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1 Introduction

It is well known that the stochastic Navier-Stokes equation with Dirichlet boundary
condition describes the time evolution of an incompressible fluid and is given by





du− ν4u dt + (u · ∇)u dt +∇p dt = gdt + σ(t, u)dW (t),
(div u)(t, x) = 0, t > 0,

u(0, x) = u0(x).

While the stochastic 2D Navier-Stokes equation has been studied extensively in the lit-
erature, there exist serious obstacles to tackle stochastic 3D Navier-Stokes equations.
One of them is the lack of uniquenes. Existence of martingale solutions and station-
ary solutions of the stochastic 3D Navier-Stokes equation was proved by Flandoli and
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Gatarek in [FG] and later by Mikulevicius and Rozovskii in [MR] under more gen-
eral conditions. Existence of Markov selections was proved in [FR], [DO] and [GRZ].
Recently, the following stochastic 3D tamed Navier-Stokes equations was proposed in
[RZ1](see also [RZ2] for the deterministic case)

du(t) = −Au(t)dt−B(u(t))dt− PgN(|u|2(t))u(t)dt +
∞∑

k=1

σk(u(t))dWk(t)

u(0) = u0 ∈ H1, (1.1)

where gN is a smooth function from R+ to R+ being nonzero only for large arguments,
see the next section for the precise definitions of gN and the coefficients. The motivation
to study (1.1) originates from the deterministic case, i.e., when the noise is zero. In that
case (cf [RZ2]) a bounded strong solution of the classical 3D Navier-Stokes equation
coincides with the solution of (1.1) ( with σk = 0, ∀k) for large enough N . Existence
and uniqueness of strong solutions (in the probabilistic sense), Feller properties and
invariant measures were obtained in [RZ1]. However, since the underlying domain in
[RZ1] was all of R3 or the torus , the existence of a strong solution was obtained
indirectly via the Yamada-Watanabe Theorem by proving the existence of martingale
solutions and pathwise uniqueness.

The purpose of this paper is two-fold. The first is in case of a bounded underlying
domain and taking Dirichlet boundary conditions to prove the existence of a strong so-
lution of the stochastic 3D tamed Navier-Stokes equation directly, based on Galerkin’s
approximation and on a kind of local monotonicity of the coefficients. The second part
is to prove a small time large deviation principle (LDP) for the stochastic 3D tamed
Navier-Stokes equations on C([0, 1]; H1).

Though our interest here is in small time LDP, let us briefly mention that the small
noise LDP for stochastic partial differential equations (SPDEs) has been studied by
many people. For example, for SPDE with monotone coefficients under very general
conditions this LDP has been proved in [L], strongly generalizing a corresponding
former result by P.L. Chow (1992). In 2004 a small noise LDP for stochastic reaction
diffusion equations with nonlinear reaction term was established by Cerrai and Röckner
in [CR] generalizing an early result by R. Sowers from (1992) in [S]. For stochastic
Burgers’-type SPDEs this was achieved by Cardon-Weber (1999) in [CW]. A uniform
LDP for parabolic SPDEs was proved by Chenal and Millet (1997) in [CM2]. In [RS],
Rovira and Sanz-Sole (1996) proved an LDP for a class of nonlinear hyperbolic SPDEs.

A small time large deviation principle for stochastic parabolic equations was ob-
tained by one of authors in [Z]. For the general theory of large deviations, the reader
is referred to the monograph [DZ]. Because of the different nature of nonlinearities for
different types of equations, the large deviations for SPDE have to be dealt with on a
case by case basis.
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For small time asymptotics of diffusion processes in finite and infinite dimensions
we refer the reader to [V], [HR] respectively.

The small noise large deviation of the stochastic 2D Navier-Stokes equations was
established in [CM1] correcting an error/gap in [S.S] and the large deviation of occu-
pation measures was considered in [G]. The small time large deviation principle for
the 2D stochastic Navier-Stokes equation was treated in [XZ] and the small noise large
deviation for the 3D tamed stochastic Navier-Stokes equation in [RZZ].

To obtain the small time large deviation principle for the stochastic 3D tamed
Navier-Stokes equation, as one expects, the main difficulty lies in dealing with the
nonlinear term B(u) = P(

(u · ∇)u
)

and the unbounded term Au = −ν4u. To control
B(u), the main idea is to show that the probability that the solution stays outside an
energy ball is exponentially small so that we can restrict the solution to a sufficiently
large energy ball. Our approach is close to that of [XZ]. However, the treatment of
the nonlinear terms is different from that in [XZ] because of the well known difference
between the 2D and 3D- case for Navier Stokes equations.

2 Notations

Let u(x) = (u1(x), u2(x), u3(x)) be a vector valued function on a bounded domain
D ⊂ R3. The following notations will be used.

|u|2 :=
3∑

i=1

|ui|2, ∂iu
j :=

∂uj

∂xi

,

∇uj := (∂1u
j, ∂2u

j, ∂3u
j), ∆uj :=

3∑
i=1

∂2
i u

j,

∂iu := (∂iu
1, ∂iu

2, ∂iu
3),

(λI −∆)
m
2 u := ((λI −∆)

m
2 u1, (λI −∆)

m
2 u2, (λI −∆)

m
2 u3), λ, m ≥ 0

div(u) :=
3∑

i=1

∂iu
i, (u · ∇)u :=

3∑
i=1

ui∂iu.

Let C∞
0 (D; R3) denote the set of all smooth functions from D to R3 with compact

supports. For p ≥ 1, let Lp(D; R3) be the vector valued Lp-space in which the norm is
denoted by || · ||Lp . For an non-negative integer m ≥ 0, let Wm,2

0 be the usual Sobolev
space on D with values in R3, i.e., the closure of C∞

0 (D; R3) with respect to the norm:

||u||2
W m,2

0
=

∫

D

|(I −∆)
m
2 u|2dx.
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Recall the following Gagliardo-Nirenberg interpolation inequality. If

1

q
=

1

2
− mα

3
, 0 ≤ α ≤ 1,

then for any u ∈ Wm,2
0

||u||Lq ≤ Cm,q||u||αW m,2
0
||u||1−α

L2 . (2.1)

Set
Hm := {u ∈ Wm,2

0 : div(u) = 0}.
The norm of Wm,2

0 restricted to Hm will be denoted by || · ||Hm . Remark that H0

is a closed linear subspace of the Hilbert space L2(D; R3). Let P be the orthogonal
projection from L2(D; R3) to H0. It is well known that P commutes with the derivative
operators.

For u, v ∈ L2(D; R3) set

B(u, v) := P((u · ∇)v), Au = −ν∆u.

If u = v, we write B(u) = B(u, u). Let V be defined by

V := {u : u ∈ C∞
0 (D; R3), div(u) = 0}.

Throughout this paper, gN(·) will denote a fixed smooth function from R+ to R+ such
that for some N > 0, 




gN(r) = 0, if r ≤ N,

gN(r) = (r−N)
ν

, if r ≥ N + 1,
0 ≤ g′N(r) ≤ C, r ≥ 0.

(2.2)

3 Existence and uniqueness

For simplicity we take ν = 1. Let (Wk(t), k ≥ 1) be a sequence of independent Ft-
Brownian motions defined on a filtered probability space (Ω,F ,Ft, P ). Consider the
stochastic 3D tamed Navier-Stokes equation:

du(t) = −Au(t)dt−B(u(t))dt− P(
gN(|u|2)u(t)

)
dt +

∞∑

k=1

σk(u(t))dWk(t)

u(0) = u0 ∈ H1. (3.1)

Here σk(·), k ≥ 1, is a sequence of mappings from H1 (H0) into H1(H0). Consider the
following hypotheses.

(H.1) .
∞∑

k=1

||σk(u)||2H0 < ∞, for u ∈ H0.
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(H.2) .
∞∑

k=1

||σk(u)||2H1 < ∞, for u ∈ H1.

