
ar
X

iv
:1

00
5.

40
95

v1
  [

m
at

h.
PR

] 
 2

1 
M

ay
 2

01
0

Regularity Analysis for Stochastic Partial

Differential Equations with Nonlinear

Multiplicative Trace Class Noise

Arnulf Jentzen∗ and Michael Röckner†
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Abstract

In this article spatial and temporal regularity of the solution process
of a stochastic partial differential equation (SPDE) of evolutionary type
with nonlinear multiplicative trace class noise is analyzed.
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1 Introduction

Spatial and temporal regularity of the solution process of a stochastic partial
differential equation (SPDE) of evolutionary type are investigated in this arti-
cle. More precisely, it is analyzed under which conditions on the noise term of a
semilinear SPDE the solution process enjoys values in the domains of fractional
powers of the dominating linear operator of the SPDE. It turns out that the
essential constituents determining the regularity of the solution process are as-
sumptions on the covariance operator of the driving noise process of the SPDE
and appropriate boundary conditions on the diffusion coefficient. While the reg-
ularity of (affine) linear SPDEs has been intensively studied in previous results
(see, e.g., N. V. Krylov & B. L. Rozovskii [5], B. L. Rozovskii [8], G. Da Prato
& J. Zabczyk [3], N. V. Krylov [4], Z. Brzeźniak & J. van Neerven [1], S. Tindel
et al. [10] and Z. Brzeźniak et al. [2]), the main purpose of this article is to
handle possibly nonlinear diffusion coefficients in SPDEs driven by trace class
Brownian noise (see also X. Zhang [12] for a related result).

In order to illustrate the results in this article, we concentrate on the fol-
lowing example SPDE in this introductory section and refer to Section 2 for
our general setting and to Section 4 for further example SPDEs. Let T > 0,
let (Ω,F ,P) be a probability space with a normal filtration (Ft)t∈[0,T ] and let
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H = L2((0, 1),R) be the R-Hilbert space of equivalence classes of square in-
tegrable functions from (0, 1) to R. Moreover, let f, b : (0, 1) × R → R be
two continuously differentiable functions with globally bounded derivatives, let
x0 : (0, 1) → R be a smooth function with limxց0 x0(x) = limxր1 x0(x) = 0
and let W : [0, T ] × Ω → H be a standard Q-Wiener process with respect
to (Ft)t∈[0,T ] with a covariance operator Q : H → H . It is a classical result

(see, e.g., Theorem VI.3.2 in [11]) that the covariance operator Q : H → H of
the Wiener process W : [0, T ] × Ω → H has an orthonormal basis gj ∈ H ,
j ∈ {0, 1, 2, . . .}, of eigenfunctions with summable eigenvalues µj ∈ [0,∞),
j ∈ {0, 1, 2, . . .}. In order to have a more concrete example, we consider the
choice g0(x) = 1, gj(x) =

√
2 cos(jπx), µ0 = 0 and µj = j−r for all x ∈ (0, 1)

and all j ∈ N with a given real number r ∈ (1,∞) in the following and refer to
Section 4 for possible further examples. Then we consider the SPDE

dXt(x) =

[

∂2

∂x2
Xt(x) + f(x,Xt(x))

]

dt+ b(x,Xt(x)) dWt(x) (1)

with Xt(0) = Xt(1) = 0 and X0(x) = x0(x) for t ∈ [0, T ] and x ∈ (0, 1). Under
the assumptions above the SPDE (1) has a unique mild solution. Specifically,
there exists an up to indistinguishability unique adapted stochastic process X :
[0, T ]× Ω → H with continuous sample paths which satisfies

Xt = eAtx0 +

∫ t

0

eA(t−s)F (Xs) ds+

∫ t

0

eA(t−s)B(Xs) dWs P-a.s. (2)

for all t ∈ [0, T ] where A : D(A) ⊂ H → H is the Laplacian with Dirichlet
boundary conditions and where F : H → H and B : H → HS(U0, H) are given
by (F (v))(x) = f(x, v(x)) and (B(v)u)(x) = b(x, v(x)) · u(x) for all x ∈ (0, 1),

v ∈ H and all u ∈ U0. Here U0 = Q
1
2 (H) with 〈v, w〉U0

=
〈

Q− 1
2 v,Q− 1

2w
〉

H
is

the image R-Hilbert space of Q
1
2 (see Appendix C in [7]).

We are then interested to know for which γ ∈ [0,∞) in dependence on the
decay rate r ∈ (1,∞) of the eigenfunctions of the covariance operator Q : H →
H the solution process X : [0, T ]×Ω → H of (1) takes values in D((−A)γ). For
the SPDE (1) it turns out that

P

[

Xt ∈ D((−A)γ)
]

= 1 (3)

holds for all t ∈ [0, T ] and all γ ∈ [0, min(3,r+1)
4 ) (see Theorem 1 in Section 3 for

the main result of this article and Section 4.1 for the SPDE (1)). Under further
assumptions on the diffusion coefficient function b : (0, 1)×R → R, the solution
of (1) has even more regularity which can be seen in Section 4.2.

In the following we relate the results in this article with existing regularity
results in the literature and also illustrate how (3) can be established. The reg-
ularity of linear SPDEs has been intensively analyzed in the literature (see, e.g.,
[5, 8, 3, 4, 1, 10]). For instance, in Theorem 6.19 in [3], Da Prato and Zabczyk
already showed for the SPDE (1) in the case f(x, y) = 0 for all x ∈ (0, 1), y ∈ R

and b : (0, 1)× R → R sufficiently small and linear in the second variable that

(3) holds for all t ∈ [0, T ] and all γ ∈ [0, min(4,r+1)
4 ). Their key idea in Theorem

6.19 in [3] was to apply the Banach fixed point theorem in an appropriate Ba-

nach space of D((−A)γ)-valued stochastic processes for γ ∈ [0, min(4,r+1)
4 ). This
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approach is based on the fact that B : H → HS(U0, H) is linear and globally
Lipschitz continuous from D((−A)γ) ⊂ H to HS(U0, D((−A)γ)) ⊂ HS(U0, H)

for γ ∈ [0, min(2,r−1)
4 ) since b : (0, 1)× R → R is assumed to be linear in its sec-

ond variable. Although their method in Theorem 6.19 in [3] works quite well for
linear SPDEs, it can not be generalized to nonlinear SPDEs. More formally, in
the case of a nonlinear b : (0, 1)×R → R, B : H → HS(U0, H) is in general not
globally Lipschitz continuous from D((−A)γ) to HS(U0, D((−A)γ)) for γ > 0
although b : (0, 1) × R → R is assumed to have globally bounded derivatives.
Therefore, a contraction argument as in Theorem 6.19 in [3] in a Banach space
of D((−A)γ)-valued stochastic processes for γ > 0 can in general not be estab-
lished for nonlinear SPDEs of the form (1). This difficulty as a key problem
of regularity analysis for nonlinear SPDEs has already been pointed out in X.
Zhang [12] (see page 456 in [12]).

We now demonstrate our approach to analyze the regularity of (1) which
overcomes the lack of Lipschitz continuity of B : H → HS(U0, H) with respect
to D((−A)γ) and HS(U0, D((−A)γ)) for γ > 0 in the nonlinear case. First
of all, by exploiting the smoothing effect of the semigroup of the Laplacian in
(2), the existence of an up to modifications unique predictable D((−A)γ)-valued
solution process X : [0, T ]× Ω → D((−A)γ) of (1) with

sup
t∈[0,T ]

E ‖Xt‖2D((−A)γ) < ∞ (4)

can be established for all γ ∈ [0, 12 ). However, we want to show (3) for all

t ∈ [0, T ] and all γ ∈ [0, min(3,r+1)
4 ) instead of γ ∈ [0, 12 ). To this end a key

estimate in our approach is the linear growth bound

‖B(v)‖HS(U0,D((−A)α)) ≤ c
(

1 + ‖v‖D((−A)α)

)

(5)

for all v ∈ D((−A)α) and all α ∈ [0, min(1,r−1)
4 ) with c ∈ [0,∞) appropriate

which we sketch below. (Note that B : H → HS(U0, H) fulfills the linear
growth bound (5) although it fails to be globally Lipschitz continuous from
D((−A)α) to HS(U0, D((−A)α)) for α > 0 in general.) Exploiting estimate (5)
in an appropriate bootstrap argument will then show (3) for all t ∈ [0, T ] and

all γ ∈ [0, min(3,r+1)
4 ). More formally, using that the semigroup is analytic with

eAt(H) ⊂ D(A) for all t ∈ (0, T ] yields

∫ t

0

E

∥

∥

∥(−A)γeA(t−s)B(Xs)
∥

∥

∥

2

HS(U0,H)
ds

≤
∫ t

0

∥

∥

∥(−A)ϑeA(t−s)
∥

∥

∥

2

L(H)
E

∥

∥

∥(−A)(γ−ϑ)B(Xs)
∥

∥

∥

2

HS(U0,H)
ds

≤
∫ t

0

(t− s)
−2ϑ

E ‖B(Xs)‖2HS(U0,D((−A)(γ−ϑ))) ds

3



and using estimate (5) then shows

∫ t

0

E

∥

∥

∥(−A)γeA(t−s)B(Xs)
∥

∥

∥

2

HS(U0,H)
ds

≤
∫ t

0

(t− s)
−2ϑ

c2 E

[

(

1 + ‖Xs‖D((−A)(γ−ϑ))

)2
]

ds

≤ 2c2
(∫ t

0

s−2ϑ ds

)

(

1 + sup
s∈[0,T ]

E ‖Xs‖2D((−A)(γ−ϑ))

)

(6)

≤ 2c2(T + 1)

(1− 2ϑ)

(

1 + sup
s∈[0,T ]

E ‖Xs‖2D((−A)(γ−ϑ))

)

< ∞

for all t ∈ [0, T ], ϑ ∈ (γ − min(1,r−1)
4 , 1

2 ) and all γ ∈ [ 12 ,
min(3,r+1)

4 ). We would
like to point out that due to (4) the right hand side of (6) is indeed finite. Of

course, (6) then shows that
∫ t

0
eA(t−s)B(Xs) dWs, t ∈ [0, T ], has a modification

with values in D((−A)γ) for all γ ∈ [0, min(3,r+1)
4 ) and thus, (3) holds for all

t ∈ [0, T ] and all γ ∈ [0, min(3,r+1)
4 ).

