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Abstract

We consider a stochastic differential equation on Rd with Lips-
chitz coefficients. We find a core for the infinitesimal generator of the
corresponding Markov process. Some applications, in particular, to
well-posedness of Fokker–Planck equations are given.
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1 Introduction

We are here concerned with a stochastic differential equation in H := Rd,
dX = b(X)dt+ σ(X)dW (t),

X(0) = x,
(1.1)

where b : H → H and σ : H → L(H) are Lipschitz continuous. It is well
known that equation (1.1) has a unique solution X(·, x).
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Moreover, the transition semigroup

Ptϕ(x) = E[ϕ(X(t, x))], ϕ ∈ Cb(H), (1.2)

is Feller. (Cb(H) is the Banach space of all mappings ϕ : H → R which
are uniformly continuous and bounded, endowed with the norm ‖ϕ‖0 :=
supx∈H |ϕ(x)|.)

If b and σ are not bounded Pt, t ≥ 0, is not strongly continuous in
Cb(H) but only pointwise continuous. We call it a π-semigroup, see later for
a precise definition. Though the Hille–Yosida theory cannot be applied to
Pt, one can define an infinitesimal generator K following [1] or [5]. Then
the problem arises to show the relationship between K and the Kolmogorov
operator

K0ϕ :=
1

2
Tr [a(x)D2ϕ] + 〈b(x), Dϕ(x)〉, ∀ ϕ ∈ C2

b (H), (1.3)

where
a(x) = σ(x)σ∗(x), ∀ x ∈ H.

The main result of this paper is that if in addition b and σ are of class C2

with bounded second derivatives, then

K ϕ = K0ϕ, ∀ ϕ ∈ C2
b (H)

and the space C2
b (H) is a core for K .

This result seems to be new when a is not uniformly elliptic, see the
monograph [3] and references therein for the case of uniformly elliptic a.

2 Notations and preliminaries

Let us precise our assumptions.

Hypothesis 2.1 (i) b : H → H and there is K1 > 0 such that

|b(x)− b(y)| ≤ K1|x− y|, ∀ x ∈ H. (2.1)

(ii) σ : H → L(H) and there is K2 > 0 such that

‖σ(x)− σ(y)‖HS ≤ K2|x− y|, ∀ x ∈ H, (2.2)

where the sub-index HS means the Hilbert–Schmidt norm.
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We note that by (2.1) and (2.2) it follows that

|b(x)| ≤ K1|x|+ |b(0)|, ∀ x ∈ H, (2.3)

and

‖σ(x)‖HS ≤ K2|x|+ ‖σ(0)‖HS, ∀ x ∈ H, (2.4)

respectively.
Sometimes we shall need the following more stringent assumptions.

Hypothesis 2.2 (i) b and σ are of class C2 and fulfill Hypothesis 2.1.

(ii) There is K3 > 0 such that

|b′′(x)|+ ‖σ′′(x)‖HS ≤ K3, ∀ x ∈ H. (2.5)

The following two propositions are well known.

Proposition 2.3 Assume that Hypothesis 2.1 is fulfilled. Then for any x ∈
H and any T > 0 there is a unique solution X(·, x) ∈ L2

W (Ω;C([0, T ];H)) of
equation (1.1). Moreover, for all m ∈ N, X(·, x) ∈ LmW (Ω;C([0, T ];H)) and
there is CT,m > 0 such that

E (|X(t, x)|m) ≤ CT,m(1 + |x|m), ∀ x ∈ H, t ∈ [0, T ]. (2.6)

Finally, there is C ′T > 0 such that

E|X(t, x)−X(t, y)| ≤ C ′T |x− y|, ∀ x, y ∈ H, t ∈ [0, T ]. (2.7)

By LmW (Ω;C([0, T ];H)) we mean the space of all adapted continuous stochas-
tic processes F such that

E

(
sup
t∈[0,T ]

|F (t)|m
)
< +∞.

Proposition 2.4 Assume that Hypothesis 2.2 is fulfilled and let X(·, x) be
the solution to (1.1). Then the following statements hold.

