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Abstract

In this paper, we introduce a definition of BV functions in a Gelfand triple which is an
extension of the definition of BV functions in [1] by using Dirichlet form theory. By this
definition, we can consider the stochastic reflection problem associated with a self-adjoint
operator A and a cylindrical Wiener process on a convex set Γ in a Hilbert space H. We
prove the existence and uniqueness of a strong solution of this problem when Γ is a regular
convex set. The result is also extended to the non-symmetric case. Finally, we extend our
results to the case when Γ = Kα, where Kα = {f ∈ L2(0, 1)|f ≥ −α}, α ≥ 0.
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1 Introduction

A definition of BV functions in abstract Wiener spaces has been given by M. Fukushima in
[12], M. Fukushima and M. Hino in [13], based upon Dirichlet form theory. In this paper, we
introduce BV functions in a Gelfand triple, which is an extension of BV functions in a Hilbert
space defined in [1]. Here we use a version of the Riesz-Markov representation theorem in
infinite dimensions proved by M. Fukushima using the quasi-regularity of the Dirichlet form
(see [17]) to give a characterization of BV functions.
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In this paper, we consider the Dirichlet form

Eρ(u, v) = 1

2

∫
H

〈Du,Dv〉ρ(z)µ(dz)

(where µ is a Gaussian measure in H and ρ is a BV function) and its associated process. By
using BV functions, we obtain a Skorohod-type representation for the associated process, if
ρ = IΓ and Γ is a convex set.

As a consequence of these results, we can solve the following stochastic differential inclusion
in the Hilbert space H:{

dX(t) + (AX(t) +NΓ(X(t)))dt 3 dW (t),
X(0) = x,

(1.1)

where our solution is strong (in the probabilistic sense), if Γ is regular. Here A : D(A) ⊂ H → H
is a self-adjoint operator. NΓ(x) is the normal cone to Γ at x and W (t) is a cylindrical Wiener
process in H. The precise meaning of the above inclusion will be defined in Section 5.2. The
solution to (1.1) is called distorted (if ρ = IΓ, reflected) Ornslein-Uhlenbek (OU for short)-
process.

(1.1) was first studied (strongly solved) in [19], whenH = L2(0, 1), A is the Laplace operator
with Dirichlet or Neumann boundary conditions and Γ is the convex set of all nonnegative
functions of L2(0, 1); see also [28]. In [6] the authors study the situation when Γ is a regular
convex set with nonempty interior. They get precise information about the corresponding
Kolmogorov operator, but did not construct a strong solution to (1.1).

In this paper, we consider a convex set Γ. If Γ is a regular convex set, we show that IΓ is
a BV-function and thus obtain existence and uniqueness results for (1.1). By a modification
of [12] and using [7], we obtain the existence of an (in the probabilistic sense) weak solution
to (1.1). Then, we prove pathwise uniqueness. Thus, by a version of the Yamada-Watanabe
Theorem (see [15]), we deduce that (1.1) has a unique strong solution. We also consider the
case when Γ = Kα, where Kα = {f ∈ L2(0, 1)|f ≥ −α}, α ≥ 0, and prove our result about
Skorohod-type representation and that IKα is a BV function, if α > 0.

The solution of the reflection problem is based on an integration by parts formula. The
connection to BV functions is given in Theorem 3.1 below , which is a key result of this paper.
It asserts that the integration by parts formula for ρ ·µ gives a characterization of BV functions
ρ, in the case where µ is a Gaussian measure. This is an extension of the characterization of
BV functions in finite dimension. But an integration by parts fomula is in fact enough for the
reflection problem. This we show in Section 6, exploiting the beautiful integration by parts
formula for Kα, α ≥ 0, proved in [28], which in case α = 0, i.e, K0 = {f ∈ L2(0, 1) : f ≥ 0}, is
with respect to a non-Gaussian measure, namely a Bessel bridge. Theorem 3.1 applies to prove
that IKα is a BV function, but only if α > 0.

This paper is organized as follows. In Section 2, we consider the Dirichlet form and its
associated distorted OU-process. We introduce BV functions in Section 3, by which we can get
the Skorohod type representation for the OU- process. In Section 4, we analyze the reflected
OU-process. In Section 5, we get the existence and uniqueness of the solution for (1.1) if Γ is
a regular convex set. We also extend these results to the non-symmetric case. In Section 6, we
consider the case when Γ = Kα, where Kα = {f ∈ L2(0, 1)|f ≥ −α}, α ≥ 0.
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Finally, we would like to mention that apart from contributing to develop the theory of BV
functions on infinite dimensional spaces, one main motivation of this paper is to provide the
probabilistic counterpart to results in [6] and [7], by exploiting Dirichlet form theory and its
associated potential theory.

2 The Dirichlet form and the associated distorted OU-

process

Let H be a real separable Hilbert space (with scalar product 〈·, ·〉 and norm denoted by | · |).
We denote its Borel σ-algebra by B(H). Assume that:

Hypothesis 2.1 A : D(A) ⊂ H → H is a linear self-adjoint operator on H such that
〈Ax, x〉 ≥ δ|x|2 ∀x ∈ D(A) for some δ > 0 and A−1 is of trace class.

Since A−1 is trace class, there exists an orthonormal basis {ej} in H consisting of eigen-
functions for A with corresponding eigenvalues αj ∈ R, j ∈ N, that is,

Aej = αjej, j ∈ N.

Then αj ≥ δ for all j ∈ N.

