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Abstract. For a system of interacting quantum aniiarmonic (double-welled) oscillators (quantum anharmonic crystal), it is 
shown that a phase transition can cause the equilibrium dynamics of a given oscillator to be reducible. Fhis means that the 
oscillator prefers one of the wells. Sufficient conditions for this effect to occur at some temperature, or not to occur at all 
temperatures, are presented. 
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INTRODUCTION 

A one-dimensional anharmonic oscillator is described by the Hamiltonian 

H = H'^^^ + V{q) = ^p^ + ^q^ + V{ql fl > 0, (1) 

where m is the particle mass, and p and q are the particle momentum and displacement, respectively. The anharmonic 
potential is supposed to be of the form 

r 
V{q) = J,bsq^, biGR, br>0, Z)2,...,^-i > 0, r > 2. (2) 

s=l 

For bi < -a/2, the potential energy in (1) has two symmetric wells. In the classical case, the Hamiltonian dynamics 
of the oscillator with such a potential energy is reducible. Here this means that in the low-energy states the particle 
is trapped in one of the wells, which can be detected by an observer. In the quantum case, the Hamiltonian (1) is a 
self-adjoint and lower bounded linear operator acting in the physical Hilbert space S) = L^(R). Its spectrum consists 
entirely of simple eigenvalues E„,nGNo. Each of the corresponding normalized eigenfunctions \j/„ defines a state 

€BA^(0„{A) = {\I/„,A\I/„)^, (3) 

where £ is the algebra of all bounded linear operators A :S) ^ S). The elements of £ are often called observables. The 
(Heisenberg) dynamics of the oscillator is described by the family {o ĵ̂ gR of maps o' : £ ^ £, where ? = time/fi^ and 

o' (^) = e\p{itH)A exp (-itH). (4) 

As o' o 0"* = 0̂ +"', that is, o'(o"'(^)) = a^^^{A), the family {o'jrgR is a group. Clearly, each state a)„ is pure and hence 
ergodic, which means that a)„oa' = Oh and the restriction of the family exp{itH), ? G R, to the subspace spanned by 
\j/„ is irreducible, see e.g. page 47 in [15]. This also means that the measurement in the computational basis {yj/n}nefk 
cannot indicate which well is preferred by the oscillator 

Suppose now that our quantum oscillator interacts with an infinite number of its copies, which constitute a crystal 
lattice, say Z^. Suppose also that the whole system is in thermal equilibrium. The aim of the present note is to show 
that a phase transition in the infinite system can cause a reducibility of the oscillator dynamics, which, in particular, 
means that it prefers one of the wells. 
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EQUILIBRIUM STATES 

The model 

As was already mentioned, we study an infinite system of interacting quantum oscillators (1), indexed by the vertices 
of the lattice Z^, v G N. This system is described by the formal Hamiltonian 

in which pi and qi are the momentum and displacement operators of the oscillator located at ^ G Z^, and H^ is a copy 
of (1) with p and q replaced by pi and qi, respectively. The interaction intensities Jgj; are supposed to be translation 
invariant and such that 

(i) / « , > 0 , (ii) / = X - / « ' < - - (6) 

The model defined by the Hamiltonian (5) is called a quantum anharmonic crystal. If in (5) one takes HY'' instead of 
Hi, the corresponding model is called a quantum harmonic crystal. The latter is stable if 

/ < a. (7) 

By writing A c Z^ we mean that A is a non-void and finite set of vertices. A sequence ^ of such sets is said to be 
cofinal if it is ordered by inclusion and exhausts the lattice, that is, each I belongs to a certain KGJ^. The Hamiltonian 
(5) has no direct mathematical meaning and is usually 'represented' by its local versions 

HA=-\j,Ju'qm'+J,Hi, K^Z". (8) 
^ tjleh teA 

In the sequel, a property related with a set A c Z^ will be called local, whereas global will always refer to a property 
of the whole infinity model. Each local Hamiltonian / /A is a self-adjoint lower bounded operator in S)A = -^^(R '^ ' ) , 

such that for any /3 > 0, 

ZA = traceexp(-/3//A) <°°- (9) 

Along with (8) one can also consider the harmonic local Hamiltonians H]!^\ However, the latter operators are lower 
bounded for all A c Z^ only if the stability condition (7) is satisfied. 

