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Abstract

We describe a general derivation scheme for the Vlasov-type equations
for Markov evolutions of particle systems in continuum. This scheme is
based on a proper scaling of corresponding Markov generators and has an
algorithmic realization in terms of related hierarchical chains of correla-
tion functions equations. Several examples of realization of the proposed
approach in particular models are presented.
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1 Introduction

Dynamical processes in many-body systems are often approximately described
by kinetic equations, see, e.g., the excellent reviews by H.Spohn [35], [36]. A fa-
mous example of such equations is the Vlasov equation for a plasma, see e.g.
[33], [34]. The Vlasov equation in physics describes the Hamiltonian motion of
an infinite particle system in the mean-field scaling limit, thereby taking into
account the influence of weak long-range forces. The convergence in the Vlasov
scaling limit was shown by W.Braun and K.Hepp [4] (for the Hamiltonian dy-
namics) and by R.L.Dobrushin [6] (for more general deterministic dynamical
systems). Note that the resulting Vlasov-type equations for particle densities
are considered in classes of finite measures (in the weak form) or integrable func-
tions (in the strong form). The latter means, in fact, that we are restricted to
the case of finite-volume systems or systems with zero mean density in an infinite
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volume. A detailed analysis of Vlasov-type equations for integrable functions
presented in the recent paper by V.V.Kozlov [30].

The main aim of this paper is to study Vlasov-type scaling for some classes
of stochastic evolutions in continuum. Here we have in mind, first of all, spa-
tial birth-and-death Markov processes (e.g., continuous Glauber dynamics) and
hopping particles Markov evolutions (e.g., Kawasaki dynamics in continuum).
Note that the approaches to the Vlasov scaling mentioned above seems to be
quite difficult to apply to stochastic dynamics considered here (even in a finite
volume) due to some essential reasons. For these processes, the possibility of
their descriptions in terms of proper stochastic evolutional equations for particle
motion is generally speaking absent. This, together with a possible variation of
the particle number during the evolution, is an essential trouble in the applica-
tion of the general Dobrushin’s method.

Therefore, we shall look for an alternative approach to derive the kinetic
Vlasov-type equations from stochastic dynamics. Contrary to the classical
derivation of the Vlasov-type kinetic equations from the Hamiltonian dynamics,
we do not prove the law of large numbers for the corresponding processes. We do
not even need to show the existence of the corresponding microscopic rescaled
processes. Our main idea is to study the evolution of states (distributions) of the
system in terms of the corresponding chain of hierarchical equations. As pointed
out by H.Spohn [35], the correct Vlasov limit can be easily guessed from the
BBGKY hierarchy for the Hamiltonian system. Such heuristic derivation does
not assume the integrability condition for the density, but until now, it could
not be made rigorous due to the lack of detailed information about the proper-
ties of solutions to the BBGKY hierarchy. We would like to stress that different
classes of initial data are not only mathematical tools for the rigorous study of
the problem. They describe different physical situations in related microscopic
models. The zero average density systems were considered in [1] by means of
heuristic limit transition in the corresponding hierarchical equations for corre-
lation functions. The framework we are working in is nonzero average density
which is related to the case of bounded correlation functions. Our approach
is based on Spohn’s observation applied in a new dynamical framework. More
precisely, we already know that many stochastic evolutions in continuum admit
effective descriptions in terms of hierarchical equations for correlation functions
which generalize the BBGKY hierarchy from Hamiltonian to Markov setting,
see, e.g., [17] and the references therein. Moreover, these hierarchical equations
are often the only available technical tools for the construction of corresponding
dynamics in several models [21], [23], [14].

In Section 3 we propose a general scheme for the Vlasov scaling of stochastic
dynamics for interacting particle systems in continuum. This scaling is actually
of mean-field type which is adopted to preserve the spatial structure. Addition-
ally, we scale the class of initial distributions at the level of the corresponding
correlation functions. The scheme we use has also a clear interpretation in terms
of scaled Markov generators. An application of the considered scaling leads to
the limiting hierarchy which possesses a chaos preservation property. Namely, if
we start from a Poissonian (non-homogeneous) initial state of the system, then
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this property will be preserved during the time evolution. The main observa-
tion which appears at this point is the following. A special structure of the
interaction in the resulting virtual Vlasov system gives a non-linear evolutional
equation for the density of the evolving Poisson state. It is for the first time that
macroscopic Vlasov-type equations are obtained from the microscopic infinite-
particle systems in an unbounded region of non-zero average density using the
corresponding system of hierarchical equations.

Section 4 is devoted to the application of the general scheme to a wide
class of birth-and-death and hopping particles processes. We state conditions
on structural coefficients in the corresponding Markov generators which give
a weak convergence of the rescaled generators to the limiting generators of the
related Vlasov hierarchies. As a result, we may compute the limiting Vlasov-
type equations for the considered processes leaving the question about the strong
convergence of the hierarchy solutions open. In Section 5 we present a collec-
tion of particular examples of the resulting Vlasov equations for several concrete
models. Note that each of the examples considered creates its own non-linear
equation for the density in the discussed scaling. These equations include con-
volution operators as a common point of their structure. To our knowledge, any
general results concerning properties of solutions to such kind of non-linear evo-
lutional equation are absent. This is an exiting mathematical problem strongly
motivated by concrete models of interacting particle dynamics.

Many problems of the (mathematical) population biology concerns interac-
tions between populations of different types. Our technic, in fact, covers this
case. In particular, one can derive spatially inhomogeneous non-linear equations
of the Lotka–Volterra type in the Vlasov-type scaling. On the other hand, one
may apply this approach to the so-called continuous Ising model (Potts model).
We explain these results in forthcoming papers [10], [13].

Note that control of convergence of the Vlasov scalings for the solutions to
considered hierarchies is a difficult technical problem which shall be analyzed
for every particular model separately. Our results in this direction concern
two classes of models: Glauber dynamics in continuum and a spatial ecological
model (so-called Bolker–Dieckmann–Law–Pacala model). Due to their techni-
cally complicated character, these results will be published in separated works
[12], [11].

2 Basic facts and notation

Let B(Rd) be the family of all Borel sets in Rd, d ≥ 1; Bb(Rd) denotes the
system of all bounded sets in B(Rd).

The configuration space over space Rd consists of all locally finite subsets
(configurations) of Rd, namely,

Γ = ΓRd :=
{
γ ⊂ Rd

∣∣ |γ ∩ Λ| <∞, for all Λ ∈ Bb(Rd)
}
. (2.1)

The space Γ is equipped with the vague topology, i.e., the minimal topology for
which all mappings Γ 3 γ 7→

∑
x∈γ f(x) ∈ R are continuous for any continuous
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function f on Rd with compact support; note that the summation in
∑
x∈γ f(x)

is taken over finitely many points of γ which belong to the support of f . In
[20], it was shown that Γ with the vague topology may be metrizable and be-
comes a Polish space (i.e., complete separable metric space). Corresponding to
this topology, the Borel σ-algebra B(Γ) is the smallest σ-algebra for which all
mappings Γ 3 γ 7→ |γΛ| ∈ N0 := N ∪ {0} are measurable for any Λ ∈ Bb(Rd).
Here γΛ := γ ∩ Λ, and | · | means the cardinality of a finite set.

