish

Re(η(z, T )− η(z, t)) ≤
∫ T

t

dρs

(
c0 +

1

2

dRe(κs(z))

dρs

)
, (4.37)40



where c0 = c11
2 + c13. This onludes the proof of point 1.In order to prove point 2. we �rst observe that (4.32) implies

−dRe(κs(z))
dρs

≤ 2

(
c0 −

dRe(η(z, s))

dρs

) (4.38)
dρs a.e. (4.36) implies

|γ(z, s)|2 ≤ c21 − 4
dRe(η(z, s))

dρs
, (4.39)where c21 = c11 + 4c0. Point 2. is now established with c2 = c21 and c3 = 4.We ontinue with the proof of point 3. We deompose

Re(η(z, t)) = A+(z, t) −A−(z, t) ,where
A+(z, t) =

∫ t

0

(
dRe(η(z, s))

dρs

)

+

dρs , and A−(z, t) =

∫ t

0

(
dRe(η(z, s))

dρs

)

−

dρs .

A+(z, .) and A−(z, .) are inreasing non negative funtions. Moreover point 1. implies
A+(z, t) ≤ c1ρt .At this points for z ∈ I + iR

−
∫ T

0

Re(η(z, dt))e
R

T

t
2Re(η(z,ds)) =

∫ T

0

(
A−(z, dt) −A+(z, dt)

)
e2

R

T

t
Re(η(z,ds))

≤
∫ T

0

A−(z, dt)e2(A
+(z,T )−A+(z,t))e−2(A−(z,T )−A−(z,t))

≤ e2c1ρT
∫ T

0

e−2(A−(z,T )−A−(z,t))A−(z, dt)

=
e2c1ρT

2

{
1 − e−2A−(z,T )

}

≤ e2c1ρT

2
,whih onludes the proof of point 3 of Lemma 4.20.Let γ = supz∈I (2Re(z)), by Lemma 4.5, it follows

sup
z∈I,s≤T

E

[
S2Re(z)
s

]
<∞ . (4.40)Theorem 4.23. Let Π be a �nite omplex-valued Borel measure on C.Suppose Assumptions 6, 7, 8. Any omplex-valued ontingent laim H = f(ST ), where f is of the form (4.27),and H ∈ L2, admits a unique FS deomposition H = H0 +
∫ T
0 ξtdSt + LT with the following properties.1. H ∈ L2 and

• Ht =
∫
H(z)tΠ(dz) ,

• ξt =
∫
ξ(z)tΠ(dz) , 41



• Lt =
∫
L(z)tΠ(dz) ,where for z ∈ supp(Π), H(z), ξ(z) and L(z) are the same as those introdued in Proposition 4.17 andwe onvene that they vanish if z /∈ supp(Π).2. Previous deomposition is real-valued if f is real-valued.Remark 4.24. Taking Π = δz0(dz), z0 ∈ C, Assumption 8 is equivalent to the assumptions of Proposition4.17.Proof. a) f(ST ) ∈ L2 sine by Jensen,

E

∣∣∣∣
∫

C

Π(dz)SzT

∣∣∣∣
2

≤
∫

C

|Π|(dz)E|S2Rez
T ||Π|(C) ≤ sup

x∈I0

E(S2x
T )|Π|(C)2,where |Π| denotes the total variation of the �nite measure Π. Previous quantity is bounded beauseof Lemma 4.17.We go on with the FS deomposition. We would like to prove �rst that H and L are well de�nedsquare-integrable proesses and E(

∫ T
0
|ξs|2d〈M〉s) <∞.We denote K = supp(Π). By Jensen's inequality, we have

E

∣∣∣∣
∫

C

L(z)tΠ(dz)

∣∣∣∣
2

] ≤ E

(∫

C

|Π|(dz)|Lt(z)|2t
)
|Π(C)| =

∫

C

|Π|(dz)E[|Lt(z)|2t ]|Π|Similar alulations allow to show that
E[ξ2t ] ≤ |Π|(C)

∫

C

|Π|dz)E[|ξt(z)|2] and E[L2
t ] ≤ |Π(C)|

∫

C

|Π|(dz)E[|Lt(z)|2] .We will show now that
• (A1): supt≤T,z∈I+iR E[|Ht(z)|2] <∞ ;

• (A2): ∫
C
|Π|(dz)E[|Lt(z)|2t ] <∞;

• (A3):
E

(∫ T

0

dρtS
2
t

∫

C

|ξt(z)|2|Π|(dz)
)
<∞ .(A1): Sine H(z)t = e

R

T

t
η(z,ds)Szt , we have
|H(z)t|2 = H(z)tH(z)t = e

R

T

t
2Re(η(z,ds))S

2Re(z)
t ,so

E[|H(z)t|2] = e
R

T

t
2Re(η(z,ds))

E[S
2Re(z)
t ] ≤ e

R

T

t
2Re(η(z,ds)) sup

t≤T
E[Sγt ] ,with γ = supz∈I 2Re(z). Inequality (4.40) and Lemma 4.20 imply (A1). Therefore (Ht) is a well-de�nedsquare-integrable proess.(A2): E[|Lt(z)|2] ≤ E[|LT (z)|2] = E[

〈
L(z), L(z)

〉
T
] , where the �rst inequality is due to the fat that

|Lt(z)|2 is a submartingale.
E

[〈
L(z), L(z)

〉
T

]
= E

[∫ T

0

e
R

T

s
2Re(η(z,du)S

2Re(z)
s−

[
dρs(z) − |γ(z, s)|2dρs

]
]
.42



By Fubini, Lemma 4.5 and (4.24), we have
E

[〈
L(z), L(z)

〉
T

]
=

∫ T

0

e
R

T

s
2Re(η(z,du)

E[S
2Re(z)
s− ]

[
dρs(z)

dρs
− |γ(z, s)|2

]
dρs

≤
∫ T

0

e
R

T

s
2Re(η(z,du)

[
dρs(z)

dρs
− |γ(z, s)|2

]
E[S

2Re(z)
s− ]dρs

≤ c4

∫ T

0

e
R

T

s
2Re(η(z,du)

[
dρs(z)

dρs

]
dρs ,where c4 = sups≤T E[S

2Re(z)
s ] .Aording to Lemma 4.20 point 2, previous expression is bounded by c4I(z), where

I(z) :=

∫ T

0

dρt exp

(∫ T

t

2Re(η(z, ds))

[
c2 − c3

dRe(η(z, t))

dρt

]) (4.41)
= c2I1(z) + c3I2(z) ,where

I1(z) =

∫ T

0

dρt exp

(∫ T

t

2Re(η(z, ds))