Local states and local Euclidean Gibbs measures 

Given A c Z^, the portion of oscillators located in A is described by the Hamiltonian / /A, which has a discrete spec-
(n) 

trum consisting entirely of eigenvalues of finite multiplicity i?^ , n G N. The corresponding normalized eigenfimctions 
(n) 

\f/j^' constitute a basis of the physical Hilbert space SJA- AS in the case of a single oscillator, the eigenfunctions define 
pure states 

UBA^4\A) = ix^^\Ax^^:^)^,, (10) 
whereas the dynamics of the observables is defined by the maps OA : Î A ^ I^A, ? G R , 

OA(̂ ) = exp(i//A0^exp(-i//A0- (H) 

Here and in (10), £A stands for the algebra of all bounded linear operators A:S)A^ S)A- The group {aAJreR describes 
the (reversible) dynamics of the considered portion of oscillators. We note, however, that this description ignores the 
existence and hence the effect of the oscillators located outside A. 

(n) 

Along with the states cô  % n G No, one can consider their convex combination with the coefficients proportional to 
A") exp(-/3£'^') for some /3 > 0. That is, such a state is 

CA 9 ^ - YAiA) = X cor(^) exp -/34"^ /ZA, 
n=0 ^ ^ 
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where ZA is as in (9). It can be viewed as the state of thermal equilibrium of the considered portion of oscillators at 
temperature T = l/fe/3. Obviously, 

7A(^) = trace(^^A), ^A = exp(-/3//A)/2A. (12) 

The state 7A has a property, which reflects a consistency of the thermodynamic behavior of the considered system with 
its dynamics described by the maps (11). This property is usually referred to as the KMS property relative to the group 
{lAi^eR' ^^^ P , 5, 7]. According to it, for each ^ , 5 G £A, there exists a function /k,B(z), analytic in the open strip 
{z G C I 0 < Imz < /3} and continuous on its closure, such that for all ? G R, 

/A,B{t) = rA{Aa'j,m, fA,B{t + ̂ fi) = U<{B)A). (13) 

One can show that for a fixed /3, 7A is the only KMS state on £A-
Given F G L°°(RI^I), the multiplication operator, which we also denote by F, acts in iJA as 

{F^){x)=F{x)^{x). 

Clearly, F G £A- Let OTA be the set of all such multiplication operators. It is a maximal abelian *-sub-algebra' of £A-
One can prove, see [12] or [2], Theorem 1.2.24 on page 72, that the linear span of the operators 

o^(^i)---a^(^«) (14) 

with all possible choices of n G N, ?i ,...,?„ G R, and Fi,...,F„ G TIA, is cr-weakly dense in the algebra £A- At the 
same time, the state 7A is normal and hence cr-weakly continuous, see [4], page 65. Thus, 7A is fully determined by its 
values on the products (14), that is, by the Green functions 

GFu-,F„(tu---,t„) = rA{al{Fi)---a']l{F„)). (15) 

The state 7A and the maps (11) can be extended to certain unbounded operators, among which we distinguish 
displacement operators qt, iG A, cf Proposition 1.2.14 in [2], page 70. Thus, we can also define the following Green 
functions 

G 1 . . . , 4 ( ? I , . . . , 4 ) = 7 A ( O 2 ( ^ « , ) - - - O ^ ( ^ 4 ) ) . (16) 

It turns out that the linear span of the products (14) is cr-weakly dense in £A if one takes Fi's from sets of multiplication 
operators smaller than the whole TIA. 