(H.3) .
∞∑

k=1

||σk(u)− σk(v)||2H0 ≤ c(||u− v||2H0)

(H.4) .
∞∑

k=1

||σk(u)− σk(v)||2H1 ≤ c(||u− v||2H1).

(H.1), (H.2) imply that for every u ∈ H1(H0 resp.) the linear map σ(u) := (σk(u))k∈N :
l2 → H1(H0 resp.) defined by

σ(u)h :=
∞∑

k=1

σk(u)hk, h = (hk)k∈N ∈ l2,

is in L2(l2, H
1(H0 resp.)) (=Hilbert-Schmidt operators from l2 to H1(H0 resp.) and

(H.3), (H.4) imply that u : | → σ(u) is Lipschitz. For simplicity, in this section we
write

F (u) := −Au−B(u)− P(
gN(|u|2)u)

.

The following inequality can be found in [H]:

sup
x
|u(x)|2 ≤ C||∆u||H0 · ||∇u||H0 (3.1)′.

Theorem 3.1 Assume (H.1)− (H.4) hold and u0 ∈ L2(Ω,F0; H
1). Then there exists

a unique solution to the stochastic 3D-tamed Navier-Stokes equation (3.1) that satisfies
the following energy inequality:

E

(
sup

0≤t≤T
||u(t)||2H1

)
+

∫ T

0

E[||u(t)||2H2 ]dt < ∞. (3.2)

Proof. The uniqueness can be proved as in [RZ1]. Therefore, we only prove the exis-
tence. We will use Galerkin approximation combined with a kind of local monotonicity
of the 3D-tamed equation. We will do this in two steps.

Step 1. Assume u0 ∈ L6(Ω,F0; H
1).

Let {ei, i ≥ 1} ⊂ H2 be a fixed orthonormal basis of H0 consisting of eigenvectors of
∆, so that it is also orthogonal in H1. Since D is bounded, such an orthonormal basis
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exists. Denote by Πn the orthogonal projection from H0 onto the finite dimensional
space Hn := span(e1, e2, ..., en):

Πnv :=
n∑

i=1

< v, ei >H0 ei.

Then Πn is also the orthogonal projection onto Hn in H1. Consider the following finite
dimensional stochastic differential equation in Hn

{
dun(t) = [ΠnF (un(t)]dt +

∑∞
k=1 Πnσk(u(t))dWk(t),

un(0) = Πnu0.
(3.3)

By Lemma 2.4 in [RZ1] and (H.1), we have for u ∈ Hn

〈ΠnF (u), u〉 ≤ CN ||u||2H0 ,
∞∑

k=1

||Πnσk(u)||2H0 ≤ C(1 + ||u||2H0). (3.4)

It follows from [K] that equation (3.3) admits a unique, continuous adapted solution
un(t), t ≥ 0. Now we will give a uniform energy estimate for the family {un, n ≥ 1}.
Recall the following estimates (ν = 1) for u ∈ H2 from the proof of Lemma 2.3 in
[RZ1]:

− < Au, u >H1= −||u||2H2 + ||∇u||2L2 + ||u||2L2 (3.5)

− < B(u), u >H1≤ 1

2
||u||2H2 +

1

2
|||u| · |∇u|||2L2 (3.6)

− < gN(|u|2)u, u >H1≤ −|||u| · |∇u|||2L2 + (CN)||∇u||2L2 . (3.7)

By (3.5)–(3.7) and Itô’s formula , we have

||un(t)||2H1 = ||un(0)||2H1 − 2

∫ t

0

< un(s), Aun(s) >H1 ds− 2

∫ t

0

< un(s), B(un(s)) >H1 ds

+2
∞∑

k=1

∫ t

0

< un(s), σk(un(s) >H1 dWk(s) +
∞∑

k=1

∫ t

0

|σk(un(s))|2H1ds

−
∫ t

0

< un(s),P(gN(|un|2)un(s)) >H1 ds

≤ ||u0||2H1 −
∫ t

0

||un(s)||2H2ds−
∫ t

0

|||un(s)| · |∇un(s)|||2L2ds

+CN

∫ t

0

(1 + ||un(s)||2H1)ds + 2
∞∑

k=1

∫ t

0

< un(s), σk(un(s) >H1 dWk(s). (3.8)
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Taking expectation,

E[||un(t)||2H1 ] ≤ E[||u0||2H1 ]−
∫ t

0

E[||un(s)||2H2 ]ds−
∫ t

0

E[|||un(s)| · |∇un(s)|||2L2 ]ds

+C

∫ t

0

(1 + E[||un(s)||2H1)])ds, (3.9)

Gronwall’s inequality yields

sup
0≤t≤T

E[||un(t)||2H1 ] +

∫ T

0

E[||un(s)||2H2 ]ds +

∫ T

0

E[|||un(s)| · |∇un(s)|||2L2 ]ds

≤ CN(1 + E[||u0||2H1 ]). (3.10)

Using (3.10), (3.8), and applying Burkholder’s inequality to the martingale

Mt = 2
∞∑

k=1

∫ t

0

< un(s), σk(un(s) >H1 dWk(s),

we can further strengthen (3.10) to

E

(
sup

0≤t≤T
||un(t)||2H1

)
+

∫ T

0

E[||un(s)||2H2 ]ds +

∫ t

0

E[|||un(s)| · |∇un(s)|||2L2 ]ds

≤ CN(1 + E[||u0||2H1 ]), (3.11)

for all n ≥ 1. Next we show

sup
n

∫ T

0

E[||un(t)||6H1 ]dt < ∞. (3.12)
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To this end, we apply Ito’s formula to function f(x) = x3 and the real-valued process
Y (t) = ||un(t)||2H1 to get

||un(t)||6H1

= ||un(0)||6H1 + 6

∫ t

0

||un(s)||4H1 < un(s), F (un)(s) >H1 ds

+6
∞∑

k=1

∫ t

0

||un(s)||4H1 < un(s), Πnσk(un(s) >H1 dWk(s)

+3
∞∑

k=1

∫ t

0

||un(s)||4H1|Πnσk(un(s))|2H1ds

+12
∞∑

k=1

∫ t

0

||un(s)||2H1 < un(s), Πnσk(un(s) >2
H1 ds

≤ ||u0||6H1 − 3

∫ t

0

||un(s)||4H1||un(s)||2H2ds

−3

∫ t

0

||un(s)||4H1|||un(s)| · |∇un(s)|||2L2ds

+CN

∫ t

0

||un(s)||6H1ds

+6
∞∑

k=1

∫ t

0

||un(s)||4H1 < un(s), Πnσk(un(s) >H1 dWk(s). (3.13)

Now (3.13), a standard stopping argument and an application of Gronwall’s lemma after
taking expectation yields (3.12). As a consequence, by (3.1)′ and Sobolev imbedding
we get that

sup
n

∫ T

0

E[||ΠnF (un(t))||2L2 ]dt

≤ C sup
n

∫ T

0

(E[||un(t)||6H1 ] + E[||un(t)||2H2 ])dt < ∞. (3.14)

Now the inequalities (3.11), (3.14) imply that there exist a subsequence of processes,
still denoted by (un, n ≥ 1), and a process

ũ ∈ L2(ΩT , H2) ∩ L2(Ω, L∞([0, T ], H1)),

F ∈ L2(ΩT , H0) and σ̃ := (σ̃k)k∈N ∈ L2(l2, H
1) for which the following hold:

(i) un → ũ weakly in L2(ΩT , H2), hence weakly in L2(ΩT , H1).
(ii) un → ũ in L2(Ω, L∞([0, T ], H1)) with respect to the weak star topology,
(iii) ΠnF (un) → F weakly in L2(ΩT , H0),
(iv) Πnσ(un) → σ̃ weakly in L2(ΩT , L2(l2, H

1)),
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(v) un → ũ weakly also in L6(ΩT , H1),
where ΩT = [0, T ]× Ω.

