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Abstract. In this note, by using the theory of stochastic differential equations (SDE), we prove
uniqueness of measure-valued solutions and Lp-solutions to degenerate second order Fokker-
Planck equations under weak conditions on the coefficients. Our uniqueness results are based on
the natural connection between Fokker-Planck equations and SDEs.

Résumé. Dans cette Note, en utilisant la théorie des équations différentielles stochastiques
(EDS), nous démontrons l’unicité de solutions Lp et à valeurs mesures pour des équations de
Fokker-Planck du second ordre dégénérées, sous des conditions faibles sur les coefficients. Nos
résultats d’unicité sont fondés sur le lien naturel existant entre les équations de Fokker-Planck et
les EDS.

1. Introduction andMain Results

Let Wd := C([0, 1];Rd) be the space of all continuous functions from [0, 1] to Rd. Let Wt

be the canonical filtration generated by the coordinate process Wt(ω) = ω(t), where ω ∈ Wd.
Write W := W1. Let ν be the standard Wiener measure on (Wd,W ) so that (t, ω) → Wt(ω) is a
standard d-dimensional Brownian motion.

Let (Xt)t∈[0,1] be a continuous Wt-adapted process and solve the following SDE in Rd:

dXt = σt(Xt)dWt + bt(Xt)dt, (1.1)

where σ : [0, 1]×Rd → Rd×Rd and b : [0, 1]×Rd → Rd are two bounded measurable functions.
Denote by µt the law of Xt in Rd, i.e.: for any φ ∈ C∞0 (Rd)∫

Rd
φ(x)µt(dx) = Eφ(Xt). (1.2)

Write

Lt(x) = bi
t(x)∂i +

1
2

[σik
t σ

jk
t ](x)∂2

i j.

By Itô’s formula, µt solves the following Fokker-Planck equation in the sense of distribution:

∂tµt = L∗t µt, (1.3)

where L∗t is the adjoint operator of Lt. More precisely, for any φ ∈ C∞0 (Rd)

d
dt

∫
Rd
φ(x)µt(dx) =

∫
Rd

Ltφ(x)µt(dx),

where the initial condition means that µt weakly * converges to µ0 as t → 0. In particular, if
the law of Xt is absolutely continuous with respect to Lebesgue measure, i.e., µt(dx) = ut(x)dx,
then ut(x) solves the following PDE in the weak sense:

∂tut = L∗t ut. (1.4)

Let P(Rd) be the set of all probability measures on (Rd,B(Rd)). It is well known from [1]
that if σik is uniformly non-degenerate and Lipschitz continuous, b is locally integrable and
coercive, then the uniqueness for (1.3) holds in P(Rd), at least if the initial measure has finite
entropy. In the degenerate case, in order to prove the uniqueness for (1.4), one usually needs
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to impose some regularity on the solution. For example, Le Bris and Lions [7] proved the
uniqueness of solutions to (1.4) for a given initial condition in the following class:

{u ∈ L∞(0, 1; (L1 ∩ L∞)(Rd)), σt∇u ∈ L2(0, 1; L2(Rd))},
where σt denotes the transpose of σ. However, to the best of our knowledge, if σ is degenerate,
there are only a few results about the uniqueness of measure-valued solutions to (1.3) and Lp-
solutions to (1.4).

For p > 1, define

Mp(Rd) :=
{

u ∈ Lp(0, 1; Lp
loc(R

d)); u > 0 and
∫
Rd

ut(x)dx = 1,∀t ∈ [0, 1]
}
.

Below, by BR := {x ∈ Rd : |x| 6 R} we denote the ball around zero in Rd. Our main results are:

Theorem 1.1. Assume that σ and b are bounded measurable functions and for some q ∈ [1,∞]
and any R > 0, there exists a real function fR ∈ Lq([0, 1]× BR) such that for almost all (t, x, y) ∈
[0, 1] × BR × BR

2⟨x − y, bt(x) − bt(y)⟩ + ∥σt(x) − σt(y)∥2 6 ( fR,t(x) + fR,t(y)) · |x − y|2. (1.5)

Then for any given probability distribution density ρ, there is at most one weak solution ut to
PDE (1.4) in the classMp(Rd), where p = q

q−1 , with u0 = ρ.