Definition 1: A set of operators ^ c TIA is said to be a complete family if the set of operators (14) with all possible 
choices of n G N, ?i,. . . , 4 G R, and Fi,...,F„ G^,is cr-weakly dense in £A- This is equivalent to the property that if 
CO is a state on £A such that for all n G N, ?i ,...,?„ G R, and Fi,...,F„G^, 

(o{aliFi)---a\iF,)} = G^^_P^itu...,tn), 

then ft) = 7A. 

It is known, see Theorem 1.3.26 on page 113 in [2] as weU as Lemma 2.6 in [13], that if Ŝ  is a family of multiplication 
operators by continuous functions which is closed under multiplication, contains the identity operator, and separates 
points, then it is complete. The latter property means that for every distinct x,y G R '^ ' , one finds F G^ such that 
the corresponding function takes distinct values on these x and y. By means of this fact we can prove the following 
statement. 

Proposition 1: Let QA be the family of multiplication operators by the functions 

Qx{x)=Q^v[^Y,hxfX (17) 

with all possible choices of rational Xi, iG A. Then QA is complete. 

OTA is a von Neumann algebra. 
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It is known, see Theorem 1.2.32, page 78 in [2] or Theorem 2.1 in [7], that the Green functions (15) can be considered 
as restrictions of functions, which we denote by Gp^p^{z\, ...,z„), analytic in the domain 

ig'̂  = {(zi,...,z„)GC« | 0< lmz i <Imz2<- - -<Imz„</3} , (18) 

and continuous on its closure ^ 2 . Moreover, for every n G N, the 'imaginary time' subset 

S!j^{0) = {(zi,...,z„) G ig*̂  I Rezi = • • • = Rez„ = 0} 

is a set of uniqueness for functions analytic in ^ 2 , which means that such two functions coincide if they coincide on 
^o(O). This fact is known as the multiple-time analyticity, cf Section 2 in [7]. Therefore, the Green functions (15), 
and hence the state 7A, are completely determined by the Matsubara (another name thermal Green) functions 

rA,...,K(Tl,...,T„) = G l . .(iTi,...,iT„) (19) 

trace /7jg-('^2-1'l)-HA . p^Q-{''i-''2)HA . . ./7jg-(l'«+l-'f«)ffA 
/ ^ A , 

def 
with 0 < Ti < • • • < T„ < Ti + /3 = T„+i and all possible choices of F\,...,Fn in a complete family. The central 
element of the Euclidean approach^ is the representation of the Matsubara functions (19) in the form 

-F,,...,F,. ( T l , . . . , T „ ) = /_ ^ i ( ^ ( T i ) ) - - - ^ „ ( ^ ( T „ ) ) M A ( d ^ ) , (20) 

where ÛA is a certain probability measure on the space SA of paths t, = {t,t)teh, each t,t being a continuous function 
<5f: [0, /3] ^ R, such that î ^ (0) = <5f (/3). By standard arguments, the measure ÛA is uniquely determined by the integrals 
(20). Since the Matsubara functions uniquely determine the state 7A, the representation (20) establishes a one-to-one 
correspondence between the local Gibbs states 7A and the measures ÛA, called local Euclidean Gibbs measures. 

Let 9}t̂  be the set of multiplication operators by functions, which take real nonnegative values only. The represen­
tation (20) immediately yields that for /^i,. . . ,/̂ „ G ^X, one has 

rl. . . ,F„(Ti,. . . ,T„)>o (21) 

for aU Ti,..., T„. Furthermore, if Tp^p^ is identically zero, then all Fi, i = 1,... ,n, are equal to the zero operator. 
This property can also be obtained from the fact that 7A is a faithful state, that is, 7A(^) = 0 implies that A is the 
zero operator. Summing up all these facts we conclude that the tuple (£A, 9KA, {nAJreR, 7A) is a stochastically positive 
KMSsystem, cf Definition 3.2 in [7]. 

Global states of thermal equilibrium 

In the Euclidean approach which we follow in this note, the description of thermodynamic phases of the model 
(5) existing at a given /3 is made by constructing the set of tempered Euclidean Gibbs measures ^l, see [2, 9, 14]. 