(i) X(t, x) is continuously differentiable in any direction h ∈ H and setting
ηh(t, x) = Xx(t, x) · h we have

dηh = b′(X)ηhdt+ σ′(X)(ηh, dW (t)),

ηh(0) = h.
(2.8)

Moreover, there exists ω1 ∈ R and C1 > 0 such that

E|ηh(t, x)|2 ≤ e2ω1t|h|2, ∀ h ∈ H, t > 0. (2.9)

3



(ii) X(t, x) is twice continuously differentiable in any couple of directions
h, k ∈ H and setting ζh,k(t, x) = Xx(t, x)(h, k) we have

dζh,k = b′(X)ζh,kdt+ b′′(X)(ηh, ηk)dt

+σ′(X)(ζh,k, dW (t)) + σ′′(X)(ηh, ηk, dW (t)),

ζh,k(0) = 0.

(2.10)

Moreover, there exists ω2 ∈ R and C2 > 0 such that

E|ζh,k(t, x)|2 ≤ C2e
2ω2t|h|2|k|2, ∀ h, k ∈ H, t > 0. (2.11)

2.1 Transition semigroup

Let us introduce some notations. For any k ∈ N by Ck
b (H) we denote the

space of all mappings ϕ : H → R which are uniformly continuous and
bounded together with their derivatives of order lesser than k. Ck

b (H), en-
dowed with the norm

‖ϕ‖k := ‖ϕ‖0 +
k∑
j=1

‖Djϕ‖0,

is a Banach space.
Moreover, for any m ∈ N by Cb,m(H) we denote the space of all mappings

ϕ : H → R such that the mapping

H → R, x→ |ϕ(x)|
1 + |x|m

belongs to Cb(H). Cb,m(H), endowed with the norm

‖ϕ‖b,m := sup
x∈H

|ϕ(x)|
1 + |x|m

,

is a Banach space.
Taking into account (2.6) we can define the transition semigroup

Ptϕ(x) = E[ϕ(X(t, x))], ϕ ∈ Cb,m(H). (2.12)

We know that Ptϕ ∈ Cb(H) for all t ≥ 0 and all ϕ ∈ Cb(H). It follows from
(2.6) that also Ptϕ ∈ Cb,m(H) for all ϕ ∈ Cb,m(H). Furthermore, Pt, t ≥ 0,
is a semigroup.
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Proposition 2.5 Assume that Hypothesis 2.2 is fulfilled. Then C1
b (H) and

C2
b (H) are stable for Pt, t ≥ 0,. Moreover there exist positive constants K1

and K2 such that

‖Ptϕ‖j ≤ Kj‖ϕ‖j, ∀ ϕ ∈ Cj
b (H), j = 1, 2, t ≥ 0, (2.13)

where ‖ · ‖j denotes the norm in Cj
b (H).

Proof. The assertions follow from Propositions 2.4 and the identities

〈DPtϕ(x), h〉 = E[〈Dϕ(X(t, x)), ηh(t, x)〉], t ≥ 0, h, x ∈ H,

and

〈D2Ptϕ(x)h, k〉 = E[〈Dϕ(X(t, x)), ζh,k(t, x)〉]

+E[D2ϕ(X(t, x))(ηh(t, x), ηk(t, x))], t ≥ 0, h, k, x ∈ H.

�

2.2 Itô’s formula

Let us consider the Kolmogorov operator (1.3). By Hypothesis 2.1 it follows
that there exists M > 0 such that for all ϕ ∈ C2

b (H) we have

|K0ϕ(x)| ≤M(1 + |x|2), ∀ x ∈ H, (2.14)

so that K0ϕ ∈ Cb,2(H).

Proposition 2.6 (Itô’s formula) Assume that Hypothesis 2.1 is fulfilled.
Then for all ϕ ∈ C2

b (H) we have

E[ϕ(X(t, x))] = ϕ(x) +

∫ t

0

E[K0ϕ(X(s, x))]ds. (2.15)

Proof. Write

X(t, x) = x+

∫ t

0

b(X(s, x))ds+

∫ t

0

σ(X(s, x))dW (s).

By (2.3) and (2.6) we see that

E|b(X(t, x))| ≤ CT,1K1(1 + |x|) + |b(0)|.

so that
b(X(·, x)) ∈ CW ([0, T ];L1(Ω,Rd)).
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Moreover, by (2.4) and (2.6)

E‖σ(X(t, x))‖2HS ≤ 2K2(1 + |x|)2 + 2‖σ(0)‖2HS,

so that,
σ(X(·, x)) ∈ CW ([0, T ];L2(Ω,Rd)).