However, the main difficulty in this approach is to establish the linear growth
bound (5) which we sketch in the following. The second moments of stochastic
integrals are usually estimated via estimates for Hilbert-Schmidt norms (see,
e.g., Proposition 2.3.5 in [7] or also Theorem 5.2 in [3]). In this article we now
turn the argument around. More formally, we show (5) by estimating the second
moment of an appropriate stochastic integral. More precisely, we have

‖B(v)‖2HS(U0,D((−A)α)) =
1

T
· E
∥

∥

∥

∥

∥

∫ T

0

B(v) dWs

∥

∥

∥

∥

∥

2

D((−A)α)

=
1

T
· E ‖b(·, v) ·WT ‖2D((−A)α) (7)

for all v ∈ Vα and all α ∈ [0, min(1,r−1)
4 ). Finally, (7) implies (5) by using

appropriate Sobolev embeddings for which we refer to Section 4 for details.
Regularities of nonlinear SPDEs as analyzed here have already been inves-

tigated in Zhang’s instructive paper [12]. However, in contrast to the results in
this article, he investigated which conditions on the coefficients and the noise
of an SPDE suffice to ensure that the solution process of the SPDE is infinitely
often differentiable in the spatial variable, see Theorem 6.2 in [12]. The solution
process of (1) in which we are interested is, however, in general not twice dif-
ferentiable in the spatial variable and thus, Theorem 6.2 in [12] can in general
not be applied to the SPDE (1) here.

The rest of this article is organized as follows. In Section 2 the setting and
assumptions used are formulated. Our main result, Theorem 1, which states
existence, uniqueness and regularity of solutions of an SPDE with nonlinear
multiplicative trace class noise is presented in Section 3. This result is illustrated
by various examples in Section 4. The proof of Theorem 1 is postponed to the
final section.
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2 Setting and assumptions

Throughout this article suppose that the following setting and the following
assumptions are fulfilled. Fix T ∈ (0,∞), let (Ω,F ,P) be a probability space
with a normal filtration (Ft)t∈[0,T ] and let (H, 〈·, ·〉H , ‖·‖H) and (U, 〈·, ·〉U , ‖·‖U )
be two separable R-Hilbert spaces. Moreover, let Q : U → U be a trace class
operator and let W : [0, T ] × Ω → U be a standard Q-Wiener process with
respect to (Ft)t∈[0,T ].

Assumption 1 (Linear operator A). Let I be a finite or countable set and let
(λi)i∈I ⊂ R be a family of real numbers with infi∈I λi > −∞. Moreover, let
(ei)i∈I ⊂ H be an orthonormal basis of H and let A : D(A) ⊂ H → H be a
linear operator with

Av =
∑

i∈I
−λi 〈ei, v〉H ei (8)

for every v ∈ D(A) and with D(A) =
{

w ∈ H
∣

∣

∑

i∈I |λi|2 |〈ei, w〉H |2 < ∞
}

.

Let η ∈ [0,∞) be a nonnegative real number with η > − infi∈I λi. By
Vr := D ((η −A)

r
) ⊂ H equipped with the norm ‖v‖Vr

:= ‖(η −A)
r
v‖H for

all v ∈ Vr and all r ∈ [0,∞) we denote the R-Hilbert spaces of domains of
fractional powers of the linear operator η −A : D(A) ⊂ H → H .

Assumption 2 (Drift term F ). Let F : H → H be a globally Lipschitz contin-
uous mapping.

In order to formulate the assumption on the diffusion coefficient of our SPDE,
we denote by

(

U0, 〈·, ·〉U0
, ‖·‖U0

)

the separable R-Hilbert space U0 := Q
1
2 (U)

with 〈v, w〉U0
=
〈

Q− 1
2 v,Q− 1

2w
〉

U
for all v, w ∈ U0 (see, for example, Section

2.3.2 in [7]).

Assumption 3 (Diffusion term B). Let B : H → HS(U0, H) be a globally
Lipschitz continuous mapping and let α ∈ [0, 12 ), c ∈ [0,∞) be real numbers
such that B(Vα) ⊂ HS(U0, Vα) and ‖B(v)‖HS(U0,Vα) ≤ c

(

1 + ‖v‖Vα

)

holds for
all v ∈ Vα.

Assumption 4 (Initial value ξ). Let γ ∈ [α, 1
2 +α), p ∈ [2,∞) and let ξ : Ω →

Vγ be an F0/B (Vγ)-measurable mapping with E ‖ξ‖pVγ
< ∞.

Some examples satisfying Assumptions 1-4 are presented in Section 4.

3 Main result

The assumptions in Section 2 suffice to ensure the existence of a unique Vγ-
valued solution of the SPDE (9).

Theorem 1 (Existence and regularity of the solution). Let Assumptions 1-4 in
Section 2 be fulfilled. Then there exists an up to modifications unique predictable
stochastic process X : [0, T ] × Ω → Vγ which fulfills supt∈[0,T ] E ‖Xt‖pVγ

< ∞,

supt∈[0,T ] E ‖B(Xt)‖pHS(U0,Vα) < ∞ and

Xt = eAtξ +

∫ t

0

eA(t−s)F (Xs) ds+

∫ t

0

eA(t−s)B(Xs) dWs P-a.s. (9)

5



for all t ∈ [0, T ]. Moreover, we have

sup
t1,t2∈[0,T ]

t1 6=t2

(

E ‖Xt2 −Xt1‖pVr

)
1
p

|t2 − t1|min(γ−r, 12 )
< ∞ (10)

for every r ∈ [0, γ]. Additionally, the solution process Xt, t ∈ [0, T ], is continu-

ous with respect to (E ‖·‖pVγ
)

1
p .

The proof of Theorem 1 is given in Section 5. The parameters α ∈ [0, 1
2 ),

γ ∈ [α, 1
2 + α) and p ∈ [2,∞) used in Theorem 1 are given in Assumptions 3

and 4.
Estimate (10) and the continuity of the solution process Xt, t ∈ [0, T ], with

respect to (E ‖·‖pVγ
)

1
p as asserted in Theorem 1 can also be written as

X ∈
⋂

r∈[0,γ]

Cmin(γ−r, 12 )

(

[0, T ], Lp (Ω;Vr)

)

.

Let us complete this section with the following remark. If the initial value
X0 = ξ of the SPDE (9) above is H-valued only, then Xt takes values in Vr for
all r < 1

2 + α and all t ∈ (0, T ] nevertheless. More formally, if Assumptions 1-
3 are fulfilled and if ξ : Ω → H is an F0/B(H)-measurable mapping with
E ‖ξ‖pH < ∞ for some p ∈ [2,∞), then Theorem 1 shows the existence of
a predictable solution process X : [0, T ] × Ω → H of (9) and this process
additionally satisfies P [Xt ∈ Vr] = 1 with E ‖Xt‖pr < ∞ for all r ∈ [0, 1

2 + α)
and all t ∈ (0, T ].

4 Examples

In this section Theorem 1 is illustrated with various examples. To this end let
d ∈ N and let H = U = L2

(

(0, 1)d,R
)

be the R-Hilbert space of equivalence

classes of B
(

(0, 1)d
)

/B (R)-measurable and Lebesgue square integrable functions
from (0, 1)d to R. As usual we do not distinguish between a square integrable
function from (0, 1)d to R and its equivalence class in H . For simplicity we
restrict our attention to the domain (0, 1)d although more complicated domains
in R

d could be considered. The scalar product and the norm in H and U are
given by

〈v, w〉H = 〈v, w〉U =

∫

(0,1)d
v(x) · w(x) dx

and

‖v‖H = ‖v‖U =

(

∫

(0,1)d
|v(x)|2 dx

)
1
2

for all v, w ∈ H = U . Moreover, the Euclidean norm ‖x‖
Rd := (|x1|2 + . . . +

|xd|2)
1
2 for all x = (x1, . . . , xd) ∈ R

d is used here. Additionally, the notations

‖v‖C((0,1)d,R) := sup
x∈(0,1)d

|v(x)| ∈ [0,∞]
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and

‖v‖Cr((0,1)d,R) := sup
x∈(0,1)d

|v(x)| + sup
x,y∈(0,1)d

x 6=y

|v(x) − v(y)|
‖x− y‖r

Rd

∈ [0,∞]

for all r ∈ (0, 1] and all functions v : (0, 1)d → R are used in this section. We
also define

‖v‖W r,2((0,1)d,R)

:=

(

∫

(0,1)d
|v(x)|2 dx+

∫

(0,1)d

∫

(0,1)d

|v(x) − v(y)|2

‖x− y‖(d+2r)

Rd

dx dy

)
1
2

∈ [0,∞]

for all B
(

(0, 1)d
)

/B (R)-measurable functions v : (0, 1)d → R and all r ∈ (0, 1).
Finally, we denote by v · w : (0, 1)d → R the function

(v · w) (x) = v(x) · w(x), x ∈ (0, 1)d,

for every v, w : (0, 1)d → R. Concerning the covariance operator of the Wiener
process, let J be a finite or countable set, let (gj)j∈J ⊂ U be an orthonormal
basis of eigenfunctions of Q : U → U and let (µj)j∈J ⊂ [0,∞) be the cor-
responding family of eigenvalues (such an orthonormal basis of eigenfunctions
exists since Q : U → U is a trace class operator, see Proposition 2.1.5 in [7]).
In particular, we have

Qu =
∑

j∈J
µj 〈gj, u〉U gj

for all u ∈ U . Furthermore, we assume in this section that the eigenfunctions
gj ∈ U , j ∈ J , are continuous and satisfy

sup
j∈J

‖gj‖C((0,1)d,R) < ∞ and
∑

j∈J

(

µj ‖gj‖2Cδ((0,1)d,R)

)

< ∞ (11)

for some δ ∈ (0, 1]. We will give some concrete examples for (gj)j∈J fulfilling
(11) later.

