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Abstract
Let E and P be nonnegative quadratic forms in a Hilbert space H such that

E + βP is densely defined and closed for all β ≥ 0. Let Hβ be the selfadjoint
operator associated with E+βP. Let 0 < r ≤ 1. We give both a sufficient condition
and a necessary condition in order that

lim sup
β−→∞

βr ‖ (Hβ + 1)−1 − lim
β′−→∞

(Hβ′ + 1)−1 ‖1<∞ (0.1)

where ‖ · ‖1 denotes the trace norm. In the extremal case r = 1 we derive even a
condition that is necessary and sufficient in order that (0.1) holds true and present
examples where this criterion is satisfied.
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1 Introduction

In this paper we continue the discussion of problems related to various types of large
coupling convergence in abstract Hilbert spaces that we initiated in previous works ([6],
[4], [3]). Originally one has concentrated on large coupling convergence for Schrödinger
operators (cf. [7] for recent results on this topic). Motivated by the work on point inter-
actions ([1]) one has started to analyze also singular interactions ([8]). In addition, one
has investigated large coupling convergence where the perturbation term is a differential
operator ([9]).

The mentioned problems can be treated in a unified way. Let H be a nonnegative
selfadjoint operator in a Hilbert space H, E the closed quadratic form associated with H,
P a nonnegative quadratic form in H, such that E + βP is densely defined and closed for
one and therefore every β > 0 and Hβ the selfadjoint operator associated with E + βP .
By Kato’s monotone convergence theorem, the operators (Hβ + 1)−1 converge strongly as
β goes to infinity.

Under additional assumptions on H and P much stronger results have been achieved.
Let

Dβ := (H + 1)−1 − (Hβ + 1)−1, D∞ := lim
β−→∞

Dβ.
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We have shown ([6, Proposition 1]), that

lim inf
β−→∞

β ‖ D∞ −Dβ ‖> 0,

i.e. convergence (w.r.t. the operator norm ‖ · ‖) faster than c/β is not possible in this
context. We have derived ([4, Theorem 1]) a criterion in order that norm-convergence
with maximal rate takes place, i.e. in order that

lim sup
β−→∞

β ‖ D∞ −Dβ ‖<∞.

Let 0 < r < 1. In the same article we have given a condition which is sufficient in order
that ‖ D∞ − Dβ ‖= O(1/βr). In a recent paper we have shown that this condition is
’almost’ necessary ([3, Proposition 2.9]).

In scattering theory one is mainly interested in the stronger trace norm. For instance
the wave operators W±(H,Hβ) exist and are complete provided (H + 1)−k − (Hβ + 1)−k

belongs to the trace class for some k ∈ N. There is also another motivation to study trace
norms. If H has a purely discrete spectrum, then the same holds true for the perturbed
operators Hβ and estimates for the rate of convergence of ‖ D∞ −Dβ ‖1 can be used in
order to get information on the eigenvalue distribution of Hβ with the aid of the eigenvalue
distribution of limβ−→∞(Hβ + 1)−1. At this point we would like to recall that it is often
easier to study this limit operator than the operators Hβ and that this is one of the main
reasons why one investigates large coupling convergence.

For compact perturbations we have found a criterion for trace-class convergence of
D∞−Dβ ([6, Theorem 3]). However, the problem of determining or estimating the speed
of convergence of ‖D∞ − Dβ‖1 is still open. In this note, we shall give a criterion for
convergence of ‖D∞ −Dβ‖1 with maximal rate. In addition, we shall derive a sufficient
condition for convergence with rate O(1/βr) and show that this condition is ’almost’
necessary.

In the last section we shall illustrate our results with the aid of several examples. For
instance we shall discuss the case when H is a Schrödinger operator corresponding to a
polyharmonic oscillator and P describes a point interaction.

Notation and hypothesis

• ‖ · ‖p denotes the norm in the Schatten-von Neumann class Sp of order p. By
definition, ‖T ‖p =∞, if T does not belong to Sp.

• H is a nonnegative selfadjoint operator in a separable infinite-dimensional Hilbert
space (H, (·, ·)) and E the associated closed quadratic form, i.e.

D(E) = D(
√
H), E(u, u) =‖

√
Hu ‖2 ∀u ∈ D(E).

• E1(u, v) := E(u, v) + (u, v).