By definition, each û G ^o is a probability measure on the space of tempered configurations S', which solves the so-
called equilibrium (another name Dobrushin-Lanford-Ruelle) equation^, formulated with the aid of the Hamiltonians 
(8). It can be shown, see Theorem 3.1 in [14] and Theorem 3.3.6, page 216 of [2], that for the model (5) the set ^o is 
non-void. Furthermore, as the equilibrium equation is linear, for any ii\ and ii2 which solve this equation, the measure 
li = OcDi + (1 - 0)co2, 9 G [0,1], also solves it. Therefore, the set ^o is convex. An element û G ̂ o is said to be 

extreme if the fact that ji = Ojii + (1 - 6)^2 for some 111,112 G ̂ o and 9 G [0,1], imphes that 11 = 111 or ji = 112-
Clearly, if ^o is a singleton, its only element is extreme. Extreme elements of ^o, possessing an additional property. 

^ A complete exposition of this approach can be found in [2], see also [14]. 
^ See Chapter 2 of [6] for more details. 
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correspond to equilibrium phases of the model (5) in the following sense"̂ . Take any F G OTA^ for some K^(^lr. Then 
this F can also be considered as an element of every OTA such that AQ is contained in A. The corresponding function 
/^ just depends on fewer variables. In view of this, we define 

9?I= U 2^A, 

and call 9}t the set of all local multiplication operators. For any /^i,. . . ,/̂ „ G 9}t, TI, ..., T„ G [0,/3], and û G ^l, the 
integrals, cf (20), 

rĵ _̂ _^^(Ti,...,T„) = y^/i(x(Ti))---^„(x(T„))M(dx), (22) 

are called Matsubara functions corresponding to this û. We say that û is x-shift invariant if 

rj^,,...A(^i + ^ - - - ^ « + ^) = r^,,...A(^i---^«)> (23) 

for way F\,...,Fn G Wl and any t? G [0,/3], where the addition T, + t ? , / = l , . . . ,n, is of modulo /3. Let ^ J '̂ ^ be the 

subset of ^o consisting of extreme and T-shift invariant measures. Then each jXG'^l '̂ ^ is said to be a state of thermal 
equilibrium of the quantum crystal described by the Hamiltonian (5). It is defined by its Matsubara functions (22) 
corresponding to all possible choices of n G N and local multiplication operators F\,...,FnGW. Such states are also 
called equilibrium phases, existing at a given value of/3. As was noted above, our model (5) has at least one such 
phase for any /3 > 0. If for a given /3, the set ^o consists of a single element, this element is automatically extreme 
and T-shift invariant. Hence, in this case there exists only one equilibrium phase. As is commonly accepted, see [6], 
phase transitions are associated with the existence of multiple equilibrium phases at the same temperature. Thus, we 
say that the model (5) has a phase transition if the set '^l ^^^ contains more than one element for some /3 > 0. In this 
case, the model has also a first-order phase transition in the sense of L. D. Landau, see Theorem 6.1.9, page 289 in [2], 
or Theorem 3.3 in [8]. 

For a given IQ G Z ^ and x = (x^)fgzv, we set s^^ (x) = (x̂ +f J^gzv; that is, s^^ is a spatial shift. Then, for the same IQ 
and F GW, the 'shifted' operator Oi^ (F) is set to be the multiplication operator by the function 

ae,^iF)ix)=F{seJx)). 

Clearly, Ggf^ (F) G M for any IQ. A given jx G'^l ^^ is said to be translation invariant if for every ô G Z^, 

'^Fl,...J'n='^ai^{Fi),...,ai^{F„y (24) 

for all choices of n G N and F\,...,Fn GWI. With this regard, we note that elements of the set '^l '̂ ^ need not be 

translation invariant. However, if ^J ^'^ is a singleton, its unique element is translation invariant, which follows from 
the translation invariance of the model (5). 

With the aid of Theorem 3.3.1, page 214 in [2], see also Theorem 3.2 in [14], one can show that for every jXG'^l '̂ ,̂ 
cf (19), 

M f i : ^ / ' a , ( T ) M ( d ^ ) < - . (25) 

By (23), Mf is independent of T; it is also independent of ^ if û is translation invariant. In the latter case, we say that 
M^ is the spontaneous polarization^ in state ii. 