Remark 1.2. Condition (1.5) is satisfied if for some q ∈ (1,∞],

b ∈ Lq(0, 1; Wq,1
loc (Rd)), σ ∈ Lq∨2(0, 1; Wq∨2,1

loc (Rd)).

Indeed, in this case, there exists a constant Cd > 0 such that for almost all (t, x, y) ∈ [0, 1] ×
BR × BR (cf. [2, Lemma A.2, A.3] or [9, Lemma 3.7])

|bt(x) − bt(y)| 6 Cd · (MR|∇bt|(x) + MR|∇bt|(y)) · |x − y|
and

∥σt(x) − σt(y)∥ 6 Cd · (MR|∇σt|(x) + MR|∇σt|(y)) · |x − y|,
where MRg(x) := sup0<r<R

>
Br

g(x+ y)dy denotes the maximal function of g. By the boundedness
of the maximal operator in Lq (cf. [8]), one knows that MR|∇b·| ∈ Lq([0, 1]× BR) and MR|∇σ·| ∈
Lq∨2([0, 1] × BR).

Theorem 1.3. Assume that σ and b are bounded measurable functions and for some q ∈ [1,∞]
and any R > 0, there exists a real function fR ∈ Lq([0, 1] × BR) such that for almost all (t, x) ∈
[0, 1] × BR and all y ∈ BR

2⟨x − y, bt(x) − bt(y)⟩ + ∥σt(x) − σt(y)∥2 6 fR,t(x) · |x − y|2. (1.6)

Suppose that there exists a solution ut(x) to (1.4) in the classMp(Rd), where p = q
q−1 . Then for

any measure-valued solution µt to (1.3) in P(Rd) with initial value µ0(dx) = u0(x)dx,

µt(dx) = ut(x)dx, ∀t ∈ [0, 1].

Remark 1.4. Condition (1.6) is satisfied if for some q ∈ (d,∞]

b ∈ Lq(0, 1; Wq,1
loc (Rd)), σ ∈ Lq∨2(0, 1; Wq∨2,1

loc (Rd)).

Indeed, in this case, there exists a constant Cd,q > 0 such that for almost all (t, x, y) ∈ [0, 1] ×
BR × BR (cf. [5, p.143, Theorem 3])

|bt(x) − bt(y)| 6 Cd,q · (MR|∇bt|q(x))1/q · |x − y|
and

∥σt(x) − σt(y)∥ 6 Cd,q · (MR|∇σt|q(x))1/q · |x − y|.
Since b and σ are continuous by Sobolev’s embedding theorem, the above two inequalities hold
for all y ∈ BR.
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Theorems 1.1 and 1.3 will be proven in the next section. Our argument is based on the
representation (1.2) (see Theorem 2.5 below) and Yamada-Watanbe’s theorem (cf. [6]).

2. Proofs ofMain Results

For proving our main results, we first recall some facts from the theories of SDEs and PDEs.

Definition 2.1. (Martingale solutions) Given µ0 ∈ P(Rd), a probability measure Pµ0 on (Wd,W )
is called a martingale solution of SDE (1.1) with initial distribution µ0 if Pµ0 ◦ω−1

0 = µ0 and for
any φ ∈ C∞0 (Rd), φ(ωt) − φ(ω0) −

∫ t

0
Lsφ(ωs)ds is an Wt-martingale under Pµ0 .

Definition 2.2. (Weak solutions) Let µ0 ∈ P(Rd). We say that Eq.(1.1) has a weak solution with
initial law µ0 if there exist a stochastic basis (Ω,F , P; (Ft)t∈[0,1]), a Rd-valued continuous (Ft)-
adapted stochastic process X and a d-dimensional standard (Ft)-Brownian motions (Wt)t∈[0,1]

such that X0 has law µ0 and Xt = X0 +
∫ t

0
bs(Xs)ds +

∫ t

0
σs(Xs)dWs,∀t > 0, a.s. This solution is

denoted by (Ω,F , P; (Ft)t∈[0,1]; W, X).

The following two propositions are well known (cf. [6, Chapter IV, Theorem 1.1 and Propo-
sition 2.1]).