• K1 = (H + 1)−1.
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• P is a nonnegative quadratic form in H such that E + βP is densely defined and
closed for one and therefore all β > 0.

• Hβ is the nonnegative selfadjoint operator in H associated with E + βP .

• Dβ := (H + 1)−1 − (Hβ + 1)−1 and D∞ := limβ−→∞Dβ.

By [3, Example 2.1 and Lemma 2.2], P is a nonnegative quadratic form inH such that
E+βP is densely defined and closed for one and therefore every β > 0 if and only if there
exist an auxiliary Hilbert space (Haux, (·, ·)aux) and a closed operator J from (D(E), E1)
to Haux such that the range ranJ of J is dense in Haux and

D(J) = D(E) ∩D(P), P(u, u) = ‖Ju‖2
aux ∀u ∈ D(J).

The nonnegative selfadjoint operator JJ∗ in Haux is invertible and we put

Ȟ := (JJ∗)−1.

µg denotes the spectral measure of g w.r.t. Ȟ. We shall always assume that Haux 6= {0}
and

D(H) ⊂ D(J).

2 Convergence within the trace ideal

As a first step we shall give a sufficient condition ensuring convergence of ‖D∞ −Dβ‖ in
our general setting. We recall that

(JK1)∗u = J∗u ∀u ∈ D(J∗) (2.1)

(since (J∗u, v) = E1(J∗u,K1v) = (u, JK1v)aux = ((JK1)∗u, v) for all v ∈ H) and the
resolvent formula ([5, Lemma 3])

Dβ = (JK1)∗(1/β + JJ∗)−1JK1 = J∗(1/β + JJ∗)−1JK1. (2.2)

Differentiating Dβ w.r.t. β yields

d

dβ
Dβ =

1

β2
(JK1)∗(1/β + JJ∗)−2JK1, (2.3)

so that

Dβ′ −Dβ =

∫ β′

β

1

s2
(JK1)∗(1/s+ JJ∗)−2JK1 ds, (2.4)

and, by monotone convergence,

D∞ −Dβ =

∫ ∞
β

1

s2
(JK1)∗(1/s+ JJ∗)−2JK1 ds, (2.5)
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and

‖D∞ −Dβ‖ ≤
∫ ∞
β

1

s2
‖(JK1)∗(1/s+ JJ∗)−2JK1‖ ds

=

∫ ∞
β

1

s2
‖(1/s+ JJ∗)−1JK1‖2

aux ds

=

∫ ∞
β

‖J(Hs + 1)−1‖2
aux ds. (2.6)

We thus derive the following

Proposition 2.1. Assume that there is β > 0 such that∫ ∞
β

‖J(Hs + 1)−1‖2
aux ds <∞. (2.7)

Then limβ→∞ ‖Dβ −D∞‖ = 0.

If one is concerned with trace-class convergence of the difference D∞ − Dβ, then
Proposition 2.1 can be improved so as to get a criterion which generalizes an old result of
Baumgärtel–Demuth [2, Theorem 2], in the case where J is a projection (defined on H)
and the operator H is local w.r.t. the projection J .

Theorem 2.1. Assume that D(H) ⊂ D(J). Then the following equivalence holds true:

lim
β→∞

‖D∞ −Dβ‖1 = 0 ⇐⇒
∫ ∞
β

‖J(Hs + 1)−1‖2
2 ds <∞, for some β > 0. (2.8)

Proof. Let (fk)
∞
k=1 be an O.N.B. of H. From the integral representation (2.5), we get

(
(D∞ −Dβ)fk, fk) =

∫ ∞
β

‖J(Hξ + 1)−1fk‖2
aux dξ, (2.9)

leading to

‖Dβ −D∞‖1 =
∞∑
k=1

∫ ∞
β

‖J(Hξ + 1)−1fk‖2
aux dξ =

∫ ∞
β

( ∞∑
k=1

‖J(Hξ + 1)−1fk‖2
aux

)
dξ

=

∫ ∞
β

‖J(Hξ + 1)−1‖2
2 dξ, (2.10)

which yields the result.