The space of n-point configurations in an arbitrary Y ∈ B(Rd) is defined by

Γ
(n)
Y :=

{
η ⊂ Y

∣∣ |η| = n
}
, n ∈ N.

We set also Γ
(0)
Y := {∅}. As a set, Γ

(n)
Y may be identified with the symmetrization

of
Ỹ n =

{
(x1, . . . , xn) ∈ Y n

∣∣ xk 6= xl if k 6= l
}
.

Hence, one can introduce the corresponding Borel σ-algebra, which we de-

note by B(Γ
(n)
Y ). The space of finite configurations in an arbitrary Y ∈ B(Rd)

is defined by

Γ0,Y :=
⊔
n∈N0

Γ
(n)
Y .

This space is equipped with the topology of disjoint unions. Therefore, one can
introduce the corresponding Borel σ-algebra B(Γ0,Y ). In the case of Y = Rd we

will omit the index Y in the notation, namely, Γ0 := Γ0,Rd , Γ(n) := Γ
(n)

Rd .

The restriction of the Lebesgue product measure (dx)n to
(
Γ(n),B(Γ(n))

)
we

denote by m(n). We set m(0) := δ{∅}. The Lebesgue–Poisson measure λ on Γ0

is defined by

λ :=

∞∑
n=0

1

n!
m(n). (2.2)

For any Λ ∈ Bb(Rd) the restriction of λ to ΓΛ := Γ0,Λ will be also denoted
by λ. The space

(
Γ,B(Γ)

)
is the projective limit of the family of spaces{

(ΓΛ,B(ΓΛ))
}

Λ∈Bb(Rd)
. The Poisson measure π on

(
Γ,B(Γ)

)
is given as the

projective limit of the family of measures {πΛ}Λ∈Bb(Rd), where πΛ := e−m(Λ)λ

is the probability measure on
(
ΓΛ,B(ΓΛ)

)
. Here m(Λ) is the Lebesgue measure

of Λ ∈ Bb(Rd).
For any measurable function f : Rd → R we define a Lebesgue–Poisson

exponent

eλ(f, η) :=
∏
x∈η

f(x), η ∈ Γ0; eλ(f, ∅) := 1. (2.3)

Then, by (2.2), for f ∈ L1(Rd, dx) we obtain eλ(f) ∈ L1(Γ0, dλ) and∫
Γ0

eλ(f, η)dλ(η) = exp

{∫
Rd
f(x)dx

}
. (2.4)
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A set M ∈ B(Γ0) is called bounded if there exists Λ ∈ Bb(Rd) and N ∈ N
such that M ⊂

⊔N
n=0 Γ

(n)
Λ . The set of bounded measurable functions with

bounded support we denote by Bbs(Γ0), i.e., G ∈ Bbs(Γ0) if G �Γ0\M= 0 for
some bounded M ∈ B(Γ0). Any B(Γ0)-measurable function G on Γ0, in fact, is a
sequence of functions

{
G(n)

}
n∈N0

where G(n) is a B(Γ(n))-measurable function

on Γ(n). We consider also the set Fcyl(Γ) of cylinder functions on Γ. Each
F ∈ Fcyl(Γ) is characterized by the following relation: F (γ) = F �ΓΛ

(γΛ) for
some Λ ∈ Bb(Rd).

There is the following mapping from Bbs(Γ0) into Fcyl(Γ), which plays the
key role in our further considerations:

KG(γ) :=
∑
ηbγ

G(η), γ ∈ Γ, (2.5)

where G ∈ Bbs(Γ0), see, e.g., [19, 31, 32]. The summation in (2.5) is taken
over all finite subconfigurations η ∈ Γ0 of the (infinite) configuration γ ∈ Γ;
we denote this by the symbol, η b γ. The mapping K is linear, positivity
preserving, and invertible, with

K−1F (η) :=
∑
ξ⊂η

(−1)|η\ξ|F (ξ), η ∈ Γ0. (2.6)

Here and in the sequel inclusions like ξ ⊂ η hold for ξ = ∅ as well as for ξ = η.
We denote the restriction of K onto functions on Γ0 by K0.

For any fixed C > 1 we consider the following Banach space of B(Γ0)-
measurable functions

LC :=

{
G : Γ0 → R

∣∣∣∣ ‖G‖C :=

∫
Γ0

|G(η)|C |η|dλ(η) <∞
}
. (2.7)

A measure µ ∈ M1
fm(Γ) is called locally absolutely continuous with respect

to (w.r.t. for short) the Poisson measure π if for any Λ ∈ Bb(Rd) the projection
of µ onto ΓΛ is absolutely continuous w.r.t. the projection of π onto ΓΛ. By
[19], in this case, there exists a correlation functional kµ : Γ0 → R+ such that
for any G ∈ Bbs(Γ0) the following equality holds∫

Γ

(KG)(γ)dµ(γ) =

∫
Γ0

G(η)kµ(η)dλ(η). (2.8)

The restrictions k
(n)
µ of this functional on Γ

(n)
0 , n ∈ N0 are called correlation

functions of the measure µ. Note that k
(0)
µ = 1.

We recall now without a proof the special case of the well-known technical
lemma (cf., [28]) which plays very important role in our calculations.

Lemma 2.1. For any measurable function H : Γ0 × Γ0 × Γ0 → R∫
Γ0

∑
ξ⊂η

H (ξ, η \ ξ, η) dλ (η) =

∫
Γ0

∫
Γ0

H (ξ, η, η ∪ ξ) dλ (ξ) dλ (η) (2.9)

only if both sides of the equality make sense.
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3 General scheme

In this section we introduce the notion of the Vlasov scaling for Markov dynam-
ics of IPS on configuration spaces.

We assume that our system evolves in time due to some mechanism whose
details will be specified for concrete models. Suppose that the initial distribution
of particles in our system is a measure µ0 ∈ M1

fm(Γ), with correlation function
k0. Let µt ∈ M1(Γ) be the distribution of particles at time t > 0 and kt be its
correlation function. One should note that if evolution (µt)t≥0 is ruled by an à
priori given Markov process on Γ (i.e. if such a Markov process exists), then µt
is a solution to the following Kolmogorov equation:

dµt
dt

= L∗µt

µt
∣∣
t=0

= µ0,

where L∗ is the operator adjoint to the generator of functional evolution, i.e.,
dFt
dt

= LFt

Ft
∣∣
t=0

= F0.

Of course, one should be careful about the functional and measure spaces to
have all the above-introduced operators properly defined. We postpone careful
definitions of all these objects until the introduction of concrete models.

