UNIQUENESS OF WEIGHTED SOBOLEV SPACES WITH
WEAKLY DIFFERENTIABLE WEIGHTS

JONAS M. TOLLE

ABSTRACT. We prove that weakly differentiable weights w which, together
with their reciprocals, satisfy certain local integrability conditions, admit a
unique associated first order p-Sobolev space, that is

HyP(RY,wdz) = HYP(RY, wdz) = WHP(RY, wdx).

If w admits a (weak) logarithmic derivative Vw/w which is in LE _(w da; RY),
we propose an alternative definition of the weighted p-Sobolev space based on
an integration by parts formula involving Vw/w.

We prove that weights of the form exp(—g|-|? — W — V') are p-admissible,
in particular, satisfy a Poincaré inequality, where 8 € (0, 00), W, V are convex
and bounded below such that |[VW| satisfies a growth condition (depending
on (B and ¢q) and V is bounded. We apply the uniqueness result to weights of
this type.

1. INTRODUCTION
Consider the following quasi-linear PDE in R? (in the weak sense)
(1.1) — div [w|VulP7*Vu] = fw,

(here 1 < p < 00) where w > 0 is a locally integrable function, the weight and f is
sufficiently regular (e.g f € L% (wdz), see below). Let p(dx) := wdz, ¢ :== p/(p—1).
The nonlinear weighted p-Laplace operator involved in can be identified with
the Gateaux derivative of the convex functional

(1.2) Ey:uw— 1/|Vu|pwd;t.
p

By methods well-known in calculus of variations, solutions to (|1.1)) are characterized
by minimizers of the convex functional

(1.3) E¢:u— Ey(u) — /fuw dz.

Of course, the minimizer obtained depends on the energy space chosen for the
functional (1.2)). It is natural to demand that C§° is included in this energy space.
Therefore, let H&’p(,u) be the completion of C§° w.r.t. the Sobolev norm

1/p
e = (I ey + )
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Hé’p(u) is referred to as the so-called strong weighted Sobolev space. Of course, in
order to guarantee that HO1 P(u) will be a space of functions we need a “closability
condition”, see equation below.
Let V be a weighted Sobolev space such that
eV C Lp(u)a
e V admits a linear gradient-operator VV : V — LP(u;RY) that respects
p-classes,
e V is complete w.r.t. the Sobolev norm,
e C5° C Vand Vu = VVu p-ae. for u € C5° and hence Hy* (1) C V.

In the case that
1,
H, p(li) ; v,

the so-called Lavrent’ev phenomenon, first described in [25], occurs if

min Fr(u) < min  FEr(u).

mip B() < min By
This leads to different variational solutions to equation (1.1f), as discussed in detail
in [30]. In order to prevent this possibility, we are concerned with the problem

Hy? () =V,

which is equivalent to the density of C§° in V' and therefore is called “smooth
approximation”. Classically, if w = 1, the solution to this problem is known as the
Meyers-Serrin Theorem [27] and briefly denoted by H = W. If p = 2, the problem
is also known as “Markov uniqueness”, see [5] [6, [9, [32] [33].

H =W for weighted Sobolev spaces (p # 2) has been studied e.g. in [8], 20} [37].
H =W is in particular useful for identifying a Mosco limit [21], 35]

We are going to investigate two types of weighted Sobolev space substituting V.

Let ¢ := w'/P. Consider following condition:
(Dif) pEWLIda), 1= pF € L, (Y.
If we assume (Diff), we can define the Sobolev space H'?(u) (which extends
Hé’p(u)) by saying that f € HYP(u) if f € LP(u1) and there is a gradient VA f :=
(O f,.... 04 f) € LP(u; RY) such that the integration by parts formula

(1.4) /3$‘f77du: */famdu*/fnﬁz dp

holds for all n € C§5°(R?) and all i € {1,...,d}. For p = 2, this framework has
been carried out by Albeverio et. al. in [2, 3] [4, [6].
Assuming (Diff), equation (1.1) has the following heuristic reformulation

—div [|[VuP72Vu] — (|VulP"?*Vu, 8) = f,
which suggests that (|1.1)) can be regarded as a first-order perturbation of the un-

weighted p-Laplace equation.
Let us state our main result.

Theorem 1.1. Assume (Diff). Then C§°(R?) is dense in HYP (i), and, in par-
ticular,
Hy™(p) = H" ().

For p = 2, Theorem [1.1]was proved by Réckner and Zhang [32} [33] using methods
from the theory of Dirichlet forms depending strongly on the L?-framework. Our
proof is carried out in Section [3] and inspired by the work of Patrick Cattiaux and
Myriam Fradon [7]. In contrary to their proof, in which they use Fourier transforms
(depending on the L2?-framework), we shall use maximal functions in order to obtain
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the fundamental uniform estimate. Of course, formula ([1.4]) provides highly useful
for the proof.
Consider the following well-known condition:
(Loc) 971 € Ligo(RY).
Let D be the gradient in the sense of Schwartz distributions. Assuming (Loc), we
define
WP () := {u € LP(n) | Du € L (1;R%) },

see e.g. [23]. Tt is well-known that H,?(u) = WP (u) is implied by the famous
p-Muckenhoupt condition, i.e. there is a global constant K > 0 such that

(15) (o ac) .(j;¢rqu)p_lf;;g

for all balls B C R%. We refer to the lecture notes by Bengt Ove Turesson [36] for
a detailed discussion of this class. See also [18, Ch. 15].
As a consequence of Theorem [I.T], we obtain the following result:

Corollary 1.2. Assume (Loc), (Diff). Then
Hy"(u) = HP () = WHP ().