) and I2(z) =

∫ T

0

exp

(∫ T

t

2Re(η(z, ds))

)
dRe(η(z, ds)) .Using Lemma 4.20, we obtain

sup
z∈I+iR

|I1(z)| ≤ ρT exp (2c1ρT ) and sup
z∈I+iR

|I2(z)| <∞ , (4.42)and so
sup

z∈I+iR
E

[〈
L(z), L(z)

〉
T

]
<∞ . (4.43)This onludes (A2).We verify now the validity of (A3). This requires to ontrol

E

[∫ T

0

ρdtS
2
t

(∫

C

|Π|(dz)|ξ(z)t|2
)]

≤ E



∫ T

0

ρdtS
2
t



∫

C

|Π|(dz)
∣∣∣∣∣γ(z, t) exp

(∫ T

t

Re(η(z, ds))

)
Sz−1
t

∣∣∣∣∣

2



 .Using Jensen inequality, this is smaller or equal than

|Π(C)|
∫

C

|Π|(dz)
∫ T

0

ρdtE
[
S

2Re(z)
t

]
|γ(z, t)|2 exp

(
2

∫ T

t

Re(η(z, ds))

)
.Lemma 4.20 gives the upper bound

|Π|(C) sup
t≤T,γ∈I

E

[
S

2Re(z)
t

] ∫

C

|Π|(dz)I(z) ,where I(z) was de�ned in (4.42). Sine Π is �nite and beause of (4.43), (A3) is now established.We show now that (Lt) is an (Ft)-martingale. Let 0 ≤ s ≤ t ≤ T , B ∈ Fs. By Proposition 4.17, sine
(L(z)t) is a martingale, we obtain

E[(Lt − Ls)1B] = E[

∫

C

(L(z)t − L(z)s)Π(dz)1B] .43



By Fubini's theorem we onlude that
E[(Lt − Ls)1B] =

∫

C

E[(L(z)t − L(z)s)1B]Π(dz) ,and E[(L(z)t − L(z)s)1B] = 0. So
E[(Lt − Ls)1B] = 0 .Hene, L is a square-integrable martingale.Similarly, it an be shown that E[(MtLt −MsLs)1B] = 0 and so ML is a square-integrable martingaleas well. Hene L is orthogonal to M. By Fubini's theorem for stohasti integrals, f. [40℄, TheoremIV.46, we have

∫ ∫ t

0

ξ(z)sdSsΠ(dz) =

∫ t

0

∫
ξ(z)sΠ(dz)dSs =

∫ t

0

ξsdSs .Consequently, (H0, ξ, L) provide a (possibly omplexe) FS deomposition of H .b) It remains to prove that the deomposition is real-valued. Let (H0, ξ, L) and (H0, ξ, L) be two FSdeomposition of H . Consequently, sine H and (St) are real-valued, we have
0 = H −H = (H0 −H0) +

∫ T

0

(ξs − ξs)dSs + (LT − LT ) ,whih implies that 0 = Im(H0) +
∫ T
0
Im(ξs)dSs + Im(LT ). By Theorem 2.22, the uniqueness ofthe real-valued Föllmer-Shweizer deomposition yields that the proesses (Ht),(ξt) and (Lt) are real-valued.4.6 Representation of some typial ontingent laimsWe used some integral representations of payo�s of the form (4.27). We refer to [17℄, [41℄ and more re-ently [20℄, for some haraterizations of lasses of funtions whih admit this kind of representation. Inorder to apply the results of this paper, we need expliit formulae for the omplex measure Π in some exampleof ontingent laims.4.6.1 CallThe �rst example is the European Call optionH = (ST−K)+. We have two representations of the form (4.27)whih result from the following lemma.Lemma 4.25. Let K > 0, the European Call option H = (ST − K)+ has two representations of theform (4.27):1. For arbitrary R > 1, s > 0, we have

(s−K)+ =
1

2πi

∫ R+i∞

R−i∞

sz
K1−z

z(z − 1)
dz . (4.44)2. For arbitrary 0 < R < 1, s > 0, we have

(s−K)+ − s =
1

2πi

∫ R+i∞

R−i∞

sz
K1−z

z(z − 1)
dz . (4.45)44



4.6.2 PutLemma 4.26. Let K > 0, the European Put option H = (K − ST )+ gives for an arbitrary R < 0, s > 0

(K − s)+ =
1

2πi

∫ R+i∞

R−i∞

sz
K1−z

z(z − 1)
dz . (4.46)5 The solution to the minimization problem5.1 Mean-Variane HedgingFS deomposition will help to provide the solution to the global minimization problem. Next theorem dealswith the ase where the underlying proess is a PII.Theorem 5.1. Let X = (Xt)t∈[0,T ] be a proess with independent inrements with log-harateristi funtion

Ψt. Let H = f(XT ) where f is of the form (3.20). We suppose that the PII, X, satis�es Assumptions 2, 3,4 and 5. Then, the variane-optimal apital V0 and the variane-optimal hedging strategy ϕ, solution of theminimization problem (2.1), are given by
V0 = H0 , (5.1)and the impliit expression

ϕt = ξt +
λt
St−

(Ht− − V0 −
∫ t

0

ϕsdSs) , (5.2)where the proesses (Ht),(ξt) and (λt) are de�ned by
Ht =

∫

R

H(u)tµ(du) , ξt =

∫

R

i
d(Ψ

′

t(u) − Ψ
′

t(0))

dΨ
′′

t (0)
H(u)tµ(du) and λt = i

dΨ′
t(0)

dΨ′′
t (0)

, (5.3)and
H(u)t = eη(u,T )−η(u,t)+ΨT (u)−Ψt(u) eiuXt− with η(u, t) = i

∫ t

0

dΨ
′

t(0)

dΨ
′′

t (0)
d
(
Ψ

′

s(u) − Ψ
′

s(0)
)
. (5.4)The optimal initial apital is unique. The optimal hedging strategy ϕt(ω) is unique up to some (P (dω)⊗ dt)-null set.Proof. Sine K is deterministi, the optimality follows from Theorem 3.34, Theorem 2.25 and Corollary 2.26.Uniqueness follows from Theorem 2.24.Next theorem deals with the ase where the payo� to hedge is given as a bilateral Laplae transform ofthe exponential of a PII. It is an extension of Theorem 3.3 of [31℄ to PII with no stationary inrements.Theorem 5.2. Let X = (Xt)t∈[0,T ] be a proess with independent inrements with umulant generatingfuntion κ. Let H = f(eXT ) where f is of the form (4.27). We assume the validity of Assumptions 6, 7, 8.The variane-optimal apital V0 and the variane-optimal hedging strategy ϕ, solution of the minimizationproblem (2.1), are given by