Now following the same arguments as in the proof of Theorem 4.2.4 in [PR] (see
also the proof of Theorem 3.1 in [CM1]) we can show that, for 0 ≤ t ≤ T , if we define

u(t) := u0 +

∫ t

0

F (s)ds +
∞∑

k=1

∫ t

0

σ̃k(s)dWk(s), (3.15)

then u = ũ, dt×P −a.e. below. We note that by [ [L1], Corollary 1.14 and Theorem
4.36 ] and since H2 is continuously embedded into the domain of I − ∆ on H0 with
Dirichlet boundary conditions, it immediately follows that u has continuous paths in
H1. To complete the proof of the theorem, we need to show that F (s) = F (ũ(s)) =
F (u(s)) and σ̃k(s) = σk(ũ(s)) = σk(u(s)) a.e. on ΩT . To establish these relations, we
will use the same idea as in [S.S] which in turn is a modification of an argument in
[KR]. But, first we will need several estimates. Let u1, u2 ∈ H2 ⊂ H1. We have

− < A(u1 − u2), u1 − u2 >H0= −||u1 − u2||2H1 + ||u1 − u2||2H0 . (3.16)

Using the property < B(w, v), v >H0= 0, we see that

− < B(u1, u1)−B(u2, u2), u1 − u2 >H0=< B(u1 − u2, u1 − u2), u2 >H0

≤
∫

R3

|((u1 − u2) · ∇)(u1 − u2)||u2|(x)dx

≤ C sup
x
|u2|(x)(||u1 − u2||H1||u1 − u2||H0)

≤ 1

2
||u1 − u2||2H1 + C sup

x
|u2|2(x)||u1 − u2||2H0

≤ 1

2
||u1 − u2||2H1 + C||u2||H1||u2||H2||u1 − u2||2H0 . (3.17)

As gN ≥ 0, we have

− < gN(|u1|2)u1 − gN(|u2|2)u2, u1 − u2 >H0

= − < gN(|u2|2)u2 − gN(|u1|2)u1, u2 − u1 >H0

= − < gN(|u2|2)(u2 − u1), u2 − u1 >H0 + < (gN(|u1|2)− gN(|u2|2))u1, u2 − u1 >H0

≤ < (gN(|u1|2)− gN(|u2|2))u1, u2 − u1 >H0 . (3.18)

9



Because 0 ≤ g′N(r) ≤ 2 it follows that

< (gN(|u1|2)− gN(|u2|2))u1, u2 − u1 >H0

=

∫

{|u1|≥|u2|}
((gN(|u1|2)− gN(|u2|2))[u1 · u2 − |u1|2]dx

+

∫

{|u1|<|u2|}
((gN(|u1|2)− gN(|u2|2))u1 · (u2 − u1)dx

≤
∫

{|u1|<|u2|}
((gN(|u1|2)− gN(|u2|2))u1 · (u2 − u1)dx

≤ C

∫

{|u1|<|u2|}

∣∣|u1|2 − |u2|2
∣∣ · |u1| · |u2 − u1|dx

≤ C

∫

{|u1|<|u2|}
(|u1|+ |u2|)|u1| · |u2 − u1|2dx

≤ 2C

∫

{|u1|<|u2|}
|u2|2(x)|u2 − u1|2(x)dx ≤ 2C sup

x
|u2|2

∫

R3

|u2 − u1|2dx

≤ C||u2||H1||u2||H2||u1 − u2||2H0 . (3.19)

Putting (3.16)-(3.19) together we obtain that for all u1, u2 ∈ H2

< F (u1)− F (u2), u1 − u2 >H0

≤ −1

2
||u1 − u2||2H1 + C(||u2||H1||u2||H2 + 1)||u1 − u2||2H0 . (3.20)

Fix an integer K. Take v ∈ L2(ΩT , HK), where HK is the linear span of e1, e2, ...eK .
By Ito’s formula, writing u = u− v + v, we have

E[||u(t)||2H0e−r(t)]− E[||u0||2H0 ]

= E[

∫ t

0

2e−r(s) < F (s), u(s) >H0 ds] + E[

∫ t

0

e−r(s)

∞∑

k=1

||σ̃k(s)||2H0ds]

−E[

∫ t

0

e−r(s)r′(s)||u(s)||2H0ds]

= E[

∫ t

0

2e−r(s) < F (s), u(s) >H0 ds] + E[

∫ t

0

e−r(s)

∞∑

k=1

||σ̃k(s)||2H0ds]

−E[

∫ t

0

e−r(s)r′(s){||u(s)− v(s)||2H0 + 2 < u(s)− v(s), v(s) >H0 +||v(s)||2H0}ds],

(3.21)

where r(t) is a non-negative stochastic process which is absolutely continuous and to
be chosen later. A similar expression also holds for E[||un(t)||2H0e−r(t)] − E[||u0||2H0 ].
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For any nonnegative ψ ∈ L∞([0, T ], R), the weak convergence implies that
∫ T

0

ψ(t)dtE[||u(t)||2H0e−r(t)]− E[||u0||2H0 ] =

∫ T

0

ψ(t)dtE[||ũ(t)||2H0e−r(t)]− E[||u0||2H0 ]

≤ lim inf
n→∞

∫ T

0

ψ(t)dtE[||un(t)||2H0e−r(t)]− E[||u0||2H0 ]}. (3.22)

By substituting the corresponding expressions, (3.22) becomes
∫ T

0

ψ(t)dt

{
E[

∫ t

0

2e−r(s) < F (s), u(s) >H0 ds] + E[

∫ t

0

e−r(s)

∞∑

k=1

||σ̃k(s)||2H0ds]

−E[

∫ t

0

e−r(s)r′(s){||u(s)− v(s)||2H0 + 2 < u(s)− v(s), v(s) >H0}ds]

}

≤ lim inf
n→∞

∫ T

0

ψ(t)dt

{
E[

∫ t

0

2e−r(s) < F (un(s)), un(s) >H0 ds]

+E[

∫ t

0

e−r(s)

∞∑

k=1

||Πnσk(un(s))||2H0ds]

−E[

∫ t

0

e−r(s)r′(s){||un(s)− v(s)||2H0 + 2 < un(s)− v(s), v(s) >H0}ds]

}

:= lim inf
n→∞

Zn, (3.23)

where Zn = Z1
n + Z2

n + Z3
n with

Z1
n =

∫ T

0

ψ(t)dt

{
E[

∫ t

0

e−r(s){−r′(s)||un(s)− v(s)||2H0

+2 < F (un(s))− F (v(s)), un(s)− v(s) >H0

+
∞∑

k=1

||Πnσk(un(s))− Πnσk(v(s))||2H0}ds]

}
, (3.24)

Z2
n =

∫ T

0

ψ(t)dt

{
E[

∫ t

0

e−r(s){−2r′(s) < un(s)− v(s), v(s) >H0

+2 < F (un(s)), v(s) >H0 +2 < F (v(s)), un(s) >H0

−2 < F (v(s)), v(s) >H0 +2
∞∑

k=1

< Πnσk(un(s)), σk(v(s)) >H0}ds]

}
,(3.25)

Z3
n =

∫ T

0

ψ(t)dt

{
E[

∫ t

0

e−r(s){2
∞∑

k=1

< Πnσk(un(s)), Πnσk(v(s))− σk(v(s)) >H0

−
∞∑

k=1

||Πnσk(v(s))||2H0}ds]

}
. (3.26)
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Set r′(s) = c + C(||v(s)||H1||v(s)||H2 + 1). In view of (3.20) and (H.3) we see that
Z1

n ≤ 0. By the weak convergence, it is clear that Z2
n → Z2, where

Z2 =

∫ T

0

ψ(t)dt

{
E[

∫ t

0

e−r(s){−2r′(s) < u(s)− v(s), v(s) >H0

+2 < F (s), v(s) >H0 +2 < F (v(s)), u(s) >H0

−2 < F (v(s)), v(s) >H0 +2
∞∑

k=1

< σ̃k(s), σk(v(s)) >H0}ds]