Proposition 2.3. (Equivalence between martingale solutions and weak solutions) Given µ0 ∈
P(Rd) and let Pµ0 be a martingale solution of SDE (1.1). Then there exists a weak solution
(Ω,F , P; (Ft)t∈[0,1]; W, X) to SDE (1.1) such that P ◦ X−1 = Pµ0 .

Proposition 2.4. Given two weak solutions to SDE (1.1)

(Ω(i),F (i), P(i); (F (i)
t )t∈[0,1]; W (i), X(i)), i = 1, 2,

with the same initial law µ0 ∈ P(Rd), there exists a stochastic basis (Ω,F , P; (Ft)t∈[0,1]), a
standard d-dimensional (Ft)-Brownian motion W and two continuous (Ft)-adapted processes
Y (i), i = 1, 2 such that P(Y (1)

0 = Y (2)
0 ) = 1 and (Ω,F , P; (Ft)t∈[0,1]; W,Y (i)), i = 1, 2 are two weak

solutions of (1.1), and X(i) and Y (i) have the same laws inWd for i = 1, 2.

The following result is due to Figalli [4, Theorem 2.6].

Theorem 2.5. Assume that σ and b are bounded measurable functions. Given µ0 ∈ P(Rd), let
µt ∈ P(Rd) be a measure-valued solution of PDE (1.3) with initial value µ0. Then there exists a
martingale solution Pµ0 to SDE (1.1) with initial distribution µ0 such that for any φ ∈ C∞0 (Rd)∫

Rd
φ(x)µt(dx) =

∫
Wd
φ(ωt)Pµ0(dω), ∀t ∈ [0, 1].

We are now in a position to give the proofs of our main results.

Proof of Theorem 1.1. Let u(i)
t , i = 1, 2 be two weak solutions of (1.4) in the classMp(Rd) with

the same initial value u0. By Theorem 2.5, there exists two martingale solutions P(i)
u0 , i = 1, 2 to

SDE (1.1) with the same initial law u0(x)dx such that for any φ ∈ C∞0 (Rd)∫
Rd
φ(x)u(i)

t (x)dx =
∫
Wd
φ(ωt)P(i)

u0
(dω), i = 1, 2. (2.1)

By Propositions 2.3 and 2.4, there is a common stochastic basis (Ω,F , P; (Ft)t∈[0,1]), a standard
d-dimensional (Ft)-Brownian motion W and two continuous (Ft)-adapted processes Y (i), i =
1, 2 such that P(Y (1)

0 = Y (2)
0 ) = 1 and for i = 1, 2

Y (i)
t = Y (i)

0 +

∫ t

0
bs(Y (i)

s )ds +
∫ t

0
σs(Y (i)

s )dWs, (2.2)

and Y (i) has law P(i)
u0 in (Wd,W ).
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Set now Zt := Y (1)
t − Y (2)

t and for R > 0, τR := inf{t ∈ [0, 1] : |Y (1)
t | ∨ |Y (2)

t | > R}. By Itô’s
formula, for any δ > 0, we have

log
( |Zt∧τR |2
δ2 + 1

)
=

∫ t∧τR

0

2⟨Zs, bs(Y
(1)
s ) − bs(Y

(2)
s )⟩ + ∥σs(Y

(1)
s )) − σs(Y

(2)
s )∥2

|Zs|2 + δ2 ds

+2
∫ t∧τR

0

⟨Zs, (σs(Y
(1)
s ) − σs(Y

(2)
s ))dWs⟩

|Zs|2 + δ2

−2
∫ t∧τR

0

|(σs(Y
(1)
s ) − σs(Y

(2)
s ))t · Zs|2

(|Zs|2 + δ2)2 ds. (2.3)

Let ρ be a nonnegative smooth function on Rd with support in {x ∈ Rd : |x| < 1} and
∫
Rd ρ(x)dx =