We shall give a precise proof in Section [4}

p-admissible weights. We shall give an example. For the notion of p-admissibility,
see [18] or Definition below. We say that a function F : R? — R has property
(D), if there are constants ¢; > 1, ¢ € R such that F(2z) < ¢1F(x) + co. If Fis
concave, it has property (D) with ¢; = 2 and ¢o = F(0). With the help of the ideas
of Hebisch and Zegarliriski [I6] we are able to prove:

Theorem 1.3. Let 1 < p < oo, q:=p/(p—1). Let B € (0,00), let W € C*(R?) be
bounded below and suppose that

VW (2)] < 8lz|*" +

for some § < Bq and v € (0,00). Suppose also that —W has property (D). Let
V :R% — R be a measurable function such that oscV :=supV —infV < oo and
=V has property (D).

Then

x> exp(—Blal? — W(x) - V(x))

is a p-admissible weight. If, additionally, V € Wli)’coo(dx), this weight satisfies the
conditions of Corollary[1.3

Remark 1.4. IfV is convez, then V is locally Lipschitz by [31, Theorem 10.4] and
hence V€ W,o>°(dzx) by [10, §4.2.3, Theorem 5).

Remark 1.5. IfoscV < oo, then the weight exp(—V') obviously satisfies Mucken-
houpt’s condition (L.5) for all 1 < p < oco.

As an application of the main result [I.I] the weighted Poincaré inequality

/ F [ fwdz

[ wdz

for the weight w := exp(—p|-|9 — W — V) also holds for f € H"P(wdz) and for
f e WhP(wdzx).

p
wdxﬁc/\Vﬂpwdx,
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Notation. Equip R¢ with the Euclidean norm |-| and the Euclidean scalar product
(-,-). For i € {1,...,d}, denote by e; the i-th unit vector in R¢. For R?-valued
functions v we indicate the projection on the i-th coordinate by v;. We denote the
(weak or strong) partial derivative a‘? by 8;. Also V := (01,...,04). We denote
the standard Sobolev spaces on R¢ by W'?(dz), W, *(dz) and W,-?(dz), with
1<p<oo.

For z € RY, let

x , if x #£0,
sign(z) := { |2
0, if z=0.

Denote by D the gradient in the sense of Schwartz distributions. For z € R? and
p >0, set Bz, p) :={y € R? ‘ |z —y| < p} and B(z, p) := {y € R? | |z —y| < p}.
With a standard mollifier we mean a family of functions {#.}.>0 such that

%@%Zﬁﬁ(%)

where 1 € C§°(R?) with > 0, n(z) = n(|z|), suppn C B(0,1) and [ndz = 1.

2. WEIGHTED SOBOLEV SPACES
For all what follows, fix 1 <p < oo and d € {1,2,...}. Set ¢ :=p/(p — 1).

Definition 2.1. For an a.e.-nonnegative measurable function f on R, we define
the regular set

R(f) = {y € R

1
/ —dx < 0o for somee >0,
Blye) |

where we adopt the convention that 1/0 := +o0 and 1/ + oo := 0.

Obviously, R(f) is the largest open set O C R?, such that 1/f € LL _(O). Also,
it always holds that f > 0 dz-a.e. on R(f).

Fix a weight w, that is a measurable function w € L} (R%), w > 0 a.e. Set

p(dz) ;= wdz. Following the notation of [32], we set o := w'/P.

Definition 2.2. Consider the following conditions:

(Ham1) For each i € {1,...,d} and for (d — 1-dim.) Lebesgque a.a. y € {e;}* it
holds that ¢P(y + -e;) = 0 dt-a.e. on R\ R(p?(y + -€;)).
(Ham2) ¢? =0 dz-a.e. on R%\ R(p?).

Both (Ham1), (Ham?2) are called Hamza’s condition (“on rays” resp. “on R?"),
due to [15].
It is straightforward that the following implications hold

(Loc) = (Ham2) = (Haml).
Also, if (Loc) holds, x4 and dz are equivalent measures.
Remark 2.3. Suppose that for dz-a.a. © € {pP > 0},

ess inf ¢” >0
55 inf ¢ (y)

for some 6 = 6(x) > 0. Then (Ham2) holds. In particular, (Ham2) holds when-
ever ©P > 0 is lower semi-continuous.

The following Lemma is analogous to [3, Lemma 2.1].
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Lemma 2.4. Assume that (Ham2) holds. Then
LP(R?, ) C Lie(R(¢%), d)
continuously.

Proof. Let u € LP(RY, u) and let B CC R(¢?) be a ball. By Holder’s inequality,

1/p 1/q
/ lu|dz < / |ul? P dx . (/ o1 dx) .
B R(p) B

Jp ¢~ ?dx is finite by (Ham2). O
Definition 2.5. Let

1/p
X = {u c COO(IRd) ‘ ||UH1,p,,u = (HVUHII)/P(/,L;]Rd) + HUHZI)},(#)) < OO} .

Let HYP (1) := X be the abstract completion of X w.r.t. the pre-norm |- Lpe

Lemma 2.6. Suppose that (Ham1) holds. Then for all sequences {u,} C C* the
following condition holds:

liTILn lunllpo(.y = 0 and {un} is [|V:|| 1o (,may -Cauchy
(2.1) always imply

11717:1’1 ||Vun||Lp(#7]Rd) = O.
Condition (2.1) is referred to as closability.

Proof. We shall consider partial derivatives first. Fix i € {1,...,d}.