}
(3.27)

Also

Z3
n → Z3 := −

∫ T

0

ψ(t)dt

∞∑

k=1

E[

∫ t

0

||σk(v(s))||2H0}ds] (3.28)

Combining (3.23)-(3.28), after some cancelations it turns out that

∫ T

0

ψ(t)dt

{
E[

∫ t

0

e−r(s){−r′(s)||u(s)− v(s)||2H0 + 2 < F (s)− F (v(s)), u(s)− v(s) >H0

+
∞∑

k=1

||σ̃k(s)− σk(v(s))||2H0}ds]

}
≤ 0 (3.29)

As K is arbitrary, by approximation it is seen that (3.29) holds true for every v ∈
L2(ΩT , H2). In particular, take v(s) = u(s) in (3.29) to obtain σ̃k(s) = σk(u(s)) for
every k ≥ 1. For λ ∈ [−1, 1], ṽ ∈ L∞(ΩT , H2), set vλ(s) = u(s)− λṽ(s). Replace v by
vλ in (3.29) to get

E[

∫ T

0

e−rλ(s){−λ2r′λ(s)||ṽ(s)||2H0 + 2λ < F (s)− F (vλ(s)), ṽ(s) >H0}ds] ≤ 0, (3.30)

where rλ(s) is defined as r(s) with v replaced by vλ. Dividing (3.30) by λ we obtain

E[

∫ T

0

e−rλ(s){−λr′λ(s)||ṽ(s)||2H0 + 2 < F (s)− F (vλ(s)), ṽ(s) >H0}ds] ≤ 0 (3.31)

for λ > 0, and

E[

∫ T

0

e−rλ(s){−λr′λ(s)||ṽ(s)||2H0 + 2 < F (s)− F (vλ(s)), ṽ(s) >H0}ds] ≥ 0 (3.32)

for λ < 0.
Note that by (3.20)

| < F (u(s))− F (vλ(s)), ṽ(s) >H0 |
≤ |λ|

2
||ṽ(s)||2H1 + |λ|C ′

1(||ṽ(s)||2H0||u(s)||H1||u(s)||H2) + |λ|C1||ṽ(s)||2H0 . (3.33)
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Hence by (vi) the dominated convergence theorem yields

lim
λ→0

E[

∫ T

0

e−rλ(s) < F (s)− F (vλ(s)), ṽ(s) >H0 ds]

= E[

∫ T

0

e−r0(s) < F (s)− F (u(s)), ṽ(s) >H0 ds] (3.34)

Let λ → 0+ in (3.31) and λ → 0− in (3.32) to obtain

E[

∫ T

0

e−r0(s) < F (s)− F (u(s)), ṽ(s) >H0 ds] = 0

As ṽ is arbitrary, we conclude that F (s) = F (u(s)) a.e. om ΩT . Hence,

u(t) = u0 −
∫ t

0

Au(s)ds−
∫ t

0

B(u(s))ds−
∫ t

0

gN(|u|2)u(s)ds +
∞∑

k=1

∫ t

0

σk(u(s))dWk(s)

(3.35)
Step 2. General case: E||u0||2H1 ] < ∞.

Take any sequence Yn(0) ∈ L6(Ω,F0; H
1) that satisfies E[||Yn(0)−u0||2H2 ] → 0. Let

Yn(t), t ≥ 0 be the solution of the following equation:

dYn(t) = −AYn(t)dt−B(Yn(t))dt− gN(|Yn|2)Yn(t)dt +
∞∑

k=1

σk(Yn(t))dWk(t)

Yn(0) = Yn(0) ∈ H1.

The existence of Yn is guaranteed by step 1. Moreover, as the proof of (3.11) we can
show that

sup
n

{
E

(
sup

0≤t≤T
||Yn(t)||2H1) +

∫ T

0

E[||Yn(t)||2H2 ]dt

}

≤ C sup
n

(E[||Yn(0)||2H1 ]) < ∞ (3.36)

This implies that there exist a subsequence ( still use the same notation ) of {Yn, n ≥ 1}
and a process Y ∈ L2(Ω, L∞([0, T ], H1)) ∩ L2(ΩT , H2) for which the following hold:

(i) Yn → Y weakly in L2(ΩT , H2),
(ii) Yn → Y in L2(Ω, L∞([0, T ], H1)) equipped with the weak star topology.

Next we show that Yn also converges to Y in probability in L∞([0, T ], H0). For
R > 0, define the stopping time

τn
R := inf{t ∈ [0,∞) : ||Yn(t)||H1 > R}.
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τn
R is really a stopping time since Yn is continuous in H1. Then it follows from (3.36)

that there exists a constant M , independent of n,R, so that

P (τn
R ≤ T ) ≤ P ( sup

0≤t≤T
||Yn(t)||H1 > R) ≤ M

R2
(3.37)

When R is fixed, as in the proof of Theorem 3.7 in [RZ1], we find that

E

[
sup

0≤t≤T
||Yn(t ∧ τn

R ∧ τm
R )− Ym(t ∧ τn

R ∧ τm
R )||2H0

]
≤ CR,T E[||Yn(0)− Ym(0)||2H0 ]

(3.38)
For η > 0 and any R > 0, we have

P ( sup
0≤t≤T

||Yn(t)− Ym(t)||H0 > η)

≤ P (τn
R ≤ T ) + P (τm

R ≤ T )

+P ( sup
0≤t≤T

||Yn(t ∧ τn
R ∧ τm

R )− Ym(t ∧ τn
R ∧ τm

R )||H0 > η) (3.39)

Given an arbitrarily small constant δ > 0. In view of (3.37), one can choose R such
that P (τn

R ≤ T ) ≤ δ
4

and P (τm
R ≤ T ) ≤ δ

4
. For such R, by (3.38) there exists N0 such

that for m,n ≥ N0,

P ( sup
0≤t≤T

||Yn(t ∧ τn
R ∧ τm

R )− Ym(t ∧ τn
R ∧ τm

R )||H0 > η) ≤ δ

4

Therefore,
P ( sup

0≤t≤T
||Yn(t)− Ym(t)||H0 > η) ≤ δ

Thus
lim

n,m→∞
P ( sup

0≤t≤T
||Yn(t)− Ym(t)||H0 > η) = 0 (3.40)

This proves that Yn converges to Y in probability in L∞([0, T ], H0). Finally we want
to show Y solves the equation (3.1). To this end, it suffices to prove that for v ∈ V ,

< Y (t), v >H0

= < u0, v >H0 −
∫ t

0

< AY (s), v >H0 ds−
∫ t

0

< B(Y (s)), v >H0 ds

−
∫ t

0

< gN(|Y |2)Y (s), v >H0 ds +
∞∑

k=1

∫ t

0

< σk(Y (s)), v >H0 dWk(s) (3.41)

But for every n ≥ 1, we know that

< Yn(t), v >H0

= < Yn(0), v >H0 −
∫ t

0

< AYn(s), v >H0 ds−
∫ t

0

< B(Yn(s)), v >H0 ds

−
∫ t

0

< gN(|Yn|2)Yn(s), v >H0 ds +
∞∑

k=1

∫ t

0

< σk(Yn(s)), v >H0 dWk(s)(3.42)
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Note that

−
∫ t

0

< B(Yn(s)), v >H0 ds =

∫ t

0

< Y ∗
n (s) · Yn(s),∇v >H0 ds

Letting n → ∞, thanks to the convergence in probablility and also the weak conver-
gence, by dominated convergence theorem we see that each term in (3.42) tends to the
corresponding term in (3.41). Hence the proof is complete. ¥

4 Statement of the large deviation principle

Consider again the stochastic 3D tamed Navier-Stokes equation:

du(t) = −Au(t)dt−B(u(t))dt−PgN(|u|2)u(t)dt +
∞∑

k=1

σk(u(t))dWk(t)

u(0) = u0 ∈ H1.