Now, assume that the evolution of correlation functions (kt)t≥0, correspond-
ing to (µt)t≥0, first of all exists, and is the solution of the following evolutional
equation 

dkt
dt

= L4kt

kt
∣∣
t=0

= k0

(3.1)

where L4 is the generator of a semigroup T4t on some functional space which
includes all bounded functions (or bounded with some weight) almost every-
where (a.e.) w.r.t. the Lebesgue–Poisson measure λ. In many applications this
space may be taken to be KC :=

{
k : Γ0 → R

∣∣ k · C−|η| ∈ L∞(λ)
}

for some
fixed C > 1. Let us stress that (3.1) is nothing else but a hierarchical system
of equations corresponding to the Markov generator considered. This system
has the same meaning as the BBGKY hierarchy in the case of Hamiltonian
dynamics.

The first important step on the way to construct the Vlasov scaling concerns
the proper rescaling of the initial state of the system. Or, equivalently, in the
language of correlation functions it means the proper rescaling of the initial
conditions of (3.1).

More precisely, at the beginning we rescale k0 with parameter ε > 0 in such

a way that the resulting functions k
(ε)
0 as ε→ 0 behave as follows:

k
(ε)
0, ren(η) := ε|η|k

(ε)
0 (η)→ r0(η), ε→ 0, η ∈ Γ0, (3.2)
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where the function r0 is a subject of choice for concrete examples and aims. In
general, it has to be a bounded function also (or bounded with some weight)
a.e. w.r.t. the Lebesgue–Poisson measure.

Remark 3.1. In the case of r0(η) = eλ(ρ0, η), η ∈ Γ0, ρ0 : Rd → (0,+∞) the
assumption about the rescaling of the initial condition means heuristically the

following: µ
(ε)
0, ren → πρ0

, where µ
(ε)
0, ren has a correlation function ε|η|k

(ε)
0 (η).

It is clear that such a rescaling of the initial solution for (3.1) leads to a
singular function w.r.t. ε > 0. In applications, this fact can be interpreted as
the growth of density of the system with ε→ 0.

We have to consider (and it is our second step) some proper scaling of the
generator in (3.1):

L4 7−→ L4ε . (3.3)

The concrete type of this scaling will depend on L4. In the next sections we
consider several types of generators and corresponding scalings. Suppose that
there exists a solution of the functional evolution

dk
(ε)
t

dt
= L4ε k

(ε)
t

k
(ε)
t

∣∣
t=0

= k
(ε)
0

(3.4)

We expect (and this will be shown in the concrete models for the concrete
scalings in forthcoming papers) that this solution will be also singular w.r.t.
ε > 0, hence, this solutions will be in functional spaces depending on ε.

Moreover, we should choose the type of scaling (3.3) which guarantees that

the order of this singularity will be the same for the initial function k
(ε)
0 . Namely

(and it is our third step on the way to realize the Vlasov scaling) we consider,
cf. (3.2),

k
(ε)
t, ren(η) := ε|η|k

(ε)
t (η), η ∈ Γ0, (3.5)

and we want to show that

k
(ε)
t, ren(η)→ rt(η), ε→ 0, η ∈ Γ0. (3.6)

In fact, (3.5) means that we consider a renormalized version of the evolution
equation (3.4): 

dk
(ε)
t, ren

dt
= L4ε,renk

(ε)
t, ren

k
(ε)
t, ren

∣∣
t=0

= k
(ε)
0, ren

(3.7)

where
L4ε,ren = ε|η|L4ε ε

−|η|. (3.8)

Therefore, informally, we want to show that the solution of the evolution
equation (3.7) converges (in a proper sense) to some function rt which satisfies
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the Vlasov hierarchy 
drt
dt

= V 4rt

rt
∣∣
t=0

= r0

(3.9)

Recall again that the choice of the scaling (3.3) is prescribed by the model.
Having applications in mind, it is important to consider the case of r0(η) =
eλ(ρ0, η) and the scaling (3.3) which leads to rt of the same type, i.e.,

rt(η) = eλ(ρt, η), η ∈ Γ0.

The latter means the so-called chaos preservation property of the Vlasov hier-
archy. Equation (3.9) in this case implies, in general, a non-linear equation for
ρt:

∂

∂t
ρt(x) = υ(ρt)(x), x ∈ Rd, (3.10)

which we will call the Vlasov-type equation.
To describe this scheme in a more analytical way, we use the language of

semigroups. Suppose that we know the mechanism of the evolution of our system
given by the Markov pre-generator L. Let L be defined at least on functions from
Fcyl (Γ) and L̂ = K−1LK be the corresponding descend mapping on functions
from Bbs (Γ0). Let us fix the duality between functions on Γ0

〈〈G, k〉〉 =

∫
Γ0

G (η) k (η) dλ (η) , (3.11)

and consider the mapping L4 being the dual to L̂ w.r.t. (3.11).
Assume that L can be extended to a generator L. We want to construct a

scaling of the generator L, say, Lε, ε > 0, such that the scheme described above
will be covered. Assume that we have a semigroup T̂ε(t) with a generator L̂ε =
K−1LεK in some functional space over Γ0. Consider the dual semigroup T4ε (t)
which corresponds (in a proper sense) to L4ε . As we said before, we consider an

initial condition of (3.4) with a singularity in ε, namely, k
(ε)
0 (η) ∼ ε−|η|r0(η),

ε → 0, η ∈ Γ0 with some function r0, independent of ε. First of all, we have
to choose such a scaling L 7→ Lε for which T4ε (t) preserves the order of the
singularity:

(T4ε (t)k
(ε)
0 )(η) ∼ ε−|η|rt(η), ε→ 0, η ∈ Γ0. (3.12)

And the most important is that the dynamics r0 7→ rt should preserve the
Lebesgue–Poisson exponents: if r0(η) = eλ(ρ0, η) then rt(η) = eλ(ρt, η), where
ρt is satisfied (3.10).

Now let us close our construction with the evolution of states in this scheme.
Let us consider for any ε > 0 the following mapping of functions on Γ0

(Rεr)(η) := ε|η|r(η). (3.13)

This mapping is “self-dual” w.r.t. duality (3.11), moreover, R−1
ε = Rε−1 . Then

we have k
(ε)
0 ∼ Rε−1r0, and we need rt ∼ RεT

4
ε (t)k

(ε)
0 ∼ RεT

4
ε (t)Rε−1r0.
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Therefore, we have to show that for any t ≥ 0 the operator family RεT
4
ε (t)Rε−1 ,

ε > 0 has a limiting (in a proper sense) operator U(t) as ε→ 0 and

U(t)eλ(ρ0) = eλ(ρt). (3.14)

But, informally, T4ε (t) = exp {tL4ε } and RεT
4
ε (t)Rε−1 = exp {tRεL4ε Rε−1}. In

fact, we need the existence of an operator V 4 such that exp {tRεL4ε Rε−1} →
exp {tV 4} =: U(t) for which (3.14) holds. Therefore, a heuristic way to produce
the scaling L 7→ Lε is to demand that

lim
ε→0

(
∂

∂t
eλ(ρt, η)− L4ε,reneλ(ρt, η)

)
= 0, η ∈ Γ0 (3.15)

if ρt is satisfied (3.10). The point-wise limit of L4ε,ren will be the natural candi-

date for V 4.
Sometimes, to show convergence of solutions of evolutional equations in some

functional spaces it is much simpler to work with the operators L̂ε,ren and V̂
which are pre-dual to L4ε,ren and V 4 w.r.t. the duality (3.11). Note that (3.8)
implies

L̂ε,ren = Rε−1L̂εRε, (3.16)

and V̂ should be the point-wise limit of L̂ε,ren.