Let {u,} € C* such that |[up|/;,,) — 0 and such that {u,} is [|0i[| 1.,
Cauchy. By the Riesz-Fischer theorem, {O;u,} converges to some v € LP(u). Fix
y € {e;}*+. By (Haml) and Lemmafor d =1, setting I, := R(¢%(y + -e;)), we
conclude that {9;u,(y + -€;)} converges to v(y + -e;) in L{ (I,). Let n € C§°(1,),

loc

0= lim/ un(y + tei)%n(s) dt = —lim (Oiun)(y + te;)n(t) dt
n Jr s=t n

v = supp nNIy

=-— / v(y + te;)n(t) dt.
supp nNIy,

We conclude that v(y + te;) = 0 for dy-a.e. y € {e;}* and dt-a.e t € I,. By
(Ham1) it follows that v = 0 p-a.e. on RY,
Assume now that {u,} € C* such that [lun| ;. — 0 and such that {u,} is

V[ £ (j;;2)-Cauchy. Since

d d
e o <[VP<CY lol,
i=1 i=1

(where ¢ > 0 and C > 0 are constants depending only on d and p), clearly each
{0;uy,} is a Cauchy-sequence in LP(u). Therefore,

d
/Rd|Vun|pd,u§ CZ/Rd\aiun|pdu—>O,
i=1

as n — oo by the arguments above. O

Proposition 2.7. Assume (Ham1l). Then Hé’p(,u) is a space of u-classes of func-
tions and is continuously embedded into LP(u). Also, Hy"(u) is separable and
reflexive.
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Proof. By (2.1)), the gradient in H,y”(u) is unique and each element in Hy* () is

uniquely characterized by its limit in LP(u). By our choice of norms, Hé Pu)
+

=N

LP(p) continuously. Hy™P(u) can be identified with a closed subspace of LP(u; R*1)
and is therefore separable and reflexive. O

Denote the (class of the) gradient of an element u € Hy™” () by V*u.

Proposition 2.8. Assume (Haml). The u-classes of C§°(RY) functions are dense
in Hy™ ().

Proof. The proof is a standard localization argument using partition of unity, see
e.g. [I8, Theorem 1.27]. O

2.1. Integration by parts. We follow the approach of Albeverio, Kusuoka and
Rockner [2], which is to define a weighted Sobolev space via an integration by parts
formula. Recall that w = ¢P. A function f € LP(u) might fail to be a Schwartz
distribution. Instead, consider f¢P, which is in L. by Hélder’s inequality and
therefore D(f¢?) is well-defined. For f € C§°, the Leibniz formula yields

D
(2:2) (VA" =D(fe") = pf =",
which motivates the definition of the logarithmic derivative of u:
D
ﬁ = pﬁa
®

where we set § =0 on {¢ = 0}. The name arises from the (solely formal) identity

B = V(log(¢)).
Lemma 2.9. Condition (Diff) implies o € Wb (dz) and

loc
\Y V(P
(23) p=pet = V&),
¢ e

where V denotes the usual weak gradient.
Moreover, 8 € LY (1;R?) and |Vip|pP~2 € L]

loc loc*

Proof. Assume (Diff). ¢P € L. is clear. We claim that

loc
(2.4) V(eP) = ppP~ ' Ve

Let e := ne * ¢, where {n.} is a standard mollifier. It follows from the classical
chain rule that for all € > 0

V((‘Pe)p) = p‘:of:)_lv‘ﬁa-

Since pP~! € L and Vy € L | we can pass to the limit in L{ _ and get that

loc loc?

P e Wllocl(dx) (2.4) follows now from the uniqueness of the gradient in Wll’l(dx).

The first equality in (2.3) is clear. The second follows from [2.4). 8 € L (u;R9)
is clear. The last equality follows from (Diff) by
’V‘P

q

¢ = (|Vele??)".

Lemma 2.10. Assume (Diff). Then P! € VVl(l)’q(dx). Also,

C

V(P = (p— 1" *Ve.
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Proof. Fix 1 <i < d. For N € N, define ¢y : R — R by ¢n(t) := (Jt|] VNI A
N)P~L. Clearly, 1y is a Lipschitz function. By the chain rule for Sobolev functions
[38, Theorem 2.1.11],
!
0N (p) = (p — 1)1{N*1§¢§N}73i90~

We have that ¥x(p) — ¢P~! da-a.s. as N — oo. Also,
[N (@)|” < l(p v NP < Clgl” + C € Lig.
Furthermore, by Lemma [2.9
p—1
q

(p _
1{N*1S<PSN}T(%W < |¢p 267;<P| € Lloc'

Hence by Lebesgue’s dominated convergence theorem, ¢y (¢) — ¢P~! in L & and

0N (9) — (p — 1)pP~20;¢ in L . The claim is proved. O

loc*

Lemma 2.11. Fiz 1 <i < d. Suppose that (Diff) holds. Then there is a version
P of P, such that for y € {e;}* the map t — @P(y + te;) is absolutely continuous
for almost all y € {e;}*. Furthermore, for almost all y € {e;}*,

R\ R(¢(y + i) D {t]¢P(y + te;) = 0}.
Recall that the dt-almost sure inclusion “C 7 holds automatically.
Proof. Note that ¢P € Wli)cl(dw) by Lemma Then the first part follows from

a well-known theorem due to Nikodym, cf. [28, Theorem 2.7]. The second part
follows from absolute continuity and Remark 2.3] for d = 1. a

We immediately get that:
Corollary 2.12. It holds that
(Diff) = (Haml).
Motivated by , we shall define the weighted Sobolev space HP(u).