Then we may apply Itô’s formula and the conclusion follows. �

Note that if ϕ ∈ C2
b (H) we have K0ϕ ∈ Cb,2(H) by (2.14). Therefore,

d

dt
Ptϕ = PtK0ϕ, ∀ϕ ∈ C2

b (H). (2.16)

Proposition 2.7 Assume that Hypothesis 2.2 is fulfilled. Then

d

dt
Ptϕ = K0Ptϕ, ∀ϕ ∈ C2

b (H). (2.17)

Proof. By the semigroup property, Proposition 2.5 and (2.16) we have for
all ϕ ∈ C2

b (H)

d

dt
Ptϕ =

d

dε
Pt+εϕ

∣∣
ε=0

=
d

dε
Pε(Ptϕ)

∣∣
ε=0

= K0Ptϕ

�

3 The infinitesimal generator of Pt

Let us introduce some notations. Given a sequence (ϕn) ⊂ Cb(H) and ϕ ∈
Cb(H), we say that (ϕn) is π-convergent to ϕ and write ϕn

π→ ϕ, if the
following conditions are fulfilled.

(i) For each x ∈ H we have

lim
n→∞

ϕn(x) = ϕ(x).

(ii) sup
n∈N
‖ϕn‖0 < +∞.

Proposition 3.1 Assume that Hypothesis 2.1 is fulfilled and let (ϕn) ⊂
Cb(H), ϕ ∈ Cb(H) such that ϕn

π→ ϕ. Then for all t ≥ 0 we have Ptϕn
π→

Ptϕ.
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We say that Pt is a π-semigroup.
Proof of Proposition 3.1. For any x ∈ H we have

lim
n→∞

Ptϕn(x) = lim
n→∞

E[ϕn(X(t, x))] = Ptϕ(x),

thank’s to the dominated convergence theorem. Moreover

‖Ptϕn‖0 ≤ ‖ϕn‖0 ≤ sup
n∈N
‖ϕn‖0 <∞.

�

We follow here [5].

Definition 3.2 We say that ϕ belongs to the domain of the infinitesimal
generator K of Pt in Cb(H) if

(i) For each x ∈ H there exists the limit

lim
ε→0

1

ε
(Pεϕ(x)− ϕ(x)) =: K ϕ(x)

and K ϕ ∈ Cb(H).

(ii) sup
ε∈(0,1]

1

ε
‖Pεϕ− ϕ‖0 < +∞.

K is called the infinitesimal generator of Pt.

In the following we set

∆ε :=
1

ε
(Pε − 1).

Proposition 3.3 Let ϕ ∈ D(K ) and let t ≥ 0. Then Ptϕ ∈ K and we
have

K Ptϕ(x) = PtK ϕ(x), ∀ x ∈ H. (3.1)

Moreover, Ptϕ(x) is differentiable in t and

d

dt
Ptϕ(x) = K Ptϕ(x) = PtK ϕ(x), ∀ x ∈ H. (3.2)

Proof. Let ϕ ∈ K . Then we have

∆εPtϕ(x) = Pt∆εϕ(x).
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Since ∆εϕ
π→ K ϕ, by Proposition 3.1 it follows that

∆εPtϕ
π→ PtK ϕ.

So, Ptϕ ∈ D(K ) and K Ptϕ = PtK ϕ. On the other hand,

D+Ptϕ(x) = lim
ε→0

Pt∆εϕ(x) = PtK ϕ(x)

and (3.1) follows because K ϕ is continuous. �

We shall denote by ρ(K ) the resolvent set of K and by R(λ,K ) its
resolvent.

The following result is proved in [5] under slightly different assumptions.
We sketch here the proof for the reader’s convenience.

Proposition 3.4 ρ(K ) ⊃ (0,+∞). Moreover, for any λ > 0 and any
f ∈ Cb(H) we have

R(λ,K )f(x) =

∫ ∞
0

e−λtPtf(x)dt, x ∈ H. (3.3)

Proof. Set

∆ε :=
1

ε
(Pε − 1).