1. For ε ∈ (0, 1), let ρε(x) := ε−dρ(x/ε) be a mollifier and define bεs := bs ∗ ρε, σεs := σs ∗ ρε,
where ∗ denotes the convolution. By the property of mollifier, we have

lim
ε↓0

∫ t

0

∫
BR

(|bεs(x) − bs(x)|p + ∥σεs(x) − σs(x)∥p)dxds = 0, p ∈ [1,∞),

and by (1.5) and the property of convolution, for almost all t and all x, y ∈ BR

2⟨x − y, bεt (x) − bεt (y)⟩ + ∥σεt (x) − σεt (y)∥2 6 ( f εR+1,t(x) + f εR+1,t(y)) · |x − y|2.
Thus, by taking expectations for (2.3), we obtain

E log
( |Zt∧τR |2
δ2 + 1

)
6 E

∫ t∧τR

0

2⟨Zs, bs(Y
(1)
s ) − bs(Y

(2)
s )⟩ + ∥σs(Y

(1)
s ) − σs(Y

(2)
s )∥2

|Zs|2 + δ2 ds

6 E

∫ t∧τR

0

2⟨Zs, bεs(Y
(1)
s ) − bεs(Y

(2)
s )⟩ + ∥σεs(Y (1)

s ) − σεs(Y (2)
s )∥2

|Zs|2 + δ2 ds

+
2
δ
E

∫ t∧τR

0
(|bεs(Y (1)

s ) − bs(Y (1)
s )| + |bεs(Y (2)

s ) − bs(Y (2)
s )|)ds

+
3
δ2E

∫ t∧τR

0
(∥σεs(Y (1)

s ) − σs(Y (1)
s )∥2 + ∥σεs(Y (2)

s ) − σs(Y (2)
s )∥2)ds

=: Iε1 + Iε2 + Iε3 .

For Iε1 , we have

Iε1 6 E
∫ t∧τR

0
( f εR+1,s(Y

(1)
s ) + f εR+1,s(Y

(2)
s ))ds

6 E
∫ t

0

(
1|Y (1)

s |6R · f εR+1,s(Y
(1)
s ) + 1|Y (2)

s |6R · f εR+1,s(Y
(2)
s )

)
ds

=

∫ t

0

∫
BR

f εR+1,s(x)u(1)
s (x)dxds +

∫ t

0

∫
BR

f εR+1,s(x)u(2)
s (x)dxds

6 ∥ f εR+1∥Lq([0,1]×BR)∥u(1)∥Lp([0,1]×BR) + ∥ f εR+1∥Lq([0,1]×BR)∥u(2)∥Lp([0,1]×BR).

Similarly, we have

Iε2 6 C
(∫ t

0

∫
BR

|bεs(x) − bs(x)|qdxds
)1/q

and

Iε3 6 C
(∫ t

0

∫
BR

|σεs(x) − σs(x)|qdxds
)1/q

,

where the constant C depends on ∥u(i)∥Lp([0,1]×BR), but is independent of ε.
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Combining the above calculations and letting ε go to zero, we get

E log
( |Zt∧τR |2
δ2 + 1

)
6 ∥ fR+1∥Lq([0,1]×BR) ·

(
∥u(1)∥Lp([0,1]×BR) + ∥u(2)∥Lp([0,1]×BR)

)
.

Now, letting δ→ 0, we obtain that for any R > 0 and t ∈ [0, 1]

Zt∧τR = 0, a.s. (2.4)

Since b and σ are bounded, from (2.2), it is now standard to prove that

E

(
sup

t∈[0,1]
|Y (i)

t |
)
< +∞, i = 1, 2.

Hence,
P

{
ω : lim

R→∞
τR(ω) = 1

}
= 1

and letting R→ ∞ in (2.4), we further have

Zt = 0, a.s., ∀t ∈ [0, 1].

So, P(1)
u0 = P(2)

u0 . Now, the uniqueness follows by (2.1). �

Proof of Theorem 1.3. Following the proof of Theorem 1.1, let Y (1)
t (resp. Y (2)

t ) be the weak
solution corresponding to ut(x)dx (resp. µt(dx)). By (1.6) and (2.3), we have

E log
( |Zt∧τR |2
δ2 + 1

)
6 E

∫ t∧τR

0
fR,s(Y (1)

s )ds 6 ∥ fR∥Lq([0,1]×BR) · ∥u∥Lp([0,1]×BR).

From this, as above we obtain the uniqueness. �
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