Definition 2.13. If (Diff) holds, we define the space HYP (1) to be the set of all
u-classes of functions f € LP(u) such that there exists a gradient

Vif=(01f,...,04f) € LP(1;RY)

which satisfies
(2.5) /Q”pr dz = —/famtﬂ” dz — /fnﬁz«pp dz

for alli € {1,...,d} and all n € C(RY).
Define also Hﬁ)’f(u) by replacing LP(p) and LP(u;RY) above by LY (u) and
LY (u;RY) resp.

loc

The first two integrals in (2.5)) are obviously well-defined. The third integral is
finite by (Diff). It follows immediately that the gradient V* is unique. Also, if
f e CHRY), then f € H'P(u) and Vf = VA f pras.

loc

Proposition 2.14. Assume (Diff). Then HYP(u) is a Banach space with the
obvious choice of a norm

1/p
g = (9 W gumn + o)

Moreover, Hé’p(u) C HYP(u) and their gradients coincide p-a.e.
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Proof. Let {f,} C H"P(u) be a [[[l;,,,,~Cauchy sequence. By the Riesz-Fischer

theorem, {f,} converges to some f € LP(u) and {V*f,} converges to some g €
LP(p;RY). Let i € {1,...,d} and n € C§°(IR?). Passing on to the limit in

/ Of fane? dz = — / fnOing? dx — / fanBie? du
yields that
/gmw” do = —/fr?mso” dz — /fnﬁm” dz.

Therefore g = V* f and || fn — fll,,, — 0.

Let us prove the second part. Note that by Corollary and the discussion
above, Hy” (1) is a well-defined set of elements in LP(u).

Let f € C5°(R%) ¢ HyP(1). By (Diff) and the Leibniz formula for unweighted
Sobolev spaces, (2.2)) is satisfied. By classical integration by parts, f satisfies (2.5))

with V#f = V f. We extend to all of Hy” (1) by Propositionusing that HYP(u)
is complete. O

For our main result further below, we need to be able to truncate HP(u)-
functions. In order to prove the necessary chain-rule for Lipschitz functions, we
need another representation of functions in HP(u), broadly known as absolute
continuity on lines parallel to the coordinate azes.

Proposition 2.15. Suppose that (Diff) holds. Fiz 1 <i <d. Then f € H"?(p)
has a representative f* such that t — fi(y+te;) is absolutely continuous for (d—1-
dim.) Lebesgue almost all y € {e;}+ on any compact subinterval of R(p%(y + -€;)).
In that case, for dy-a.a. y € {e;}*, dt-a.a. t € R(p(y+ -€;)), setting x := y + te;,
0 f(x) = G f'(y + teq).
Proof. We argue similar to [0, Proof of Lemma 2.2].

Fix 1 < i < d. By Lemma fix a version of ¢P (denoted also by ¢?) such
that the map ¢ +— w(y + te;) is absolutely continuous on R for dy-a.a. y € {e;}+.

By (2.5), for any n € C5°(R?),
/@”fnsop dz = —/famso” dz — /fnﬁm” dz.
By Fubini’s theorem for dy-a.a. y € {e;} and for all n € C§°(R)

- / (O f(y + tei) + f(y + tei) Bi(y + tes)] P (y + teg)n(t) dt
(2.6)

d
:/ 1O F (Y + tes) P (y + tei) dt,
and hence for dy-a.a. y € {e;}* the map
t fly+te)p”(y + te;)

has a distributional derivative which lies in L (R). Hence by a well-known theorem
of Nikodym [28, Theorem 2.7] it has an absolutely continuous d¢-version on any
compact interval in R. By Lemma R(p%(y + -e;)) D {P(y + -e;) > 0} dy-
a.s. and hence R(p%(y + -€;)) = {¥P(y + -¢;) > 0} dy-a.s. We conclude that
t — f(y + te;) has a version fl which is absolutely continuous on any compact
subinterval of R(¢%(y + -e;)) for almost all y € {e;}*. By the Leibniz formula for

absolutely continuous functions and integration by parts, (2.6)) proves that

d - B |
o wrte) = Ol f(y + tey)

where the equality holds in the sense of u-classes. (I
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Picking appropriate absolutely continuous versions, one immediately obtains the
following Leibniz formula:

Corollary 2.16. Suppose that (Diff) holds. If f,g € H"P(u) and if fg, f0!'g and
gol'f are in LP(u) for all 1 < i <d, then fg € H"P(n) and d!'(fg) = f0!'g+ gd!' f
for all1 <i<d. Then also, V*(fg) = fVtg+ gVHf.

The following lemma guarantees that we can truncate Sobolev functions. This
property is also known as the “sub-Markov property”, “Dirichlet property” or “lat-
tice property” of the Sobolev space.

Lemma 2.17. Suppose that (Diff) holds. Suppose that f € HP(u) and that
F:R — R is Lipschitz. Then Fo f € HYP(u) with

VEFof)=(F'of) - V*f p-as.
In particular, when F(t) := N AtV —N, N € N is a cut-off function,
(2.7) VA(Fo )l < [VHf| peas.
Proof. The claim can be proved arguing similar to [38, Theorem 2.1.11]. O

We remark that, indeed, we are able to prove the lattice property now. The
procedure is standard and can be excellently seen in [I8, Theorem 1.18 et sqq.].
As another consequence, bounded and compactly supported functions are dense,
which is crucial for our main result below.

Lemma 2.18. Suppose that (Diff) holds. The set of bounded and compactly sup-
ported functions in HVP(u) is dense in HP(u).

Proof. The claim follows by a truncation argument from Corollary 2.16]and Lemma
We shall omit the proof. O

Note that the last two statements also hold for Hy™®(u). Anyhow, the proof of
Lemma for Hy” (1) needs some caution, because the Lipschitz function has to
be approximated by smooth functions. The method is well-known, we refer to [26],
Proposition 1.4.7, Example I1.2.c)].

3. PrROOF oF THEOREM [L.1]

We arrive at our main result. Our proof is inspired by that of Patrick Cattiaux
and Myriam Fradon in [7]. See also [I1]. However, our method in estimating
is different from theirs, as we use maximal function-estimates instead of Fourier
transforms.