Below Dϕ : H → H denotes the Fréchet-derivative of a function ϕ : H → R. By C1
b (H)

we shall denote the set of all bounded differentiable functions with continuous and bounded
derivatives. For K ⊂ H, the space C1

b (K) is defined as the space of restrictions of all functions
in C1

b (H) to the subsetK. µ will denote the Gaussian measure in H with mean 0 and covariance
operator

Q :=
1

2
A−1.

SinceA is strictly positive, µ is nondegenerate and has full topological support. Let Lp(H,µ), p ∈
[1,∞], denote the corresponding real Lp-spaces equipped with the usual norms ‖ · ‖p. We set

λj :=
1

2αj
∀j ∈ N,

so that
Qej = λjej ∀j ∈ N.

For ρ ∈ L1
+(H,µ) we consider

Eρ(u, v) = 1

2

∫
H

〈Du,Dv〉ρ(z)µ(dz), u, v ∈ C1
b (F ),

where F := Supp[ρ · µ] and L1
+(H,µ) denotes the set of all non-negative elements in L1(H,µ).

Let QR(H) be the set of all functions ρ ∈ L1
+(H,µ) such that (Eρ, C1

b (F )) is closable on
L2(F, ρ·µ). Its closure is denoted by (Eρ,Fρ). We denote by Fρ

e the extended Dirichlet space
of (Eρ,Fρ), that is, u ∈ Fρ

e if and only if |u| <∞ ρ · µ− a.e. and there exists a sequence {un}
in Fρ such that Eρ(um − un, um − un) → 0 as n ≥ m→ ∞ and un → u ρ · µ− a.e. as n→ ∞.
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Theorem 2.2 Let ρ ∈ QR(H). Then (Eρ,Fρ) is a quasi-regular local Dirichlet form on
L2(F ; ρ · µ) in the sense of [17, IV Definition 3.1].

Proof The assertion follows from the main result in [27]. �
By virtue of Theorem 2.2 and [17], there exists a diffusion processMρ = (Ω,M, {Mt}, θt, Xt,

Pz) on F associated with the Dirichlet form (Eρ,Fρ). Mρ will be called distorted OU-process on
F . Since constant functions are in Fρ and Eρ(1, 1) = 0, Mρ is recurrent and conservative. We
denote by Aρ

+ the set of all positive continuous additive functionals (PCAF in abbreviation) of
Mρ, and define Aρ := Aρ

+−Aρ
+. For A ∈ Aρ, its total variation process is denoted by {A}. We

also define Aρ
0 := {A ∈ Aρ|Eρ·µ({A}t) < ∞∀t > 0}. Each element in Aρ

+ has a corresponding
positive Eρ-smooth measure on F by the Revuz correspondence. The set of all such measures
will be denoted by Sρ+. Accordingly, At ∈ Aρ corresponds to a ν ∈ Sρ := Sρ+ − Sρ+, the set
of all Eρ-smooth signed measure in the sense that At = A1

t − A2
t for Akt ∈ Aρ

+, k = 1, 2 whose
Revuz measures are νk, k = 1, 2 and ν = ν1 − ν2 is the Hahn-Jordan decomposition of ν . The
element of Aρ corresponding to ν ∈ Sρ will be denoted byAν .

Note that for each l ∈ H the function u(z) = 〈l, z〉 belongs to the extended Dirichlet space
Fρ
e and

Eρ(l(·), v) = 1

2

∫
〈l, Dv(z)〉ρ(z)dµ(z) ∀v ∈ C1

b (F ). (2.1)

On the other hand, the AF 〈l, Xt − X0〉 of Mρ admits a unique decomposition into a sum of
a martingale AF (Mt) of finite energy and CAF (Nt) of zero energy. More precisely, for every
l ∈ H,

〈l, Xt −X0〉 =M l
t +N l

t ∀t ≥ 0 Pz − a.s. (2.2)

for Eρ-q.e. z ∈ F .
Now for ρ ∈ L1(H,µ) and l ∈ H, we say that ρ ∈ BVl(H) if there exists a constant Cl > 0,

|
∫

〈l, Dv(z)〉ρ(z)dµ(z)| ≤ Cl ‖ v ‖∞ ∀v ∈ C1
b (F ). (2.3)

By the same argument as in [13, Theorem 2.1], we obtain the following:

Theorem 2.3 Let ρ ∈ L1
+ and l ∈ H.

(1) The following two conditions are equivalent:
(i)ρ ∈ BVl(H)
(ii) There exists a (unique) signed measure νl on F of finite total variation such that

1

2

∫
〈l, Dv(z)〉ρ(z)dµ(z) = −

∫
F

v(z)νl(dz) ∀v ∈ C1
b (F ). (2.4)

In this case, νl necessarily belongs to Sρ+1.
Suppose further that ρ ∈ QR(H). Then the following condition is also equivalent to the

above:
(iii)N l ∈ Aρ

0

In this case, νl ∈ Sρ, and N l = Aνl

(2) M l is a martingale AF with quadratic variation process

〈M l〉t = t|l|2, t ≥ 0. (2.5)
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Remark 2.4 Recall that the Riesz representation theorem of positive linear functionals on
continuous functions by measures is not applicable to obtain Theorem 2.3, (i) ⇒ (ii), because
of the lack of local compactness. However, the quasi-regularity of the Dirichlet form provides
a means to circumvent this difficulty.

In the rest of this section, we shall introduce a special class of ρ ∈ QR(H), which will be
used in Section 4 below.

A non-negative measurable function h(s) on R1 is said to possess the Hamza property if
h(s) = 0 ds− a.e. on the closed set R1 \R(h) where

R(h) = {s ∈ R1 :

∫ s+ε

s−ε

1

h(r)
dr <∞ for some ε > 0}.

We say that a function ρ ∈ L1
+(H,µ) satisfies the ray Hamza condition in direction l ∈ H

(ρ ∈ Hl in notation) if there exists a non-negative function ρ̃l such that

ρ̃l = ρ µ− a.e. and ρ̃l(z + sl) has the Hamza property in s ∈ R1 for each z ∈ H.

