BV functions in a Gelfand triple and the stochastic reflection problem on a convex set of a Hilbert space *

Fonctions BV dans triplet de Gelfand et le probleme de reflexion sur un ensemble convexe d'un espace de Hilbert

Michael Röckner^a, Rongchan Zhu^b, Xiangchan Zhu^{c, †}

^aDepartment of Mathematics, University of Bielefeld, D-33615 Bielefeld, Germany, ^bInstitute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China, ^cSchool of Mathematical Sciences, Peking University, Beijing 100871, China

Abstract

In this note we introduce BV functions in a Gelfand triple, which is an extension of BV functions in [1], by using Dirichlet form theory. By this definition, we can consider the stochastic reflection problem associated with a self-adjoint operator A and a cylindrical Wiener process on a convex set Γ . We prove the existence and uniqueness of a stong solution of this problem when Γ is a regular convex set. The result is also extended to the non-symmetric case. Finally, we extend our results to the case when $\Gamma = K_{\alpha}$, where $K_{\alpha} = \{f \in L^{2}(0,1) | f \geq -\alpha\}, \alpha \geq 0$

Résumé.

Dans ce papier, on introduit des fonctions BV dans un triplet de Gelfand qui est une extension de fonctions BV dans [1] en utilizant la forme de Dirichlet. Par cette définition, on peut considérer le problème de réflexion stochastique associé a un opérateur auto-adjoint A et un processus de Wiener cylindrique sur un ensemble convexe Γ . Nous démontrons l'existence et l'unicité d'une solution forte de ce probleme si Γ et un ensemble convexe régulier. Le résultat est aussi étendu au cas non-symétrique. Finalement, nous utilisons les fonctions BV dans le cas $\Gamma = K_{\alpha}$, où $K_{\alpha} = \{f \in L^{2}(0,1) | f \geq -\alpha\}, \alpha \geq 0$.

1. Dirichlet form and BV functions—Given a real separable Hilbert space $H(\text{with scalar product } \langle \cdot, \cdot \rangle)$ and norm denoted by $|\cdot|$, assume that:

^{*}Research supported by 973 project, NSFC, key Lab of CAS, the DFG through IRTG 1132 and CRC 701 and the I.Newton Institute, Cambridge, UK

 $^{^\}dagger E$ -mail address: roeckner@mathematik.uni-bielefeld.de(M. Röckner), zhurongchan@126.com(R. C. Zhu), zhuxiangchan@126.com(X. C. Zhu)

Hypothesis 1.1. $A: D(A) \subset H \to H$ is a linear self-adjoint operator on H such that $\langle Ax, x \rangle \geq \delta |x|^2, \forall x \in D(A)$ for some $\delta > 0$. Moreover, A^{-1} is of trace class. $\{e_j\}$ is an orthonormal basis in H consisting of eigen-functions for A, that is, $Ae_j = \alpha_j e_j, j \in \mathbb{N}$, where $\alpha_j \geq \delta$.

In the following $D\varphi: H \to H$ is the Frêchet-derivative of a function $\varphi: H \to \mathbb{R}$. By $C_b^1(H)$ we shall denote the set of all bounded differentiable functions with continuous and bounded derivatives. For $K \subset H$, the space $C_b^1(K)$ is defined as the space of restrictions of all functions in $C_b^1(H)$ to the subset K. μ will denote the Gaussian measure in H with mean 0 and covariance operator $Q:=\frac{1}{2}A^{-1}$. For $\rho\in L_+^1(H,\mu)$, we consider $\mathcal{E}^\rho(u,v)=\frac{1}{2}\int_H\langle Du,Dv\rangle\rho(z)\mu(dz), u,v\in C_b^1(F),$ where $F=Supp[\rho\cdot\mu]$ and $L_+^1(H,\mu)$ denotes the set of all non-negative elements in $L^1(H,\mu)$. Let QR(H) be the set of all functions $\rho\in L_+^1(H,\mu)$ such that $(\mathcal{E}^\rho,C_b^1(F))$ is closable on $L^2(F;\rho\cdot\mu)$. Its closure is denoted by $(\mathcal{E}^\rho,\mathcal{F}^\rho)$.

Theorem 1.2. Let $\rho \in QR(H)$. Then $(\mathcal{E}^{\rho}, \mathcal{F}^{\rho})$ is a quasi-regular local Dirichlet form on $L^2(F; \rho \cdot \mu)$ in the sense of [6, IV Definition 3.1].