Here σk(·), k ≥ 1 is a sequence of mappings from H1 (H2) into H1 (H2). Consider the
following hypotheses.

(A.1) .
∞∑

k=1

||σk(u)||2H2 ≤ c(1 + ||u||2H2)

(A.2) .
∞∑

k=1

||σk(u)||2H1 ≤ c(1 + ||u||2H1)

(A.3) .
∞∑

k=1

||σk(u)− σk(v)||2H1 ≤ c(||u− v||2H1)

(A.4) .
∞∑

k=1

||σk(u)− σk(v)||2H2 ≤ c(||u− v||2H2)

Consider the small time process u(εt). By the scaling property of the Brownian
motion, u(ε·) coincides in law with the solution of the following stochastic 3D tamed
Navier-Stokes equation:

uε(t) = u0 − ε

∫ t

0

Auε(s)ds− ε

∫ t

0

B(uε(s))ds− ε

∫ t

0

P(gN(|u|2)u)ds

+
∞∑

k=1

√
ε

∫ t

0

σk(u
ε(s))dWk(s). (4.1)
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We know that the stochastic tamed NSE (4.1) has a unique strong solution uε ∈
L2(Ω; C([0, T ]; H1)) ∩ L2(Ω× [0, T ]; H2). Set

H = {h = (h1, h2, ..., hk, ...); h(·) : [0, T ] → l2 such that

h is absolutely continuous and
∞∑

k=1

∫ T

0

ḣk(t)
2dt < ∞}

For h ∈ H, let uh(t) denote the solution of the following deterministic equation:

duh(t) =
∞∑

k=1

σk(u
h(t))ḣk(t)dt (4.2)

uh(0) = u0.

For h(t) =
∑∞

k=1 hk(t)ek ∈ H, define

I(h) =
1

2

∞∑

k=1

∫ T

0

(ḣk(t))
2dt.

For f ∈ C([0, T ]; H1), define

Lf = {h ∈ H : f(·) = uh(·)}.

Define

R(f) =

{
infh∈Lf

I(h) if Lf 6= ∅,
+∞ if Lf = ∅.

Theorem 4.1 Assume (A.1)-(A.4). Let µε be the law of uε on the space C([0, T ]; H1).
Then {µε, ε > 0} satisfies a large deviation principle with rate function R(f), i.e.,

(1) for every closed subset C ⊂ C([0, T ]; H1),

lim sup
ε→0

ε2logµε(C) ≤ −inff∈CR(f), (4.3)

(2) for every open subset G ⊂ C([0, T ]; H1),

lim inf
ε→0

ε2logµε(G) ≥ −inff∈GR(f). (4.4)
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5 Proof of Theorem 4.1

This section is devoted to the proof Theorem 4.1, which will be split into a number of
lemmas. Let vε(·) be the solution of the stochastic differential equation:

vε(t) = u(0) +
√

ε

∞∑

k=1

∫ t

0

σk(v
ε(s))dWk(s), (5.1)

and νε be the law of vε(·) on the C([0, T ]; H1). Then by [DZ], we know that νε satisfies
a large deviation principle with rate function R(·). Our task is to show that the two
families of probability measures µε and νε are exponentially equivalent, that is, for any
δ > 0,

lim
ε→0

ε log P
(

sup
0≤t≤T

|uε(t)− vε(t)|2 > δ
)

= −∞. (5.2)

Then Theorem 4.1 follows from the fact (see e.g. [DZ]) that if one of the two exponen-
tially equivalent families satisfies a large deviation principle, so does the other.

We begin with the following lemma which provides an estimate of the probability
that the solution of (4.1) leaves an energy ball. It will play a crucial role in the rest of
the paper.

Lemma 5.1
lim

M→∞
sup

0<ε≤1
ε log P

(|uε|H2

H1(T ) > M
)

= −∞, (5.3)

where |uε|H2

H1(T ) := sup0≤t≤T ||uε(t)||2H1 + ε
∫ T

0
||uε(t)||2H2dt.

Proof: By Itô’s formula, we have

||uε(t)||2H1 = ||u0||2H1 − 2ε

∫ t

0

< uε(s), Auε(s) > ds− 2ε

∫ t

0

< uε(s), B(uε(s)) >H1 ds

+2
√

ε

∞∑

k=1

∫ t

0

< uε(s), σk(u
ε(s) >H1 dWk(s) + ε

∞∑

k=1

∫ t

0

||σk(u
ε(s))||2H1ds

−2ε

∫ t

0

< uε(s),P(gN(|uε|2)uε) >H1 ds

:= ||u0||2H1 + I1(t) + I2(t) + I3(t) + I4(t) + I5(t). (5.4)

We now estimate each of the terms. First, we have

I1(t) = 2ε

∫ t

0

< ∆uε(s), (I −∆)uε(s) >L2 ds

= −2ε

∫ t

0

||uε(s)||2H2ds + 2ε

∫ t

0

||∇uε(s)||2L2ds + 2ε

∫ t

0

||uε(s)||2L2ds. (5.5)

17



In view of (3.6),

|I2(t)| ≤ ε

∫ t

0

||(I −∆)uε(s)||2L2ds + ε

∫ t

0

||(u · ∇)uε(s)||2L2ds

≤ ε

∫ t

0

||uε(s)||2H2ds + ε

∫ t

0

||(u · ∇)uε(s)||2L2ds

≤ ε

∫ t

0

||uε(s)||2H2ds + ε

∫ t

0

|||u| · |∇uε(s)|||2L2ds, (5.6)

By (A.2),

|I4(t)| ≤ ε · L
∫ t

0

(1 + ||uε(s)||2H1)ds. (5.7)

As gN(r) ≥ r − CN for some constant CN , we have

I5(t)

= −2ε

∫ t

0

∫

D

|∇uε(s)|2gN(|uε(s)|2)dxds− ε

∫ t

0

∫

D

g′N(|uε(s)|2)|∇|uε|2|2dxds

−ε

∫ t

0

∫

D

|uε(s)|2gN(|uε(s)|2)dxds

≤ −2ε

∫ t

0

|||u| · |∇uε(s)|||2L2ds + CNε

∫ t

0

||∇uε(s)||2L2ds. (5.8)

Substituting (5.5), (5.6), (5.7) and (5.8) into (5.4) we obtain

|uε(t)|2 + ε

∫ t

0

||uε||2L2ds ≤ (||u0||2H1 + εLT
)

+ CLε

∫ t

0

||uε(s)||2H1ds

+2
√

ε|
∞∑

k=1

∫ t

0

< uε(s), σk(u
ε(s) >H1 dWk(s)|.

Therefore,

|uε|H2

H1(t) ≤ 2
(||u0||2H1 + εLT

)
+ CLε

∫ t

0

|uε|H2

H1(s)ds

+4
√

ε sup
0≤t≤T

|
∞∑

k=1

∫ t

0

< uε(s), σk(u
ε(s) >H1 dWk(s)|.

Hence, for p ≥ 2, we have,

(
E(|uε|H2

H1(t))p
) 1

p

≤ 2
(||u0||2H1 + εLT

)
+ CLε

(
E(

∫ t

0

|uε|H2

H1(s)ds)p
) 1

p

+ 4
√

ε
(
E( sup

0≤s≤t
|
∞∑

k=1

∫ s

0

< uε(r), σk(u
ε(r) >H1 dWk(r)|p

) 1
p . (5.9)

18



To estimate the stochastic integral term, we will use the following remarkable result
from [D1], [BY] which says that there exists a universal constant c such that, for any
p ≥ 2 and for any continuous martingale (Mt) with M0 = 0, one has

||M∗
t ||p ≤ cp

1
2 || < M >

1
2
t ||p, (5.10)

where M∗
t = sup0≤s≤t |Ms| and || · ||p stands for the Lp-norm. We emphasize that what

we need is the precise factor p
1
2 on the right.