For the linear operator in Assumption 1, let κ ∈ (0,∞) be a fixed real
number, let I = N

d and let λi ∈ R, i ∈ I, and ei ∈ H , i ∈ I, be given by

λi = κπ2
(

(i1)
2 + . . .+ (id)

2
)

, ei(x) = 2
d
2 sin(i1πx1) · . . . · sin(idπxd)

for all x ∈ (x1, . . . , xd) ∈ (0, 1)d and all i = (i1, . . . , id) ∈ N
d. Hence, the linear

operator A : D(A) ⊂ H → H in Assumption 1 is nothing else but the Laplacian
with Dirichlet boundary conditions times the constant κ ∈ (0,∞), i.e.

Av = κ ·∆v = κ

((

∂2

∂x2
1

)

v + . . .+

(

∂2

∂x2
d

)

v

)

holds for all v ∈ D(A) in this subsection (see, for instance, Section 3.8.1 in [9]).
In view of the drift term in Assumption 2, let f : (0, 1)d × R → R

be a continuously differentiable function with
∫

(0,1)d |f(x, 0)|
2
dx < ∞ and

7



supx∈(0,1)d supy∈R

∣

∣

∣

(

∂
∂y

f
)

(x, y)
∣

∣

∣ < ∞. Then the (in general nonlinear) oper-

ator F : H → H given by

(F (v))(x) = f(x, v(x)), x ∈ (0, 1)d,

for all v ∈ H satisfies Assumption 2, i.e.

sup
v,w∈H
v 6=w

‖F (v)− F (w)‖H
‖v − w‖H

< ∞

holds.
We now describe a class of diffusion terms satisfying Assumption 3.

To this end let b : (0, 1)d×R → R be a continuously differentiable function with

∫

(0,1)d
|b(x, 0)|2 dx ≤ q2,

∣

∣

∣

∣

(

∂

∂y
b

)

(x, y)

∣

∣

∣

∣

≤ q,

∥

∥

∥

∥

(

∂

∂x
b

)

(x, y)

∥

∥

∥

∥

L(Rd,R)

≤ q

(12)
for all x ∈ (0, 1)d, y ∈ R and some given q ∈ [0,∞). We remark that every
continuously differentiable function from (0, 1)d to R with globally bounded
derivatives fulfills a bound of the form (12) due to the fundamental theorem of
calculus. Then let B : H → HS(U0, H) be the (in general nonlinear) operator
given by

(B(v)u)(x) = (b(·, v) · u)(x) = b(x, v(x)) · u(x), x ∈ (0, 1)d, (13)

for all v ∈ H and all u ∈ U0 ⊂ U . We now check step by step that B : H →
HS(U0, H) given by (13) satisfies Assumption 3. First of all, B is well defined.
Indeed, we obviously have U0 ⊂ L∞((0, 1)d,R) continuously due to (11) and
therefore, B(v) : U0 → H is a bounded linear operator from U0 to H for every
v ∈ H . Moreover, we have

‖B(v)‖2HS(U0,H) =
∑

j∈J

∥

∥B(v)
√
µjgj

∥

∥

2

H
=
∑

j∈J
µj ‖B(v)gj‖2H

=
∑

j∈J
µj

(

∫

(0,1)d
|b(x, v(x)) · gj(x)|2 dx

)

≤
∑

j∈J
µj

(

∫

(0,1)d
|b(x, v(x))|2 dx

)(

sup
x∈(0,1)d

|gj(x)|2
)

and hence

‖B(v)‖HS(U0,H) ≤ ‖b(·, v)‖H





∑

j∈J
µj





1
2
(

sup
j∈J

‖gj‖C((0,1)d,R)

)

= ‖b(·, v)‖H
√

Tr(Q)

(

sup
j∈J

‖gj‖C((0,1)d,R)

)

< ∞

for all v ∈ H which shows that B : H → HS(U0, H) is well defined. Moreover,

8



B : H → HS(U0, H) is globally Lipschitz continuous. More precisely, we have

‖B(v)−B(w)‖2HS(U0,H) =
∑

j∈J
µj ‖(B(v)−B(w)) gj‖2H

=
∑

j∈J
µj

(

∫

(0,1)d
|b(x, v(x)) − b(x,w(x))|2 |gj(x)|2 dx

)

≤





∑

j∈J
µj

(

∫

(0,1)d
|b(x, v(x)) − b(x,w(x))|2 dx

)





(

sup
j∈J

‖gj‖2C((0,1)d,R)

)

and therefore

‖B(v)−B(w)‖HS(U0,H) ≤ q ‖v − w‖H





∑

j∈J
µj





1
2
(

sup
j∈J

‖gj‖C((0,1)d,R)

)

= q
√

Tr(Q)

(

sup
j∈J

‖gj‖C((0,1)d,R)

)

‖v − w‖H

for all v, w ∈ H . Hence, it remains to check

B(Vα) ⊂ HS(U0, Vα) and ‖B(v)‖HS(U0,Vα) ≤ c
(

1 + ‖v‖Vα

)

(14)

for every v ∈ Vα for appropriate α ∈ [0, 12 ), c ∈ [0,∞). In order to verify (14),
several preparations are needed. First of all, since J is finite or countable, there
exists a nondecreasing sequence (JK)K∈N

of finite subsets of J with
⋃

K∈N

JK =

J . Then we define F/B(U0)-measurable mappings χK : Ω → U0, K ∈ N, by

χK(ω, x) :=
∑

j∈JK

µj 6=0

〈

gj ,
1√
T
WT (ω)

〉

U

gj(x)

for all ω ∈ Ω, x ∈ (0, 1)d and all K ∈ N. Note that

E
∣

∣χK(x)
∣

∣

2
=
∑

j∈JK

µj 6=0

E

∣

∣

∣

∣

〈

gj,
1√
T
WT

〉

U

gj(x)

∣

∣

∣

∣

2

=
∑

j∈JK

µj |gj(x)|2

≤





∑

j∈J
µj ‖gj‖2Cδ((0,1)d,R)



 (15)

and

E
∣

∣χK(x)− χK(y)
∣

∣

2
=
∑

j∈J
µj |gj(x) − gj(y)|2

≤





∑

j∈J
µj ‖gj‖2Cδ((0,1)d,R)



 ‖x− y‖2δ
Rd (16)
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holds for all x, y ∈ (0, 1)d and all K ∈ N. Moreover, we need an appropriate
characterization of the space Vr and its norm ‖·‖Vr

for r ∈ [0, 12 ) in order to
verify (14). More formally, it is known that

Vr =
{

v ∈ H
∣

∣

∣ ‖v‖W 2r,2((0,1)d,R) < ∞
}

(17)

holds for all r ∈ (0, 1
4 ), that

Vr =

{

v ∈ H
∣

∣

∣ ‖v‖W 2r,2((0,1)d,R) < ∞, v
∣

∣

∣

∂(0,1)d
≡ 0

}

(18)

holds for all r ∈ (14 ,
1
2 ) and that there are real numbers Cr ∈ [1,∞), r ∈ (0, 1

2 ),
such that

1

Cr

‖v‖W 2r,2((0,1)d,R) ≤ ‖v‖Vr
≤ Cr ‖v‖W 2r,2((0,1)d,R) (19)

holds for all v ∈ Vr and all r ∈ (0, 1
2 ) (see, e.g., A. Lunardi [6] or also (A.46) in

[3]). In particular, (17) shows

‖v‖W 2r,2((0,1)d,R) < ∞ =⇒ v ∈ Vr (20)

for all B((0, 1)d)/B(R)-measurable functions v : (0, 1)d → R and all r ∈ (0, 1
4 ).