Let f ∈ Cb(H) and for any λ > 0, x ∈ H set

F (λ)f(x) =

∫ +∞

0

e−λtPtf(x)dt.

Then it is not difficult to see that F (λ)f ∈ Cb(H). Let us show that λ ∈
ρ(K ). Since

∆εF (λ)f(x) =
1

ε
eλε
[∫ ∞

ε

e−λtPtf(x)dt−
∫ ∞

0

e−λtPtf(x)dt

]

=
1

ε
(eλε − 1)

∫ ∞
ε

e−λtPtf(x)dt− 1

ε
eλε
∫ ε

0

e−λtPtf(x)dt,

we easily deduce that F (λ)f ∈ D(K ) and

lim
ε→0

∆εF (λ)f(x) = λF (λ)f(x)− f(x). (3.4)

Therefore

K F (λ)f = λF (λ)− f. (3.5)
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It remains to show that

F (λ)(λ−K )ϕ = ϕ, ∀ ϕ ∈ D(K ). (3.6)

This will complete the proof that λ ∈ ρ(K ). To prove (3.6) choose ϕ ∈
D(K ), then, taking into account Proposition 3.3, we have∫ ∞

0

e−λtPtK ϕ(x)dt =

∫ ∞
0

e−λt
d

dt
Ptϕ(x)dt

= −ϕ(x) + λF (λ)ϕ(x), ∀ x ∈ H.

which implies (3.6). �

Remark 3.5 By (3.3) it follows that

‖R(λ,K )f‖0 ≤
1

λ
‖f‖0, ∀ f ∈ Cb(H).

Therefore K is m–dissipative in Cb(H).

We are going to investigate the relationship between K and K0.

Proposition 3.6 Assume that Hypothesis 2.1 is fulfilled. If ϕ ∈ D(K ) ∩
C2
b (H) then K ϕ = K0ϕ.

Proof. By Proposition 2.6 we have

1

t
(Ptϕ(x)− ϕ(x)) =

∫ t

0

E[K0ϕ(X(s, x))]ds.

As t→ 0 we find
K ϕ(x) = K0ϕ(x), ∀ x ∈ H.

�
Now we show that

D := {ϕ ∈ C2
b (H) : K0ϕ ∈ Cb(H)},

is a core for K . Let us first show that D ⊂ D(K ).

Proposition 3.7 Assume that Hypothesis 2.1 is fulfilled and let ϕ ∈ D .
Then ϕ ∈ D(K ) and we have K ϕ = K0ϕ.
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Proof. Let ϕ ∈ D . By Itô’s formula (2.15) we have

1

t
(Ptϕ(x)− ϕ(x)) =

∫ t

0

E[K0ϕ(X(s, x))]ds.

Therefore,

lim
t→0

1

t
(Ptϕ(x)− ϕ(x)) = K0ϕ(x), ∀ x ∈ H,

and ∥∥∥∥1

t
(Ptϕ− ϕ)

∥∥∥∥
0

≤ ‖K0ϕ‖0,

which implies that ϕ ∈ D(K ) and K ϕ = K0ϕ. �

Theorem 3.8 Assume that Hypothesis 2.2 is fulfilled. Then D is a core for
K , that is, for any ϕ ∈ D(K ) there exists a sequence (ϕn) ⊂ D such that

ϕn → ϕ, K0ϕn → K ϕ, in Cb(H).

Proof. Let ϕ ∈ D(K ). Fix λ > 0 and set f := λϕ −K ϕ. Since C2
b (H) is

dense in Cb(H) there exists a sequence (fn) ⊂ C2
b (H) such that fn → f in

Cb(H). Set
ϕn := (λ−K )−1fn, n ∈ N.

By Proposition 3.4 it is clear that ϕn ∈ D(K ) and

lim
n→∞

ϕn = ϕ, lim
n→∞

K ϕn = K ϕ, in Cb(H).

It remains to show that ϕn ∈ D for any n ∈ N. In fact, taking into account
Proposition 2.5, we see that ϕn ∈ D(K ) ∩ C2

b (H), so that by Proposition
3.6 we have K0ϕn = K ϕn ∈ Cb(H), and hence ϕn ∈ D for any n ∈ N. So,
D is a core as claimed. �

Remark 3.9 The above result can be generalized. In fact Hypothesis 2.2
and also the global Lipschitz assumption in Hypothesis 2.1 are too strong.
E. g. assumptions as Hypotheses 1.1 and 1.2 in [2] are sufficient. Details will
be the subject of future work.