V0 = H0 (5.5)45



and the impliit expression
ϕt = ξt +

λt
St−

(Ht− − V0 −
∫ t

0

ϕsdSs) , (5.6)where the proesses (Ht), (ξt) and (λt) are de�ned by
γ(z, t) :=

dρt(z, 1)

dρt
with ρt(z, y) = κt(z + y) − κt(z) − κt(y) , (5.7)

η(z, dt) := κdt(z) − γ(z, t)κdt(1) , (5.8)
λt :=

d(κt(1))

dρt
, (5.9)

Ht :=

∫

C

e
R

T

t
η(z,ds)Szt Π(dz) , (5.10)

ξt :=

∫

C

γ(z, t)e
R

T

t
η(z,ds)Sz−1

t− Π(dz) . (5.11)The optimal initial apital is unique. The optimal hedging strategy ϕt(ω) is unique up to some (P (dω)⊗ dt)-null set.Remark 5.3. The mean variane tradeo� proess an be expressed as follows, see (4.12):
Kt =

∫ t

0

dκu(1)

dρu
κdu(1) .Proof of Theorem 5.2. Sine K is deterministi, the optimality follows from Theorem 4.23, Theorem 2.25and Corollary 2.26. Uniqueness follows from Theorem 2.24.5.2 The quadrati errorAgain, ρdt denotes the measure κdt(2) − 2κdt(1). Let V, ϕ and H appearing in Theorem 5.2. The quantity

E[(V0 +GT (ϕ) −H)2] will be alled the variane of the hedging error.Theorem 5.4. Under the assumptions of Theorem 5.2, the variane of the hedging error equals
J0 :=

(∫

C

∫

C

J0(y, z)Π(dy)Π(dz)

)
,where

J0(y, z) :=

{
sy+z0

∫ T
0 β(y, z, dt)eκt(y+z)+α(y,z,t)dt : y, z ∈ suppΠ

0 : otherwise.and
α(y, z, t) := η(z, T ) − η(z, t) − (η(y, T ) − η(y, t)) −

∫ T

t

(
dκs(1)

dρs

)2

dρs ,

β(y, z, t) := ρt(y, z)−
∫ t

0

γ(z, s)ρds(y, 1) .46



Remark 5.5. We have
α(y, z, t) = (η(z, T )− η(z, t)) − (η(y, T ) − η(y, t)) − (KT −Kt) ,where K is the MVT proess.Proof. The quadrati error an be alulated using Corollary 2.29 and Corollary 2.26. It gives

E

[∫ T

0

exp {−(KT −Ks)} d 〈L〉s

]
, (5.12)where L is the remainder martingale in the FS deomposition of H . We proeed now to the evaluation of

〈L〉.Using (4.22), (4.23), Remark 2.4 and the bilinearity of the ovariation give
Re (〈L(y), L(z)〉) =

1

2

(
〈L(y), L(z)〉 +

〈
L(y), L(z)

〉 )

=
1

2

(〈
L(y) + L(z̄), L(y) + L(z̄)

〉
−
〈
L(y), L(y)

〉
−
〈
L(z), L(z)

〉)
,and

〈
L(y) + L(z̄), L(y) + L(z̄)

〉
≤

〈
L(y) + L(z̄), L(y) + L(z̄)

〉
+
〈
L(y) − L(z̄), L(y) − L(z̄)

〉
,

= 2
〈
L(y), L(y)

〉
+ 2

〈
L(z), L(z)

〉
.(4.43) in the proof of Theorem 4.23, and onsiderations above allow to prove that

sup
y,z∈I+iR

|Re (〈L(y), L(z)〉)| <∞.Similarly we an bound Im(〈L(y), L(z)〉t), writing
Im (〈L(y), L(z)〉) =

1

2

(〈
L(y) − L(z̄), L(y) − L(z̄)

〉
−
〈
L(y), L(y)

〉
−
〈
L(z), L(z)

〉)
,so that we obtain

Im (〈L(y), L(z)〉) ≤
〈
L(y), L(y)

〉
+
〈
L(z), L(z)

〉and
sup

y,z∈I+iR
|Im (〈L(y), L(z)〉)| <∞ .Therefore

∫ ∫
〈L(y), L(z)〉t Π(dy)Π(dz)is a well-de�ned, ontinuous, preditable, with bounded variation omplex-valued proess.We reall that Lt =

∫
L(z)tΠ(dz) so

L2
t =

∫ ∫
L(y)tL(z)tΠ(dy)Π(dz) .An appliation of Fubini's theorem yields that

L2
t −

∫ ∫
〈L(y), L(z)〉t Π(dy)Π(dz) ,47



is a martingale. This implies
〈L,L〉t =

∫ ∫
〈L(y), L(z)〉t Π(dy)Π(dz) ,by de�nition of oblique braket. It remains to evaluate 〈L(y), L(z)〉 for y, z ∈ supp(Π).We know by Proposition 4.11 that for all y, z, y + z ∈ D,

〈M(y),M(z)〉t =

∫ t

0

Sy+zu− ρdu(y, z) .Using the same terminology of Proposition 4.17, (4.21) says 〈L(z),M〉t = 0 and (4.20) imply
〈L(y), L(z)〉t =

∫ t

0

e
R

T

s
(η(z,du)+η(y,du))d 〈M(y),M(z)〉s −

∫ t

0

ξ(z)se
R

T

s
η(y,du)d 〈M,M(y)〉s ,

=

∫ t

0

e
R

T

s
(η(z,du)+η(y,du))d 〈M(y),M(z)〉s −

∫ t

0

γ(z, s)e
R

T

s
(η(z,du)+η(y,du))Sz−1

s− d 〈M,M(y)〉s ,

=

∫ t

0

e
R

T

s
(η(z,du)+η(y,du))Sy+zs− ρds(y, z)−

∫ t

0

γ(z, t)e
R

T

s
(η(z,du)+η(y,du))Sz−1

s− Sy+1
s− ρds(y, 1) ,

=

∫ t

0

e
R

T

s
(η(z,du)+η(y,du))Sy+zs− [ρds(y, z)− γ(z, s)ρds(y, 1)] .Hene,

〈L(y), L(z)〉t =

∫ t

0

e
R

T

s
(η(z,du)+η(y,du))Sy+zs− β(y, z, ds) .We ome bak to (5.12). Realling Remark 5.3 we have

∫ T

0

e−(KT−Kt)d 〈L(y), L(z)〉t =

∫ T

0

e−(KT−Kt)+
R

T

t
(η(z,du)+η(y,du))Sy+zt− β(y, z, dt) ,

=

∫ T

0

eα(y,z,t)Sy+zt− β(y, z, dt) .Sine E[Sy+zt− ] = sy+z0 eκt(y+z), an appliation of Fubini's theorem yields
E