We remark that (20) does not hold for all r ∈ (14 ,
1
2 ) instead of r ∈ (0, 1

4 ) since a
B((0, 1)d)/B(R)-measurable function v : (0, 1)d → R with ‖v‖W 2r,2((0,1)d,R) < ∞
does, in general, not fulfill the Dirichlet boundary conditions for r ∈ (14 ,

1
2 ) (see

(18)). Furthermore, we have

‖b(·, v)‖2W r,2((0,1)d,R)

=

∫

(0,1)d
|b(x, v(x))|2 dx+

∫

(0,1)d

∫

(0,1)d

|b(x, v(x)) − b(y, v(y))|2

‖x− y‖(d+2r)

Rd

dx dy

≤
∫

(0,1)d
(q |v(x)| + |b(x, 0)|)2 dx+ 2

∫

(0,1)d

∫

(0,1)d

|b(x, v(x)) − b(x, v(y))|2

‖x− y‖(d+2r)

Rd

dx dy

+ 2

∫

(0,1)d

∫

(0,1)d

|b(x, v(y))− b(y, v(y))|2

‖x− y‖(d+2r)

Rd

dx dy

≤ 2q2 ‖v‖2W r,2((0,1)d,R) + 2q2 ‖v‖W r,2((0,1)d,R) + q2

+ 2q2
∫

(0,1)d

∫

(0,1)d
‖x− y‖(2−d−2r)

Rd dx dy

for all B((0, 1)d)/B(R)-measurable functions v : (0, 1)d → R and all r ∈ (0, 1).
Using

∫

(0,1)d

∫

(0,1)d
‖x− y‖z

Rd dx dy ≤
∫

(−1,1)d
‖x‖z

Rd dx ≤
∫

{

x∈Rd

∣

∣‖x‖2≤d
}

‖x‖z
Rd dx

=
π

d
2 d

Γ(d2 + 1)

∫ d

0

r(z+d−1) dr ≤ 3d
∫ d

0

r(z+d−1) dr =
3dd(z+d)

(z + d)
≤ (3d)d

(d+ z)
(21)

10



for all z ∈ (−d, 0) then shows

‖b(·, v)‖2W r,2((0,1)d,R)

≤ 2q2 ‖v‖2W r,2((0,1)d,R) + (3 −
√
3)2q2

(

2 ‖v‖W r,2((0,1)d,R)

(3−
√
3)2

+ 1

)

+ q2
(3d)d

(1 − r)

for all B((0, 1)d)/B(R)-measurable functions v : (0, 1)d → R and all r ∈ (0, 1).
This yields

‖b(·, v)‖W r,2((0,1)d,R)

≤ q

(

√
2 ‖v‖W r,2((0,1)d,R) + (3−

√
3)

(

2 ‖v‖W r,2((0,1)d,R)

(3−
√
3)2

+ 1

)

+
(3d)

d
2

√
1− r

)

≤ q

(1 − r)

((√
2 +

2

(3−
√
3)

)

‖v‖W r,2((0,1)d,R) + (3d)d
)

and finally

‖b(·, v)‖W r,2((0,1)d,R) ≤
q(3d)d

(1− r)

(

1 + ‖v‖W r,2((0,1)d,R)

)

(22)

for all B((0, 1)d)/B(R)-measurable functions v : (0, 1)d → R and all r ∈ (0, 1).
In particular, (19) shows

‖b(·, v)‖W 2r,2((0,1)d,R) ≤
qCr(3d)

d

(1 − 2r)

(

1 + ‖v‖Vr

)

< ∞ (23)

for all v ∈ Vr and all r ∈ (0, 1
2 ). Due to (19) and (20), it will be essential

to estimate E
∥

∥B(v)χK
∥

∥

2

W 2r,2((0,1)d,R)
for v ∈ Vr and r ∈ (0, 12 ) in order to

verify (14). To this end note that

E
∥

∥B(v)χK
∥

∥

2

W 2r,2((0,1)d,R)

=

∫

(0,1)d
E
∣

∣b(x, v(x)) · χK(x)
∣

∣

2
dx

+

∫

(0,1)d

∫

(0,1)d

E
∣

∣b(x, v(x)) · χK(x) − b(y, v(y)) · χK(y)
∣

∣

2

‖x− y‖(d+4r)

Rd

dx dy

≤ 2

∫

(0,1)d
|b(x, v(x))|2 E

∣

∣χK(x)
∣

∣

2
dx

+ 2

∫

(0,1)d

∫

(0,1)d

|b(x, v(x))|2 E
∣

∣χK(x)− χK(y)
∣

∣

2

‖x− y‖(d+4r)

Rd

dx dy

+ 2

∫

(0,1)d

∫

(0,1)d

|b(x, v(x)) − b(y, v(y))|2 E
∣

∣χK(y)
∣

∣

2

‖x− y‖(d+4r)

Rd

dx dy

11



holds for all v ∈ H , r ∈ (0, 1
2 ) and all K ∈ N. Therefore, (15) and (16) give

E
∥

∥B(v)χK
∥

∥

2

W 2r,2((0,1)d,R)

≤ 2 ‖b(·, v)‖2W 2r,2((0,1)d,R)





∑

j∈J
µj ‖gj‖2Cδ((0,1)d,R)





+ 2





∑

j∈J
µj ‖gj‖2Cδ((0,1)d,R)



 ‖b(·, v)‖2H

(

∫

(−1,1)d
‖y‖(2δ−4r−d)

Rd dy

)

and (21) then shows

E
∥

∥B(v)χK
∥

∥

2

W 2r,2((0,1)d,R)

≤ 2 ‖b(·, v)‖2W 2r,2((0,1)d,R)





∑

j∈J
µj ‖gj‖2Cδ((0,1)d,R)





(

1 + 3d
∫

√
d

0

r(2δ−4r−1) dr

)

= 2 ‖b(·, v)‖2W 2r,2((0,1)d,R)





∑

j∈J
µj ‖gj‖2Cδ((0,1)d,R)





(

1 +
3dd(δ−2r)

(2δ − 4r)

)

for all v ∈ H , r ∈ (0, δ
2 ) and all K ∈ N. Hence, we obtain

(

sup
K∈N

E
∥

∥B(v)χK
∥

∥

2

W 2r,2((0,1)d,R)

)
1
2

≤ ‖b(·, v)‖W 2r,2((0,1)d,R)





∑

j∈J
µj ‖gj‖2Cδ((0,1)d,R)





1
2
(

2 +
(3d)d

(δ − 2r)

)

1
2

and (23) gives

(

sup
K∈N

E
∥

∥B(v)χK
∥

∥

2

W 2r,2((0,1)d,R)

)
1
2

≤ qCr(3d)
d

(1− 2r)





∑

j∈J
µj ‖gj‖2Cδ((0,1)d,R)





1
2
(

2 +
(3d)d

(δ − 2r)

)

1
2
(

1 + ‖v‖Vr

)

≤ qCr(3d)
2d

(δ − 2r)2





∑

j∈J
µj ‖gj‖2Cδ((0,1)d,R)





1
2

(

1 + ‖v‖Vr

)

(24)

12



for all v ∈ Vr and all r ∈ (0, δ
2 ). Moreover, we have

‖B(v)gj‖2W 2r,2((0,1)d,R)

≤
∫

(0,1)d
|b(x, v(x)) · gj(x)|2 dx

+

∫

(0,1)d

∫

(0,1)d

|b(x, v(x)) · gj(x) − b(y, v(y)) · gj(y)|2

‖x− y‖(d+4r)

Rd

dx dy

≤ 2 ‖b(·, v)‖2H ‖gj‖2C((0,1)d,R)

+ 2 ‖gj‖2C((0,1)d,R)

∫

(0,1)d

∫

(0,1)d

|b(x, v(x)) − b(y, v(y))|2

‖x− y‖(d+4r)

Rd

dx dy

+ 2

∫

(0,1)d

∫

(0,1)d

|b(y, v(y))|2 |gj(x) − gj(y)|2

‖x− y‖(d+4r)

Rd

dx dy

and (21) thus gives

‖B(v)gj‖2W 2r,2((0,1)d,R)

≤ 2 ‖gj‖2Cδ((0,1)d,R) ‖b(·, v)‖
2
W 2r,2((0,1)d,R)

+ 2 ‖gj‖2Cδ((0,1)d,R) ‖b(·, v)‖
2
H

(

∫

(−1,1)d
‖y‖(2δ−d−4r)

dy

)

≤ 2 ‖gj‖2Cδ((0,1)d,R) ‖b(·, v)‖
2
W 2r,2((0,1)d,R)

(

1 + 3d
∫

√
d

0

r(2δ−4r−1) dr

)

≤ ‖gj‖2Cδ((0,1)d,R) ‖b(·, v)‖
2
W 2r,2((0,1)d,R)

(

2 +
(3d)d

(δ − 2r)

)

for all v ∈ H , r ∈ (0, δ
2 ) and all j ∈ J with µj 6= 0. Therefore, (23) shows

‖B(v)gj‖W 2r,2((0,1)d,R)

≤ ‖gj‖Cδ((0,1)d,R)

(

2 +
(3d)d

(δ − 2r)

)

1
2 qCr(3d)

d

(1 − 2r)

(

1 + ‖v‖Vr

)

≤ qCr(3d)
2d

(δ − 2r)2
‖gj‖Cδ((0,1)d,R)

(

1 + ‖v‖Vr

)

< ∞ (25)

for all v ∈ Vr, r ∈ (0, δ
2 ) and all j ∈ J with µj 6= 0. Therefore, (20) yields that

B(v)gj ∈ Vr holds for all v ∈ Vr, r ∈ (0,min(14 ,
δ
2 )) and all j ∈ J with µj 6= 0.

In particular, we obtain B(v)χK(ω) ∈ Vr for all v ∈ Vr, K ∈ N, ω ∈ Ω and all
r ∈ (0,min(14 ,

δ
2 )). Hence, (19) implies

‖B(v)‖HS(U0,Vα)

=

(

∑

j∈J
µj 6=0

∥

∥B(v)
√
µjgj

∥

∥

2

Vα

)
1
2

=

(

lim
K→∞

∑

j∈JK

µj 6=0

E
∥

∥B(v)
〈

gj, χ
K
〉

U
gj
∥

∥

2

Vα

)
1
2

=
(

lim
K→∞

E
∥

∥B(v)χK
∥

∥

2

Vα

)
1
2 ≤ Cα

(

sup
K∈N

E
∥

∥B(v)χK
∥

∥

2

W 2α,2((0,1)d,R)

)
1
2
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and (24) finally shows

‖B(v)‖HS(U0,Vα) ≤
q(Cα)

2(3d)2d

(δ − 2α)2





∑

j∈J
µj ‖gj‖2Cδ((0,1)d,R)





1
2

(

1 + ‖v‖Vα

)

< ∞

(26)
for all v ∈ Vα and all α ∈ (0,min(14 ,

δ
2 )) which yields (14). To sum up, Assump-

tion 3 is fulfilled for all α ∈ [0,min(14 ,
δ
2 )).