We set H := ∩kHek , where ek is as in Hypothesis 2.1. A function in the family H is simply
said to satisfy the ray Hamza condition. By [5] H ⊂ QR(H), and thus we always have ρ+ 1 ∈
QR(H), since clearly ρ+ 1 ∈ H.

Next we will present some explicit description of the Dirichlet form (Eρ,Fρ) for ρ ∈ H.
For ej ∈ H as in Hypothesis 2.1, we set Hej = {sej : s ∈ R1}. We then have the direct sum

decomposition H = Hej ⊕ Eej given by

z = sej + x, s = 〈ej, z〉 .

Let πj be the projection onto the space Eej and µej be the image measure of µ under πj : H →
Eej i.e µej = µ ◦ π−1

j . Then we see that for any F ∈ L1(H,µ)∫
H

F (z)µ(dz) =

∫
Eej

∫
R1

F (sej + x)pj(s)dsµej(dx), (2.6)

where pj(s) = (1/
√

2πλj)e
−s2/2λj . Thus by [5, Theorem3.10] for all u, v ∈ D(Eρ),

Eρ(u, v) =
∞∑
j=1

Eρ,ej(u, v), (2.7)

where

Eρ,ej(u, v) = 1

2

∫
Eej

∫
R(ρ(·ej+x))

dũj(sej + x)

ds
× dṽj(sej + x)

ds
ρ(sej + x)pj(s)dsµej(dx), (2.8)

and u, ũj satisfy ũj = u ρµ− a.e and ũj(sej + x) is absolutely continuous in s on R(ρ(· ej + x))
for each x ∈ Eej . v and ṽj are related in the same way.
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3 BV functions and distorted OU-processes in F

As in [13], we introduce some function spaces on H. Let

A1/2(x) :=

∫ x

0

(log(1 + s))1/2ds, x ≥ 0,

and let ψ be its complementary function, namely,

ψ(y) :=

∫ y

0

(A′
1/2)

−1(t)dt =

∫ y

0

(exp(t2)− 1)dt.

Define

L(logL)1/2(H,µ) := {f : H → R|f Borel measurable, A1/2(|f |) ∈ L1(H,µ)},

Lψ(H,µ) := {g : H → R|g Borel measurable, ψ(c|g|) ∈ L1(H,µ) for some c > 0}.

From the general theory of Orlicz spaces (cf. [24]), we have the following properties.
(i) L(logL)1/2 and Lψ are Banach spaces under the norms

‖f‖L(logL)1/2 = inf{α > 0|
∫
H

A1/2(|f |/α)dµ ≤ 1},

‖g‖Lψ = inf{α > 0|
∫
H

ψ(|g|/α)dµ ≤ 1}.

(ii) For f ∈ L(logL)1/2 and g ∈ Lψ, we have

‖fg‖1 ≤ 2‖f‖L(logL)1/2‖g‖Lψ . (3.1)

(iii) Since µ is Gaussian, the function x 7→ 〈x, l〉 belongs to Lψ.
Let cj, j ∈ N, be a sequence in [1,∞). Define

H1 := {x ∈ H|
∞∑
j=1

〈x, ej〉2c2j <∞},

equipped with the inner product

〈x, y〉H1 :=
∞∑
j=1

c2j〈x, ej〉〈y, ej〉.

Then clearly (H1, 〈, 〉H1) is a Hilbert space such that H1 ⊂ H continuously and densely. Iden-
tifying H with its dual we obtain the continuous and dense embeddings

H1 ⊂ H(≡ H∗) ⊂ H∗
1 .

It follows that

H1〈z, v〉H∗
1
= 〈z, v〉H∀z ∈ H1, v ∈ H,
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and that (H1, H,H
∗
1 ) is a Gelfand triple. Furthermore, { ej

cj
} and {cjej} are orthonormal bases

of H1 and H∗
1 , respectively.

We also introduce a family of H-valued functions on H by

(C1
b )D(A)∩H1 := {G : G(z) =

m∑
j=1

gj(z)l
j, z ∈ H, gj ∈ C1

b (H), lj ∈ D(A) ∩H1}

Denote by D∗ the adjoint of D : C1
b (H) ⊂ L2(H,µ) → L2(H,µ;H). That is

Dom(D∗) := {G ∈ L2(H,µ;H)|C1
b 3 u 7→

∫
〈G,Du〉dµ is continuous with respect to L2(H,µ)}.

Obviously, (C1
b )D(A)∩H1 ⊂ Dom(D∗). Then∫

H

D∗G(z)f(z)µ(dz) =

∫
H

〈G(z), Df(z)〉µ(dz) ∀G ∈ (C1
b )D(A)∩H1 , f ∈ C1

b (H). (3.2)

For ρ ∈ L(logL)1/2(H,µ), we set

V (ρ) := sup
G∈(C1

b )D(A)∩H1
,‖G‖H1

≤1

∫
H

D∗G(z)ρ(z)µ(dz).

A function ρ on H is called a BV function in the Gelfand triple (H1, H,H
∗
1 )(ρ ∈ BV (H,H1)

in notation), if ρ ∈ L(logL)1/2(H,µ) and V (ρ) is finite. When H1 = H = H∗
1 , this coincides

with the definition of BV functions defined in [1] and clearly BV (H,H) ⊂ BV (H,H1). We can
prove the following theorem by a modification of the proof of [12, Theorem 3.1].

Remark 3.0 The introduction of BV functions in a Gelfand triple is natural and originates
from standard ideas when working with infinite dimensional state spaces. The intersection of
BVl(H), when l runs through D(A) ∩ H1, describes functions which are “componentwise of
bounded variation” in the sense that their weak partial derivatives are measures. In contrast
to finite dimensions this does not give rise to vector-valued measures representing their total
weak derivatives or gradients. Therefore, one introduces an appropriate “tangent space” H∗

1 to
H, in which these total derivatives can be represented as a H∗

1 -valued measure. This approach
substantially extends the applicability of the theory of BV functions on Hilbert spaces. We
document this by including the well-studied case of linear SPDE with reflection, more precisely,
the randomly vibrating Gaussian string, forced to stay above a level α ≥ 0, (see [19], [28]),
which (in the case of α > 0) is then just a special case of our general approach.