(∫ T

0

e−(KT−Kt)d 〈L(y), L(z)〉t

)
= E

(∫ T

0

eα(y,z,t)Sy+zt− β(y, z, dt)

)
, (5.13)

= sy+z0

∫ T

0

eα(y,z,t)+κt(y+z)β(y, z, dt) .whih equals J0(y, z).Another appliation of Fubini's theorem gives
∫ T

0

e−(KT−Kt)d 〈L,L〉t =

∫

C

∫

C

∫ T

0

e−(KT−Kt)d 〈L(y), L(z)〉t Π(dy)Π(dz) ,hene
E

[∫ T

0

e−(KT−Kt)d 〈L,L〉t

]
=

∫

C

∫

C

E

[∫ T

0

e−(KT−Kt)d 〈L(y), L(z)〉t

]
Π(dy)Π(dz) ,

=

∫

C

∫

C

J0(y, z)Π(dy)Π(dz) .48



Corollaries 2.29 and 2.26 imply that the left-hand side of the previous equation provides the variane of thehedging error.5.3 The exponential Lévy aseIn this setion, we speify rapidly the results onerning FS deomposition and the minimization problemwhen (Xt) is a Lévy proess (Λt). Using the fat that (Λt) is a proess with independent stationary inrementsit is not di�ult to show that
κt(z) = tκΛ(z) , (5.14)where κΛ(z) = κ1(z), κΛ : D → C. Sine for every z ∈ D, t 7→ κt(z) has bounded variation then X = Λ is asemimartingale and Proposition 3.16 implies that (t, z) 7→ κt(z) is ontinuous.We make the following hypothesis.Assumption 9. 1. 2 ∈ D ;2. κΛ(2) − 2κΛ(1) 6= 0 .Remark 5.6. 1. ρdt =

(
κΛ(2) − 2κΛ(1)

)
dt ;2. dκt

dρt
(z) =

1

κΛ(2) − 2κΛ(1)
κΛ(z) for any t ∈ [0, T ], z ∈ D ; so D = D.3. Assumptions 6, and 7 are veri�ed.Again we denote the proess S as

St = s0 exp(Xt) = s0 exp(Λt) .It remains to verify Assumption 8 whih of ourse depends on the ontingent laim.Example 5.7. 1. H = (ST −K)+. We hoose the seond representation for the all. So, for 0 < R < 1,
I0 = supp(Π) ∩ R = {R, 1} .In this ase Assumption 8.1 beomes I = [R,R+ 1] ⊂ D. This is always satis�ed sine D ⊃ [0, 2] andit is onvex. Assumption 8.2 is always veri�ed beause I is ompat and κΛ is ontinuous.2. H = (K − ST )+. We reall that R < 0 and so
I0 = supp(Π) ∩ R = {R}.In this ase, Assumption 8.1, gives again I = [2R, 1] ⊂ D. Sine [0, 2] is always inluded in D, we needto suppose here that 2R (whih is a negative value) belongs to D.This is not a restrition provided that D ontains some negative values sine we have the degree offreedom for hoosing R.In this subsetion, we reobtain results obtain in [31℄. From Proposition 4.13, we obtain the following.
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Corollary 5.8. Under Assumption 9, the proess (St) an be written as
St = Mt +At ,where

At = κ(1)

∫ t

0

Su−du and 〈M,M〉t = (κ(2) − 2κ(1))

∫ t

0

S2
u−du .The mean-variane tradeo� proess equals

Kt =

∫ t

0

α2
ud 〈M,M〉u =

κ(1)2

κ(2) − 2κ(1)
t . (5.15)From Theorem 4.23 and Theorem 5.2, we obtain the following result.Theorem 5.9. We suppose the validity of Assumption 9. We onsider an option H of the type (4.27). Thefollowing properties hold true.1. The FS deomposition is given by HT = H0 +

∫ T
0 ξtdSt + LT where

• Ht =
∫
H(z)tΠ(dz) with H(z)t = exp(ηΛ(z)(T − t))Szt and z ∈ I, t ∈ [0, T ] ;

• ξt =
∫
ξ(z)tΠ(dz) with ξ(z)t = γΛ(z) exp(ηΛ(z)(T − t))Sz−1

t− and z ∈ I, t ∈ [0, T ] ;

• Lt = Ht −H0 −
∫ t
0
ξudSu .Moreover, for z ∈ suppΠ,

• γΛ(z) =
κ(z + 1) − κ(z) − κ(1)

κ(2) − 2κ(1)
;

• ηΛ(z) = κ(z) − κ(1)γΛ(z) .Aording to the notations of Lemma 4.17, we have
η(z, t) = ηΛ(z)t, γ(z, t) = γΛ(z).2. The solution of the minimization problem is given by a pair (V0, ϕ) where

V0 = H0 and ϕt = ξt +
λ

St−
(Ht− − V0 −Gt−(ϕ)) with λ =

κ(1)

κ(2) − 2κ(1)
.Remark 5.10. Lemma 2.14 implies that Θ is the linear spae of preditable proesses v suh that E

(∫ T
0
v2
t S

2
t−dt

)
<

∞.Remark 5.11. We ome bak to the examples introdued in Remark 3.21. In all the three ases, Assumption9 is veri�ed if 2 ∈ D. This is happens in the following situations:1. always in the Poisson ase;2. if Λ = X is a NIG proess and if 2 < α− β ;3. if Λ = X is a VG proess and if 2 < −β +
√
β2 + 2α .50



Remark 5.12. If X is a Poisson proess with parameter λ > 0 then the quadrati error is zero. In fat, thequantities
κΛ(z) = λ(exp(z) − 1))

ρt(y, z) = λt(exp(y) − 1)(exp(z) − 1)

γ(z, t) =
exp(z) − 1

e− 1imply that β(y, z, t) = 0 for every y, z ∈ C, t ∈ [0, T ].Therefore J0(y, z, t) ≡ 0. In partiular all the options of type (4.27) are perfetly hedgeable.5.4 Exponential of a Wiener integral driven by a Lévy proessLet Λ be a Lévy proess. The umulant funtion of Λt equals κΛ
t (z) = tκΛ

1 (z) for κΛ
1 = κΛ : DΛ → C. Weformulate the following hypothesis:Assumption 10. 1. There is r > 0 suh that r ∈ DΛ.2. Λ has no deterministi inrements.Remark 5.13. Aording to Lemma 4.3 for every γ > 0, suh that γ ∈ D,