We shall now give a criterion for trace norm convergence of the resolvent difference with
maximal rate. We first quote that since the maximal rate of convergence of ‖Dβ −D∞‖
is proportional to 1/β, then so is the maximal rate of convergence of ‖Dβ −D∞‖1.
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Theorem 2.2. a) The mapping

β 7→ β‖D∞ −Dβ‖1, (2.11)

is nondecreasing and strictly positive.
b) The following holds true:

lim
β→∞

β‖Dβ −D∞‖1 <∞, (2.12)

if and only if ȞJK1 is a Hilbert–Schmidt operator. If it is the case then

lim
β→∞

β‖Dβ −D∞‖1 = ‖ȞJK1‖2
2. (2.13)

Proof. Let (fk)
∞
k=1 be an O.N.B. of H. It follows from the resolvent formula (2.2) and the

spectral calculus (cf. [4, formula (20)]), that

((D∞ −Dβ)fk, fk) =

∫
λ2

λ+ β
dµgk

(λ)

where gk := JK1fk and µg denotes the spectral measure of g w.r.t. Ȟ. Thus

β‖Dβ −D∞‖1 =
∞∑
k=1

β
(
(D∞ −Dβ)fk, fk

)
=
∞∑
k=1

∫
βλ2

λ+ β
dµgk

(λ). (2.14)

Since D∞ −Dβ is positive, each of the integrals
∫

βλ2

λ+β
dµgk

is nondecreasing w.r.t. β and

assertion a) is proved.
Owing to the fact that the series are increasing w.r.t. to β and by monotone convergence,
we get

lim sup
β→∞

β‖Dβ −D∞‖1 = lim
β→∞

β‖Dβ −D∞‖1 = lim
β→∞

∞∑
k=1

∫
βλ2

λ+ β
dµgk

=
∞∑
k=1

lim
β→∞

∫
βλ2

λ+ β
dµgk

=
∞∑
k=1

∫
λ2 dµgk

=
∞∑
k=1

‖ȞJK1fk‖2
aux = ‖ȞJK1‖2

2 ≤ ∞, (2.15)

which achieves the proof.

We turn our attention now to give conditions for ‖Dβ − D∞‖1 to be O(β−r) where
0 < r < 1. In other words conditions for ‖Dβ−D∞‖1 to converge at least as fast as cβ−r.

Proposition 2.2. Let 0 < r < 1 and s0 =
1

2
+
r

2
. Suppose that D(H) ⊂ D(J).
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a) If Ȟs0JK1, is a Hilbert–Schmidt operator, then

‖Dβ −D∞‖1 ≤ (1− r)1−rrr‖Ȟs0JK1‖2
2

1

βr
∀ β > 0. (2.16)

b) Assume that J : (D(E), E1)→ Haux is bounded. If

‖Dβ −D∞‖1 ≤
c

βr
∀ β > 0,

for some finite constant c, then ȞsJK1 is a Hilbert-Schmidt operator for every 1
2
< s < s0.

Proof. a) Let (fk)
∞
k=1 be an O.N.B. of H. Then, as in the last proof

‖Dβ −D∞‖1 =
∞∑
k=1

(
(D∞ −Dβ)fk, fk

)
=
∞∑
k=1

∫
λ2

λ+ β
dµgk

(λ)

≤ max
λ∈(0,∞)

λ1−r

λ+ β

∞∑
k=1

∫
|λ1/2+r/2|2 dµgk

(λ). (2.17)

By elementary calculus,

max
λ∈(0,∞)

λ1−r

λ+ β
=

(1− r)1−r rr

βr
,

so that

‖Dβ −D∞‖1 ≤
(1− r)1−r rr

βr

∞∑
k=1

‖Ȟs0JK1fk‖2
aux =

(1− r)1−r rr

βr
‖Ȟs0JK1‖2

2. (2.18)

b) Let s ∈ (1/2, s0). According to (2.10), J(Hβ + 1)−1 is a Hilbert-Schmidt operator for
almost every β > 0.
On the other hand we have

JK1 = β(1/β + JJ∗)J(Hβ + 1)−1, (2.19)

yielding that the operator

1[0,2)(Ȟ)JK1 = 1[0,2)(Ȟ)β(1/β + JJ∗)J(Hβ + 1)−1, (2.20)

is a Hilbert–Schmidt operator.
Now set

Ck(β) := βr
(
(D∞ −Dβ)fk, fk

)
=

∫
βr

λ2

λ+ β
dµgk

(λ). (2.21)
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Then, by assumptions,
∑∞

k=1Ck(β) ≤ c <∞.
Choose 1 < t < r

2s−1
, 2 > β > 1 and λ ∈ [β, βt]. Then

βr
λ2−2s

λ+ β
≥ βr

2
λ1−2s ≥ 1

2
βt(1−2s)+r, (2.22)

yielding

Ck(β) ≥
∫

[β,βt)