By virtue of Theorem 1.2 and [6], there exists a diffusion process $M^{\rho}=(X_t,P_z)$ on F associated with the Dirichlet form $(\mathcal{E}^{\rho},\mathcal{F}^{\rho})$. M^{ρ} will be called distorted OU process on F. Since constant functions are in \mathcal{F}^{ρ} and $\mathcal{E}^{\rho}(1,1)=0$, M^{ρ} is recurrent and conservative. Let $A_{1/2}(x):=\int_0^x (\log(1+s))^{1/2}ds, x\geq 0$ and let ψ be its complementary function, namely, $\psi(y):=\int_0^y (A'_{1/2})^{-1}(t)dt=\int_0^y (\exp(t^2)-1)dt$. Define $L(\log L)^{1/2}:=\{f|A_{1/2}(|f|)\in L^1\}, L^{\psi}:=\{g|\psi(c|g|)\in L^1 \text{ for some }c>0\}$ (cf.[7]). Let $c_j,j\in\mathbb{N}$, be a sequence in $[1,\infty)$. Define $H_1:=\{x\in H|\sum_{j=1}^\infty \langle x,e_j\rangle^2c_j^2<\infty\}$, equipped with the inner product $\langle x,y\rangle_{H_1}:=\sum_{j=1}^\infty c_j^2\langle x,e_j\rangle\langle y,e_j\rangle$. Then clearly $(H_1,\langle,\rangle_{H_1})$ is a Hilbert space such that $H_1\subset H$ continuously and densely. Identifying H with its dual we obtain the continuous and dense embeddings $H_1\subset H(\equiv H^*)\subset H_1^*$. It follows that $H_1(z,v)_{H_1^*}=\langle z,v\rangle_H\forall z\in H_1,v\in H$ and that (H_1,H,H_1^*) is a Gelfand triple. We also introduce a family of H-valued function on H by

$$(C_b^1)_{D(A)\cap H_1} = \{G : G(z) = \sum_{j=1}^m g_j(z)l^j, g_j \in C_b^1(H), l^j \in D(A) \cap H_1\}$$

Denote by D^* the adjoint of $D: C_b^1(H) \subset L^2(H,\mu) \to L^2(H,\mu;H)$. For $\rho \in L(\log L)^{1/2}(H,\mu)$, we put $V(\rho) := \sup_{G \in (C_b^1)_{D(A) \cap H_1, \|G\|_{H_1} \le 1}} \int_H D^*G(z)\rho(z)\mu(dz)$. A function ρ on H is called a BV function in the Gelfand triple (H_1, H, H_1^*) (denoted $\rho \in BV(H, H_1)$ in notation), if $\rho \in L(\log L)^{1/2}(H,\mu)$ and $V(\rho)$ is finite. When $H_1 = H = H_1^*$, this coincides with the definition of BV functions defined in [1] and clearly $BV(H, H) \subset BV(H, H_1)$. This definition is a modification of BV function in abstract Wiener space introduced in [3] and [4].

Theorem 1.3. (i) Suppose $\rho \in BV(H, H_1) \cap L^1_+(H, \mu)$, then there exist a positive finite measure $\|d\rho\|$ on H and a Borel-measurable map $\sigma_\rho: H \to H_1^*$ such that $\|\sigma_\rho(z)\|_{H_1^*} = 1 \|d\rho\| - a.e, V(\rho) = \|d\rho\|(H)$,

$$\int_{H} D^{*}G(z)\rho(z)\mu(dz) = \int_{H} {}_{H_{1}}\langle G(z), \sigma_{\rho}(z)\rangle_{H_{1}^{*}} \|d\rho\|(dz), \forall G \in (C_{b}^{1})_{D(A)\cap H_{1}}. \tag{1.1}$$

Further, if $\rho \in QR(H)$, $\|d\rho\|$ is \mathcal{E}^{ρ} -smooth, also, σ_{ρ} and $\|d\rho\|$ are uniquely determined. (ii) Conversely, if Eq.(1.1) holds for $\rho \in L(\log L)^{1/2}(H,\mu)$ and for some positive finite measure $\|d\rho\|$ and a map σ_{ρ} with the stated properties, then $\rho \in BV(H, H_1)$ and $V(\rho) = \|d\rho\|(H)$.

Theorem 1.4 Let $\rho \in QR(H) \cap BV(H, H_1)$ and consider the measure $||d\rho||$ and σ_{ρ} from Theorem 1.3(i). Then there is an \mathcal{E}^{ρ} -exceptional set $S \subset F$ such that $\forall z \in F \setminus S$, under P_z there exists an \mathcal{M}_{t^-} cylindrical Wiener process W^z , such that the sample paths of the associated distorted

OU-process M^{ρ} on F satisfy the following: for $l \in D(A) \cap H_1$

$$\langle l, X_t - X_0 \rangle = \int_0^t \langle l, dW_s^z \rangle + \frac{1}{2} \int_0^t H_1 \langle l, \sigma_\rho(X_s) \rangle_{H_1^*} dL_s^{\|d\rho\|} - \int_0^t \langle Al, X_s \rangle ds \ \forall t \ge 0 \ P_z - \text{a.s.}$$

Here $L_t^{\|d\rho\|}$ is the real valued PCAF associated with $\|d\rho\|$ by the Revuz correspondence.