Concerning the initial value in Assumption 4, let x0 : [0, 1]d → R

be a twice continuously differentiable function with x0|∂(0,1)d ≡ 0. Then the
F0/B(Vγ)-measurable mapping ξ : Ω → Vγ given by ξ(ω) = x0 for all ω ∈ Ω
fulfills Assumption 4 for all γ ∈ [α, 1

2 + α) and all p ∈ [2,∞).
Having constructed examples of Assumptions 1-4, we now formulate the

SPDE (9) in the setting of this section. More formally, under the setting above
the SPDE (9) reduces to

dXt(x) =
[

κ∆Xt(x) + f(x,Xt(x))
]

dt+ b(x,Xt(x)) dWt(x) (27)

with Xt | ∂(0,1)d ≡ 0 and X0(x) = x0(x) for t ∈ [0, T ] and x ∈ (0, 1)d. Moreover,

we define a family βj : [0, T ] × Ω → R, j ∈ {k ∈ J
∣

∣µk 6= 0}, of independent
standard Brownian motions by

β
j
t (ω) :=

1
√
µj

〈gj,Wt(ω)〉U

for all ω ∈ Ω, t ∈ [0, T ] and all j ∈ J with µj 6= 0. Using this notation, the
SPDE (27) can be written as

dXt(x) =
[

κ∆Xt(x) + f(x,Xt(x))
]

dt+
∑

j∈J
µj 6=0

[√
µj b(x,Xt(x)) gj(x)

]

dβ
j
t (28)

with Xt | ∂(0,1)d ≡ 0 and X0(x) = x0(x) for t ∈ [0, T ] and x ∈ (0, 1)d. Finally,
due to (26), Theorem 1 shows the existence of an up to modifications unique
predictable stochastic process X : [0, T ] × Ω → Vγ fulfilling (28) for any γ ∈
[0, min(3,2δ+2)

4 ). We now illustrate Theorem 1 using (24), (25) and (26) in the
following three more concrete examples.

4.1 A one dimensional stochastic reaction diffusion equa-

tion

Consider the situation described above in the case d = 1. In this subsection
we want to give a concrete example for (gj)j∈J and (µj)j∈J so that (11) is

fulfilled and all above applies. Let J = {0, 1, 2, . . .}, let g0(x) = 1 and let
gj(x) =

√
2 cos(jπx) for all x ∈ (0, 1) and all j ∈ N. Moreover, let r ∈ (1,∞)

and ν ∈ (0,∞) be given real numbers, let µ0 = 0 and let µj =
ν
jr

for all j ∈ N.
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This choice ensures that (11) is fulfilled. Indeed, we have

∑

j∈J
µj ‖gj‖2Cδ((0,1)d,R) =

∞
∑

j=1

ν

jr
‖gj‖2Cδ((0,1)d,R)

=

∞
∑

j=1

2ν

jr






1 + sup

x,y∈(0,1)
x 6=y

|cos(jπx)− cos(jπy)|
|x− y|δ







2

≤
∞
∑

j=1

2ν

jr






1 + sup

x,y∈(0,1)
x 6=y

2(1−δ) |cos(jπx) − cos(jπy)|δ

|x− y|δ







2

and hence

∑

j∈J
µj ‖gj‖2Cδ((0,1)d,R) ≤

∞
∑

j=1

2ν

jr

(

1 + 2(1−δ)(jπ)δ
)2

≤
∞
∑

j=1

2ν

jr

(

1 + πjδ
)2 ≤ 8νπ2





∞
∑

j=1

j(2δ−r)



 < ∞ (29)

for all δ ∈ (0, r−1
2 ). Assumption 3 is thus fulfilled for every α ∈ (0,min(14 ,

r−1
4 ))

= (0, min(1,r−1)
4 ) (see (26)). Here the SPDE (28) reduces to

dXt(x) =

[

κ
∂2

∂x2
Xt(x) + f(x,Xt(x))

]

dt+

∞
∑

j=1

[√
2ν

j
r
2

b(x,Xt(x)) cos(jπx)

]

dβ
j
t

(30)
with Xt(0) = Xt(1) = 0 and X0(x) = x0(x) for t ∈ [0, T ] and x ∈ (0, 1).
Theorem 1 finally yields the existence of an up to modifications unique stochastic

process X : [0, T ] × Ω → Vγ fulfilling (30) for any γ ∈ [0, min(3,r+1)
4 ). Under

further assumptions on b : (0, 1)×R → R, the solution of (30) enjoys even more
regularity which is demonstrated in the following subsection.

4.2 More regularity for a one dimensional stochastic re-

action diffusion equation

Consider the situation of Subsection 4.1 with r = 3. Hence, (29) shows that (11)
holds for all δ ∈ (0, 1). Therefore, (26) gives that Assumption 3 is fulfilled for all
α ∈ [0, 14 ). However, we now additionally assume that the diffusion coefficient
b : (0, 1) × R → R respects the Dirichlet boundary conditions in (28), i.e. we
assume that

lim
xց0

b(x, x) = lim
xր1

b(x, x− 1) = 0 (31)

holds. Under this additional assumption more regularity for the solution process
of (28) can be established. More precisely, (18) and (25) yield B(v)gj ∈ Vs for
all v ∈ Vs, j ∈ J with µj 6= 0 and all s ∈ (0, 12 ). Hence, we obtain that
B(v)χK(ω) ∈ Vs holds for all v ∈ Vs, K ∈ N, ω ∈ Ω and all s ∈ (0, 12 ). This and
(24) then imply that (26) holds for all α ∈ (0, 12 ). Thus, Assumption 3 is even
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fulfilled for all α ∈ [0, 12 ). Theorem 1 finally shows that, under condition (31),
the SPDE

dXt(x) =

[

κ
∂2

∂x2
Xt(x) + f(x,Xt(x))

]

dt+

∞
∑

j=1

[√
2ν

j
3
2

b(x,Xt(x)) cos(jπx)

]

dβ
j
t

with Xt(0) = Xt(1) = 0 and X0(x) = x0(x) for t ∈ [0, T ] and x ∈ (0, 1) admits
an up to modifications unique predictable stochastic process X : [0, T ]×Ω→ Vγ

for any γ ∈ [0, 1).

4.3 Stochastic reaction diffusion equations with commu-

tative noise

Consider the situation before Subsection 4.1 and assume that the eigenfunctions
of the linear operator A : D(A) ⊂ H → H and of the covariance operator
Q : U = H → H coincide. More formally, let J = I = N

d, let gj = ej for
all j ∈ J , let r ∈ (d, d + 2) and ν ∈ (0,∞) be given real numbers and let
µj = ν(j1 + . . . + jd)

−r for all j ∈ (j1, . . . , jd) ∈ J = N
d. We now check

condition (11). To this end note that

∥

∥g′j(x)
∥

∥

L(Rd,R)
= sup

v∈R
d

‖v‖
Rd

≤1

∣

∣g′j(x)v
∣

∣ ≤ sup
v∈R

d

‖v‖
Rd

≤1

(

d
∑

k=1

∣

∣

∣

∣

(

∂

∂xk

gj

)

(x)

∣

∣

∣

∣

· |vk|
)

≤
(

d
∑

k=1

∣

∣

∣

∣

(

∂

∂xk

gj

)

(x)

∣

∣

∣

∣

2
)

1
2

≤
(

d
∑

k=1

π2(jk)
22d

)

1
2

= 2
d
2 π

(

d
∑

k=1

(jk)
2

)

1
2

holds for all x ∈ (0, 1)d and all j ∈ (j1, . . . , jd) ∈ J . This implies

|gj(x)− gj(y)| ≤
∫ 1

0

∣

∣g′j(x+ r(y − x))(y − x)
∣

∣ dr

≤ 2
d
2 π

(

d
∑

k=1

(jk)
2

)

1
2

‖x− y‖
Rd (32)

for all x, y ∈ (0, 1)d and all j ∈ J . Hence, we obtain

‖gj‖Cδ((0,1)d,R) ≤ ‖gj‖C((0,1)d,R) + sup
x,y∈(0,1)d

x 6=y

|gj(x) − gj(y)|
‖x− y‖δ

Rd

≤ 2
d
2 + sup

x,y∈(0,1)d

x 6=y

(2 · 2 d
2 )(1−δ) |gj(x) − gj(y)|δ

‖x− y‖δ
Rd
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and

‖gj‖Cδ((0,1)d,R) ≤ 2
d
2 + 2(

d
2+1)(1−δ)



2
d
2 π

(

d
∑

k=1

(jk)
2

)

1
2





δ

≤ 2
d
2 + 2

d
2 π

(

d
∑

k=1

(jk)
2

)

δ
2

≤ 2(
d
2+1)π

(

d
∑

k=1

(jk)
2

)

δ
2

(33)

for all δ ∈ (0, 1] and all j ∈ J . Therefore, we get

∑

j∈J
µj ‖gj‖2Cδ((0,1)d,R) ≤

∑

j∈Nd

ν (j1 + . . .+ jd)
−r

2(d+2)π2

(

d
∑

k=1

(jk)
2

)δ

= ν2(d+2)π2





∑

j∈Nd

(

(j1)
2 + . . .+ (jd)