Theorem 3.1 (i) BV (H,H1) ⊂
⋂
l∈D(A)∩H1

BVl(H).

(ii) Suppose ρ ∈ BV (H,H1)∩L1
+(H,µ), then there exist a positive finite measure ‖dρ‖ on H

and a Borel-measurable map σρ : H → H∗
1 such that ‖σρ(z)‖H∗

1
= 1 ‖dρ‖−a.e, ‖dρ‖(H) = V (ρ),∫

H

D∗G(z)ρ(z)µ(dz) =

∫
H
H1〈G(z), σρ(z)〉H∗

1
‖dρ‖(dz) ∀G ∈ (C1

b )D(A)∩H1 (3.3)

and ‖dρ‖ ∈ Sρ+1.
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Furthermore, if ρ ∈ QR(H), ‖dρ‖ is Eρ-smooth in the sense that it charges no set of zero
Eρ1 -capacity. In particular, the domain of integration H on both sides of (3.3) can be replaced
by F , the topological support of ρµ.

Also, σρ and ‖dρ‖ are uniquely determined, that is, if there are σ′
ρ and ‖dρ‖′ satisfying

relation (3.3), then ‖dρ‖ = ‖dρ‖′ and σρ(z) = σ′
ρ(z) for ‖dρ‖ − a.e.z

(iii) Conversely, if Eq.(3.3) holds for ρ ∈ L(logL)1/2(H,µ) and for some positive finite
measure ‖dρ‖ and a map σρ with the stated properties, then ρ ∈ BV (H,H1) and V (ρ) =
‖dρ‖(H).

(iv) Let W 1,1(H) be the domain of the closure of (D,C1
b (H)) with norm

‖f‖ :=

∫
H

(|f(z)|+ |Df(z)|)µ(dz).

Then W 1,1(H) ⊂ BV (H,H) and Eq.(3.3) is satisfied for each ρ ∈ W 1,1(H). Furthermore,

‖dρ‖ = |Dρ| · µ, V (ρ) =

∫
H

|Dρ|µ(dz), σρ =
1

|Dρ|
DρI{|Dρ|>0}.

Proof (i) Let ρ ∈ BV (H,H1) and l ∈ D(A) ∩H1. Take G ∈ (C1
b )D(A)∩H1 of the type

G(z) = g(z)l, z ∈ H, g ∈ C1
b (H). (3.4)

By (3.2)∫
H

D∗G(z)f(z)µ(dz) =

∫
H

〈G(z), Df(z)〉µ(dz)

=−
∫
H

〈l, Dg(z)〉f(z)µ(dz) + 2

∫
H

〈Al, z〉g(z)f(z)µ(dz) ∀f ∈ C1
b (H);

consequently,
D∗G(z) = −〈l, Dg(z)〉+ 2g(z)〈Al, z〉. (3.5)

Accordingly,∫
H

〈l, Dg(z)〉ρ(z)µ(dz) = −
∫
H

D∗G(z)ρ(z)µ(dz) + 2

∫
H

〈Al, z〉g(z)ρ(z)µ(dz). (3.6)

For any g ∈ C1
b (H), satisfying ‖g‖∞ ≤ 1, by (3.1) the right hand side is dominated by

V (ρ)‖l‖H1 + 4‖ρ‖L(logL)1/2‖〈Al, ·〉‖Lψ <∞,

hence, ρ ∈ BVl(H).
(ii) Suppose ρ ∈ L1

+(H,µ)
⋂
BV (H,H1). By (i) and Theorem 2.3 for each l ∈ D(A) ∩H1,

there exists a finite signed measure νl on H for which Eq.(2.4) holds. Define

DA
l ρ(dz) := 2νl(dz) + 2〈Al, z〉ρ(z)µ(dz).

In view of (3.6), for any G of type (3.4), we have∫
H

D∗G(z)ρ(z)µ(dz) =

∫
H

g(z)DA
l ρ(dz), (3.7)
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which in turn implies

V (DA
l ρ)(H) = sup

g∈C1
b (H),‖g‖∞≤1

∫
H

g(z)DA
l ρ(dz) ≤ V (ρ)‖l‖H1 , (3.8)

where V (DA
l ρ) denotes the total variation measure of the signed measure DA

l ρ.
For the orthonormal basis { ej

cj
} of H1, we set

γAρ := Σ∞
j=12

−jV (DA
ej
cj

ρ), vj(z) :=

dDA
ej
cj

ρ(z)

dγAρ (z)
, z ∈ H, j ∈ N. (3.9)

γAρ is a positive finite measure with γAρ (H) ≤ V (ρ) and vj is Borel-measurable. Since DA
ej
cj

ρ

belongs to Sρ+1, so does γAρ . Then for

Gn :=
n∑
j=1

gj
ej
cj

∈ (C1
b )D(A)∩H1 , n ∈ N, (3.10)

by (3.7) the following equation holds∫
H

D∗Gn(z)ρ(z)µ(dz) =
n∑
j=1

∫
H

gj(z)vj(z)γ
A
ρ (dz). (3.11)

Since |vj(z)| ≤ 2j γAρ -a.e. and C1
b (H) is dense in L1(H, γAρ ), we can find vj,m ∈ C1

b (H) such
that

lim
m→∞

vj,m = vj γ
A
ρ − a.e.,

Substituting

gj,m(z) :=
vj,m(z)√∑n

k=1 vk,m(z)
2 + 1/m

, (3.12)

for gj(z) in (3.10) and (3.11) we get a bound

n∑
j=1

∫
H

gj,m(z)vj(z)γ
A
ρ (dz) ≤ V (ρ),

because ‖Gn(z)‖2H1
=

∑n
j=1 gj,m(z)

2 ≤ 1 ∀z ∈ H. By letting m→ ∞, we obtain

∫
H

√√√√ n∑
j=1

vj(z)2γ
A
ρ (dz) ≤ V (ρ) ∀n ∈ N.