For all of this section, assume (Diff). By Lemma bounded and compactly
supported functions in H'P(u) are dense. We will show that a subsequence of a
standard mollifier of such a function f converges in [|-[|; , -norm to f. The claim
will then follow from Lemma 2.8

For the approximation, we shall prove the following key-lemma. Compare with
[7, Lemma 2.9].

Lemma 3.1. Suppose that (Diff) holds. Let f € HP(u) such that f is bounded.
Then for every ¢ € C°(R?) and every 1 <i <d

(3.1) /8ff(cpdx+/f8¢(<pdx+/f(@igodx:O.

In particular, fo € Wh'(dz) and 9;(fp) = Qo' f + fOip.

loc
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Proof. For all of the proof fix 1 <14 < d. Let us first assure ourselves that all three
integrals in (3.1) are well-defined. Clearly,

10/ FCol? < NICIE 108 FIPP Lsupp ¢ € L (dx),
and hence,
0 ¢l € L (da).
A similar argument works for the second integral. The third integral is well-defined
because by ¢ € WL (dz) we have that

[ FCOipl” < (I FCNE 10iplP Lsupp ¢ € L (da)
and hence,
|fCOipl € LY (dx).
Let M € N and 97 € C§°(R) with
Ia(t) =tfort e [—M,M], [9p| < M+1, |9y, <1

and
supp(¥yr) C [-3M,3M].
Define

1
oy =0 (cpp_1> 1{Lp>0}'
Furthermore, define
1 0;
Since ¥),(1/¢P~1) =0 on {pP~! <1/(3M)} and

[23%
SQP

p
loc*

Clearly, par € L

|0ip

Pum| < (p—1) Ligr-151/G30my = (P — 1)F1{¢P>(1/(3M))q}a

hence ®,; € LY . We claim that ¢ € Wllo’f(dx) and that ;05 = ®r. Let € > 0

loc*
and define
1
=1 — .
o M((ws)pl)

Clearly, ¢5; — ¢a in LI as e \, 0. Also, by the chain rule for Sobolev functions
(see e.g. [38, Theorem 2.1.11})),

1 0,
Y - _ !/ 7
O = (=) ((«p +6)”1> (o 2)p Hete>@m) 1)

and

|0¢¢]
|0iphr| < (p — 1>m1{(¢+e)p>(1/(3M))Q} € Lige-

Hence @5, € W,.P(dz) and d;p5, — ®pr in LY as e \, 0.

Since ¢ € W, (dzx) and since @y is bounded, we have that padip € LP . Also,

c loc

wdipm € LY ., since
1%

(3.2) lpdipn| < (p— 1)F1{¢P*1>1/(3M)} < (p—1)3M|0i¢p|.

Now by the usual Leibniz rule for weak derivatives

1 0;
225 VS Wli’c”(da:) and  0i(penr) = ermip + (1 — )y (W) op1

where by definition 9;¢0/pP~! = 0 on { = 0}. Consider the term yrpP. Recall
that P € Wlicl(dx) by Lemma As already seen, gy € VVliCp(dx) By
Lemma [2.10, @P~! € W 9(dz) and 9;(pP~ 1) = (p — 1)p? 20;p € LL_. Hence

loc loc*
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oo (0 (9P~ 1)) € L and 9;(pprr)pP~t € Li .. Tt follows that @areP € VVJ)C1 (dx)

loc loc*
and by the Leibniz rule for weak derivatives

_ 1

Oi(or”) = pem” 0o + (1 — p)iy, (@”‘1) Oip € Liye.

Let ¢ € C3°(R?). Applying integration by parts, we see that
Oip dip 1
33 [aceusds=-p [ con®Eprans 1) [ o () e
Moreover, by (3.2), d;pom € LV (¢Pdx). om € LY (¢Pdx) is clear. Therefore
o € Hygl (i) and
" Dip 1
Ofenm = (1-p) (;p Vs (W) :

The Leibniz rule in Corollary also holds in Hﬁ)’f (1), and so we would like to
give sense to the expression ' (fon) = omdf + [ onm. But pu € HEP (),
f € HYP(u) and f is bounded, fol'pn € L. (u) since f is bounded and finally

loc

om0 f € L2 (1) since ¢y is bounded. Hence fonr € HLP(u) and the Leibniz

loc

rule holds (locally). By definition of 8 for ¢ € C§g°(R¢)

/@“fwzwsop de =(p - 1)/f<?;fi9’M (w,,l_l) o7 da

0;
—/f&-(@wppd:v—p/fé“sm (fsopdw
Now let M — oo in (3.4]). Note that
o — (/0" ) 1ips0y

(3.4)

dz-a.s. and
Dy (1/eP7h) — 1
dz-a.s. In order to apply Lebesgue’s dominated convergence theorem, we verify

10F FCorre®] < 200} fol €]l Lsupp ¢ € L' (da),
where we have used that
learg? | <1,
because ¥, is Lipschitz and 9,,(0) = 0, Furthermore,

| ¢ (1/0P )| < 1£050] [|€]] o Lsuppc € L (da),

| F0:¢one”| < 2|l [10iC ]l o Lsupp¢ € L' (dx),
and

| fConDipe? ™t < 2| f0ip| I€] oo Lsupp¢ € L' (da).

The formula obtained, when passing on to the limit M — oo in (3.4)), is exactly the
desired statement. (]

Let f € HYP(u) be (a class of) a function which is bounded and compactly
supported. By Lemma we are done if we can approximate f by C§°-functions.
Let {n:}c>0 be a standard mollifier. Since f is bounded and compactly supported,
nexf € C§°(RY) with supp(nexf) C supp f+eB(0,1) and |n-*f| < || f]|.. We claim
that there exists a sequence &, \, 0 such that 7. * f converges to f in HYP(u).
The LP(u)-part is easy. Since n. * f, f € L'(dx), lime~o |7 * f — fllr @z = 0-
Therefore we can extract a subsequence {e,} such that n., * f — f dx-a.s. For
en <1

(e, * £ = fol? < 2P| £1I% |l Lsupp s+ B0,1) € L' (da).
By Lebesgue’s dominated convergence theorem, lim, ||n., * f — f||L,,(H) =0.
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Fix 1 < i < d. We are left to prove 9;(n., * f) — 0! f in L?(u) for some sequence
€n \\ 0. Or equivalently,

©0;(ne,, * f) — @Ol f in LP(dzx).