1

2
βt(1−2s)+rλ2s dµgk

(λ). (2.23)

Thus ∫
[β,∞)

1

2
λ2s dµgk

(λ) =
∞∑
n=0

∫
[βtn , βtn+1 )

1

2
λ2s dµgk

(λ)

≤
∞∑
n=0

β−t
n(t(1−2s)+r)Ck(β

tn), (2.24)

and

‖1[β,∞)(Ȟ
s)JK1‖2

2 =
∞∑
k=1

‖1[β,∞)(Ȟ
s)JK1fk‖2 =

∞∑
k=1

∫
[β,∞)

λ2s dµgk
(λ)

≤ 2
∞∑
n=0

β−t
n(t(1−2s)+r)

( ∞∑
k=1

Ck(β
tn)
)
≤ 2c

∞∑
n=0

β−t
n(t(1−2s)+r)

<∞ . (2.25)

Now putting (2.20) and (2.25) together yields that ȞsJK1 is a Hilbert-Schmidt operator,
which was to be proved.

Remark 2.1. a) If r = 0, then the following equivalence holds true:

Ȟ1/2JK1 is Hilbert− Schmidt ⇐⇒ ‖D∞ −Dβ‖1 → 0, (2.26)

so that we still get trace-class convergence but without information on the rate. Indeed,
from the known fact that

D∞ = (Ȟ1/2JK1)∗Ȟ1/2JK1, (2.27)

we derive that Ȟ1/2JK1 is Hilbert-Schmidt if and only if D∞ is trace-class, which, in turn,
by [6, Theorem 3], is equivalent to ‖D∞ −Dβ‖1 → 0.

b) We shall give an example (Example 3.3) where limβ−→∞ β
r ‖ D∞ − Dβ ‖1< ∞

although the operator Ȟs0JK1 is not even bounded.

The next result improves a bit [4], Corollary 6.

Proposition 2.3. Assume that ȞJK1 is bounded and that Ȟ−1 is trace class. Then

lim
β→∞

‖D∞ −Dβ‖1 = 0. (2.28)
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Proof. We shall use Theorem 2.1 and prove that under the given assumptions,∫ ∞
β

‖J(Hs + 1)−1‖2
2 ds <∞, for some β. (2.29)

We rewrite the operator J(Hs + 1)−1 as

J(Hs + 1)−1 =
1

s
(
1

s
+ JJ∗)−1JK1 =

1

s
(
1

s
+ Ȟ−1)−1JK1

= (s+ Ȟ)−1ȞJK1. (2.30)

We thereby derive

‖J(Hs + 1)−1‖2
2 ≤ ‖ȞJK1‖2‖(s+ Ȟ)−1‖2

2. (2.31)

Let (ek)k∈I be an O.N.B. of Haux consisting of eigenvectors of Ȟ−1 and for each k ∈ I let
µk > 0 be the corresponding eigenvalue of Ȟ−1. We get∫ ∞

β

‖J(Hs + 1)−1‖2
2 ds ≤ ‖ȞJK1‖2

∫ ∞
β

∑
k∈I

1

(s+ µ−1
k )2

ds

=
∑
k∈I

∫ ∞
βµk

µk
(s+ 1)2

ds =
∑
k∈I

µk
βµk + 1

≤
∑
k∈I

µk

= ‖Ȟ−1‖1 <∞, (2.32)

which was to be proved.

3 Examples

Originally one has concentrated on the important case when Hβ = −∆ + V + βW for
nonnegative locally integrable functions V and W . In this case the Schrödinger operator
H = −∆ + V in L2(Rd) := L2(Rd, dx) is associated with a regular Dirichlet form and
P is a so called killing term. It turned out that this information on the unperturbed
operator H and the perturbation form P is sufficient for many purposes. To work within
this more general framework has helped to point out a variety of main ideas used for the
investigation of large coupling convergence, has led to new results, e.g. that one gets norm
convergence with maximal rate, provided the killing measure is an equilibrium measure
([6, Theorem 4]), and may be helpful for applications in other areas, e.g. in quantum
graph theory.