2. Reflected OU process—Consider the situation when $\rho = I_{\Gamma}$, the indicator of a set.

Remark 2.1 We emphasize that if Γ is a convex closed set in H, then for each $z, l \in H$ the set $\{s \in \mathbb{R} | z + sl \in \Gamma\}$ is a closed interval in \mathbb{R} , whose indicator function hence trivially has the Hamza property. Hence, in particular, $I_{\Gamma} \in QR(H)$.

2.1 Reflected OU processes on regular convex set—Denote the corresponding objects σ_{ϱ} , $||dI_{\Gamma}||$ in Theorem 1.3(i) by $-\mathbf{n}_{\Gamma}$, $||\partial\Gamma||$, respectively.

Hypothesis 2.1.1 There exists a convex C^{∞} function $g: H \to R$ with g(0) = 0, g'(0) = 0, and D^2g strictly positively definite, that is, $\langle D^2g(x)h, h \rangle \geq \gamma |h|^2, \forall h \in H$ where $\gamma > 0$, such that

$$\Gamma = \{x \in H : g(x) \le 1\}, \partial \Gamma = \{x \in H : g(x) = 1\}$$

Moreover, we also suppose that D^2g is bounded on Γ . Finally, we also suppose that g and all its derivatives grow at infinity at most polynomially.

By using [2, Lemma 2.1], we have (1.1) for $\rho = I_{\Gamma}$ with $H = H_1$. By the continuity property of surface measure given in [5], we have the following two theorems.

Theorem 2.1.2 Assume Hypothesis 2.1.1. Then $I_{\Gamma} \in BV(H,H) \cap QR(H)$.

Theorem 2.1.3 Assume Hypothesis 2.1.1. Then there exists an \mathcal{E}^{ρ} -exceptional set $S \subset F$ such that $\forall z \in F \backslash S$, under P_z there exists an \mathcal{M}_{t^-} cylindrical Wiener process W^z , such that the sample paths of the associated reflected OU-process M^{ρ} on F with $\rho = I_{\Gamma}$ satisfy the following: for $l \in D(A) \cap H_1$

$$\langle l, X_t - X_0 \rangle = \int_0^t \langle l, dW_s^z \rangle - \frac{1}{2} \int_0^t \langle l, \mathbf{n}_{\Gamma}(X_s) dL_s^{\|\partial \Gamma\|} \rangle - \int_0^t \langle Al, X_s \rangle ds \ \forall t \ge 0P_z - a.e.$$

where $\mathbf{n}_{\Gamma} := \frac{Dg}{|Dg|}$ is the exterior normal to Γ , satisfying $\langle \mathbf{n}_{\Gamma}(x), x - y \rangle \geq 0$, for any $y \in \Gamma, x \in \partial \Gamma$ and $\|\partial \Gamma\| = \mu_{\partial \Gamma}$, where $\mu_{\partial \Gamma}$ is the surface measure induced by μ (c.f [2], [5]).

Let Γ satisfy Hypothesis 2.1.1 and A satisfy Hypothesis 1.1. Consider the following stochastic differential inclusion in the Hilbert space H,

$$\begin{cases} dX(t) + (AX(t) + N_{\Gamma}(X(t)))dt \ni dW(t), \\ X(0) = x \end{cases}$$
 (2.1)

where W(t) is a cylindrical Wiener process in H on a filtered probability space $(\Omega, \mathcal{F}, \mathcal{F}_t, P)$ and $N_{\Gamma}(x)$ is the normal cone to Γ at x.

Definition 2.1.4 A pair of continuous $H \times R$ valued and \mathcal{F}_t -adapted processes $(X(t), L(t)), t \in [0, T]$, is called a solution of (2.1) if the following conditions hold:

(i) $X(t) \in \Gamma, P - a.s.$ for all $t \in [0, T]$,

(ii) L is an increasing process with the property $\int_0^t I_{\partial\Gamma}(X_s(\omega))dL_s(\omega) = L_t(\omega), t \geq 0$ and we have for any $l \in D(A)$, $\langle l, X_t(\omega) - x \rangle = \langle l, W_t(\omega) - \int_0^t \mathbf{n}_{\Gamma}(X_s(\omega))dL_s(\omega) \rangle - \langle Al, \int_0^t X_s(\omega)ds \rangle$ where \mathbf{n}_{Γ} is the exterior normal to Γ , satisfying $\langle \mathbf{n}_{\Gamma}(x), x - y \rangle \geq 0, \forall y \in \Gamma, x \in \partial\Gamma$.