It can be shown, see Theorem 3.7.4, page 240 in [2], or Theorem 3.8 in [14], that the set '^l ^^^ contains two 

translation invariant elements, jx^, such that for any I and jx G'^l '̂ ,̂ 

M^'' < Mf < M^^, M^'^ = -M^^. (26) 

'^ See Chapter 7 of [6]. 
' We employ here a 'ferroelectric' terminology - in a 'ferromagnetic' one, jVf is a magnetization. 
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Furthermore, ^o ^^ is a singleton if and only if M^ = M^ = 0. The measures jj.^, and hence their Matsubara 

functions, can be obtained in a certain way, which sheds additional light on their properties. For a certain y^ = 
(yf)tez^,yf G R, and A c Z^, we set, see (8), 

H^=H^-J,yfqt. (27) 
leA 

Let Y^ be the states defined according to (12) with //A replaced by H^. For these states, we define the Green functions 
(15) and hence the Matsubara functions (19), which we denote by Tp' p . It can be proven, see Section 7.2 in [14], 
that for any cofinal sequence J^, one can choose sequences {y'^}KeJ^ in such a way that for any F\,...,FnGW, 

hm r^;^ p = T't p , (28) 

„± „± 

where the convergence is such that the functions Fp p^ can be continued to fimctions Gp ^̂  (zj , . . . ,z„), analytic in 

the domain (18). By (28), and (15) and (11) we easily get the following two properties of Tp^ p^: 

(i) for any J = l , . . . n - 1, 
„± 

^Fi,...,Fj_l,Fj,Fj+i,Fj+2,-,F„i'^^^- • •' ' ^ i - 1 ' '^ i ' ' ^ i ' ' ^ i+2 ' • • • ' '^«) (29) 

= ^Fi,-;Fj_l,Fjj+i,Fj+2,-;F„('''i'- • •' ' ^ ; - l ' '^7' '^7+2' • • • ' '^«) ' 

where/^^'j+i =Fj-Fj+i; 

(ii) for any 7 = 1,... n, if/ '̂ is the identity operator, then 

- Fi,...,Fj_i,Fj,Fj+i,...,Fn VH , • • •, V - J ' V ' V ' ^ R F ,_ , .F,-.F,-^, F„ ( T 1 , • • •, T , ' - l , T,', T,', • • •, T„) ( 3 0 ) 

„± 

THE RESULTS 

In this section, we show that the dynamics of the portion of oscillators in a given A c Z'̂ , which are in thermal 
equilibrium with the rest of the crystal, can be reducible. This naturally includes the case of a single oscillator, 
i.e., the case of A = {I}. The dynamics of such a portion is described in the following way. For a C*-algebra of 
multiplication operators 91 c OTA, which is cr-weakly dense in OTA, we construct a stochastically positive KMS 
system (21,5B,{o'};gR,co) and define aninjective homomorphism ;r: 9 1 ^ 5B such that for any n G N,/^i,...,/^„ G 91, 
the Matsubara function F^^^. K(FY obtained by the multiple-time analyticity, cf (19), from the Green fimction 

G':^p^)_^^P^){t^,...,tn) = (o{d^{n{F,))•••d"{n{Fn))} (31) 

satisfies the condition 

'^n(Fi),...,n(F„) = ^Fi,-,F„^ (32) 

for some û G ̂ o ^^'^. The precise formulation of this result is given in the next statement. 

Theorem: Let 91 be the norm closure of the linear span of the family QA defined in Proposition L Then for 
both of jx^ G ̂ o ^^^, there exists a stochastically positive KMS system (2l±,5B±,{o±}r6R,co±) and an injective 
homomorphism ;r: 91 ̂  5B±, such that (32) holds for allnGN andF\,... ,/̂ „ G 91. 