In this section we shall illustrate our general results by several examples. In the first
three examples the quadratic form E associated with the unperturbed operator H will
be a regular Dirichlet form in L2(R) and we shall combine above operator-theoretical
results with our results on regular Dirichlet forms in [4] and [6] in order to study large
coupling convergence for certain Schrödinger operators. We shall use the following basic
definitions and results: Let E be a regular Dirichlet form in L2(X,m) and µ a positive
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Radon measure on X charging no set with capacity zero. We shall abuse notation and
denote by u both an element of D(E) and any fixed quasi-continuous representative of u.
The operator Jµ from (D(E), E1) is defined as follows:

D(Jµ) := {u ∈ D(E) :

∫
|u |2dµ <∞},

Jµu := u ∀u ∈ D(E).

The operator Jµ is closed. Let Pµ be the orthogonal complement in (D(E), E1) onto the
orthogonal complement of ker Jµ and

D(Ěµ1 ) := ranJµ,

Ěµ1 (Jµu, Jµv) := E1(Pµu, Pµv) ∀u, v ∈ ranJµ.

Ěµ1 is a closed quadratic form in L2(X,µ) and called the trace of the Dirichlet form E1

w.r.t. the measure µ. Ȟµ := (JµJ
∗
µ)−1 is the selfadjoint operator in L2(X,µ) associated

with Ěµ1 .

Example 3.1. We choose

D(E) := H1(R) = W 1,2(R),

E(f, f) :=

∫
R
| f ′(x)|2 dx ∀ f ∈ H1(R), so that H = − d2

dx2
.

Let F ⊂ R be compact, µF the equilibrium measure of F (w.r.t. the Dirichlet form E)
and J = JµF

. Thus Hβ is the selfadjoint operator in L2(R) associated with the form Eβ
in L2(R), where

D(Eβ) = D(E),

Eβ(f, f) = E(f, f) + β

∫
| f |2 dµF ∀ f ∈ D(E).

In this situation, according to [6, Theorem 4], we have uniform convergence of the resolvent
difference D∞ − Dβ with maximal rate which is, by [4, Theorem 1], equivalent to the
boundedness of ȞJK1.
On the other hand, setting G the integral kernel of K1, i.e.,

G(x, y) =
1

2
e−|x−y|,

then it is known ([6, Example 1]) that

Ȟ−1f =

∫
G(·, y)f(y) dµF (y) µF − a.e.∀ f ∈ L2(R, µF ). (3.1)

Thus

‖Ȟ−1‖1 =

∫
G(x, x) dµF (x) =

1

2
µF (F ) <∞, (3.2)
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and Ȟ−1 is trace-class. Thus according to Proposition 2.3 we conclude

‖D∞ −Dβ‖1 → 0, as β →∞. (3.3)

The example extends with obvious modifications if one replaces E by the Dirichlet form
associated to the α-stable process provided d < 2α.

In the next example we shall use certain Schatten- von Neumann class properties of
Schrödinger operators corresponding to polyharmonic oscillators, cf. the next lemma.
The lemma is well known for the harmonic oscillator (the special case k = 1).

Lemma 3.1. Let k ∈ N. The resolvent (H + 1)−1 of the operator H := −∆ + |x |2k in

L2(Rd) belongs to the Schatten-von Neumann class Sp for every p >
k + d

2k
.

Proof: Let p > 0. Let n ∈ N. By [10, Theorem XIII.81], and the hint below the proof of
this theorem,

dim ran1(−∞,n2k](H) ≤ c

∫
{x: |x |2k≤n2k}

√
n2k − |x |2kdx

for some finite constant c, depending on the dimension d only. Thus

dim ran1(−∞,n2k](H) ≤ c1n
d+k (3.4)

for some finite constant c1, depending on the dimension d only. Thus the operator
(H + 1)−1 is compact and for j = 0, 1, 2, 3, . . . the operator H has at most c12(j+1) (d+k)

eigenvalues in the interval (22kj, 22k(j+1)]. Therefore (H+1)−1 has at most c22(k+d)j eigen-

values in the interval [
1

1 + 22k(j+1)
,

1

1 + 22kj
), where c2 := c1 2k+d. Thus

∑
E:E eigenvalue of (H+1)−1

Ep ≤ c3 + c2

∞∑
j=0

2(k+d)j2−2kjp (3.5)

for some finite constants c2 and c3, depending on p and d only. The right hand side of

(3.5) is finite and hence (H + 1)−1 ∈ Sp, if p >
k + d

2k
. �

Example 3.2. Let k ∈ N. We shall study certain singular perturbations of the operator

H = − d2

dx2
+ x2k in L2(R).