Now we define

‖dρ‖ :=

√√√√ ∞∑
j=1

vj(z)2γ
A
ρ (dz) (3.13)
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and σρ : H → H∗
1 by

σρ(z) =

{ ∑∞
j=1

vj(z)√∑∞
k=1 vk(z)

2
· cjej, if z ∈ {

∑∞
k=1 vk(z)

2 > 0}
0 otherwise.

(3.14)

Then
‖dρ‖(H) ≤ V (ρ), ‖σρ(z)‖H∗

1
= 1 ‖dρ‖ − a.e., (3.15)

‖dρ‖ is Sρ+1-smooth and σρ is Borel-measurable. By (3.11) we see that the desired equation
(3.3) holds for G = Gn as in (3.10). It remains to prove (3.3) for any G of type (3.4), i.e.
G = g · l, g ∈ C1

b (H), l ∈ D(A) ∩H1. In view of (3.6), Eq.(3.3) then reads

−
∫
H

〈l, Dg(z)〉ρ(z)µ(dz) + 2

∫
H

g(z)〈Al, z〉ρ(z)µ(dz) =
∫
H

g(z)H1〈l, σρ(z)〉H∗
1
‖dρ‖(dz). (3.16)

We set

kn :=
n∑
j=1

〈l, ej〉ej =
n∑
j=1

〈l, ej
cj
〉H1

ej
cj
, Gn(z) := g(z)kn.

Thus kn → l in H1 and Akn → Al in H as n→ ∞. But then also

lim
n→∞

∫
H

〈Dg, kn〉ρdµ =

∫
H

〈Dg, l〉ρdµ,

and

|
∫
H

g(z)〈Akn, z〉ρ(z)µ(dz)−
∫
H

g(z)〈Al, z〉ρ(z)µ(dz)|

≤ 2‖g‖∞‖ρ‖L(logL)1/2‖〈Akn − Al, · 〉‖Lψ .

Furthermore,

lim
n→∞

∫
H

g(z)H1〈kn, σρ(z)〉H∗
1
‖dρ‖(dz) =

∫
H

g(z)H1〈l, σρ(z)〉H∗
1
‖dρ‖(dz).

So letting n→ ∞ yields (3.16).
If ρ ∈ QR(H), we can get the claimed result by the same arguments as above.
Uniqueness follows by the same argument as [13, Theorem 3.9].
(iii) Suppose ρ ∈ L(log)1/2(H,µ) and that Eq.(3.3) holds for some positive finite measure

‖dρ‖ and some map σρ with the properties stated in (ii). Then clearly

V (ρ) ≤ ‖dρ‖(H)

and hence ρ ∈ BV (H,H1). To obtain the converse inequality, set

σj(z) := 〈cjej, σρ(z)〉H∗
1
=H1 〈

ej
cj
, σρ(z)〉H∗

1
, j ∈ N.

Fix an arbitrary n. As in the proof of (ii) we can find functions

vj,m ∈ C1
b (H), lim

m→∞
vj,m(z) = σj(z) ‖dρ‖ − a.e.

10



Define gj,m(z) by (3.12). Substituting Gn,m(z) :=
∑n

j=1 gj,m(z)
ej
cj

for G(z) in (3.3) then yields

n∑
j=1

∫
H

gj,m(z)σj(z)‖dρ‖(dz) ≤ V (ρ).

By letting m→ ∞, we get∫
H

√√√√ n∑
j=1

σj(z)2‖dρ‖(dz) ≤ V (ρ) ∀n ∈ N.

We finally let n→ ∞ to obtain ‖dρ‖(H) ≤ V (ρ).
(iv) Obviously the duality relation (3.2) extends to ρ ∈ W 1,1(H) replacing f ∈ C1

b (H). By
defining ‖dρ‖ and σρ(z) in the stated way, the extended relation (3.2) is exactly (3.3). �

Theorem 3.2 Let ρ ∈ QR(H) ∩ BV (H,H1) and consider the measure ‖dρ‖ and σρ from
Theorem 3.1(ii). Then there is an Eρ-exceptional set S ⊂ F such that ∀z ∈ F\S under Pz
there exists an Mt- cylindrical Wiener processW z, such that the sample paths of the associated
distorted OU-process Mρ on F satisfy the following: for l ∈ D(A) ∩H1

〈l, Xt−X0〉 =
∫ t

0

〈l, dW z
s 〉+

1

2

∫ t

0
H1〈l, σρ(Xs)〉H∗

1
dL‖dρ‖

s −
∫ t

0

〈Al,Xs〉ds ∀t ≥ 0 Pz−a.s.. (3.17)

Here L
‖dρ‖
t is the real valued PCAF associated with ‖dρ‖ by the Revuz correspondence.

In particular, if ρ ∈ BV (H,H), then ∀z ∈ F\S, l ∈ D(A) ∩H

〈l, Xt −X0〉 =
∫ t

0

〈l, dW z
s 〉+

1

2

∫ t

0

〈l, σρ(Xs)〉dL‖dρ‖
s −

∫ t

0

〈Al,Xs〉ds ∀t ≥ 0 Pz−a.s..