The proof of this statement readily follows from Theorem 3.1 of [3] by the properties (29) and (30), and by the fact 
that the linear span of QA is countable and hence 91 is a separable Banach space. The meaning of this mathematical 

result can be interpreted as follows. By (31) and (32) the Matsubara functions Tp p of the phases ix can be 
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„± 
analytically continued to real time. This yields the corresponding Green functions Gp^ p^, which, as we know. 
completely determine the dynamics of the system in the corresponding equilibrium state. This also relates to the 
functions (16). In particular, one can get the two-point correlation functions Gq^^q ,{t,t'). Then if the states ;U+ and^u 
are distinct, these functions are also distinct. Since 

the oscillators in A distinguish between the wells in this case, which can be experimentally detected. Of course, the 
reducibility can also be observed by measuring the spontaneous polarization, see (26). 

The rest of the note will be devoted to presenting sufficient conditions for ji^ =^ ji^ for some /3, or for ji^ = ji^ for 
aU/3. 

Set 

<^{k)=f^[l-COSkj], k={ku...,ky)G{-7t,7t]\ (33) 

and 

Note that the latter integral is finite whenever v > 3. One can show, see e.g. Proposition 3.7 in [8], that for v > 4, 

In the formulation of our results, we employ the function / : [0, +°°) ^ [ 0 , 1 ) defined implicitly by 

/(MtanhM) = M '̂ tanhM, /(O) = 0. 

This function is differentiable, convex, and monotonously decreasing to zero, such that uf{u) -^ 1. For u > 6, 
f{u) « 1/M to five-place accuracy. For a > 0, we set 

(p{u) = uaf{u/a), M > 0. (36) 

By computing cp' from the definition of / , one shows that cp is monotonously increasing to a^ as M ^ +°°. For 
b2,---,br, the same as in (2), we set 

m-±^J^b.f-\ t>o. (31) 

Suppose that bi < - a / 2 , that is the potential energy of the oscillator (1) has two wells. Then the equation 

a + 2bi+(P{t) = 0 (38) 

has a unique positive solution 4. Suppose that the interaction intensities Ju' in (5) are positive for |̂  - / | = 1. Thus, 
def 

/ = Jw > 0 for such i, I'. The next statement was proven in [8] as Theorem 3.1, see also Theorem 6.3.8, page 310 in 
[2]. 

Proposition 2: Let v > 3 and the following condition be satisfied 

^mtlv.J>.y{v), (39) 

where m is the particle mass. Then ji^ ^ l^^ for every /3 > /3*, where the latter is the unique solution of the equation 

2v//3/(/3/4m4) = ^ ( v ) , 

and f is as in (36). 
As was mentioned above, the spectrum of the Hamiltonian (1) consists entirely of simple eigenvalues En, n G NQ. 
Thus, the following parameter 

A = min(£'„-£•„_!) (40) 
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is positive. It can be shown, see [11] or Theorem 1.1.60, page 59 in [2], that A is a continuous function of m, such that 

as m ^ 0, where r is the same as in (2). Therefore, r = mA^ is also a continuous function of m, 
such that r r^ AQ»J^(' '^')/( ' '+') as m ^ 0. In the harmonic case, r = a; thereby, in the anharmonic case it can be called a 
quantum rigidity of the osciUator. The next statement (as Theorem 3.13) was proven in [14], see also Theorem 7.3.1, 
page 346 in [2]. 

Proposition 3: The set of Euclidean Gibbs measures ^l consists of exactly one element if the following stability 

condition is satisfied, cf (7), 
mt^>J. (41) 

Note that the above result is independent of/3. As r > 2, see (2), the condition (41) always holds for sufficiently small 
m. In [1], see also [10], such an effect was called quantum stabilization. It can be shown, see [11], that A < l/lmt^., 
where 4 is the same as in Proposition 2. If Jui = / for | ̂  — ^' | = 1, and Ju' = 0 for | ̂  — /1 > 1, then the condition (41) 
implies 

%mtlvJ < 1, 

which can be compared with (39), see (35). 
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