Let µ :=
∑

n∈Z |n |kδn. By Sobolev’s lemma, there exists a finite constant c, such that
for every family (an)n∈Z in (0,∞) and every u ∈ H1(R)

|u(n) |2 ≤ c
(
an

∫ n+1/2

n−1/2

|u′(x) |2 dx+
1

an

∫ n+1/2

n−1/2

|u(x) |2 dx
)
∀n ∈ Z. (3.6)
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If u ∈ D(
√
H), then u ∈ H1(R) and

∫
x2k |u(x) |2dx < ∞. Thus (3.6), with an =

1

|n |k
for n 6= 0, implies∫

|u |2dµ =
∑
n∈Z

|n |k |u(n) |2

≤ c
∑
n∈Z

(

∫ n+1/2

n−1/2

|u′(x) |2 dx+ n2k

∫ n+1/2

n−1/2

|u(x) |2 dx) <∞ (3.7)

for every u ∈ D(
√
H). Thus D(Jµ) = D(

√
H). Since K

1/2
1 is a bounded everywhere

defined operator from L2(R) to D(
√
H) and Jµ an everywhere defined closed operator

from D(
√
H) to L2(R, µ), the operator JµK

1/2
1 from L2(R) to L2(R, µ) is closed and

everywhere defined. By the closed graph theorem, this implies that

JµK
1/2
1 : L2(R) −→ L2(R, µ) is bounded. (3.8)

Let f ∈ L2(R, µ). We put

ϕn(x) := (1− 2|n |k |x− n |)+ ∀x ∈ R, n ∈ Z,

and
u(x) :=

∑
n6=0

f(n)ϕn(x) ∀x ∈ R.

Then there exists a finite constant c such that∫
|ϕ′n(x) |2 dx+

∫
x2k ϕn(x) |2 dx ≤ c |n |k

for n 6= 0 and hence∫
|u′(x) |2 dx+

∫
x2k |u(x) |2dx =

∑
n6=0

| f(n) |2(

∫
|ϕ′n(x) |2 dx+

∫
x2k |ϕn(x) |2dx)

≤ c
∑
n∈Z

|n |k | f(n) |2 <∞.

Thus u ∈ D(
√
H) and Jµu = f . Thus

D(Ě1
µ
) = L2(R, µ).

Since Ě1
µ

is an everywhere defined closed quadratic form, the associated self-adjoint op-
erator Ȟµ is bounded. In conjunction with (3.8) this implies that ȞµJµK

1/2
1 is bounded.

By Lemma 3.1, K
1/2
1 ∈ Sp for every p >

k + 1

k
. Thus K

1/2
1 ∈ S2 and

ȞµJµK1 ∈ S2, (3.9)

provided k > 1. By Theorem 2.2, this implies that for k > 1

lim
β−→∞

β ‖ D∞ −Dβ ‖1=‖ ȞµJµK1 ‖2
2<∞,

and, in particular, we have trace class convergence with maximal rate.
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Example 3.3. As in Example 3.1 let H = − d2

dx2
. Let Haux = L2(0, 1) and Jf = f| [0,1]

for every f ∈ D(E) = H1(R). Then ([6, Example 3])

lim
β−→∞

β1/2‖D∞ −Dβ‖1 =
3

2
, (3.10)

and Ȟ is the selfadjoint realization of − d2

dx2
+1 in L2(0, 1) characterized by the boundary

conditions

f ′(0) = f(0) and f ′(1) = −f(1). (3.11)

L2(0, 1) has an O.N.B. (gk)k∈N of real-valued eigenfunctions of Ȟ satisfying

lim
k−→∞

| gk(1) |2 = 2, (3.12)

g′′k = −η2
kgk ∀ k ∈ N (3.13)

for suitably chosen real numbers ηk. Furthermore η2
k ≤ ck2 for some finite constant c,

that does not depend on k (actually ηk ∼ k).
Since 1 + η2

k is the eigenvalue of Ȟ corresponding to the eigenfunction gk of Ȟ and
(gk)k∈N is an O.N.B. of L2(0, 1), the spectral calculus yields that u ∈ D(Ȟs) if and only if