4 Applications

We start with an important identity

K0(ϕ
2) = 2ϕK0ϕ+ |σ∗Dϕ|2, ∀ϕ ∈ C2

b (H), (4.1)

whose proof is straightforward.
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Proposition 4.1 Assume, besides Hypothesis 2.2, that σ is bounded. Then
for any ϕ ∈ D we have ϕ2 ∈ D and

K (ϕ2) = 2ϕK ϕ+ |σ∗Dϕ|2. (4.2)

Proof. Let ϕ ∈ D . Then ϕ2 ∈ C2
b (H) and by (4.1) it follows that K0(ϕ

2) ∈
Cb(H). �

Corollary 4.2 Let ϕ ∈ D . Given λ > 0 set f = λϕ−K ϕ. Then we have

ϕ2 = (2λ−K )−1(2ϕf − |σ∗Dϕ|2). (4.3)

4.1 Invariant measures

In this subsection we assume that Hypothesis 2.2 holds.
Let µ ∈P(H). We say that µ is invariant if∫

H

Ptϕdµ =

∫
H

ϕdµ, ∀ ϕ ∈ Cb(H). (4.4)

Proposition 4.3 µ is invariant for Pt if and only if∫
H

K0ϕdµ = 0, ∀ ϕ ∈ D . (4.5)

Proof. Since the “only if part” is obvious, let us show the “if part”. Assume
that (4.5) is fulfilled. Then∫

H

K ϕdµ = 0, ∀ ϕ ∈ D(K ).

Then if ϕ ∈ D(K ) we have by Proposition 3.3, that Psϕ ∈ D(K ), for all
s ≥ 0 and

Ptϕ(x)− ϕ(x) =

∫ t

0

K Psϕ(x)ds.

Integrating with respect to µ, yields∫
H

(Ptϕ− ϕ)dµ = 0, ∀ ϕ ∈ D(K ).

Therefore, µ is invariant. �
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Proposition 4.4 Assume that µ is an invariant measure for Pt such that∫
H

|x|2µ(dx) < +∞. (4.6)

Then we have∫
H

ϕK0ϕdµ = −1

2

∫
H

|σ∗Dϕ|2dµ, ∀ ϕ ∈ C2
b (H). (4.7)

Proof. Step 1 We have∫
H

K0ϕdµ = 0, ∀ ϕ ∈ C2
b (H). (4.8)

The proof follows by (2.14), (2.17), (4.6) and Lebesgues’ dominated con-
vergence theorem

Step 2 Conclusion.
By (4.1) we have

0 =

∫
H

K0(ϕ
2)dµ = 2

∫
H

ϕK0ϕdµ+

∫
H

|σ∗Dϕ|2dµ, ϕ ∈ C2
b (H),

so, the conclusion follows. �

4.2 Application to Fokker–Planck

In this subsection we assume that Hypothesis 2.2 holds. Let B(H) be the
Borel σ-algebra of H. We recall that a measure µ(dt, dx) = µt(dx)dt on
B([0, T ])⊗B(H), where µt are probability measures on B(H), measurable
in t ∈ [0, T ], is called a solution to the Fokker–Planck equation for (K0,D)
if ∫

H

ϕdµt =

∫
H

ϕdµ0 +

∫ t

0

∫
H

K0ϕdµsds, a.e. t ≥ 0, ϕ ∈ D . (4.9)

Theorem 4.5 For every probability measure ζ on B(H) there exists a unique
measure µ(dt, dx) = µt(dx)dt (as above) solving (4.9) with µ0 = ζ.

Proof. Existence is trivial. Just define the measure µt by∫
H

ϕ(x)µt(dx) :=

∫
H

E[ϕ(X(t, x))]ζ(dx), a.e. t ≥ 0,

ϕ : H → R+, B(H)-measurable. Then (4.9) follows by Proposition 2.6
(i.e., by Itô’s formula). To show uniqueness we note that Theorem 3.8 implies
that (4.9) with µ0 = ζ holds for all ϕ ∈ K . Hence uniqueness follows from
[4, Theorem 2.12]. �
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