Write

(3.5)
/|908i(775 x f) — @0l fIP da
<op—1 Vlwaff — (e * (0! )P da + /|<n5 % (001 f)) — 00i(ne * £)IP da| .

The first term tends to zero as € \, 0 by a well-known fact [34, Theorem III.2 (c),
p. 62]. We continue with studying the second term. Recall that 7.(z) = n.(|z|).

/|<P3z'(775 * f) — (ne = (00! f))|P dz

:/‘(p(x)/ﬁmg(x—y)f(y) dy—/ne(w—y)w(y)aé‘f(y) dy
=/‘/3ms(w—y)f(y)[so(w) —o(y)] dy

p

dx

P

dz

+ [l = )5 W)eln) = nete — 9)e)o! F) dy
apply Lemma with ((y) :=n.(x —y)

and noting that 9;n.(z —y) = %%(w —y) = *8%775(% )

p

dx

=/ ‘/ame(w =y fWle(x) —e(y)]dy + /ne(x =) f(¥)9ip(y) dy
’ dz+/|775 « (foip)l” dx}

<or-1 [ / \ [ dunete = 1 we@) — o)) ay

p
dx + op—1 ||faz¢||ip(dx) :

<or! / ’/&-ns(:ﬂ —y)f(W)le(x) — eyl dy

We would like to control the first term. Replace ¢ by @ € W, (dz) defined by:
9/5 = (,05 with 5 € C(C))O(]R'd) and 1Supp f+B(0,2) < E < 1supp f+B(0,3)-

Let h. : R — R, h.(z) := —ez. Then upon substituting y = = + £z (which leads
to dy = e?dz)

p

dx

[|[ ot - swiet - ctnay

f

p
dx

/ One(—e2)f(z + 22)[P(x) — Bl + 22))e? dz
B(0,1)
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By the chain rule —£(9;1.)(—¢2) = 9;(n: o ho)(2) = (1/e4)9;(n)(z) and hence the
latter is equal to

/ / om(z)f(z+ez) Pla) = P +e2) dz| dz
B(0,1) €
<op— / /B(O ) 0in(z)f(x+e2) (—Vo(x +e2),2) dz| dx
4ot / / (=) f(x + ) F(m) —PwH D) | (95t e2) z>] &
B(0,1) ' € 7

By Jensen’s inequality and Fubini’s theorem, the first term is bounded by

C(p,d) 0mll%, Z 1£0521 70 ) »
Jj=1
where C(p, d) is a positive constant depending only on p and d.
Concerning the second term, we use again Jensen’s inequality and Fubini’s the-

orem to see that it is bounded by
(3.6)

C'(p, d) |0l 117 / / \ @+22) | 9o te2),2)| dras,

where C’(p, d) is a positive constant depending only on p and d. Let us investigate
the inner integral. We need a lemma on difference quotients. Compare with [I3]
Proof of Lemma 7.23] and [38, Theorem 2.1.6].

Lemma 3.2. Let z € B(0,1) C R and u € WhP(dz). Set fore >0

u(z —ez) — u(x)

Acu(z) = E

for some representative of u. Then

[Acu+ (Vu, Z>||Lp(dm) —0

as €\, 0.
Proof. Start with u € C* N WP(dz). By the fundamental theorem of calculus
1 €
Acu(z) = fg/ (Vu(x — sz),z) ds.
0

Use Fubini’s Theorem to get
(3.7)

/|Aeu(x) (Vu(z),2)|" dz = = / /| (Vu(z — s2),z) — (Vu(z), 2)|" dzds.
By a well-known property of LP-norms [34], p. 63] the map
s / (Vu(x — sz),2) — (Vu(z), 2)|" dz

is continuous in zero. Hence s = 0 is a Lebesgue point of this map. Therefore
the right hand side of tends to zero as € \, 0. The claim can be extended
to functions in WP (dx) by an approximation by smooth functions as e.g. in [38]
Theorem 2.3.2]. O

By variable substitution, we get that the inner integral in (3.6) is equal to
~ P
x—ez)—plx .
il )~ P) +(Vo(x), z)| da.

(3.8) / 2 -
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By the preceding lemma, the term converges to zero pointwise as ¢ \, 0 for each
fixed z € B(0,1). Let for g € L{

loc
Mg(z) := sup][ l9(y)l dy,
p>0J B(z,p)
be the centered Hardy—Littlewood mazximal function. We shall need the useful in-
equality
(3.9) lu(z) —u(y)| < clz —y| [M|Vul(z) + M[Vul(y)]
for any u € W1P(dx), for all z,y € R?\ N, where N is a set of Lebesgue measure
zero and c is a positive constant depending only on d and p. For a proof see e.g.

[1, Corollary 4.3]. The inequality is credited to L. I. Hedberg [17].
Also for all u € LP

(3.10) [Mull, < clull

by the maximal function theorem [34] Theorem I.1 (c), p. 5] and ¢/ > 0 depends
only on d and p.
Hence for dz-a.a. z € B(0,1)

The desired convergence to zero as € \, 0 follows now by the preceding discussion
and Lebesgue’s dominated convergence theorem.
We have proved that

160t 1) = s ot P s
(3.11) p
<C(d,p,supp £,1) | Y 11050070 q) + 1115 OE)

j=1

P

plr —ez) — oz %
Pl —ez) ~ o) dz < C(p,d) VB2 am 121 po1) € L1 (d2).