Proof Let {ej} be the orthonormal basis of H introduced above. Define for all k ∈ N

W z
k (t) := 〈ek, Xt − z〉 − 1

2

∫ t

0
H1〈ek, σρ(Xs)〉H∗

1
dL‖dρ‖

s +

∫ t

0

〈Aek, Xs〉ds. (3.18)

By (2.1) and (3.16) we get for all k ∈ N

Eρ(ek(·), g) =
∫
H

g(z)〈Aek, z〉ρ(z)µ(dz)−
1

2

∫
H

g(z)H1〈ek, σρ(z)〉H∗
1
‖dρ‖(dz) ∀g ∈ C1

b (H).

By Theorem 2.3 it follows that for all k ∈ N

N ek
t =

1

2

∫ t

0
H1〈ek, σρ(Xs)〉H∗

1
dL‖dρ‖

s −
∫ t

0

〈Aek, Xs〉ds. (3.19)

Here we get from (3.18), (3.19) and the uniqueness of decomposition (2.2) that for Eρ-q.e. z ∈ F ,

W z
k (t) =M ek

t ∀t ≥ 0 Pz−a.s.,

where the Eρ-exceptional set and the zero measure set does not depend on ek. Indeed, we
can choose the capacity zero set S = ∪∞

j=1Sj, where Sj is the Eρ-exceptional set for ej, and for
z ∈ F\S, we can use the same method to get a zero measure set independent of ek. By Dirichlet
form theory we get 〈M ei ,M ej〉t = tδij. So for z ∈ F \ S, W z

k is an Mt-Wiener process under
Pz. Thus, with W z being an Mt- cylindrical Wiener process given by W z(t) = (W z

k (t)ek)k∈N,
(3.17) is satisfied for Pz − a.e., where z ∈ F \ S. �
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4 Reflected OU-processes

In this section we consider the situation where ρ = IΓ ∈ BV (H,H1), where Γ ⊂ H and

IΓ(x) =

{
1, if x ∈ Γ,
0 if x ∈ Γc.

Denote the corresponding objects σρ, ‖dIΓ‖ in Theorem 3.1(ii) by −nΓ, ‖∂Γ‖ respectively. Then
formula (3.3) reads∫

Γ

D∗G(z)µ(dz) = −
∫
F
H1〈G(z),nΓ〉H∗

1
‖∂Γ‖(dz) ∀G ∈ (C1

b )D(A)∩H1 ,

where the domain of integration F on the right hand side is the topological support of IΓ · µ.
F is contained in Γ̄, but we shall show that the domain of integration on the right hand side
can be restricted to ∂Γ. We need to use the associated distorted OU-process M IΓ on F , which
will be called reflected OU-process on Γ.

First we consider a µ-measurable set Γ ⊂ H satisfying

IΓ ∈ BV (H,H1) ∩H. (4.1)

Remark 4.1 We emphasize that if Γ is a convex closed set in H, then obviously IΓ ∈ H.
Indeed, for each z, l ∈ H the set {s ∈ R|z + sl ∈ Γ} is a closed interval in R, whose indicator
function hence trivially has the Hamza property. Hence, in particular, IΓ ∈ QR(H).

By a modification of [12, Theorem 4.2], we can prove the following theorem.

Theorem 4.2 Let Γ ⊂ H be µ-measurable satisfying condition (4.1). Then the support of
‖∂Γ‖ is contained in the boundary ∂Γ of Γ, and the following generalized Gauss formula holds:∫

Γ

D∗G(z)µ(dz) = −
∫
∂Γ

H1〈G(z),nΓ〉H∗
1
‖∂Γ‖(dz) ∀G ∈ (C1

b )D(A)∩H1 . (4.2)

Proof For any G of type (3.4) we have from (2.1), (3.5) and (3.7) that

EIΓ(l(·), g)−
∫
Γ

g(z)〈Al, z〉µ(dz) = −1

2

∫
F

g(z)DA
l IΓ(dz). (4.3)

Since the finite signed measure DA
l IΓ charges no set of zero EIΓ1 -capacity, Eq.(4.3) readily

extends to any EIΓ-quasicontinuous function g ∈ F IΓ
b := F IΓ ∩ L∞(Γ, µ).

Denote by Γ0 the interior of Γ. Then Γ0 ⊂ F ⊂ Γ̄. In view of the construction of the
measure ‖dIΓ‖ in Theorem 3.1, it suffices to show that for

ej
cj

∈ D(A) ∩H1

V (DA
ej
cj

IΓ)(Γ
0) = 0.

By linearity and since positive constants interchange with sup, it suffices to show that,

V (DA
ej
IΓ)(Γ

0) = 0. (4.4)
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Take an arbitrary ε > 0 and set

U := {z ∈ H : d(z,H\Γ0) > ε}, V := {z ∈ H : d(z,H\Γ0) ≥ ε},

where d is the metric distance of the Hilbert space H. Then Ū ⊂ V and V is a closed set
contained in the open set Γ0. We define a function h by

h(z) := 1− Ez(e
−τV ), z ∈ F, (4.5)

where τV denotes the first exit time of M IΓ from the set V . The nonnegative function h is in
the space F IΓ

b and furthermore it is EIΓ-quasicontinuous because it is M IΓ finely continuous.
Moreover,

h(z) > 0 ∀z ∈ U, h(z) = 0 ∀z ∈ F\V. (4.6)

Set
νj(dz) := h(z)DA

ej
IΓ(dz) (4.7)

and

Ijg := EIΓ(ej(·), gh)−
∫
Γ

g(z)h(z)〈Aej, z〉µ(dz). (4.8)

Then Eq.(4.3) with the EIΓ-quasicontinuous function gh ∈ F IΓ
b replacing g implies

Ijg = −1

2

∫
F

g(z)νj(dz).