κΛ(2γ) − 2κΛ(γ) > 0 . (5.16)We onsider the PII proess Xt =
∫ t
0
lsdΛs where l : [0, T ] → [ε, r/2] is a (deterministi ontinuous)funtion and ε, r > 0 suh that 2ε ≤ r.Remark 5.14. 1. Lemma 3.24 says that D ontains Dε,r :=

{
x ∈ R | εx, rx2 ∈ DΛ

}
+ iR , and κt(z) =∫ t

0 κ
Λ(zls)ds .2. ρt =
∫ t
0

(
κΛ(2ls) − 2κΛ(ls)

)
ds ;3. 2 ∈ D ; X is a PII semimartingale sine t 7→ κt(2) has bounded variation, see Lemma 3.14.4. 1 ∈ Dε,r sine 0, r ∈ DΛ.Proposition 5.15. Assumptions 6 and 7 are veri�ed. Moreover Dε,r ⊂ D.Proof. 1. Using Lemma 4.3, Assumption 6 is veri�ed if we show that t 7→ ρt(1) = κt(2)−2κt(1) is stritlyinreasing. Now
κt(2) − 2κt(1) =

∫ t

0

(
κΛ(2ls) − 2κΛ(ls)

)
ds .Inequality (5.16) and Lemma 4.3 imply that ∀s ∈ [0, T ]

κΛ(2ls) − 2κΛ(ls) > 0 .In fat, Λ has no deterministi inrements. This shows Assumption 6.2. For z ∈ Dε,r, by Remark 5.14 1. we have
∣∣∣∣
dκt(z)

dρt

∣∣∣∣ =

∣∣∣∣
κΛ(zlt)

κΛ(2lt) − 2κΛ(lt)

∣∣∣∣ ≤
supx∈[ε,r] |κΛ(xz)|

infx∈[ε,r/2] (κΛ(2x) − 2κΛ(x))
.51



Previuous supremum and in�mum exist sine x 7→ κΛ(zx) is ontinuous and it attains a maximum anda minimum on a ompat interval. So, Dε,r ⊂ D and Assumption 7 is veri�ed beause of Remark 5.154.Remark 5.16. 1. Point 1. of Assumption 8 is also veri�ed if we show that I ⊂ Dε,r; in fat Dε,r ⊂ Dand I0 ∪ (I0 + 1) ⊂ I.2. From previous proof it follows that
dκt(z)

dρt
=

κΛ(zlt)

κΛ(2lt) − 2κΛ(lt)
.3. Sine I is ompat and t 7→ dκt(z)

dρt
is ontinuous, point 2. of Assumption 8 would be veri�ed again forall ases provided that I ⊂ Dε,r.It remains to verify Assumption 8 for the same lass of options as in previous subsetions. The only pointto establish will be to show
I ⊂ {x|εx, rx

2
∈ DΛ}. (5.17)Example 5.17. 1. H = (ST −K)+. Similarly to the ase where X is a Lévy proess, we take the seondrepresentation of the European Call. In this ase I = [R,R+ 1] and (5.17) is veri�ed.2. H = (K − ST )+. Again, here R < 0, I = [2R,R+ 1].We only have to require that DΛ ontains some negative values, whih is the ase for the three examplesintrodued at Setion 3.4. Seleting R in a proper way, (5.17)is ful�lled.We provide now the solution to the minimization problem under Assumption 10. . By Theorem 5.2, wehave

λ(s) =
κΛ(ls)

κΛ(2ls) − 2κΛ(ls)
,

γ(z, s) =
κΛ((z + 1)ls) − κΛ(zls) − κΛ(ls)

κΛ(2ls) − 2κΛ(ls)
,

η(z, s) = κΛ(zls) −
κΛ(ls)

κΛ(2ls) − 2κΛ(ls)

(
κΛ((z + 1)ls) − κΛ(zls) − κΛ(ls)

)
,hene

η(z, s) = κΛ(zls) − λ(s)
(
κΛ((z + 1)ls) − κΛ(zls) − κΛ(ls)

)
,We obtain �nally the optimal hedging

ϕt = ξt +
λt
St−

(Ht− − V0 −
∫ t

0

ϕsdSs) ,where the proesses (Ht),(ξt) are de�ned by
Ht =

∫

C

e
R

T

t
η(z,ds)Szt Π(dz) ,

ξt =

∫

C

γ(z, t)e
R

T

t
η(z,ds)Sz−1

t− Π(dz) .52



5.5 A toy exampleLet (Wt) be a standard Brownian motion, we onsider Xt = Wψ(t), where ψ : R+ → R+ is a stritlyinreasing funtion, inluding the pathologial ase where ψ′

t = 0 a.e. We have
E[ezXt ] = E[ezWψ(z) ] = eκt(z) = e

z2

2 ψ(t) ,so that
κt(z) =

z2

2
ψ(t) , κt(2) − 2κt(1) = ψ(t) and κt(z + 1) − κt(z) − κt(1) = zψ(t) .So

〈M,M〉t =

∫ t

0

S2
s−ψ(ds) and At =

∫ t

0

1

2Ss−
d 〈M,M〉s =

∫ t

0

1

2
Ss−ψ(ds) ,and the MVT proess veri�es

Kt =

∫ t

0

1

4S2
s−

d 〈M,M〉s =

∫ t

0

1

4
ψ(ds) =

1

4
ψ(t) .All the onditions to apply Theorem 5.2 are satis�ed so the funtion γ(z, t) is equal to the Radon-Nykodimderivative of κt(z + 1) − κt(z) − κt(1) with respet to κt(2) − 2κt(1), so

γ(z, t) = z , η(z, t) =
ψ(t)

2
(z2 − z) and λ(t) = λ =

1

2
.Hene we an ompute the variane-optimal hedging strategy ϕ and the variane-optimal initial apital V0in this ase

ϕt = ξt +
1

2St−
(Ht− − V0 −

∫ t

0

ϕsdSs)and
Ht =

∫

C

e
R

T

t
η(z,ds)Szt Π(dz) =

∫

C

exp

{
z2 − z

2
(Ψ(T ) − Ψ(t))

}
Szt Π(dz)

ξt =

∫

C

γ(z, t)e
R

T

t
η(z,ds)Sz−1

t− Π(dz) =

∫

C

z exp

{
z2 − z

2
(Ψ(T ) − Ψ(t))