4 Generators of birth, death, and hopping

Through out this section we consider generators of two types for continuous
models: the birth-and-death generator Lbad = L− + L+ and the hopping gen-
erator Lhop, where for any F ∈ Fcyl(Γ)(

L−F
)

(γ) :=
∑
x∈γ

d (x, γ \ x) [F (γ \ x)− F (γ)] , (4.1)

(
L+F

)
(γ) :=

∫
Rd
b (x, γ) [F (γ ∪ x)− F (γ)] dx, (4.2)

(LhopF ) (γ) :=
∑
x∈γ

∫
Rd
c (x, y, γ) [F (γ \ x ∪ y)− F (γ)] dy. (4.3)

Here b, d, c are measurable functions of their variables and, additionally, b and c
are locally integrable function of the first and second variables, correspondingly.
These conditions guarantee that (4.1)–(4.3) are well-defined on Fcyl(Γ) since for
any F ∈ Fcyl(Γ) there exists some Λ ∈ Bb(Rd) such that F (γ \ x) = F (γ) for
any x ∈ γΛc , F (γ ∪ x) = F (γ) for any x ∈ Λc, and F (γ \ x ∪ y) = F (γ) for any
x ∈ γΛc , y ∈ Λc; as result the sums in (4.1) and (4.3) are over finite set γΛ and
the integrals in (4.2) and (4.3) are over bounded set Λ.

We may denote L− = L−(d), L+ = L+(b), Lhop = Lhop(c). Assume that we
have some scaling of rates b, d, c, say, bε, dε, cε, correspondingly; ε > 0. Then,
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let us consider the following scaling of Lbad and Lhop:

Lbad, ε = L−(dε) + ε−1L+(bε), (4.4)

Lhop, ε = Lhop(cε). (4.5)

Remark 4.1. In a conservative system with a generator like (4.3) which preserves
the “number of particles” during an evolution the Vlasov-type scaling usually
means decreasing of the intensity of the interactions between elements of a
system together with increasing of correlations in the initial state. However, in
a non-conservative birth-and-death dynamics with a generator Lbad we need an
additional increasing of the birth intensity to preserve the influence of the birth
part in the limiting Vlasov hierarchy. Note that the necessity of the concrete
factor ε−1 in (4.4) is clear a posteriori only (see Proposition 4.5).

Suppose that there exists three families of measurable functions on Γ0: D
(ε)
x ,

B
(ε)
x , C

(ε)
x,y, ε > 0, {x, y} ⊂ Rd, such that

dε (x, γ) = (KD(ε)
x )(γ), bε (x, γ) = (KB(ε)

x )(γ),

cε (x, y, γ) = (KC(ε)
x,y)(γ \ x).

Note that, in general, Cx,y 6= Cy,x.

Proposition 4.2. The following formulas hold for any k ∈ Bbs(Γ0)(
L4bad,ε,renk

)
(η) =−

∫
Γ0

k (ξ ∪ η)
∑
x∈η

∑
ω⊂η\x

ε−|ξ|D(ε)
x (ω ∪ ξ) dλ (ξ) (4.6)

+

∫
Γ0

∑
x∈η

k (ξ ∪ (η \ x))
∑
ω⊂η\x

ε−|ξ|B(ε)
x (ω ∪ ξ) dλ (ξ) ;

(
L4hop,ε,renk

)
(η) =

∑
x∈η

∫
Rd

∫
Γ0

k (ξ ∪ (η \ x) ∪ y)
∑
ω⊂η\x

ε−|ξ|C(ε)
y,x (ω ∪ ξ) dλ (ξ) dy

−
∑
x∈η

∫
Γ0

k (ξ ∪ η)

∫
Rd

∑
ω⊂η\x

ε−|ξ|C(ε)
x,y (ω ∪ ξ) dydλ (ξ) .

(4.7)

Proof. The proof is straightforward. By [17], from (4.4) and (4.5) we have(
L4bad,εk

)
(η) =−

∫
Γ0

k (ξ ∪ η)
∑
x∈η

∑
ω⊂η\x

D(ε)
x (ω ∪ ξ) dλ (ξ)

+ ε−1

∫
Γ0

∑
x∈η

k (ξ ∪ (η \ x))
∑
ω⊂η\x

B(ε)
x (ω ∪ ξ) dλ (ξ) ;

(
L4hop,εk

)
(η) =

∑
y∈η

∫
Rd

∫
Γ0

k (ξ ∪ (η \ y) ∪ x)
∑
ω⊂η\y

C(ε)
x,y (ω ∪ ξ) dλ (ξ) dx

−
∫

Γ0

k (ξ ∪ η)
∑
y∈η

∑
ω⊂η\y

∫
Rd
C(ε)
y,x (ω ∪ ξ) dxdλ (ξ) .
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Then, (4.6) and (4.7) follow directly from (3.8).

Let ρt, t ≥ 0 be measurable functions on Rd. The explicit formula

∂

∂t
eλ (ρt, η) =

∑
x∈η

eλ (ρt, η \ x)
∂

∂t
ρt (x) (4.8)

together with our “demand” (3.15) induce us to state the following corollary.

Corollary 4.3. Let ρ be a measurable function on Rd. Then(
L4bad,ε,reneλ(ρ)

)
(η) (4.9)

=−
∑
x∈η

eλ (ρ, η \ x) ρ (x)

∫
Γ0

eλ (ρ, ξ)
∑
ω⊂η\x

ε−|ξ|D(ε)
x (ω ∪ ξ) dλ (ξ)

+
∑
x∈η

eλ (ρ, η \ x)

∫
Γ0

eλ (ρ, ξ)
∑
ω⊂η\x

ε−|ξ|B(ε)
x (ω ∪ ξ) dλ (ξ) ;

and (
L4hop,ε,reneλ(ρ)

)
(η) (4.10)

=
∑
x∈η

eλ (ρ, η \ x)

∫
Rd
ρ (y)

∫
Γ0

eλ (ρ, ξ)
∑
ω⊂η\x

ε−|ξ|C(ε)
y,x (ω ∪ ξ) dλ (ξ) dy

−
∑
x∈η

eλ (ρ, η \ x) ρ (x)

∫
Rd

∫
Γ0

eλ (ρ, ξ)
∑
ω⊂η\x

ε−|ξ|C(ε)
x,y (ω ∪ ξ) dλ (ξ) dy.