In order to prove (4.4), it is enough to show that Ijg = 0 for any function g(z) of the type

g(z) = f(〈ej, z〉, 〈l2, z〉, ..., 〈lm, z〉); l2, ..., lm ∈ H, f ∈ C1
0(R

m), (4.9)

for we have then νj = 0.
On account of (2.8) we have the expression

EIΓ(ej(·), gh) = EIΓ,ej(ej(·), gh) =
1

2

∫
Eej

∫
Rx

d(gh̃)(sej + x)

ds
pj(s)dsµej(dx), (4.10)

where Rx = R(IΓ(·ej + x)), Fx := {s : sej + x ∈ F} for x ∈ Eej and h̃ is a IΓ · µ-version of h
appearing in the description of (2.8). For x ∈ Eej set

Vx := {s : sej + x ∈ V },Γ0
x := {s : sej + x ∈ Γ0}.

We then have the inclusion Vx ⊂ Γ0
x ⊂ Rx ∩ Fx. By (4.6), h(sej + x) = 0 for any x ∈ Eej and

for any s ∈ Rx \Vx. On the other hand, there exists a Borel set N ⊂ Eej with µej(N) = 0 such
that for each x ∈ Eej\N ,

h(sej + x) = h̃(sej + x) ds− a.e.

Here we set h ≡ 0 on H\F . Since h̃(·ej+x) is absolutely continuous in s, we can conclude that

h̃(sej + x) = 0 ∀x ∈ Eej\N, ∀s ∈ Rx\Vx.
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Fix x ∈ Eej\N and let I be any connected component of the one dimensional open set Rx.
Furthermore, for any function g of type (4.9) we denote the support of g(·ej +x) by Kx (which
is a compact set) and choose a bounded open interval J containing Kx. Then I ∩ Vx ∩Kx is a
closed set contained in the bounded open interval I ∩ J and

gh̃(sej + x) = 0 ∀s ∈ (I ∩ J)\(I ∩ Vx ∩Kx).

Therefore, an integration by part gives∫
I∩J

d(gh̃)(sej + x)

ds
pj(s)ds =

∫
I∩J

1

λj
(gh̃)(sej + x)spj(s)ds.

Combining this with (4.8) and (4.10), we arrive at

Ijg =

∫
Eej

∫
Rx

1

2λj
(gh̃)(sej + x)spj(s)dsµej(dx)−

∫
H

g(z)h(z)〈Aej, z〉IΓ(z)µ(dz) = 0.

�
Now we state Theorem 3.2 for ρ = IΓ.

Theorem 4.3 Suppose Γ ⊂ H is a µ-measurable set satisfying condition (4.1). Then there
is an Eρ-exceptional set S ⊂ F such that ∀z ∈ F\S, under Pz there exists an Mt- cylindrical
Wiener process W z, such that the sample paths of the associated reflected OU-process Mρ on
F with ρ = IΓ satisfy the following: for l ∈ D(A) ∩H1

〈l, Xt −X0〉 =
∫ t

0

〈l, dW z
s 〉 −

1

2

∫ t

0
H1〈l,nΓ(Xs)〉H∗

1
dL‖∂Γ‖

s −
∫ t

0

〈Al,Xs〉ds Pz−a.s.. (4.11)

Here, L
‖∂Γ‖
t is the real valued PCAF associated with ‖∂Γ‖ by the Revuz correspondence, which

has the following additional property: ∀z ∈ F\S

I∂Γ(Xs)dL
‖∂Γ‖
s = dL‖∂Γ‖

s Pz − a.s.. (4.12)

In particular, if ρ ∈ BV (H,H), then ∀z ∈ F\S, l ∈ D(A) ∩H

〈l, Xt −X0〉 =
∫ t

0

〈l, dW z
s 〉 −

1

2

∫ t

0

〈l,nΓ(Xs)〉dL‖∂Γ‖
s −

∫ t

0

〈Al,Xs〉ds ∀t ≥ 0 Pz − a.s..

Proof All assertions except for (4.12) follow from Theorem 3.2 for ρ := IΓ. (4.12) follows by

Theorem 4.2 and [10, Theorem 5.1.3]. �

5 Stochastic reflection problem on a regular convex set

In this section, we consider Γ satisfying [6] Hypothesis 1.1 (ii) with K := Γ, that is:

Hypothesis 5.1 There exists a convex C∞ function g : H → R with g(0) = 0, g′(0) = 0,
and D2g strictly positive definite, that is,〈D2g(x)h, h〉 ≥ γ|h|2 ∀h ∈ H for some γ > 0, such
that

Γ = {x ∈ H : g(x) ≤ 1}, ∂Γ = {x ∈ H : g(x) = 1}
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Moreover, we also suppose that D2g is bounded on Γ and |Q1/2Dg|−1 ∈ ∩p>1L
p(H,µ).

Remark 5.2 By [6, Lemma 1.2], Γ is convex and closed and there exists some constant δ > 0
such that |Dg(x)| ≤ δ ∀x ∈ Γ.

5.1 Reflected OU processes on regular convex sets

Under Hypothesis 5.1, by [7, Lemma A.1] we can prove that IΓ ∈ BV (H,H) ∩QR(H):

Theorem 5.3 Assume that Hypothesis 5.1 holds. Then IΓ ∈ BV (H,H) ∩QR(H).

Proof We first note that trivially by Remark 4.1 we have that IΓ ∈ QR(H). Let

ρε(x) := exp(−(g(x)− 1)2

ε
1{g≥1}), x ∈ H.

Thus,
lim
ε→0

ρε = IΓ.

Moreover,

Dρε = −2

ε
ρε1{g≥1}Dg(g − 1) µ− a.e..