2
)δ

(j1 + . . .+ jd)
r



 < ∞

for all δ ∈ (0, r−d
2 ) and hence, (11) holds for all δ ∈ (0, r−d

2 ). Furthermore,
since gj = ej holds for all j ∈ J here, (25) implies B(v)gj ∈ Vs for all v ∈ Vs,
j ∈ J with µj 6= 0 and all s ∈ (0, r−d

4 ) (see (18)). Therefore, B(v)χK(ω) ∈ Vs

holds for all v ∈ Vs, K ∈ N, ω ∈ Ω and all s ∈ (0, r−d
4 ). This and (24) then

imply that (26) holds for all α ∈ (0, r−d
4 ). Thus, Assumption 3 is fulfilled for

all α ∈ [0, r−d
4 ) here. Theorem 1 finally yields that the SPDE

dXt(x) =
[

κ∆Xt(x) + f(x,Xt(x))
]

dt

+
∑

j∈Nd

[√
ν2d sin(j1πx1) · · · sin(jdπxd)

(j1 + . . .+ jd)
r
2

b(x,Xt(x))

]

dβ
j
t (34)

with Xt | ∂(0,1)d ≡ 0 and X0(x) = x0(x) for all t ∈ [0, T ] and x ∈ (0, 1)d enjoys
an up to modifications unique predictable solution process X : [0, T ]× Ω → Vγ

fulfilling (34) for any γ ∈ [0, r−d+2
4 ).

5 Proof of Theorem 1

Throughout this section the notation

‖Z‖Lp(Ω;E) :=
(

E ‖Z‖pE
)

1
p ∈ [0,∞]

is used for an R-Banach space (E, ‖·‖E) and an F/B(E)-measurable mapping
Z : Ω → E. The real number p ∈ [2,∞) is as given in Assumption 4. We also
use the following simple lemma (see, e.g., Theorem 37.5 in [9]).

Lemma 1. Let Assumptions 1-4 in Section 2 be fulfilled. Then we have
∥

∥

∥(t (η −A))
r
e(A−η)t

∥

∥

∥

L(H)
≤ 1,

∥

∥

∥(t (η −A))
−r
(

e(A−η)t − I
)∥

∥

∥

L(H)
≤ 1

for every t ∈ (0,∞) and every r ∈ [0, 1].
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Proof of Lemma 1. We have

∥

∥

∥(t (η −A))
r
e(A−η)t

∥

∥

∥

L(H)
= sup

i∈I

(

(t (η + λi))
r
e−(η+λi)t

)

≤ sup
x∈(0,∞)

(

xre−x
)

≤ 1

and

∥

∥

∥(t (η −A))−r
(

e(A−η)t − I
)∥

∥

∥

L(H)
= sup

i∈I

(

(t (η + λi))
−r
(

1− e−(η+λi)t
))

≤ sup
x∈(0,∞)

(1− e−x)

xr
≤ 1

for every t ∈ (0,∞) and every r ∈ [0, 1].

The next lemma immediately follows from Lemma 1 above.

Lemma 2. Let Assumptions 1-4 in Section 2 be fulfilled. Then we have

∥

∥

∥(t (η −A))
−r (

eAt − I
)

∥

∥

∥

L(H)
≤
(

∥

∥

∥(η −A)
−1
∥

∥

∥

L(H)
+ 1

)

eηT (η + 1) (T + 1)

for every t ∈ (0, T ] and every r ∈ [0, 1].

Proof of Lemma 2. Due to Lemma 1 we have

∥

∥

∥(t (η −A))
−r (

eAt − I
)

∥

∥

∥

L(H)
≤
∥

∥

∥(t (η −A))
−r
(

eAt − e(A−η)t
)∥

∥

∥

L(H)

+
∥

∥

∥
(t (η −A))−r

(

e(A−η)t − I
)∥

∥

∥

L(H)

≤
∥

∥

∥(t (η −A))
−r
∥

∥

∥

L(H)

∥

∥

∥e
At − e(A−η)t

∥

∥

∥

L(H)
+ 1

for every t ∈ (0, T ] and every r ∈ [0, 1]. The estimate 1− e−x ≤ x for all x ∈ R

then shows
∥

∥

∥(t (η −A))
−r (

eAt − I
)

∥

∥

∥

L(H)
≤
∥

∥

∥(t (η −A))
−r
∥

∥

∥

L(H)

(

eηt − 1
)

+ 1

=
∥

∥

∥(t (η −A))
−r
∥

∥

∥

L(H)
eηt
(

1− e−ηt
)

+ 1

≤
∥

∥

∥
(t (η −A))−r

∥

∥

∥

L(H)
eηtηt+ 1

and finally

∥

∥

∥(t (η −A))
−r (

eAt − I
)

∥

∥

∥

L(H)
≤
∥

∥

∥(η −A)
−r
∥

∥

∥

L(H)
eηtηt(1−r) + 1

≤
∥

∥

∥(η −A)
−r
∥

∥

∥

L(H)
eηtη (T + 1) + 1

≤
(

∥

∥

∥(η −A)
−1
∥

∥

∥

L(H)
+ 1

)

eηT (η + 1) (T + 1)

for every t ∈ (0, T ] and every r ∈ [0, 1].
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We also would like to note the following remark.

Remark 1. Let Y : [0, T ]×Ω → HS(U0, H) be a predictable stochastic process
and let r ∈ [0,∞). Then we obtain eAtYs(ω) ∈ ∩u∈[0,∞)Vu for all ω ∈ Ω, s ∈
[0, T ] and all t ∈ (0, T ] since the semigroup is analytic (see Assumption 1). In

particular,
∫ t

0
E
∥

∥eA(t−s)Ys

∥

∥

2

HS(U0,Vr)
ds < ∞ for all t ∈ [0, T ] implies that the

stochastic process
∫ t

0
eA(t−s)Ys dWs, t ∈ [0, T ], has a Vr-valued adapted modifi-

cation.

Using Lemma 1, Lemma 2 and Remark 1 we now present the proof of The-
orem 1.

Proof of Theorem 1. The real number R ∈ (0,∞) given by

R := 1 +
∥

∥

∥(η −A)−1
∥

∥

∥

L(H)
+ ‖F (0)‖H + sup

v,w∈H
v 6=w

‖F (v)− F (w)‖H
‖v − w‖H

+ ‖B(0)‖HS(U0,H) + sup
v,w∈H
v 6=w

‖B(v)−B(w)‖HS(U0,H)

‖v − w‖H

is used throughout this proof. Due to Assumptions 1-3 the number R is indeed
finite. Moreover, let Vr for r ∈ [0,∞) be the R-vector space of equivalence
classes of Vr-valued predictable stochastic processes Y : [0, T ] × Ω → Vr that
satisfy

sup
t∈[0,T ]

E ‖Yt‖pVr
< ∞ (35)

where two stochastic processes lie in one equivalence class if and only if they
are modifications of each other. As usual we do not distinguish between a pre-
dictable stochastic process Y : [0, T ]×Ω → Vr satisfying (35) and its equivalence
class in Vr for r ∈ [0,∞). Then we equip these spaces with the norms

‖Y ‖Vr,u
:= sup

t∈[0,T ]

(

eut ‖Yt‖Lp(Ω;Vr)

)

for all Y ∈ Vr, u ∈ R and all r ∈ [0,∞). Note that the pair
(

Vr, ‖·‖Vr,u

)

is

an R-Banach space for every u ∈ R and every r ∈ [0,∞). In the next step we
consider the mapping Φ : Vα → Vα given by

(ΦY )t := eAtξ +

∫ t

0

eA(t−s)F (Ys) ds+

∫ t

0

eA(t−s)B(Ys) dWs P-a.s. (36)

for every t ∈ [0, T ] and every Y ∈ Vα. In the following we show that Φ : Vα → Vα

given by (36) is well defined.
To this end note that Assumptions 1 and 4 yield that

(

eAtξ
)

t∈[0,T ]
is an

adapted Vγ-valued stochastic process with continuous sample paths. Hence,
(

eAtξ
)

t∈[0,T ]
is a Vγ ⊂ Vα-valued predictable stochastic process (see Proposition

3.6 (ii) in [3]). Additionally, we have

sup
t∈[0,T ]

E
∥

∥eAtξ
∥

∥

p

Vγ
≤ sup

t∈[0,T ]

(

∥

∥eAt
∥

∥

p

L(H)
E ‖ξ‖pVγ

)

≤ epηT · E ‖ξ‖pVγ
< ∞, (37)
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which shows that
(

eAtξ
)

t∈[0,T ]
is indeed in Vγ ⊂ Vα.