3

+(Vo(x), 2)

with () — 0 as e \, 0, and 6 depends only on supp f.

We shall go back to the right-hand side of . Let fs := ns * f for 6 > 0.
By Lebesgue’s dominated convergence theorem again, we can prove that there is a
subnet (also denoted by {fs}), such that

d
(3.12) DI = £5)0500 amy = O

j=1
as 0 \, 0. Taking into account, (f replaced by f — fs5 therein), we get that
190:(n- * f) = (1 * (0O PN Lo an)
<2 lgdune * (f — ) — (0 % (004 (F — Fs))oniany
+ 22 s (e * f5) — (e * (902 FsDI 2y

d
<C(d,p,supp £) | DI = 19050l an) + 1 = 512 0(2)
j=1
+ 2071 ”5081'(776 * f5) - (775 * (sﬁaffs))ﬂzp(dx) .
The use of (3.11)) is justified, since $ = ¢ on supp f + B(0,2), thus on supp(f —
f5)+B(0,1). Taking (3.12)) into account, by choosing first § and then letting € \, 0,

the first term above can be controlled (since || f — fs||.. < 2||f]l)- If we can prove
for any ¢ € C§°

(3.13) 1905 (1 % €) = (1 % (0O O o (ay — O
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as € \, 0, we can control the second term above and hence are done. But

90:(ne * ) — (ne * (00 C))HL@(dz
/\/w— 0C() [o(x) — o(y)] dy| da.

Substituting y = = + 2 (dy = €?dz) and using Jensen’s inequality and Fubini’s
theorem again, the latter is dominated by

C(d,p) ]2, 16:<I /B o I6E00) = L+ 0 02

s

where & € C5°(R?) with & = 1 on supp ¢ + B(0, 1).
160€)C) = () + ) )

tends to zero as € N\, 0 again by [34, p. 63]. By inequalities (3.9) and (3.10) for
dz-a.a. z € B(0,1)

1(0€) () = (0€) (- + €)1 (amy < (s P) IV (DENT 1 (aay l€2[PLB(0,1) € LH(d2),
thus we can apply Lebesgue’s dominated convergence theorem.
The proof is complete.
4. THE KUFNER-SOBOLEV SPACE W1P (1)

We shall briefly deal with the Kufner-Sobolev space WP (y) first introduced in
[22] and studied e.g. in [23, 24, [29].

Definition 4.1. Assume (Loc). Let
WP () := {u € LP(u), | Du € LP(1; R%)}.

Note that in the above definition, by (Loc) and Lemma u€ L]
Du is well-defined.

ive and hence

Proposition 4.2. Assume (Loc). Then WYP(u) is a Banach space with the ob-
vious choice of a norm. Also, by definition Hé’p(u) C WP (u). Moreover, for all
u € HyP(u), VAu = Du dz-a.s.

Proof. See [23, Theorem 1.11] and [I8, §1.9]. O

Our contribution to the study of W1P(u) is contained in the following Proposi-
tion. For p = 2 it was proved in [4].

Proposition 4.3. Assume (Loc), (Diff). Then
Hy?(p) = H'P () = WP ().

Proof. The first equality follows from Theorem Therefore by Proposition [£.2]
HYP(u) € WHP(u) and for uw € HYP(u), V#u = Du both p-a.e. and dz-a.e. (recall
that (Loc) implies that da and p are equivalent measures).

Conversely, let f € WP (u) N L>(u). Since by Lemma L P € VV1 Y(dz), w
have for each i € {1,...,d} and each n € C§°(R?) that

/Dz-fn@p dz = —/f&(nsop)dx

where 0; is the usual weak derivative in W (dx) But, again by Lemma . the
right hand side is equal to

—/famwpdx—/fnﬁ“ppdm_



16 JONAS M. TOLLE

Therefore f € HYP(u) and Df = VA f both p-a.e. and dx-a.e. It is well-known
that, given (Loc), bounded functions in W1?(u) are dense in W1(u) and hence
WhP(u) € HYP(p). O

5. A NEW CLASS OF p-ADMISSIBLE WEIGHTS

Recall the definition of p-admissible weights as proposed by Heinonen, Kilpeléilen
and Martio in [I8]. Note the similarities between (5.2)) and (2.1]) above.

Definition 5.1. A weight w € L{ (R?), w > 0 is called p-admissible if the follow-

loc
ing four conditions are satisfied.

e 0 < w < oo dz-a.e. and the weight is doubling, i.e. there is a constant
C1 > 0 such that

(5.1) / wdr < 01/ wdz Y balls B C RY.
2B B
o IfQ C R? is open and {n} C C>(Q) is a sequence of functions such that
(5.2) /|nk\pwdx—>0 and /\Vnk —vPwdz — 0
Q Q

for some v € LP(Q,wdax; RY), then v =0 R
e There are constants k > 1 and C3 > 0 such that

1 1/(xp) 1 1/p
. _— wp < iamB [ —— P
(5.3) (fBde /B|17| wdx) < Cj diam (Idex /B\Vn| wda:) ,

whenever B C R? is a ball and n € C§°(B).
e There is a constant Cy > 0 such that

(5.4) / |n —nplPwder < Cy(diam B)p/ |Vn|Pwdz,
B B

whenever B C R is a ball and n € C{°(B). Here

S Ty g,
np = [ wde an T.

The next results were basically proved by Hebisch and Zegarliniski in [16, Section
2]. We include the proofs in order to make this paper self-contained and obtain
concrete bounds due to a more specific situation.