}
Sz−1
t− Π(dz)Remark 5.18. Calulating β(y, z, t) of the quadrati error setion, we �nd β ≡ 0. Therefore here also thequadrati error is zero. This on�rms the fat that the market is omplete, at least for the onsidered lassof options.6 Appliation to Eletriity6.1 Hedging eletriity derivatives with forward ontatsEletriity markets are omposed by the Spot market setting pries for eah delivery hour of the next dayand the forward or futures market setting pries for more distant delivery periods. For simpliity, we willassume that interest rates are deterministi and zero so that futures pries are equivalent to forward pries.Forward pries given by the market orrespond to a �xed prie of one MWh of eletriity for delivery in a53



given future period, typially a month, a quarter or a year. Hene, the orresponding term ontrats are infat swaps (i.e. forward ontrats with delivery over a period) but are improperly named forward. However,the strong assumption that there are tradable forward ontrats for all future time points Td ≥ 0 is usualand will be assumed here.Beause of non-storability of eletriity, no dynami hedging strategy an be performed on the spot market.Hedging instruments for eletriity derivatives are then futures or forward ontrats. The value of a forwardontrat o�ering the �xed prie FTd0 at time 0 for delivery of 1MWh at time Td is by de�nition of theforward prie, S0,Td
0 = 0. Indeed, there is no ost to enter at time 0 the forward ontrat with the urrentmarket forward prie FTd0 . Then, the value of the same forward ontrat S0,Td at time t ∈ [0, Td] is deduedby an argument of Absene of (stati) Arbitrage as S0,Td

t = e−r(T−t)(FTdt − FTd0 ). Hene, the dynami ofthe hedging instrument (S0,Td
t )0≤t≤Td is diretly related (for deterministi interest rates) to the dynami offorward pries (FTdt )0≤t≤Td . Consequently, in the sequel we will fous on the dynami of forward pries.6.2 Eletriity prie models for priing and hedging appliationObserving market data, one an notie two main stylised features of eletriity spot and forward pries:

• Volatility term struture of forward pries: the volatility inreases when the time to maturity dereases;
• Non-Gaussianity of log-returns: log-returns an be onsidered as Gaussian for long-term ontrats butthey are learly leptokurti for short-term ontrats with huge spikes on the Spot market.Hene, a hallenge is to be able to desribe with a single model, both the spikes on the short term and thevolatility term struture of the forward urve. One reasonable attempt to do so is to onsider the exponentialLévy fator model, proposed by Benth and Benth [9℄, or [15℄. The forward prie given at time t for deliveryat time Td ≥ t, denoted FTdt is then modeled by a p-fators model, suh that

FTdt = FTd0 exp(mTd
t +

p∑

k=1

Xk,Td
t ) , for all t ∈ [0, Td] ,where (6.18)

• (mTd
t )0≤t≤Td is a real deterministi trend;

• For any k = 1, · · · p, (Xk,Td
t )0≤t≤Td is suh that Xk,Td

t =
∫ t
0 σke

−λk(Td−s)dΛks , where Λ = (Λ1, · · · ,Λp)is a Lévy proess on Rd, with E[Λk1 ] = 0 and V ar[Λk1 ] = 1;
• σk > 0 , λk ≥ 0 , are alled respetively the volatilities and the mean-reverting rates.Hene, forward pries are given as exponentials of PII with non-stationary inrements. Then, the spotmodel is derived by setting STd = FTdTd and redues to the exponential of a sum of possibly non-GaussianOrnstein-Uhlenbek proesses. In pratie, we onsider the ase of a one or a two fators model (p = 1 or

2), where the �rst fator X1 is a non-Gaussian PII and the seond fator X2 is a Brownian motion with
σ1 ≫ σ2. Notie that this kind of model was originally developed and studied in details for interest ratesin [41℄, as an extension of the Heath-Jarrow-Morton model where the Brownian motion has been replaedby a general Lévy proess. Reent ontributions in the subjet are [22, 43℄.Of ourse, this modeling proedure (6.18), implies inompleteness of the market. Hene, if we aim at priingand hedging a European all on a forward with maturity T ≤ Td, it won't be possible, in general, to hedgeperfetly the payo� (FTdT − K)+ with a hedging portfolio of forward ontrats. Then, a natural approahould onsist in looking for the variane optimal prie and hedging portfolio. In this framework, the results54



of Setion 4 generalizing the results of Hubalek & al in [31℄ to the ase of non stationary PII an be useful.Similarly, some arithmeti models proposed in [6℄ for eletriity pries, onsists of replaing the right-handside of (6.18) by its logarithm. Hene, with this kind of models the results of Setion 3.6 an also be useful.6.3 The non Gaussian two fators modelTo simplify let us forget the uppersript Td denoting the delivery period (sine we will onsider a �xeddelivery period). We suppose that the forward prie F follows the two fators model
Ft = F0 exp(mt +X1

t +X2
t ) , for all t ∈ [0, Td] ,where (6.19)

• m is a real deterministi trend starting at 0. It is supposed to be absolutely ontinuous with respetto Lebesgue;
• X1

t =
∫ t
0 σse

−λ(Td−u)dΛu, where Λ is a Lévy proess on R with Λ following a Normal Inverse Gaussian(NIG) distribution or a Variane Gamma (VG) distribution. Moreover, we will assume that E[Λ1] = 0and V ar[Λ1] = 1;
• X2 = σlW where W is a standard Brownian motion on R;
• Λ and W are independent.
• σs and σl standing respetively for the short-term volatilty and long-term volatility.6.4 Veri�ation of the assumptionsThe result below helps to extend Theorem 5.2 to the ase where X is a �nite sum of independent PIIsemimartingales, eah one verifying Assumptions 6, 7 and 8 for a given payo� H = f(s0e

XT ).Lemma 6.1. Let X1, X2 be two independent PII semimartingales with umulant generating funtions κi andrelated domains Di,Di, i = 1, 2 haraterized in Remark 3.8 and (4.13). Let f : C → C of the form (4.27).For X = X1 +X2 with related domains D,D and umulant generating funtion κ, we have the following.1. D = D1 ∩D2.2. D1 ∩ D2 ⊂ D.3. If X1, X2 verify Assumptions 6, 7 and 8, then X has the same property.Proof. Sine X1, X2 are independent and taking into aount Remark 3.8 we obtain 1. and
κt(z) = κ1

t (z) + κ2(z), ∀z ∈ D.We denote by ρi, i = 1, 2, the referene variane measures de�ned in Remark 4.7. Clearly ρ = ρ1 + ρ2 and
dρi ≪ dρ with ‖ dρidρ ‖∞ ≤ 1.If z ∈ D1 ∩D2, we an write