Moreover, Lemma 1 yields

∫ t

0

E

∥

∥

∥e
A(t−s)F (Ys)

∥

∥

∥

Vγ

ds ≤
∫ t

0

∥

∥

∥(η −A)
γ
eA(t−s)

∥

∥

∥

L(H)
E ‖F (Ys)‖H ds

≤
∫ t

0

∥

∥

∥(η −A)
γ
e(A−η)(t−s)

∥

∥

∥

L(H)
eηTR (1 + E ‖Ys‖H) ds

≤ eηTR

(∫ t

0

(t− s)
−γ

ds

)

(

1 + sup
s∈[0,T ]

E ‖Ys‖H

)

and Jensen’s inequality therefore implies

∫ t

0

E

∥

∥

∥
eA(t−s)F (Ys)

∥

∥

∥

Vγ

ds ≤ R2eηT
(∫ t

0

s−γ ds

)

(

1 + sup
s∈[0,T ]

E ‖Ys‖Vα

)

≤ R2eηTT (1−γ)

(1− γ)

(

1 + sup
s∈[0,T ]

‖Ys‖Lp(Ω;Vα)

)

< ∞

for all t ∈ [0, T ] and all Y ∈ Vα. Therefore, Remark 1 above shows that
∫ t

0
eA(t−s)F (Ys) ds, t ∈ [0, T ], is a well defined Vγ-valued (and in particular

Vα-valued) adapted stochastic process for every Y ∈ Vα. Moreover, we have

∥

∥

∥

∥

∫ t2

0

eA(t2−s)F (Ys) ds−
∫ t1

0

eA(t1−s)F (Ys) ds

∥

∥

∥

∥

Lp(Ω;Vr)

≤
∥

∥

∥

∥

∫ t2

t1

eA(t2−s)F (Ys) ds

∥

∥

∥

∥

Lp(Ω;Vr)

+

∥

∥

∥

∥

(

eA(t2−t1) − I
)

∫ t1

0

eA(t1−s)F (Ys) ds

∥

∥

∥

∥

Lp(Ω;Vr)

≤
∫ t2

t1

∥

∥

∥(η −A)
r
eA(t2−s)

∥

∥

∥

L(H)
‖F (Ys)‖Lp(Ω;H) ds

+
∥

∥

∥(η −A)
(r−γ−ε)

(

eA(t2−t1) − I
)∥

∥

∥

L(H)

∫ t1

0

∥

∥

∥e
A(t1−s)F (Ys)

∥

∥

∥

Lp(Ω;Vγ+ε)
ds

and Lemma 2 thus shows
∥

∥

∥

∥

∫ t2

0

eA(t2−s)F (Ys) ds−
∫ t1

0

eA(t1−s)F (Ys) ds

∥

∥

∥

∥

Lp(Ω;Vr)

≤
∫ t2

t1

∥

∥

∥(η −A)
r
e(A−η)(t2−s)

∥

∥

∥

L(H)
eηT ‖F (Ys)‖Lp(Ω;H) ds

+ReηT (η + 1) (T + 1) (t2 − t1)
(γ+ε−r)

∫ t1

0

∥

∥

∥eA(t1−s)F (Ys)
∥

∥

∥

Lp(Ω;Vγ+ε)
ds

for every t1, t2 ∈ [0, T ] with t1 ≤ t2, ε ∈ [0, 1− γ), r ∈ [0, γ] and every Y ∈ Vα.
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Therefore, Lemma 1 gives
∥

∥

∥

∥

∫ t2

0

eA(t2−s)F (Ys) ds−
∫ t1

0

eA(t1−s)F (Ys) ds

∥

∥

∥

∥

Lp(Ω;Vr)

≤ eηT
∫ t2

t1

(t2 − s)
−r ‖F (Ys)‖Lp(Ω;H) ds

+Re2ηT (η + 1) (T + 1) (t2 − t1)
(γ+ε−r)

∫ t1

0

(t1 − s)
−(γ+ε) ‖F (Ys)‖Lp(Ω;H) ds

and
∥

∥

∥

∥

∫ t2

0

eA(t2−s)F (Ys) ds−
∫ t1

0

eA(t1−s)F (Ys) ds

∥

∥

∥

∥

Lp(Ω;Vr)

≤ ReηT
(∫ t2

t1

(t2 − s)−r
ds

)

(

1 + sup
s∈[0,T ]

‖Ys‖Lp(Ω;H)

)

+R2e2ηT (η + 1) (T + 1)
T (1−γ−ε)

(1− γ − ε)

[

1 + sup
s∈[0,T ]

‖Ys‖Lp(Ω;H)

]

(t2 − t1)
(γ+ε−r)

for every t1, t2 ∈ [0, T ] with t1 ≤ t2, ε ∈ [0, 1− γ), r ∈ [0, γ] and every Y ∈ Vα.
This shows
∥

∥

∥

∥

∫ t2

0

eA(t2−s)F (Ys) ds−
∫ t1

0

eA(t1−s)F (Ys) ds

∥

∥

∥

∥

Lp(Ω;Vr)

≤ ReηT

(1− γ)

(

1 + sup
s∈[0,T ]

‖Ys‖Lp(Ω;H)

)

(t2 − t1)
(1−r)

+R2e2ηT (η + 1) (T + 1)
T (1−γ−ε)

(1− γ − ε)

[

1 + sup
s∈[0,T ]

‖Ys‖Lp(Ω;H)

]

(t2 − t1)
(γ+ε−r)

and finally

∥

∥

∥

∥

∫ t2

0

eA(t2−s)F (Ys) ds−
∫ t1

0

eA(t1−s)F (Ys) ds

∥

∥

∥

∥

Lp(Ω;Vr)

≤ R3e2ηT (η + 2) (T + 1)2

(1− γ − ε)

(

1 + sup
s∈[0,T ]

‖Ys‖Lp(Ω;Vα)

)

(t2 − t1)
(γ+ε−r)

(38)

for every t1, t2 ∈ [0, T ] with t1 ≤ t2, ε ∈ [0, 1 − γ), r ∈ [0, γ] and every
Y ∈ Vα. Proposition 3.6 (ii) in [3] thus yields that the stochastic process
∫ t

0
eA(t−s)F (Ys) ds, t ∈ [0, T ], has a modification in Vγ ⊂ Vα for every Y ∈ Vα.
In the next step Lemma 1 gives

∫ t

0

E

∥

∥

∥eA(t−s)B(Ys)
∥

∥

∥

2

HS(U0,Vγ)
ds

≤
∫ t

0

∥

∥

∥(η −A)(γ−α)
eA(t−s)

∥

∥

∥

2

L(H)
E ‖B(Ys)‖2HS(U0,Vα) ds

≤ 2c2e2ηT
∫ t

0

(t− s)−2(γ−α)
(

1 + E ‖Ys‖2Vα

)

ds
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and thus
∫ t

0

E

∥

∥

∥eA(t−s)B(Ys)
∥

∥

∥

2

HS(U0,Vγ)
ds

≤ 2c2e2ηT
(∫ t

0

s2(α−γ) ds

)

(

1 + sup
s∈[0,T ]

E ‖Ys‖2Vα

)

≤ 2c2e2ηTT (1+2α−2γ)

(1 + 2α− 2γ)

(

1 + sup
s∈[0,T ]

E ‖Ys‖2Vα

)

< ∞

for every t ∈ [0, T ] and every Y ∈ Vα. This shows that
∫ t

0
eA(t−s)B(Ys) dWs,

t ∈ [0, T ], is a well defined Vγ-valued (and in particular Vα-valued) adapted
stochastic process for every Y ∈ Vα (cf. the heuristic calculation (6) in the in-
troduction). Moreover, the Burkholder-Davis-Gundy type inequality in Lemma
7.7 in [3] gives
∥

∥

∥

∥

∫ t2

0

eA(t2−s)B(Ys) dWs −
∫ t1

0

eA(t1−s)B(Ys) dWs

∥

∥

∥

∥

Lp(Ω;Vr)

≤
∥

∥

∥

∥

∫ t2

t1

eA(t2−s)B(Ys) dWs

∥

∥

∥

∥

Lp(Ω;Vr)

+

∥

∥

∥

∥

(

eA(t2−t1) − I
)

∫ t1

0

eA(t1−s)B(Ys) dWs

∥

∥

∥

∥

Lp(Ω;Vr)

≤ p

(∫ t2

t1

∥

∥

∥eA(t2−s)B(Ys)
∥

∥

∥

2

Lp(Ω;HS(U0,Vr))
ds

)

1
2

+ p
∥

∥

∥(η −A)
(r−γ−ε)

(

eA(t2−t1) − I
)∥

∥

∥

L(H)

[∫ t1

0

∥

∥

∥eA(t1−s)B(Ys)
∥

∥

∥

2

Lp(Ω;HS(U0,Vγ+ε))
ds

]

1
2

and Lemma 2 shows
∥

∥

∥

∥

∫ t2

0

eA(t2−s)B(Ys) dWs −
∫ t1

0

eA(t1−s)B(Ys) dWs

∥

∥

∥

∥

Lp(Ω;Vr)

≤ p

(∫ t2

t1

∥

∥

∥(η −A)
(r−α)

eA(t2−s)
∥

∥

∥

2

L(H)
‖B(Ys)‖2Lp(Ω;HS(U0,Vα)) ds

)

1
2

+ pReηT (η + 1) (T + 1) (t2 − t1)
(γ+ε−r)

·
(∫ t1

0

∥

∥

∥(η −A)
(γ+ε−α)

eA(t1−s)
∥

∥

∥

2

L(H)
‖B(Ys)‖2Lp(Ω;HS(U0,Vα)) ds

)

1
2

and Lemma 1 therefore implies
∥

∥

∥

∥

∫ t2

0

eA(t2−s)B(Ys) dWs −
∫ t1

0

eA(t1−s)B(Ys) dWs

∥

∥

∥

∥

Lp(Ω;Vr)

≤ peηT
(∫ t2

t1

∥

∥

∥(η −A)
(r−α)

e(A−η)(t2−s)
∥

∥

∥

2

L(H)
‖B(Ys)‖2Lp(Ω;HS(U0,Vα)) ds

)

1
2

+ pRe2ηT (η + 1) (T + 1) (t2 − t1)
(γ+ε−r) (39)

·
(∫ t1

0

(t1 − s)
2(α−γ−ε) ‖B(Ys)‖2Lp(Ω;HS(U0,Vα)) ds

)