∞∑
k=1

| 1 + η2
k |2s | (gk, u)aux |2 <∞. (3.14)

Let u(x) := ex for all x ∈ [0, 1]. Integrating by parts twice and taking into account (3.11)
and (3.13), we get

(1 + η2
k) (gk, u)aux = 2gk(1)e ∀ k ∈ N (3.15)

and hence

∞∑
k=1

| 1 + η2
k |2s | (gk, u)aux |2 = 4e2

∞∑
k=1

| gk(1) |2| 1 + η2
k |2s−2.

By (3.12), this implies that

∞∑
k=1

| 1 + η2
k |2s | (gk, u)aux |2 ≥ c1

∞∑
k=1

| 1 + η2
k |2s−2 (3.16)

for some strictly positive constant c1. Since η2
k ∼ k2, the expression on the right hand side

of (3.16) is finite if and only if s < 3/4. Thus for s = 1+1/2
2

the inequality (3.14) does not

hold and hence the operator Ȟ3/4JK1 is not even everywhere defined, although (3.10) is
true.
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In a variety of models in elasticity one considers perturbations of the Bi-Laplacian by
differential operators of lower order, cf. [9]. In the next example we discuss large coupling
convergence for an explicitly solvable model of this kind.

Example 3.4. Let −∆D
Ω be the Dirichlet-Laplacian in a bounded domain Ω in Rd. L2(Ω)

has an orthonormal basis (en)n∈N consisting of eigenfunctions of −∆D
Ω . Let λn, n ∈ N, be

the corresponding eigenvalues. Then

inf
n∈N

λn = min
n∈N

λn > 0 (Poincare’s inequality), (3.17)

λn ∼ n2/d (Weyl’s asymptotic). (3.18)

We shall consider the special case when H = (∆D
Ω )2 in L2(Ω) and

Haux = L2(Ω),

J : D(E) −→ L2(Ω),

Ju =
∞∑
n=1

√
λnγn(en, u)en ∀u ∈ D(E), (3.19)

for some family (γn)n∈N satisfying

0 < inf
n∈N

γn ≤ sup
n∈N

γn <∞. (3.20)

We get for K1 := (H + 1)−1 that

K1u =
∞∑
n=1

1

1 + λ2
n

(en, u)en ∀u ∈ L2(Ω).

Thus

JK1u =
∞∑
n=1

γn
√
λn

1 + λ2
n

(en, u)en ∀u ∈ L2(Ω) (3.21)

and hence

(JK1)∗u =
∞∑
n=1

γn
√
λn

1 + λ2
n

(en, u)en ∀u ∈ L2(Ω). (3.22)

By (2.1), JJ∗ = J(JK1)∗. By (3.19) and (3.22), this implies that

JJ∗u =
∞∑
n=1

γ2
nλn

1 + λ2
n

(en, u)en ∀u ∈ L2(Ω). (3.23)

Since
Dβ = (JK1)∗(1/β + JJ∗)−1JK1,
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it follows from (3.21), (3.22) and (3.23) that

Dβu =
∞∑
n=1

1

1 + λ2
n

γ2
nλn

γ2
nλn + 1+λ2

n

β

(en, u)en ∀u ∈ L2(Ω). (3.24)

Passing to the limit as β goes to infinity yields

D∞ =
∞∑
n=1

1

1 + λ2
n

(en, ·)en = (H + 1)−1. (3.25)

Thus D∞ is a nonnegative compact selfadjoint operator and, by the Weyl’s asymptotic
(3.18), D∞ ∈ Sp if and only if p > d/4. By [3, Corollary 2.20], ‖ D∞ −Dβ ‖p−→ 0 if and
only if D∞ ∈ Sp. Thus the operators Dβ converge within Sp as β goes to infinity if and
only if p > d/4 and, in particular, the operators Dβ converge w.r.t. the trace norm if and
only if d ≤ 3. This trace norm convergence takes place with maximal rate, i.e. as fast as
O(1/β), if and only if d = 1, as it can be seen from the following consequence of (3.24)
and (3.25):

D∞ −Dβ =
∞∑
n=1

1

1 + λ2
n + βγ2

nλn
(en, ·)en.
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