Thus,

4
√

ε
(
E( sup

0≤s≤t
|
∞∑

k=1

∫ s

0

< uε(r), σk(u
ε(r) >H1 dWk(r)|p

) 1
p

≤ 4c
√

pε
(
E(

∫ t

0

∞∑

k=1

< uε(s), σk(u
ε(s) >2

H1 ds)
p
2

) 1
p

≤ 4c
√

pε
(
E(

∫ t

0

||uε(s)||2H1(1 + ||uε(s)||2H1)ds)
p
2

) 1
p

≤ 4c
√

pε
[(

E(

∫ t

0

(1 + ||uε(s)||2H1)2ds)
p
2

) 2
p
] 1

2

≤ 4c
√

pε
[(

E(

∫ t

0

(1 + ||uε(s)||4H1)ds)
p
2

) 2
p
] 1

2

≤ 4c
√

pε
[ ∫ t

0

1 +
(
E||uε(s)||2p

H1

) 2
p ds

] 1
2 , (5.11)

where (A.2) has been used. On the other hand,

2εL
(
E(

∫ t

0

|uε|H2

H1(s)ds)p
) 1

p ≤ 2εL

∫ t

0

(E|uε|H2

H1(T ))p)
1
p ds. (5.12)

Combining (5.9), (5.11) and (5.12), we arrive at

(
E(|uε|H2

H1(t))p
) 2

p

≤ 8
(||u0||2H1 + εLT

)2
+ 8ε2L2T

∫ t

0

(
E(|uε|H2

H1(s))p
) 2

p ds

+32c2pεT + 32c2pε

∫ t

0

(
E(|uε|H2

H1(s))p
) 2

p ds. (5.13)

Applying the Gronwall inequality, we obtain

(
E(|uε|H2

H1(T ))p
) 2

p

≤ [
8
(||u0||2H1 + εLT

)2
+ 32c2pεT ] · exp(8ε2L2T + 32c2pεT ). (5.14)
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Since P (|uε|H2

H1(T ) > M) ≤ M−pE(|uε|H2

H1(T ))p, take p = 1
ε

in (5.14) to get

ε log P (|uε|H2

H1(T ) > M)

≤ − log M + log(E(|uε|H2

H1(T ))p)
1
p

≤ − log M + log

√[
8
(||u0||2H1 + εLT

)2
+ 32c2T

]
+ 4ε2L2T + 16c2T.

Therefore,

sup
0<ε≤1

ε log P (|uε|H2

H1(T ) > M)

≤ − log M + log

√[
8
(||u0||2H1 + LT

)2
+ 32c2

]
+ 16c2 + 4L2T.

Letting M →∞ on both side of the above inequality, we complete the proof. ¥

Since H2 is dense in H1, there exists a sequence {un(0)}∞n=1 ⊂ H2 such that

lim
n→+∞

||un(0)− u0||H1 = 0.

Let uε
n(·) be the solution of (4.1) with initial value un(0). From the proof of Lemma

3.1, it is easily seen that the following is also true.

lim
M→+∞

sup
n

sup
0<ε≤1

ε log P ((|uε
n|H

2

H1(T ))2 > M) = −∞. (5.15)

Let vε
n(·) be the solution of (5.1) with the initial value un(0). We have the following

result whose proof is very similar to (but simpler than ) that of Lemma.

Lemma 5.2

lim
M→∞

sup
n

sup
0<ε≤1

ε log P ( sup
0≤t≤1

||vε
n(t)||2H1 > M) = −∞.

Moreover, for any fixed n ∈ Z+,

lim
M→∞

sup
0<ε≤1

ε log P ( sup
0≤t≤1

||vε
n(t)||2H2 > M) = −∞.

The following estimates will be used frequently in the sequel. By Hölder’s inequality
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and Sobolev imbedding, we have

||B(u)−B(v)||2L2 =

∫

R3

|(u · ∇)u− (v · ∇)v|2(x)dx

≤ 2

∫

R3

3∑
i=1

(ui − vi)2

3∑

k=1

3∑
i=1

(∂iu
k)2dx

+2

∫

R3

3∑
i=1

(vi)2

3∑

k=1

3∑
i=1

(∂iu
k − ∂iv

k)2dx

≤ 2 sup
x

3∑
i=1

(ui(x)− vi(x))2||u||2H1 + 2 sup
x

3∑
i=1

(vi(x))2||u− v||2H1

≤ 2C||u− v||H2||u− v||H1||u||2H1 + 2C||v||H2||v||H1||u− v||2H1(5.16)

and

||gN(|u|2)u− gN(|v|2)v||L2

≤ ||u− v||L6(||u||2L6 + ||v||2L6)

≤ C||u− v||H1(||u||2H1 + ||v||2H1). (5.17)

Lemma 5.3 For any δ > 0,

lim
n→+∞

sup
0<ε≤1

ε log P ( sup
0≤t≤1

||uε(t)− uε
n(t)||2H1 > δ) = −∞. (5.18)

Proof: As an equation in L2, we have

uε(t)− uε
n(t) = u0 − un(0)− ε

∫ t

0

A(uε(s)− uε
n(s))ds− ε

∫ t

0

(B(uε(s))−B(uε
n(s)))ds

+
√

ε

∞∑

k=1

∫ t

0

(σk(u
ε(s))− σk(u

ε
n(s))dWk(s)

− ε

∫ t

0

(gN(|uε(s)|2)uε(s)− gN(|uε
n(s)|2)uε

n(s))ds. (5.19)

For M > 0, define stopping times

tε,M = inf{t : ε

∫ t

0

||uε(r)||2H2dr > M, or |uε(t)|2H1 > M}.

tnε,M = inf{t : ε

∫ t

0

||uε
n(r)||2H2dr > M, or |uε

n(t)|2H1 > M}.
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Put τε,M = tε,M ∧ tnε,M . By Itô’s formula, we have

||uε(t)− uε
n(t)||2H1

= ||u0 − un(0)||2H1 − 2ε

∫ t

0

< A(uε(s)− uε
n(s)), uε(s)− uε

n(s) >H1 ds

−2ε

∫ t

0

< B(uε(s))−B(uε
n(s)), uε(s)− uε

n(s) >H1 ds

−2ε

∫ t

0

< gN(|uε(s)|2)uε(s)− gN(|uε
n(s)|2)uε

n(s), uε(s)− uε
n(s) >H1 ds

+ε

∫ t

0

∞∑

k=1

||σk(u
ε(s))− σk(u

ε
n(s))||2H1ds

+2
√

ε

∞∑

k=1

∫ t

0

< σk(u
ε(s))− σk(u

ε
n(s)), uε(s)− uε

n(s) >H1 dWk(s)

:= ||u0 − un(0)||2H1 + Jn,1(t) + Jn,2(t) + Jn,3(t) + Jn,4(t) + Jn,5(t). (5.20)

We will bound each of the terms on the right.