1
2
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for every t1, t2 ∈ [0, T ] with t1 ≤ t2, ε ∈ [0, 12 + α − γ), r ∈ [0, γ] and every
Y ∈ Vα. In the case r ∈ [α, γ] we have

∥

∥

∥(η −A)
(r−α)

e(A−η)s
∥

∥

∥

L(H)
≤ s(α−r) (40)

for all s ∈ (0, T ] (see Lemma 1) and in the case r ∈ [0, α) we have

∥

∥

∥(η −A)(r−α)
e(A−η)s

∥

∥

∥

L(H)
≤
∥

∥

∥(η −A)(r−α)
∥

∥

∥

L(H)
≤ R (41)

for all s ∈ (0, T ]. Using (40) and (41) in (39) hence shows

∥

∥

∥

∥

∫ t2

0

eA(t2−s)B(Ys) dWs −
∫ t1

0

eA(t1−s)B(Ys) dWs

∥

∥

∥

∥

Lp(Ω;Vr)

≤ peηT

(

∫ (t2−t1)

0

(

s2(α−r) +R2
)

ds

)
1
2
(

sup
s∈[0,T ]

‖B(Ys)‖Lp(Ω;HS(U0,Vα))

)

+ pRe2ηT (η + 1) (T + 1) (t2 − t1)
(γ+ε−r)

(∫ t1

0

s2(α−γ−ε) ds

)

1
2

·
(

sup
s∈[0,T ]

‖B(Ys)‖Lp(Ω;HS(U0,Vα))

)

for every t1, t2 ∈ [0, T ] with t1 ≤ t2, ε ∈ [0, 12 + α − γ), r ∈ [0, γ] and every
Y ∈ Vα. Therefore, we obtain

∥

∥

∥

∥

∫ t2

0

eA(t2−s)B(Ys) dWs −
∫ t1

0

eA(t1−s)B(Ys) dWs

∥

∥

∥

∥

Lp(Ω;Vr)

≤ pe2ηT

(

(t2 − t1)
( 1

2+α−r)
√
1 + 2α− 2γ

+R (t2 − t1)
1
2

)(

sup
s∈[0,T ]

‖B(Ys)‖Lp(Ω;HS(U0,Vα))

)

+
pRe2ηT (η + 1) (T + 1)

2

√
1 + 2α− 2γ − 2ε

(t2 − t1)
(γ+ε−r)

(

sup
s∈[0,T ]

‖B(Ys)‖Lp(Ω;HS(U0,Vα))

)

and hence
∥

∥

∥

∥

∫ t2

0

eA(t2−s)B(Ys) dWs −
∫ t1

0

eA(t1−s)B(Ys) dWs

∥

∥

∥

∥

Lp(Ω;Vr)

≤ 2pRe2ηT (T + 1)
√

1
2 + α− γ − ε

(

sup
s∈[0,T ]

‖B(Ys)‖Lp(Ω;HS(U0,Vα))

)

(t2 − t1)
min(γ+ε−r, 12 )

+
pRe2ηT (η + 1) (T + 1)3

√

1
2 + α− γ − ε

[

sup
s∈[0,T ]

‖B(Ys)‖Lp(Ω;HS(U0,Vα))

]

(t2 − t1)
min(γ+ε−r, 12 )

for every t1, t2 ∈ [0, T ] with t1 ≤ t2, ε ∈ [0, 12 + α − γ), r ∈ [0, γ] and every
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Y ∈ Vα. Finally, we deduce
∥

∥

∥

∥

∫ t2

0

eA(t2−s)B(Ys) dWs −
∫ t1

0

eA(t1−s)B(Ys) dWs

∥

∥

∥

∥

Lp(Ω;Vr)

(42)

≤ pRe2ηT (η + 3) (T + 1)3
√

1
2 + α− γ − ε

(

sup
s∈[0,T ]

‖B(Ys)‖Lp(Ω;HS(U0,Vα))

)

(t2 − t1)
min(γ+ε−r, 12 )

for every t1, t2 ∈ [0, T ] with t1 ≤ t2, ε ∈ [0, 12+α−γ), r ∈ [0, γ] and every Y ∈ Vα.

Proposition 3.6 (ii) in [3] thus yields that
∫ t

0
eA(t−s)B(Ys) dWs, t ∈ [0, T ], has

a modification in Vγ ⊂ Vα for every Y ∈ Vα and this finally shows the well
definedness of Φ : Vα → Vα in (36) (see (37), (38) and (42)).

In the next step we show that Φ : Vα → Vα is a contraction with respect
to ‖·‖Vα,u for an appropriate u ∈ R. The Banach fixed point theorem will then
yield the existence of a unique fixed point for Φ : Vα → Vα. More formally,
Lemma 7.7 in [3] gives

‖(ΦY )t − (ΦZ)t‖Lp(Ω;Vα)

≤
∥

∥

∥

∥

∫ t

0

eA(t−s) (F (Ys)− F (Zs)) ds

∥

∥

∥

∥

Lp(Ω;Vα)

+

∥

∥

∥

∥

∫ t

0

eA(t−s) (B(Ys)−B(Zs)) dWs

∥

∥

∥

∥

Lp(Ω;Vα)

≤
∫ t

0

∥

∥

∥(η −A)α eA(t−s)
∥

∥

∥

L(H)
‖F (Ys)− F (Zs)‖Lp(Ω;H) ds

+ p

(∫ t

0

∥

∥

∥eA(t−s) (B(Ys)−B(Zs))
∥

∥

∥

2

Lp(Ω;HS(U0,Vα))
ds

)

1
2

and the definition of R yields

‖(ΦY )t − (ΦZ)t‖Lp(Ω;Vα)

≤ ReηT
∫ t

0

∥

∥

∥(η −A)
α
e(A−η)(t−s)

∥

∥

∥

L(H)
‖Ys − Zs‖Lp(Ω;H) ds

+ pReηT
(∫ t

0

∥

∥

∥(η −A)
α
e(A−η)(t−s)

∥

∥

∥

2

L(H)
‖Ys − Zs‖2Lp(Ω;H) ds

)

1
2

for every t ∈ [0, T ] and every Y, Z ∈ Vα. Lemma 1 thus shows

‖(ΦY )t − (ΦZ)t‖Lp(Ω;Vα)

≤ ReηT
∫ t

0

(t− s)−α ‖Ys − Zs‖Lp(Ω;H) ds

+ pReηT
(∫ t

0

(t− s)
−2α ‖Ys − Zs‖2Lp(Ω;H) ds

)

1
2

≤ ReηT
(∫ t

0

(t− s)−α
e−us ds

)

‖Y − Z‖V0,u

+ pReηT
(∫ t

0

(t− s)
−2α

e−2us ds

)

1
2

‖Y − Z‖V0,u
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and Hölder’s inequality and the definition of R yield

‖(ΦY )t − (ΦZ)t‖Lp(Ω;Vα)

≤ pReηT
(√

T + 1
)

(∫ t

0

(t− s)
−2α

e−2us ds

)

1
2

‖Y − Z‖V0,u

≤ pR2eηT
(√

T + 1
)

(∫ t

0

(t− s)
−2α

e−2us

)

1
2

‖Y − Z‖Vα,u

for every t ∈ [0, T ], Y, Z ∈ Vα and every u ∈ R. Finally, we obtain

‖Φ(Y )− Φ(Z)‖Vα,u ≤ pR2eηT
(√

T + 1
)

(

∫ T

0

e2us

s2α
ds

)
1
2

‖Y − Z‖Vα,u

for every Y, Z ∈ Vα and every u ∈ R. This shows that Φ : Vα → Vα is a
contraction with respect to ‖·‖Vα,u

for a sufficiently small u ∈ (−∞, 0). Hence,
there is a unique X ∈ Vα with ΦX = X , i.e.

Xt = eAtξ +

∫ t

0

eA(t−s)F (Xs) ds+

∫ t

0

eA(t−s)B(Xs) dWs P-a.s. (43)

holds for every t ∈ [0, T ]. Moreover, since X ∈ Vα holds, (37), (38) and (42)
show that even X ∈ Vγ holds. Additionally, note that by Assumption 3

sup
t∈[0,T ]

E ‖B(Xt)‖pHS(U0,Vα) ≤ sup
t∈[0,T ]

E
[

cp
(

1 + ‖Xt‖Vα

)p]

≤ 2(p−1)cp

(

1 + sup
t∈[0,T ]

E ‖Xt‖pVα

)

< ∞ (44)

holds since (a+ b)
p ≤ 2(p−1) (ap + bp) holds for all a, b ∈ [0,∞).

It remains to establish the temporal continuity properties asserted in Theo-
rem 1. To this end note that Lemma 2 implies

∥

∥eAt2ξ − eAt1ξ
∥

∥

Lp(Ω;Vr)
(45)

=
∥

∥

∥
eAt1 (η −A)(r−γ)

(

eA(t2−t1) − I
)

(η −A)γ ξ
∥

∥

∥

Lp(Ω;H)

≤
∥

∥eAt1
∥

∥

L(H)

∥

∥

∥(η −A)
(r−γ)

(

eA(t2−t1) − I
)∥

∥

∥

L(H)
‖ξ‖Lp(Ω;Vγ )

(46)

≤ Re2ηT (η + 1) (T + 1) ‖ξ‖Lp(Ω;Vγ)
(t2 − t1)

(γ−r)

for every t1, t2 ∈ [0, T ] with t1 ≤ t2 and every r ∈ [0, γ]. Combining (38),
(42) and (45) then yields (10). Finally, (37), (38) and (42) show that Xt,

t ∈ [0, T ], is continuous with respect to (E ‖·‖pVγ
)

1
p . This completes the proof of

Theorem 1.
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