∫ T

0

∣∣∣∣
dκt(z)

dρt

∣∣∣∣
2

dρt ≤ 2

∫ T

0

∣∣∣∣
dκ1

t (z)

dρ1
t

dρ1
t

dρt

∣∣∣∣
2

dρt + 2

∫ T

0

∣∣∣∣
dκ2

t (z)

dρ2
t

dρ2
t

dρt

∣∣∣∣
2

dρt

= 2

∫ T

0

∣∣∣∣
dκ1

t (z)

dρ1
t

∣∣∣∣
2
dρ1
t

dρt
dρ1
t + 2

∫ T

0

∣∣∣∣
dκ2

t (z)

dρ2
t
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2
dρ2
t

dρt
dρ2
t

≤ 2

(∫ T

0

∣∣∣∣
dκ1

t (z)

dρ1
t
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2

dρ1
t +

∫ T

0

∣∣∣∣
dκ2

t (z)

dρ2
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2

dρ2
t

)
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This onludes the proof of D1 ∩ D2 ⊂ D and therefore of the of Point 2.Finally Point 3. follows then by inspetion.With the two fators model, the forward prie F is then given as the exponential of a PII, X , suh thatfor all t ∈ [0, Td],
Xt = mt +X1

t +X2
t = mt + σs

∫ t

0

e−λ(Td−u)dΛu + σlWt . (6.20)For this model, we formulate the following assumption.Assumption 11. 1. 2σs ∈ DΛ.2. If σl = 0, we require Λ not to have deterministi inrements.3. We de�ne ε = σse
−λTd , r = 2σs.

f : C → C is of the type (4.27) ful�lling (5.17).Proposition 6.2. 1. The umulant generating funtion of X de�ned by (6.20), κ : [0, Td] × D → C issuh that for all z ∈ Dε,r := {x ∈ R |xσs ∈ DΛ} + iR, then for all t ∈ [0, Td],
κt(z) = zmt +

z2σ2
l t

2
+

∫ t

0

κΛ(zσse
−λ(Td−u))du . (6.21)In partiular for �xed z ∈ Dε,r, t 7→ κt(z) is absolutely ontinuous with respet to Lebesgue measure.2. Assumptions 6, 7 and 8 are veri�ed.Proof. We set X̃2 = m+X2. We observe that

D2 = D2 = C, κ2
t (z) = exp(zmt + z2σ2

l

t

2
).We reall that Λ and W are independent so that X̃2 and X1 are independent.

X1 is a proess of the type studied at Setion 5.4. Aording to Proposition 5.15, Remark 5.16 and (5.17)it follows that Assumptions 6, 7 and 8 are veri�ed for X1.Both statements 1. and 2. are now a onsequene of Lemma 6.1.Remark 6.3. For examples of f ful�lling (5.17), we refer to Example 5.17.The solution to the mean-variane problem is provided by Theorem 5.2.Theorem 6.4. The variane-optimal apital V0 and the variane-optimal hedging strategy ϕ, solution of theminimization problem (2.1), are given by
V0 = H0 (6.22)and the impliit expression

ϕt = ξt +
λt
St−

(Ht− − V0 −
∫ t

0

ϕsdSs), (6.23)where the proesses (Ht),(ξt) and (λt) are de�ned as follows:
z̃t : = σse

−λ(Td−t),

γ(z, t) : =
zσ2

l + κΛ((z + 1)z̃) − κΛ(zz̃) − κΛ(z̃)

σ2
l + κΛ(2z̃) − 2κΛ(z̃)

,

η(z, t) : =

[
zmt +

z2σ2
l

2
+ κΛ(zz̃) − γ(z, t)

(
mt +

σ2
l

2
+ κΛ(z̃)

)]
dt ,56



λt =
mt +

σ2
l

2 + κΛ(z̃)

σ2
l + κΛ(2z̃) − 2κΛ(z̃)

,

Ht =

∫

C

e
R

T

t
η(z,ds)Szt Π(dz),

ξt =

∫

C

γ(z, t)e
R

T

t
η(z,ds)Sz−1

t− Π(dz) .The optimal initial apital is unique. The optimal hedging strategy ϕt(ω) is unique up to some (P (dω)⊗ dt)-null set.Remark 6.5. Previous formulae are pratially exploitable numerially. The last ondition to be heked is
2σs ∈ DΛ. (6.24)In our lassial examples, this is always veri�ed.1. Λ1 is a Normal Inverse Gaussian random variable. If σs ≤ α−β

2 then (6.24) is veri�ed.2. Λ1 is a Variane Gamma random variable then (6.24) is veri�ed. if for instane σs ≤ −β+
√
β2+2α

2 .7 Simulations7.1 Exponential LévyWe onsider the problem of priing a European all, with payo� (ST −K)+, where the underlying proess
S is given as the exponential of a NIG Lévy proess i.e. for all t ∈ [0, T ],

St = eXt , where X is a Lévy proess with X1 ∼ NIG(α, β, δ, µ) .The time unit is the year and the interest rate is zero in all our simulations. The initial value of theunderlying is S0 = 100 Euros. The maturity of the option is T = 0.25 i.e. three months from now. Fivedi�erent sets of parameters for the NIG distribution have been onsidered, going from the ase of almostGaussian returns orresponding to standard equities, to the ase of highly non Gaussian returns. Thestandard set of parameters is estimated on the Month-ahead base forward pries of the Frenh Power marketin 2007:
α = 38.46 , β = −3.85 , δ = 6.40 , µ = 0.64 . (7.25)Those parameters imply a zero mean, a standard deviation of 41%, a skewness (measuring the asymmetry)of −0.02 and an exess kurtosis (measuring the fatness of the tails) of 0.01. The other sets of parametersare obtained by multiplying parameter α by a oe�ient C, (β, δ, µ) being suh that the �rst three momentsare unhanged. Note that when C grows to in�nity the tails of the NIG distribution get loser to the tails ofthe Gaussian distribution. For instane, Table 1 shows how the exess kurtosis (whih is zero for a Gaussiandistribution) is modi�ed with the �ve values of C hosen in our simulations.We have ompared on simulations the Variane Optimal strategy (VO) using the real NIG inompletemarket model with the real values of parameters to the Blak-Sholes strategy (BS) assuming Gaussianreturns with the real values of mean and variane. Of ourse, the VO strategy is by de�nition theoritiallyoptimal in ontinuous time, w.r.t. the quadrati norm. However, both strategies are implemented in disretetime, hene the performanes observed in our simulations are spoiled w.r.t. the theoritial ontinuousrebalaning framework. 57