Proposition 4.4. Suppose that for any {x, y} ⊂ Rd, {ξ, η} ⊂ Γ0

∃ lim
ε→0

∑
ω⊂η

ε−|ξ|D(ε)
x (ω ∪ ξ) = lim

ε→0
ε−|ξ|D(ε)

x (ξ) =:DV
x (ξ), (4.11)

∃ lim
ε→0

∑
ω⊂η

ε−|ξ|B(ε)
x (ω ∪ ξ) = lim

ε→0
ε−|ξ|B(ε)

x (ξ) =:BVx (ξ), (4.12)

∃ lim
ε→0

∑
ω⊂η

ε−|ξ|C(ε)
x,y (ω ∪ ξ) = lim

ε→0
ε−|ξ|C(ε)

x,y (ξ) =:CVx,y(ξ). (4.13)

Then, our “demand” (3.15) holds. More precisely,

(V 4badk) (η) := lim
ε→0

(
L4bad,ε,renk

)
(η) (4.14)

=−
∫

Γ0

k (ξ ∪ η)
∑
x∈η

DV
x (ξ)dλ (ξ)

+

∫
Γ0

∑
x∈η

k (ξ ∪ (η \ x))BVx (ξ)dλ (ξ) ,
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and if ρt is the solution of the equation (3.10) with

υ(ρ)(x) = υbad(ρ)(x) =− ρ (x)

∫
Γ0

eλ (ρ, ξ)DV
x (ξ) dλ (ξ)

+

∫
Γ0

eλ (ρ, ξ)BVx (ξ) dλ (ξ) , (4.15)

then,
∂

∂t
eλ(ρt, η) =

(
V 4badeλ(ρt)

)
(η). Analogously,

(V 4hopk) (η) := lim
ε→0

(
L4hop,ε,renk

)
(η) (4.16)

=
∑
x∈η

∫
Rd

∫
Γ0

k (ξ ∪ (η \ x) ∪ y)CVy,x (ξ) dλ (ξ) dy

−
∑
x∈η

∫
Γ0

k (ξ ∪ η)

∫
Rd
CVx,y (ξ) dydλ (ξ) ,

and if ρt is the solution of the equation (3.10) with

υ(ρ)(x) = υhop(ρ)(x) =

∫
Rd
ρ (y)

∫
Γ0

eλ (ρ, ξ)CVy,x (ξ) dλ (ξ) dy (4.17)

− ρ (x)

∫
Γ0

eλ (ρ, ξ)

∫
Rd
CVx,y (ξ) dydλ (ξ) ,

then,
∂

∂t
eλ(ρt, η) =

(
V 4hopeλ(ρt)

)
(η).

Proof. The equalities (4.14) and (4.16) are direct consequences of the Proposi-
tion 4.2 and the conditions (4.11)–(4.13). Taking the limit in (4.9) and (4.10)
as ε→ 0 and using (4.8) we obtain the statement.

And now we present the explicit expressions for the corresponding operators
L̂ε,ren and V̂ .

Proposition 4.5. For any G ∈ Bbs(Γ0) the following formulas hold(
L̂bad, ε,renG

)
(η) =−

∑
x∈η

∑
ξ⊂η\x

G (ξ ∪ x)
∑
ω⊂ξ

ε−|(η\x)\ξ|D(ε)
x (ω ∪ (η \ x) \ ξ)

+
∑
ξ⊂η

∫
Rd
G (ξ ∪ x)

∑
ω⊂ξ

ε−|η\ξ|B(ε)
x (ω ∪ η \ ξ) dx; (4.18)

(
L̂hop, ε,renG

)
(η) =

∑
y∈η

∑
ξ⊂η\y

∫
Rd
G (ξ ∪ x)

∑
ω⊂ξ

ε−|(η\y)\ξ|C(ε)
y,x (ω ∪ (η \ y) \ ξ) dx

−
∑
ξ⊂η

G (ξ)
∑
x∈ξ

∑
ω⊂ξ\x

∫
Rd
ε−|η\ξ|C(ε)

x,y (ω ∪ η \ ξ) dy. (4.19)
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If, additionally, (4.11)–(4.13) hold, then,(
V̂badG

)
(η) =−

∑
ξ⊂η

G (ξ)
∑
x∈ξ

DV
x (η \ ξ)

+
∑
ξ⊂η

∫
Rd
G (ξ ∪ x)BVx (η \ ξ)dx; (4.20)

(
V̂hopG

)
(η) =

∑
y∈η

∑
ξ⊂η\y

∫
Rd
G (ξ ∪ x)CVy,x ((η \ y) \ ξ) dx

−
∑
ξ⊂η

G (ξ)
∑
x∈ξ

∫
Rd
CVx,y (η \ ξ) dy. (4.21)

Proof. We may obtain these formulas directly from the duality (3.11) and the Lemma 2.1.
Namely, for any G ∈ Bbs(Γ0) we have∫

Γ0

G (η)
(
L̂bad, ε,renk

)
(η) dλ (η)

=−
∫

Γ0

G (η)

∫
Γ0

k (ξ ∪ η)
∑
x∈η

∑
ω⊂η\x

ε−|ξ|D(ε)
x (ω ∪ ξ) dλ (ξ) dλ (η)

+

∫
Γ0

G (η)

∫
Γ0

∑
x∈η

k (ξ ∪ (η \ x))
∑
ω⊂η\x

ε−|ξ|B(ε)
x (ω ∪ ξ) dλ (ξ) dλ (η)

=−
∫

Γ0

∫
Γ0

∫
Rd
G (η ∪ x) k (ξ ∪ η ∪ x)

∑
ω⊂η

ε−|ξ|D(ε)
x (ω ∪ ξ) dxdλ (ξ) dλ (η)

+

∫
Γ0

∫
Γ0

∫
Rd
G (η ∪ x) k (ξ ∪ η)

∑
ω⊂η

ε−|ξ|B(ε)
x (ω ∪ ξ) dxdλ (ξ) dλ (η)

=−
∫

Γ0

∫
Rd

∑
η⊂ξ

G (η ∪ x) k (ξ ∪ x)
∑
ω⊂η

ε−|ξ\η|D(ε)
x (ω ∪ ξ \ η) dxdλ (ξ)

+

∫
Γ0

∑
η⊂ξ

∫
Rd
G (η ∪ x) k (ξ)

∑
ω⊂η

ε−|ξ\η|B(ε)
x (ω ∪ ξ \ η) dxdλ (ξ)