Theorem 2.1.5 If Γ satisfies Hypothesis 2.1.1, then there exists M, $I_{\Gamma} \cdot \mu(M) = 1$, such that for every $x \in M$, (2.1) has a pathwise unique continuous strong solution in the sense of Definition 2.1.4, such that $X(t) \in M$ for all $t \geq 0$ P_x -a.s.

Remark 2.1.6 We can extend all these results to non-symmetric Dirichlet forms obtained by first order perturbation of the above Dirichlet form.

2.2 Reflection OU processes on a class of convex sets—Now we consider the case when $H=L^2(0,1), \rho=I_{K_\alpha}$, where $K_\alpha=\{f\in H|f\geq -\alpha\}, \alpha\geq 0 \text{ and } A=-\frac{1}{2}\frac{d^2}{dr^2}$ with Dirichlet boundary condition on [0,1]. Take $c_j=(j\pi)^{\frac{1}{2}+\varepsilon}$ if $\alpha>0, c_j=(j\pi)^{\beta}$ if $\alpha=0$, where $\varepsilon\in(0,\frac{3}{2}]$ and $\beta\in(\frac{3}{2},2]$ respectively. By using [8, (1) (2), Theorem 5], we can prove the following theorem.

Theorem 2.2.1 $I_{K_{\alpha}} \in BV(H, H_1) \cap QR(H)$.

Remark 2.2.2 It has been proved by Guan Qingyang that $I_{K_{\alpha}}$ is not in BV(H, H). Since we have Theorem 2.2.1, we denote the corresponding objects σ_{ρ} , $||dI_{K_{\alpha}}||$ in Theorem 1.3 (i) by n_{α} , $|\sigma_{\alpha}|$, respectively.

Theorem 2.2.3 Let $\rho = I_{K_{\alpha}}$. Then there is an \mathcal{E}^{ρ} -exceptional set $S \subset F$ such that $\forall z \in F \backslash S$, under P_z there exists an \mathcal{M}_t - cylindrical Wiener process W^z , such that the sample paths of the associated distorted OU-process M^{ρ} on F satisfy the following: for $l \in D(A) \cap H_1$

$$\langle l, X_t - X_0 \rangle = \int_0^t \langle l, dW_s \rangle + \frac{1}{2} \int_0^t {}_{H_1} \langle l, n_\alpha(X_s) \rangle_{H_1^*} dL_s^{|\sigma_\alpha|} - \int_0^t \langle Al, X_s \rangle ds \ P_z - a.e.$$

Here, $L_t^{|\sigma_{\alpha}|}(\omega)$ is a real valued PCAF associated with $|\sigma_{\alpha}|$ by the Revuz correspondence, satisfying $I_{\{X_s+\alpha\neq 0\}}dL_s^{|\sigma_{\alpha}|}=0$, and for every $z\in F$, $P_z[X_t\in C_0[0,1]]$ for a.e. $t\in [0,\infty)=1$

Acknowledgement We thank Zhiming Ma for very helpful hints and comments.

References

- [1] L. Ambrosio, G.Da Prato, D. Pallara, BV functions in a Hilbert space with respect to a Gaussian measure, preprint
- [2] V. Barbu, G. Da Prato, and L. Tubaro, Kolmogorov equation associated to the stochastic reflection problem on a smooth convex set of a Hilbert spaces, *The Annals of Probability*. 4 (2009), 1427-1458
- [3] M. Fukushima, BV functions and Distorted Ornstein Uhlenbect Processes over the Abstract Wiener Space, *Journals of Functional Analysis.* **174** (2000), 227-249
- [4] M. Fukushima, and Masanori Hino, On the space of BV functions and a Related Stochastic Calculus in Infinite Dimensions, *Journals of Functional Analysis.* **183** (2001), 245-268
- [5] P. Malliavin, "Stochastic Analysis." Springer, Berlin,1997
- [6] Z. M. Ma, and M. Röckner, "Introduction to the Theory of (Non-symmetric) Dirichlet forms," Springer-Verlag, Berlin/Heidelberg/New York, 1992
- [7] M. M. Rao and Z. D. Ren, "Theory of Orlicz Spaces," Monographs and Textbooks in Pure and Applied Mathematics, Vol 146, Dekker, New York, 1991
- [8] L. Zambotti, Integration by parts formulae on convex sets of paths and applications to SPDEs with reflection, *Probability Theory Related Fields.* **123** (2002), 579-600