Coe�ient C = 0.08 C = 0.14 C = 0.2 C = 1 C = 2

α 3.08 5.38 7.69 38.46 76.92Exess kurtosis 1.87 0.61 0.30 0.01 4. 10−3Figure 1: Exess kurtosis of X1 for di�erent values of α, (β, δ, µ) insuring the same three �rst moments.7.1.1 Strike impat on the priing value and the hedging ratioFigure 2 shows the Initial Capital (on the left graph) and the initial hedge ratio (on the right graph)produed by the VO and the BS strategies as funtions of the strike, for three di�erent sets of parameters
C = 0.08 , C = 1 , C = 2. We onsider N = 12 trading dates, whih orresponds to operational pratieson eletriity markets, for an option expirying in three months. One an observe that BS results are verysimilar to VO results for C ≥ 1 whih orresponds to almost Gaussian returns. However, for small valuesof C, for C = 0.08, orresponding to highly non Gaussian returns, BS approah under-estimates out-of-the-money options and over-estimates at-the-money options. For instane, on Figure 3, one an observe thatfor K = 99 Euros the Blak-Sholes Initial Capital (ICBS) represents 122% of the variane optimal InitialCapital (ICV O), while for K = 150 it represents only 57% of the variane optimal prie. Moreover, thehedging strategy di�ers sensibly for C = 0.08, while it is quite similar to BS's ratio for C ≥ 1.
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Figure 2: Initial Capital (on the left) and hedge ratio (on the right) w.r.t. the strike, for C = 0.08 , C = 1 , C = 2.Strikes K = 60 K = 99 K = 150ICV O 50.08 7.11 0.40ICBS (vs ICV O) 50.00 (99.56%) 8.65 (121.73%) 0.23 (57.30%)Figure 3: Initial Capital of VO priing (ICV O) vs Initial Capital of BS priing (ICBS) for C = 0.08.7.1.2 Hedging error and number of trading datesFigure 4 onsiders the hedging error (the di�erene between the terminal value of the hedging portfolio andthe payo�) as a funtion of the number of trading dates, for a strike K = 99 Euros (at the money) and for�ve di�erent sets of parameters C desribed on Figure 1. The bias (on the left graph) and standard deviation58



(on the right graph) of the hedging error have been estimated by Monte Carlo method on 5000 runs. Notethat we ould have used the formula stated in Theorem 5.4 to ompute the variane of the error, but thiswould have give us the limiting error whih does not take into aount the additional error due to the �nitenumber of trading dates.In terms of standard deviation, the VO strategy seems to outperform sensibly the BS strategy, for smallvalues of C. For instane, one an observe on Figure 5, for C = 0.08 that the VO strategy allows to redue
10% of the standard deviation of the error. As expeted, one an observe that the VO error onverges to theBS error when C inreases. This is due to the onvergene of NIG log-returns to Gaussian log-returns when
C inreases (reall that the simulated log-returns are almost symmetri). One an distinguish two soures ofinompleteness, the rebalaning error due to the direte rebalaning strategy and the intrinsi error due tothe model inompleteness. On Figure 4, the hedging error (both for BS and VO) dereases with the numberof trading dates and seems to onverge to a limiting error orresponding to the intrinsi error. For C = 1and for a small number of trading dates N ≤ 5, the rebalaning error represents the most part of the hedgingerror, then it seems to vanish over N = 30 trading dates, where the intrinsi error is predominant. For smallvalues of C ≤ 0.2, even for small numbers of trading dates, the intrinsi error seems to be predominant. For
C ≤ 0.2 and N ≥ 12 trading dates, it seems useless to inrease the number of trading dates. Moreover,one an observe that for a small number of trading dates N ≤ 12 and for large values of C ≥ 1, BS seemsto outperform the VO strategy, in terms of standard deviation. This an be interpreted as a onsequeneof the entral limit theorem. Indeed, when the time between two trading dates inreases the orrespondinginrements of the Lévy proess onverge to a Gaussian variable. Hene, the model error omitted by the BSapproah dereases when the number of trading dates dereases.In term of bias, the over-estimation of at-the-money options (observed for C = 0.08, on Figures 2, 3)seems to indue a positive bias for the BS error (see Figure 4), whereas the Bias of the VO error is negligeable(as expeted from the theory). However, one an observe on Figure 5, that the di�erene between VO andBS bias error is smaller than the di�erene between the Initial Capitals, therefore one an onlude that, inour simulations, the BS hedging strategy indues more losses in average than the VO strategy.However, to be more relevant in our analysis, we have ompared on Figure 7, the performanes of the BShedging portfolio with the VO hedging portfolio starting with the same Initial Capital as the BS hedgingportfolio. One an observe on Figure 5 that this approah allows to redue the standard deviation of theVO hedging error (inreasing the bias and of ourse the global quadrati error w.r.t. the VO strategy withoptimal Initial apital).It is interesting to notie that, in terms of skewness and kurtosis, the VO strategy seems to outperformsensibly the BS strategy for small values of C. Figure 6 shows that for C = 0.08, the skewness of the BShedging error is strongly negative (3 times greater than the VO error using the same Initial Capital) andthe kurtosis is high (14 times greater than the VO error). Hene, in our simulations, BS strategy seems toimply more extreme losses than the VO strategy.In onlusion, the VO approah provides initial apital and hedging strategies whih are not signi�antlydi�erent from the BS approah exept for log-returns with high exess kurtosis (with small values of pa-rameter α in the NIG ase). Similarly, we an observe (though the �gures are not reported here) the samebehaviour w.r.t. to the asymmetry of the distribution: the VO approah allows to outperform signi�antlythe BS approah for strongly asymmetri log-returns (with high (absolute) values of parameter β in the NIGase). On the other hand, in more standard ases, the VO strategy seems to be omparable with the BSstrategy in terms of quadrati error and to have the signi�ant and unexpeted advantage to limit extreme59



losses (skewness and kurtosis) ompared to the BS strategy.
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T = 0.25 of three month. The maturity is equal to the delivery date of the forward ontrat T = Td.As stated in Setion 6, the natural hedging instrument is the orresponding forward ontrat with value
S0
t = e−r(T−t)(FTt − FT0 ) for all t ∈ [0, T ], where FT = F is supposed to follow the NIG one fator model:
Ft = eXt , where Xt =

∫ t

0

σse
−λ(T−u)dΛu where Λ is a NIG proess with Λ1 ∼ NIG(α, β, δ, µ) .
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α 1.26 15.81Exess kurtosis 1.87 0.013Figure 8: Exess kurtosis of Λ1 for di�erent values of α (β, δ, µ) insuring the same three �rst momentsFigure 9 shows the Bias and Standard deviation of the hedging error as a funtion of the number oftrading dates estimated by Monte Calo method on 5000 runs. The results are omparable to those obtainedin the ase of the Lévy proess, on Figure 9. However, one an notie that the BS strategy does no moreoutperform the VO strategy for small numbers of trading dates as observed in the Lévy ase. This is due tothe fat that Xt is no more a sum of i.i.d. variables.
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