=−
∫

Γ0

∑
x∈ξ

∑
η⊂ξ\x

G (η ∪ x) k (ξ)
∑
ω⊂η

ε−|ξ\x\η|D(ε)
x (ω ∪ ξ \ x \ η) dλ (ξ)

+

∫
Γ0

∑
η⊂ξ

∫
Rd
G (η ∪ x) k (ξ)

∑
ω⊂η

ε−|ξ\η|B(ε)
x (ω ∪ ξ \ η) dxdλ (ξ) ,

which implies (4.18). To get (4.20) we may proceed in the same way or just let
ε→ 0 in (4.18). Then (4.11)–(4.12) together with equality∑

x∈η

∑
ξ⊂η\x

G (ξ ∪ x)DV
x ((η \ x) \ ξ) =

∑
ξ⊂η

G (ξ)
∑
x∈ξ

DV
x (η \ ξ)

provide (4.20).
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Analogously, for any G ∈ Bbs(Γ0) we have∫
Γ0

G (η)
(
L∗hop,ε,renk

)
(η) dλ (η)

=

∫
Γ0

∫
Rd
G (η ∪ x)

∫
Rd

∫
Γ0

k (ξ ∪ η ∪ y)
∑
ω⊂η

ε−|ξ|C(ε)
y,x (ω ∪ ξ) dλ (ξ) dxdydλ (η)

−
∫

Γ0

G (η)

∫
Γ0

k (ξ ∪ η)
∑
x∈η

∑
ω⊂η\x

∫
Rd
ε−|ξ|C(ε)

x,y (ω ∪ ξ) dydλ (ξ) dλ (η)

=

∫
Γ0

∫
Rd

∫
Rd

∑
η⊂ξ

G (η ∪ x) k (ξ ∪ y)
∑
ω⊂η

ε−|ξ\η|C(ε)
y,x (ω ∪ ξ \ η) dxdydλ (ξ)

−
∫

Γ0

∑
η⊂ξ

G (η) k (ξ)
∑
x∈η

∑
ω⊂η\x

∫
Rd
ε−|ξ\η|C(ε)

x,y (ω ∪ ξ \ η) dydλ (ξ)

=

∫
Γ0

k (ξ)

∫
Rd

∑
y∈ξ

∑
η⊂ξ\y

G (η ∪ x)
∑
ω⊂η

ε−|ξ\y\η|C(ε)
y,x (ω ∪ ξ \ y \ η) dxdλ (ξ)

−
∫

Γ0

k (ξ)
∑
η⊂ξ

G (η)
∑
x∈η

∑
ω⊂η\x

∫
Rd
ε−|ξ\η|C(ε)

x,y (ω ∪ ξ \ η) dydλ (ξ) ,

which implies (4.19). To get (4.21) we may proceed again in the same way or
just let ε→ 0 in (4.19) and use (4.13).

In the next Section we consider concrete examples for the operator L.

5 Examples

As we have seen in the previous section, the sufficient conditions (4.11)–(4.13)
have identical structure for death, birth and hopping parts. Therefore, to
present explicit expressions for L4ε,ren, V 4 and others we may proceed in the
following manner. Let a(γ) = (KA)(γ), where A is a measurable function on
Γ0; let aε = KAε be some scaling of a and A, ε > 0. Below we consider different
types of the function a (linear, exponential etc.) and present possible scalings
such that for any {η, ξ} ⊂ Γ0

∃ lim
ε→0

∑
ω⊂η

ε−|ξ|Aε (ω ∪ ξ) = lim
ε→0

ε−|ξ|Aε (ξ) =: AV (ξ). (5.1)

And after that we may apply this results to the our situation when Aε depends
additionally on x, y ∈ Rd.

1. Let a(γ) ≡ α ∈ R. Then A(η) = α · 0|η| and we don’t need scaling at all:
if aε = a then Aε(η) = α · 0|η| and (5.1) holds with AV (ξ) = α · 0|ξ|.
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2. Let a(γ) =
∑
x∈γ

f(x) with some f : Rd 7→ R. Then A(η) = χ{η={x}}f(x).

We consider the scaling f 7→ εf for which

lim
ε→0

∑
ω⊂η

ε−|ξ|Aε (ω ∪ ξ) = lim
ε→0

∑
ω⊂η

ε−|ξ|χ{ω∪ξ={x}}εf(x)

= lim
ε→0

ε−|ξ|χ{ξ={x}}εf(x) + lim
ε→0

∑
x∈η

εf(x) = χ{ξ={x}}f(x) =: AV (ξ).

3. Let a(γ) = exp
{∑
x∈γ

f(x)
}

, f : Rd 7→ R. Then A(η) = eλ(ef − 1, η). We

consider the same scaling f 7→ εf for which

lim
ε→0

∑
ω⊂η

ε−|ξ|Aε (ω ∪ ξ) = lim
ε→0

∑
ω⊂η

ε−|ξ|eλ
(
eεf − 1, ω ∪ ξ

)
= lim
ε→0

eλ

(
eεf − 1

ε
, ξ

)∑
ω⊂η

eλ
(
eεf − 1, ω

)
= lim
ε→0

eλ

(
eεf − 1

ε
, ξ

)
lim
ε→0

eλ
(
eεf , η

)
= eλ (f, ξ) =: AV (ξ).

4. Let a(γ) =
∑
x∈γ

∑
y∈γ\x

g(x, y) for some (non-symmetric, in general) function

g on Rd × Rd. Then

A (η) =
∑
x∈η

K−1
0

(∑
y∈·

g(x, y)
)

(η \ x) =
∑
x∈η

χ{η\x={y}}g (x, y)

=χ{η={x,y}}[g (x, y) + g (y, x)].

We consider the scaling g 7→ ε2g. Then

lim
ε→0

∑
ω⊂η

ε−|ξ|Aε (ω ∪ ξ)

= lim
ε→0

∑
ω⊂η

ε−|ξ|χ{ω∪ξ={x,y}}ε
2 [g (x, y) + g (y, x)]

= lim
ε→0

ε−2χ{ξ={x,y}}ε
2 [g (x, y) + g (y, x)]

=χ{ξ={x,y}} [g (x, y) + g (y, x)] =: AV (ξ).

5. Let a(γ) =
∑
x∈γ

f(x) exp
{ ∑
y∈γ\x

g(x, y)
}

, f : Rd 7→ R, g : Rd × Rd 7→ Rd.