Jn,1t) = −2ε

∫ t

0

||uε(s)− uε
n(s)||2H2ds + 2ε

∫ t

0

||∇uε(s)−∇uε
n(s)||2L2ds

+2ε

∫ t

0

||uε(s)− uε
n(s)||2L2ds

≤ −2ε

∫ t

0

||uε(s)− uε
n(s)||2H2ds + 4ε

∫ t

0

||uε(s)− uε
n(s)||2H1ds. (5.21)

In view of (5.16) and by Young’s inequality,

Jn,2(t) ≤ 2ε

∫ t

0

||B(uε(s))−B(uε
n(s))||L2||uε(s)− uε

n(s)||H2ds

≤ 4ε

∫ t

0

||uε(s)− uε
n(s)||

3
2

H2||uε(s)− uε
n(s)||

1
2

H1||uε(s)||H1ds

+4ε

∫ t

0

||uε(s)− uε
n(s)||H2||uε(s)− uε

n(s)||H1||uε
n(s)||

1
2

H1||uε
n(s)||

1
2

H2ds

≤ 1

2
ε

∫ t

0

||uε(s)− uε
n(s)||2H2ds + Cε

∫ t

0

||uε(s)− uε
n(s)||2H1||uε(s)||4H1ds

+Cε

∫ t

0

||uε(s)− uε
n(s)||2H1||uε

n(s)||H1||uε
n(s)||H2 . (5.22)
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(5.17) yields

Jn,3(t) ≤ 2ε

∫ t

0

||gN(|uε(s)|2)uε(s)− gN(|uε
n(s)|2)uε

n(s)||L2||uε(s)− uε
n(s)||H2ds

≤ 4ε

∫ t

0

||uε(s)− uε
n(s)||L6||uε(s)− uε

n(s)||H2(||uε(s)||2L6 + ||uε
n(s)||2L6)ds

≤ 4ε

∫ t

0

||uε(s)− uε
n(s)||H1||uε(s)− uε

n(s)||H2(||uε(s)||2H1 + ||uε
n(s)||2H1)ds

≤ 1

4
ε

∫ t

0

||uε(s)− uε
n(s)||2H2ds

+Cε

∫ t

0

||uε(s)− uε
n(s)||2H1(||uε(s)||2H1 + ||uε

n(s)||2H1)2ds. (5.23)

Using(A.3), we obtain

Jn,4(t) ≤ Cε

∫ t

0

||uε(s)− uε
n||2H1ds (5.24)

We substitute the above estimates into (5.20) to obtain

||uε(t)− uε
n(t)||2H1

≤ Cε

∫ t

0

||uε(s)− uε
n(s)||2H1

[
1 + ||uε

n(s)||4H1 + ||uε(s)||4H1

+||uε(s)||8H1 + ||uε
n(s)||2H1 + ||uε

n(s)||2H2

]
ds

+||u0 − un(0)||2H1 + |M ε
t |, (5.25)

where

M ε
t =

√
ε

∞∑

k=1

∫ t

0

< uε(s)− uε
n(s), σk(u

ε(s))− σk(u
ε
n(s)) >H1 dWk(s) (5.26)

We apply Gronwall’s inequality, (5.25) and the definition of τε,M to get

sup
0≤s≤t

(||uε(s ∧ τε,M)− uε
n(s ∧ τε,M)||2H1)

≤ (||u0 − un(0)||2H1 + sup
0≤s≤t

|M ε
s∧τε,M

|)

×exp{Cε

∫ t∧τε,M

0

(1 + ||uε(s)||2H1 + ||uε(s)||4H1 + ||uε
n(s)||2H1 + ||uε

n(s)||4H1 + ||uε
n(s)||2H2)ds}

≤ (||u0 − un(0)||2H1 + sup
0≤s≤t

|M ε
s∧τε,M

|)exp{Cε(T + 2M2T + 2M4T + M)}. (5.27)
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Set Cε
M = Cε(T + 2M2T + 2M4T + M). By virtue of the Martingale Inequality (5.10)

it follows from (5.27) that

(E[ sup
0≤s≤t

(||uε(s ∧ τε,M)− uε
n(s ∧ τε,M)||2p

H1)])
1
p

≤ exp(Cε
M)||u0 − un(0)||2H1 + cexp(Cε

M)
√

pε
(
E(

∫ t

0

∞∑

k=1

< uε(s ∧ τε,M)

−uε
n(s ∧ τε,M), σk(u

ε(s ∧ τε,M)− σk(u
ε
n(s ∧ τε,M) >2

H1 ds)
p
2

) 1
p

≤ exp(Cε
M)||u0 − un(0)||2H1

+cCexp(Cε
M)
√

pε
(
E(

∫ t

0

||uε(s ∧ τε,M)− uε
n(s ∧ τε,M)||4H1)ds)

p
2

) 1
p

≤ exp(Cε
M)||u0 − un(0)||2H1 + cCexp(Cε

M)
√

pε
[(

E(

∫ t

0

||uε(s ∧ τε,M)− uε
n(s ∧ τε,M)||4H1ds)

p
2

) 2
p
] 1

2

≤ exp(Cε
M)||u0 − un(0)||2H1 + cCexp(Cε

M)
√

pε
[ ∫ t

0

(
E||uε(s ∧ τε,M)− uε

n(s ∧ τε,M)||2p
H1

) 2
p ds

] 1
2

(5.28)

Hence,

(E[ sup
0≤s≤t

(||uε(s ∧ τε,M)− uε
n(s ∧ τε,M)||2p

H1)])
2
p

≤ cCexp(2Cε
M)pε

[ ∫ t

0

(
E||uε(s ∧ τε,M)− uε

n(s ∧ τε,M)||2p
H1

) 2
p ds

]

+2exp(2Cε
M)||u0 − un(0)||4H1 . (5.29)

By Gronwall’s inequality, this yields

(E[ sup
0≤s≤T

(||uε(s ∧ τε,M)− uε
n(s ∧ τε,M)||2p

H1)])
2
p

≤ 2exp(2Cε
M)||u0 − un(0)||4H1exp{cCexp(2Cε

M)pεT}. (5.30)

Choose p = 2
ε

to obtain

sup
0<ε≤1

ε log P ( sup
0≤t≤T

||uε(t ∧ τε,M)− uε
n(t ∧ τε,M)||2H1 > δ)

≤ sup
0≤ε≤1

ε log
E[sup0≤t≤T ||uε(t ∧ τε,M)− uε

n(t ∧ τε,M)||2p
H1 ]

δp

≤ log2 + 2C1
M + 2cCexp(2C1

M) + 4 log ||u0 − un(0)||H1

→ −∞, as n → +∞. (5.31)

For any given R > 0, by Lemma 5.1, and (5.15) there exists a constant M such
that for any ε ∈ (0, 1] and any n ≥ 1 the following inequalities hold,

P ((|uε|H2

H1(T ))2 > M) ≤ e−
R
ε , (5.32)
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P ((|uε
n|H

2

H1(T ))2 > M) ≤ e−
R
ε . (5.33)

For such M , by (5.31), there exits a positive integer N , such that for any n ≥ N ,

sup
0<ε≤T

ε log P ( sup
0≤t≤1

||uε(t)− uε
n(t)||2H1 > δ, |uε|H2

H1(T ))2 ≤ M, |uε
n|H

2

H1(T ))2 ≤ M)

≤ sup
0<ε≤1

ε log P ( sup
0≤t≤T

||uε(t ∧ τε,M)− uε
n(t ∧ τε,M)||2H1 > δ) ≤ −R. (5.34)

Putting (5.32) and (5.34) together, one sees that there exists a positive integer N , such
that for any n ≥ N, ε ∈ (0, 1]

P ( sup
0≤t≤T

||uε(t)− uε
n(t)||2H1 > δ) ≤ 3e−

R
ε . (5.35)

Since R is arbitrary, the lemma follows. ¥
The next Lemma can be proved similarly as Lemma 5.3.

Lemma 5.4 For any δ > 0,

lim
n→+∞

sup
0<ε≤1

ε log P ( sup
0≤t≤1

||vε(t)− vε
n(t)||2H1 > δ) = −∞. (5.36)

The following result says that for a fixed integer n, the two families {uε
n, ε > 0}

{vε
n, ε > 0} are exponentially equivalent.