Lemma 5.2. Let 1 < ¢ < 00, # € (0,00). Let p(dzx) := exp(—p|z|?) dz. Then for
any C > (Bq)~ Y, any e >0 and any D > (1+¢)?~ ! +e71C, we have that

(5.5) /mm“mmwscﬂvmmm+D/mmmx
for all f € CHRY).

Proof. Let f € C3(RY) such that f > 0 and f is equal to zero on the unit ball. By
the Leibniz rule we get that

(V)e o1 = (P17 4 o gl sign()e 1"

Plugging into the functional g — [ (g(x),sign(z)) dx yields
/(sign(x), Vf(z)) e ol da

(5.6)
= / (sign(@), v (fe~ 721"} ) dz + g / Fa@)le]r e Pl da,
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Clearly, for the left-hand side,

o0 [ i), Vi@ e M o < [19 5@ de,

Denote by D the distributional gradient and by ¢, the Dirac measure in x. Recalling
that Dsign(-) = 2dy, after an approximation by mollifiers, we get the formula

(5.8) /<sign(x),v (fe’m””|q)> de = —2/fe’m””|q ddo = —2£(0) = 0.
Gathering , and gives
(5.9) 5a [ flalr o) < [ 19|t

Replacing f by |f| and noting that V(| f]) = sign(f)V f, we can extend to arbitrary
f € C} such that f =0 on B(0,1).

Now, let f € C3 be arbitrary. Let € > 0. Let p(z) :== 1A (((1 +¢) — |z|) V 0).
Then f =g+ h, where g := ¢f and h:= (1 — ¢)f. Also, h =0 on B(0,1). Now,

/ Flla]e™? pu(dz) = /1|<1+€|f|xl“u(dw) n / | Fllale=? ()

|z|>14€

(5.10) <14y / ) + / e )

<14yt / 1l p(de) + / 1] ]9 ().

Note that |Vh| < |V f| + et f| dz-a.s. Let C > (Bg)~!. By an approximation in
W1 norm, we see that (5.9)) is also valid for h and hence

Jiial ) < ¢ [ (91 utar) < € [19 1100+ [1fnta),
which, combined with (5.10)), yields inequality (5.5) with D > (1+¢)?1+e~1C. O

Lemma 5.3. Let 1 < p < o0, ¢ := p/(p—1), B € (0,00). Let u(dz) :=
exp(—B|z|?) dx. Let C > (Bq)~'. Let W € C*(R?) be a differentiable potential
(in particular, is bounded below) such that

(5.11) YW (2)] < dlaft" + 4
with some constants 0 < 6 < C~1, v € (0,00). Let V be measurable such that
oscV :=supV —inf V < co. Let dv := exp(—W — V)du. Then for any ey > 0,
any
Cl > (1 _ 05)716017062050\/’

any €1 > 0 and any

D' > (1—C8) te2oseV ((1 +e)T 47 O+ (eop)"VPCpgt + w)
it holds that
Gy [l v <€ [195p v + 0 [170 viao),
for any f € C}.
Proof. Plug |f|[Pe=" into (5.5). By Leibniz’s rule we get that

/ FPl]e e ()

< Cp / PPV fle ™ p(da) + C / P9 W]e W u(da) + D / FPe ().
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For the first term,

Cp / PPV p(da)

1/q
<Cp ( [vsire ) ( [isre >)
<eopC / T FPeW pu(dz) + (cop) "/ Cpg ! / FPe p(de),

by Hoélder and Young inequalities resp. Since oscV < oo, the claim follows by an
easy perturbation argument, see e.g. [12, preuve du théoreme 3.4.1]. U

1

Usually, one would set g :=p~" and 1 := 1.

Theorem 5.4. Let 1 < p < oo and let w be a weight such that w satisfies a local
p-Poincaré inequality with constant Cy > 0. Let 3, W, V,C' >0, D' >0 be
as in Lemmal5.3

Let L > D’. Let

= 9 -W -V].
or = o5 [-61 |
Let
2a —1 c’
022[16 LC4Lp(pD/)+T.
-

Suppose that dv,, := exp(—p|-|[9=W =V ) wdz is a finite measure. Then v, satisfies
the Poincaré inequality

Ji-ie

for all f € Cg°(RY).
Proof. By the results of Lemma we can apply [16] Theorem 3.1]. O

. gc/\vmd%,

Before we prove Theorem[I.3] let us note that, under our assumptions, the results
of Hebisch and Zegarliiski (in this particular case) extend to HYP(u) = WP (pu).
Of course, other Poincaré and Sobolev type inequalities for smooth functions extend
similarly to HYP(u) if the weight satisfies (Diff).

Proof of Theorem[I.3 Let us prove that exp(—f|-|?* — W — V) is doubling. Let
Vel > 1, cV. ey € R be the constants from property (D). Let a := inf W,
b:=infV. Let B C R be any ball. Then

/ o~ Bl =W (2) -V () dxzz/ 27 Blal W (22) -V (22) .,
2B B

<267<c¥V71)a+c¥Vf<c¥fl>b+c¥/ Blal =W @)=V (@) 4
B

which proves the doubling property.

By similar arguments as in the proof of Lemma condition is implied con-
dition (Loc) which is obviously satisfied, since 3|-|2, W and V are locally bounded.
However, by a general result due to Semmes, is implied by and , see
[19, Lemma 5.6].

The weighted Poincaré inequality follows from Theorem by noting that
exp(—f|z|9 — W — V) dx is a finite measure.

The weighted Sobolev inequality follows from and by a general
result of Hajlasz and Koskela [14].
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Suppose now that V e W,"(dz). Since W € C', also W € Wh™(dz). A

loc loc

similar statement holds for —f|-|9. Therefore, it is an easy exercise to check that
the conditions (Loc) and (Diff) are satisfied. O
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