Then
A (η) =

∑
x∈η

f (x) eλ
(
eg(x,·) − 1, η \ x

)
.
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Let us consider the scaling f 7→ εf , g 7→ εg. Then

lim
ε→0

∑
ω⊂η

ε−|ξ|Aε (ω ∪ ξ)

= lim
ε→0

∑
ω⊂η

ε−|ξ|
∑
x∈ω∪ξ

εf(x)eλ

(
eεg(x,·) − 1, ω ∪ ξ \ x

)
= lim
ε→0

∑
ω⊂η

∑
x∈ω

εf(x)eλ

(
eεg(x,·) − 1, ω \ x

)
eλ

(
eεg(x,·) − 1

ε
, ξ

)

+ lim
ε→0

∑
ω⊂η

∑
x∈ξ

ε−1εf(x)eλ

(
eεg(x,·) − 1, ω

)
eλ

(
eεg(x,·) − 1

ε
, ξ \ y

)

= lim
ε→0

∑
x∈ξ

f(x)eλ

(
eεg(x,·), η

)
eλ

(
eεg(x,·) − 1

ε
, ξ \ y

)
=
∑
x∈ξ

f (x) eλ (g (x, ·) , ξ \ x) =: AV (ξ).

6. Let a(γ) =
(∑
x∈γ

f(x)
)

exp
{∑
y∈γ

g(y)
}

, f, g : Rd 7→ R. Then

A (η) =
(
χ{·={x}}f(x) ? eλ (eg − 1, ·)

)
(η)

=
∑
x∈η

f(x)eλ (eg − 1, η) +
∑
x∈η

f(x)eλ (eg − 1, η \ x) .

Let us consider the scaling f 7→ εf , g 7→ εg. Then

lim
ε→0

∑
ω⊂η

ε−|ξ|Aε (ω ∪ ξ)

= lim
ε→0

∑
ω⊂η

ε−|ξ|
∑
x∈ω∪ξ

εf(x)eλ (eεg − 1, ω ∪ ξ)

+ lim
ε→0

∑
ω⊂η

ε−|ξ|
∑
x∈ω∪ξ

εf(x)eλ (eεg − 1, ω ∪ ξ \ x)

= lim
ε→0

∑
ω⊂η

∑
x∈ω

εf(x)eλ (eεg − 1, ω) eλ

(
eεg − 1

ε
, ξ

)
+ lim
ε→0

∑
ω⊂η

∑
x∈ξ

εf(x)eλ (eεg − 1, ω) eλ

(
eεg − 1

ε
, ξ

)

+ lim
ε→0

∑
ω⊂η

∑
x∈ω

εf(x)eλ (eεg − 1, ω \ x) eλ

(
eεg − 1

ε
, ξ

)
+ lim
ε→0

∑
ω⊂η

∑
x∈ξ

ε−1εf(x)eλ (eεg − 1, ω) eλ

(
eεg − 1

ε
, ξ \ x

)
=
∑
x∈ξ

f(x)eλ (g, ξ \ x) =: AV (ξ).
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Now we consider different types of birth-and-death and hopping models with
rates which have one of the forms considered above. Using explicit expressions
for A and scaling for each concrete model we have the expression for Aε (which

is D
(ε)
x , B

(ε)
x or C

(ε)
x,y) and may easily obtain expressions for L̂ε,ren and L4ε,ren

from (4.6) or (4.7). Using expressions for AV (which is DV
x , BVx or CVx,y) we

may obtain expression for V̂ and V 4 as well as the form of υ also from the
Propositions 4.4 and 4.5. Let us turn to these concrete examples. We present
the Vlasov-type equations only.

Example 5.1 (Surgailis model). This birth-and-death model describes indepen-
dent appearing and disappearing points from a configuration after exponentially
distributed random times. The corresponding dynamics was considered in [37],
[38]; the generator may be given for F ∈ Fcyl(Γ)

(LF )(γ) = m
∑
x∈γ

[F (γ \ x)− F (γ)] + σ

∫
Rd

[F (γ ∪ x)− F (γ)]dx.

The scaling m 7→ m, σ 7→ ε−1σ leads us to the following Vlasov-type linear
equation

∂

∂t
ρt(x) = −mρt(x) + σ.

Example 5.2 (Contact model). This model was considered in [29] (for further
investigations see [22], [14]). The model describes independent death of the
members of a configuration, and, on the other hand, production of new mem-
bers of the configuration by the existing ones. This is the simplest model for
ecological population dynamics. Note that a similar model was considered al-
ready in [7] as a particular case of a spatial branching process in continuum.
The generator is given on Fcyl(Γ) by the expression

(LF )(γ) =m
∑
x∈γ

[F (γ \ x)− F (γ)]

+ λ
∑
x∈γ

∫
Rd
a(x− y)[F (γ ∪ y)− F (γ)]dy.

The described scaling m 7→ m, λ 7→ ε−1λ, a 7→ εa (that means that L = Lε)
provides the linear Vlasov-type equation also

∂

∂t
ρt(x) = −mρt(x) + λ(ρt ∗ a)(x).

Here and below ∗ denotes the usual convolution in Rd.
Example 5.3 (Social model). This model was considered in [9]. It describes
birth-and-death process with migration from some “reservoir” and competition
between members of a configuration. The generator is given on Fcyl(Γ) by the
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expression

(LF )(γ) =
∑
x∈γ

∑
y∈γ\x

a(x− y)[F (γ \ x)− F (γ)]

+ σ

∫
Rd

[F (γ ∪ x)− F (γ)]dx.

The described scaling a 7→ εa, σ 7→ ε−1σ provides the non-linear Vlasov-type
equation:

∂

∂t
ρt(x) = −ρt(x)(ρt ∗ a)(x) + σ.

Example 5.4 (Bolker–Dieckmann–Law–Pacala model). This model of popula-
tion ecology was considered in [2], [3], [5]. Rigorous mathematical studying of
this model was done in [14]. The individual of a population may die indepen-
dently as well as due to competition for resources; any individual may produce
a new one also. The generator is given on Fcyl(Γ) by the expression

(LF )(γ) =
∑
x∈γ

(
m+

∑
y∈γ\x

a−(x− y)
)

[F (γ \ x)− F (γ)]

+ λ
∑
x∈γ

∫
Rd
a+(x− y)[F (γ ∪ y)− F (γ)]dy.

The scaling a± 7→ εa±, m 7→ m, λ 7→ ε−1λ gives the following non-linear
Vlasov-type equation:

∂

∂t
ρt(x) = −mρt(x)− ρt(x)(ρt ∗ a−)(x) + λ(ρt ∗ a+)(x).

Note that in the space-homogeneous case we obtain the logistic-type equation

d

dt
ρt =

(
λ〈a+〉 −m− 〈a−〉ρt

)
ρt,

where 〈a±〉 =
∫
Rd a

±(x)dx. For a rigorous proof of convergence in this scaling
see [11].

Example 5.5 (Contact model with establishment). In this model the above de-
scribed contact dynamics is improved by taking into account the depressive role
of the establishment. Namely, the probability for a newborn member to survive
in a new place is smaller if there are more particles near this new place. In the
language of a generator we describe this by the following expression

(LF )(γ) = m
∑
x∈γ

[F (γ \ x)− F (γ)]

+ λ
∑
x∈γ

∫
Rd
a(x− y)e−

∑
u∈γ φ(y−u)[F (γ ∪ y)− F (γ)]dy.
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The scaling m 7→ m, λ 7→ ε−1λ, a 7→ εa, φ 7→ εφ provides the following non-
linear Vlasov-type equation

∂

∂t
ρt(x) = −mρt(x) + λ(a ∗ ρt)(x)e−(φ∗ρt)(x).