Lemma 5.5 For any fixed positive integer n, any δ > 0,

lim
ε→0

ε log P ( sup
0≤t≤T

||uε
n(t)− vε

n(t)||2H1 > δ) = −∞. (5.37)

Proof: As the integer n is fixed, for simplicity, we drop the index n everywhere in the
proof. Observe

uε(t)− vε(t)

= −ε

∫ t

0

A(uε(s)− vε(s))ds− ε

∫ t

0

Avε(s)ds− ε

∫ t

0

B(uε(s))ds

+
√

ε

∞∑

k=1

∫ t

0

(σk(u
ε(s))− σk(v

ε(s))dWk(s)− ε

∫ t

0

gN(|uε(s)|2)uε(s)ds. (5.38)

For any M > 0, define stopping times

tε,M = inf{t : ε

∫ t

0

||uε(r)||2H2dr > M, or ||uε(t)||2H1 > M}.

sε,M = inf{t : ||vε(t)||H2 > M}.
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Put τε,M = tε,M ∧ sn
ε,M . By Itô’s formula, we have

||uε(t)− uε
n(t)||2H1

= −2ε

∫ t

0

< A(uε(s)− vε(s)), uε(s)− vε(s) >H1 ds− 2ε

∫ t

0

< Avε(s), uε(s)− vε(s) >H1 ds

−2ε

∫ t

0

< B(uε(s)), uε(s)− vε(s) >H1 ds

−2ε

∫ t

0

< gN(|uε(s)|2)uε(s), uε(s)− vε(s) >H1 ds

+ε

∫ t

0

∞∑

k=1

||σk(u
ε(s))− σk(v

ε(s))||2H1ds

+2
√

ε

∞∑

k=1

∫ t

0

< σk(u
ε(s))− σk(v

ε(s)), uε(s)− uε
n(s) >H1 dWk(s)

:= In,1(t) + In,2(t) + In,3(t) + In,4(t) + In,5(t) + In,6(t). (5.39)

For the first term, we have

In,1t) = −2ε

∫ t

0

||uε(s)− vε(s)||2H2ds + 2ε

∫ t

0

||∇uε(s)−∇vε(s)||2L2ds

+2ε

∫ t

0

||uε(s)− vε(s)||2L2ds

≤ −2ε

∫ t

0

||uε(s)− vε(s)||2H2ds + 4ε

∫ t

0

||uε(s)− vε(s)||2H1ds. (5.40)

For the second term, it holds that

In,2(t) ≤ 2ε

∫ t

0

||uε(s)− vε(s)||H2||Avε(s)||L2ds

≤ 1

2
ε

∫ t

0

||uε(s)− uε
n(s)||2H2ds + 2ε

∫ t

0

||vε(s)||2H2ds. (5.41)

Apply the Sobolev imbedding to the non-linear term B(·),

In,3(t) ≤ 2ε

∫ t

0

||B(uε(s))||L2||uε(s)− uε
n(s)||H2ds

≤ 1

2
ε

∫ t

0

||uε(s)− vε(s)||2H2ds + Cε

∫ t

0

||uε(s)||3H1||uε(s)||H2ds. (5.42)

Similarly,

In,4(t) ≤ 1

2
ε

∫ t

0

||uε(s)− vε(s)||2H2ds + 2ε

∫ t

0

||gN(|uε|2(s))uε(s)||2L2

≤ 1

2
ε

∫ t

0

||uε(s)− vε(s)||2H2ds + Cε

∫ t

0

||uε(s)||6H1 . (5.43)
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Taking into account (A.3),

In,5(t) ≤ Cε

∫ t

0

||uε(s)− vε||2H1ds. (5.44)

Substituting the above estimates into (5.39) we obtain

sup
0≤s≤t

||uε(s ∧ τε,M)− vε(s ∧ τε,M)||2H1

≤ Cε

∫ t∧τε,M

0

(||uε(s)||6H1 + ||uε(s)||3H1||uε(s)||H2 + ||vε(s)||2H2

]
ds

+Cε

∫ t

0

||uε(s ∧ τε,M)− vε(s ∧ τε,M)||2H1ds + sup
0≤s≤t

|In,6(s ∧ τε,M)|

≤ Cε(M6T + M3(T + M) + M2T )

+Cε

∫ t

0

||uε(s ∧ τε,M)− vε(s ∧ τε,M)||2H1ds + sup
0≤s≤t

|In,6(s ∧ τε,M)|. (5.45)

Similar to the proof of (5.29), using the Martingale inequality, it follows from (5.45)
that

(E[ sup
0≤s≤t

(||uε(s ∧ τε,M)− uε
n(s ∧ τε,M)||2p

H1)])
2
p

≤ cε2(M6T + M3(T + M) + M2T )2 + CT ε2

∫ t

0

(E[ sup
0≤r≤s

(||uε(r ∧ τε,M)− uε
n(r ∧ τε,M)||2p

H1)])
2
p ds

+ Cpε

∫ t

0

(E[ sup
0≤r≤s

(||uε(r ∧ τε,M)− uε
n(r ∧ τε,M)||2p

H1)])
2
p ds. (5.46)

By Gronwall’s inequality, this yields

E[ sup
0≤s≤T

(||uε(s ∧ τε,M)− uε
n(s ∧ τε,M)||2p

H1)]

≤ C
p
2 εp(M6T + M3(T + M) + M2T )pexp(

p

2
CT ε2 +

p2

2
ε). (5.47)

Choose p = 2
ε

to get

ε log P ( sup
0≤t≤T

||uε(t ∧ τε,M)− vε(t ∧ τε,M)||2H1 > δ)

≤ ε log
E[sup0≤t≤T ||uε(t ∧ τε,M)− vε(t ∧ τε,M)||2p

H1 ]

δp

≤ logCT + CT ε2 + CT + 2log
(
ε(M6T + M3(T + M) + M2T )

)

→ −∞, as ε → 0. (5.48)
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For any given R > 0, by Lemma 5.1 , and Lemma 5.2 there exists a constant M
such that for any ε ∈ (0, 1] the following inequalities hold,

P ((|uε|H2

H1(T ))2 > M) ≤ e−
R
ε , (5.49)

P ( sup
0≤t≤T

||vε||2H2 > M) ≤ e−
R
ε . (5.50)

For such M , (5.48) implies that there exits a positive number ε0, such that for ε ≤ ε0,

ε log P ( sup
0≤t≤1

||uε(t)− vε(t)||2H1 > δ, |uε|H2

H1(T ))2 ≤ M, sup
0≤t≤T

||ε||2H2 ≤ M)

≤ ε log P ( sup
0≤t≤T

||uε(t ∧ τε,M)− vε(t ∧ τε,M)||2H1 > δ) ≤ −R. (5.51)

Combining (5.49) and (5.51) together, one can find a positive number ε0, such that for
ε ≤ ε0

P ( sup
0≤t≤T

||uε(t)− vε(t)||2H1 > δ) ≤ 3e−
R
ε . (5.52)

Since R was arbitrary, the lemma follows. ¥
Now we are in the position to complete the proof of Theorem 4.1, that is, the proof

of (5.2). By Lemma 5.3 and Lemma 5.4, we have for any R > 0 that there exists a N0

satisfying

P ( sup
0≤t≤1

||uε(t)− uε
N0

(t)||2H1 > δ) ≤ e−
R
ε for any ε ∈ (0, 1], (5.53)

and
P ( sup

0≤t≤1
||vε(t)− vε

N0
(t)||2H1 > δ) ≤ e−

R
ε for any ε ∈ (0, 1]. (5.54)

In view of Lemma 5.5, for such N0, there exists ε0 such that for any ε ∈ (0, ε0]

P ( sup
0≤t≤1

||uε
N0

(t)− vε
N0

(t)||H1 > δ) ≤ e−
R
ε . (5.55)

Thus, for any ε ∈ (0, ε0],

P ( sup
0≤t≤1

||uε(t)− vε(t)||H1 > δ) ≤ 3e−
R
ε . (5.56)

Since R is arbitrary, we conclude that

lim
ε→0

ε log P ( sup
0≤t≤1

||uε(t)− vε(t)||2H1 > δ) = −∞. ¥
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