Example 5.6 (Contact model with fecundity). This model describes influence of
competition for resources on birth intensity. Namely, if there are many existing
members near a “parent”, the probability to sent offspring for it is smaller. We
consider the following expression for the generator

(LF )(γ) = m
∑
x∈γ

[F (γ \ x)− F (γ)]

+ λ
∑
x∈γ

e−
∑
u∈γ\x φ(x−u)

∫
Rd
a(x− y)[F (γ ∪ y)− F (γ)]dy.

The previous scaling m 7→ m, λ 7→ ε−1λ, a 7→ εa, φ 7→ εφ yields another
non-linear Vlasov-type equations

∂

∂t
ρt(x) = −mρt(x) + λ(a ∗ (ρte

−(φ∗ρt)))(x).

Example 5.7 (Dieckmann–Law model). This model, as well as the model from
Example 5.4 describes ecological population evolution. However, appearing of
new offsprings is proportional to the number of existing members of a popula-
tion. The generator is given by the following expression

(LF )(γ) =
∑
x∈γ

(
m+

∑
y∈γ\x

a−(x− y)
)

[F (γ \ x)− F (γ)]

+
∑
x∈γ

∫
Rd
a+(x− y)

(
λ+

∑
u∈γ\x

b(x− u)
)

[F (γ ∪ y)− F (γ)]dy.

Note that without competition (a− = 0) this model explodes, namely, the mean
value of the number of members in any bounded region becomes infinite after
finite time; otherwise, if the competition kernel a− is “stronger” than the kernel
b this effect is absent (for details see [8]). After scaling a± 7→ εa±, m 7→ m,
b 7→ εb and 1 7→ ε−1 (before the whole birth term) we obtain the following
non-linear Vlasov-type equation

∂

∂t
ρt(x) = −mρt(x)− ρt(x)(ρt ∗ a−)(x) + λ(ρt ∗ a+)(x) + (((b ∗ ρt)ρt) ∗ a+)(x).

Example 5.8 (Glauber G+ dynamics). This model is a continuous analog of the
Glauber dynamics on a lattice. It was considered in a couple of works, see, e.g.,
[24], [26], [23], [28], [15], [16]. The generator of this model is given by

(LF )(γ) =
∑
x∈γ

[F (γ \ x)− F (γ)]

+ z

∫
Rd
e−

∑
u∈γ φ(y−u)[F (γ ∪ y)− F (γ)]dy.
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Here z > 0 is an activity parameter and φ is a pair potential. This generator
has a reversible measure, namely, the Gibbs measure with parameters z and φ
(see, e.g., [24], [16] for details). The scaling m 7→ m, z 7→ ε−1z, φ 7→ εφ yields
the following non-linear Vlasov-type equation

∂

∂t
ρt(x) = −ρt(x) + ze−(ρt∗φ)(x).

For a rigorous proof of the convergence in this scaling see [12].

Example 5.9 (Glauber G− dynamics). This model is similar to the previous one,
see, e.g., [21], [26].

(LF )(γ) =
∑
x∈γ

e
∑
u∈γ φ(x−u)[F (γ \ x)− F (γ)]

+ z

∫
Rd

[F (γ ∪ y)− F (γ)]dy.

The same scaling as before yields the similar non-linear Vlasov-type equation

∂

∂t
ρt(x) = −ρt(x)e(ρt∗φ)(x) + z.

Example 5.10 (Free Kawasaki). This simplest exactly solvable hopping model
was considered in [27]. It describes independent jumps of particles in the system.
The generator is the following

(LF ) (γ) =
∑
x∈γ

∫
Rd
a (x− y) [F (γ \ x ∪ y)− F (γ)] dy.

We do not need scaling at all to obtain the linear Vlasov-type equation

∂

∂t
ρt (x) = (ρt ∗ a) (x)− 〈a〉 ρt (x) .

Example 5.11 (Density dependent Kawasaki). In this model the intensity of a
jump is linearly proportional to the existing population. The generator is given
on Fcyl(Γ) by the expression

(LF ) (γ) =
∑
x∈γ

∫
Rd
a (x− y)

∑
u∈γ

b (x, y, u) [F (γ \ x ∪ y)− F (γ)] dy.

The scaling b 7→ εb provides the following non-linear Vlasov-type equation

∂

∂t
ρt (x) =

∫
Rd
ρt (y) a (x− y)

∫
Rd
ρt (u) b (y, x, u) dudy

− ρt (x)

∫
Rd
a (x− y)

∫
Rd
ρt (u) b (x, y, u) dudy.
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In particular, if b(x, y, u) = b(x− u) then

∂

∂t
ρt (x) = ((ρt(ρt ∗ b)) ∗ a)(x)− 〈a〉ρt (x) (ρt ∗ b)(x).

If b(x, y, u) = b(y − u) then

∂

∂t
ρt (x) = (ρt ∗ b) (x) (ρt ∗ a) (x)− ρt (x) (ρt ∗ a ∗ b)(x).

Example 5.12 (Gibbs–Kawasaki). This hopping particles model was considered,
e.g., in [26]. The generator is given by the expression

(LF ) (γ) =
∑
x∈γ

∫
Rd
a (x− y) e−E

φ(y,γ) [F (γ \ x ∪ y)− F (γ)] dy

It has a family of reversible Gibbs measures with the potential φ and any activity
z > 0. The scaling φ 7→ εφ gives the non-linear Vlasov-type equation of the
form

∂

∂t
ρt (x) = (ρt ∗ a) (x) exp {− (ρt ∗ φ) (x)} − ρt (x) (a ∗ exp {−ρ ∗ φ}) (x) .

Example 5.13. In the last example we consider another type of dynamics. Let
L describe the generator of the diffusion dynamics (see, e.g., [25], [18]), namely,
for any smooth cylindrical function

(LF )(γ) =
∑
x∈γ

∆xF (γ)−
∑
x∈γ

∑
y∈γ\x

〈∇φ(x− y),∇xF 〉 ,

where ∆ is a classical Laplace operator in Rd and ∇ is a gradient in Rd. Our
approach covers this case also. It can be shown that the scaling φ 7→ εφ provides
the following non-linear partial differential Vlasov-type equation

∂

∂t
ρt (x) =∆ρt(x)−

∫
Rd
φ(x− y) 〈∇ρt(x),∇ρt(y)〉 dy

− ρt(x)

∫
Rd
〈∇φ(x− y),∇ρt(y)〉 dy.
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[25] Kondratiev, Y., Lytvynov, E., Röckner, M.: Infinite interacting diffusion
particles. I. Equilibrium process and its scaling limit. Forum Math. 18(1),
9–43 (2006)
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