By [7, Lemma A.1] we have for ϕ ∈ C1
b (H)

lim
ε→0

1

ε

∫
H

ϕ(x)1{g(x)≥1}(g(x)−1)〈Dg(x), z〉ρε(x)µ(dx) =
1

2

∫
∂Γ

ϕ(y)〈n(y), z〉 |Dg(y)|
|Q1/2Dg(y)|

µ∂Γ(dy),

where n := Dg/|Dg| is the exterior normal to ∂Γ at y and µ∂Γ is the surface measure on ∂Γ
induced by µ (cf. [6], [7], [16]), whereas by (3.2) for any ϕ ∈ C1

b (H) and z ∈ D(A)

lim
ε→0

1

ε

∫
H

ϕ(x)1{g(x)≥1}(g(x)− 1)〈Dg(x), z〉ρε(x)µ(dx)

=− lim
ε→0

1

2

∫
H

〈Dρε(x), ϕ(x)z〉µ(dx)

=− 1

2
lim
ε→0

∫
H

ρε(x)D
∗(ϕz)(x)µ(dx)

=− 1

2

∫
H

1Γ(x)D
∗(ϕz)(x)µ(dx).

Thus,∫
H

1Γ(x)D
∗(ϕz)(x)µ(dx) = −

∫
∂Γ

ϕ(x)〈n(x), z〉 |Dg(y)|
|Q1/2Dg(y)|

µ∂Γ(dx) ∀z ∈ D(A), ϕ ∈ C1
b . (5.1)

By the proof of [7, Lemma A.1], we get that g is a non-degenerate map. So we can use the
co-area formula (see [16, Theorem 6.3.1, Ch. V] or [7, (A.4)]):∫

H

fµ(dx) =

∫ ∞

0

[

∫
g=r

f(y)
1

|Q1/2Dg(y)|
µΣr(dy)]dr.
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By [16, Theorem 6.2, Ch. V] the surface measure is defined for all r ≥ 0, moreover [16,
Theorem 1.1, Corollary 6.3.2, Ch. V] imply that r 7→ µΣr is continuous in the topology induced
by Dp

r(H) for some p ∈ (1,∞), r ∈ (0,∞)(cf [16]) on the measures on (H,B(H)). Take f ≡ 1
in the co-area formula, then by the continuity property of the surface measure with respect to
r we have that 1

|Q1/2Dg(y)|µΣr(dy) is a finite measure supported in {g = r}. By Remark 5.2 and

since µ∂Γ = µΣ1 , we have that |Dg(y)|
|Q1/2Dg(y)|µ∂Γ is a finite measure. And hence by Theorem 3.1

(iii), we get IΓ ∈ BV (H,H).
�

Thus by Theorem 4.3 we immediately get the following.

Theorem 5.4 Assume Hypothesis 5.1. Then there exists an Eρ-exceptional set S ⊂ F such
that ∀z ∈ F\S, under Pz there exists an Mt- cylindrical Wiener process W z, such that the
sample paths of the associated reflected OU-processMρ on F with ρ = IΓ satisfy the following:
for l ∈ D(A) ∩H1

〈l, Xt −X0〉 =
∫ t

0

〈l, dW z
s 〉 −

1

2

∫ t

0

〈l,nΓ(Xs)〉dL‖∂Γ‖
s −

∫ t

0

〈Al,Xs〉ds ∀t ≥ 0 Pz − a.e.

where nΓ := Dg
|Dg| is the exterior normal to Γ and

‖∂Γ‖(dy) = |Dg(y)|
|Q1/2Dg(y)|

µ∂Γ(dy),

where µ∂Γ is the surface measure induced by µ (c.f [6], [7], [16]).

Remark 5.5 It can be shown that for x ∈ ∂Γ, nΓ(x) =
Dg
|Dg| is the exterior normal to Γ, i.e

the unique element in H of unit length such that

〈nΓ(x), y − x〉 ≤ 0 ∀y ∈ Γ.

5.2 Existence and uniqueness of solutions

Let Γ ⊂ H and our linear operator A satisfy Hypothesis 5.1 and Hypothesis 2.1, respectively.
Consider the following stochastic differential inclusion in the Hilbert space H,{

dX(t) + (AX(t) +NΓ(X(t)))dt 3 dW (t),
X(0) = x,

(5.2)

where W (t) is a cylindrical Wiener process in H on a filtered probability space (Ω,F ,Ft, P )
and NΓ(x) is the normal cone to Γ at x, i.e.

NΓ(x) = {z ∈ H : 〈z, y − x〉 ≤ 0 ∀y ∈ Γ}.

Definition 5.6 A pair of continuous H×R-valued and Ft-adapted processes (X(t), L(t)), t ∈
[0, T ], is called a solution of (5.2) if the following conditions hold.

(i) X(t) ∈ Γ for all t ∈ [0, T ] P − a.s.;
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(ii) L is an increasing process with the property that

I∂Γ(Xs)dLs = dLs P − a.s.

and for any l ∈ D(A) we have

〈l, Xt − x〉 =
∫ t

0

〈l, dWs〉 −
∫ t

0

〈l,nΓ(Xs)〉dLs −
∫ t

0

〈Al,Xs〉ds ∀t ≥ 0 P − a.s.

where nΓ is the exterior normal to Γ.

Remark 5.7 By Remark 5.5 we know that nΓ(x) ∈ NΓ(x) for all x ∈ ∂Γ. Hence by Definition
5.6 (ii) it follows that Definition 5.6 is appropriate to define a solution for the multi-valued
equation (5.2).

We denote the semigroup with the infinitesimal generator −A by S(t), t ≥ 0.

Definition 5.8 A pair of continuous H×R valued and Ft-adapted processes (X(t), L(t)), t ∈
[0, T ] is called a mild solution of (5.2) if

(i) X(t) ∈ Γ for all t ∈ [0, T ] P − a.s.;
(ii) L is an increasing process with the property

I∂Γ(Xs)dLs = dLs P − a.s.

and

Xt = S(t)x+

∫ t

0

S(t− s)dWs −
∫ t

0

S(t− s)nΓ(Xs)dLs ∀t ∈ [0, T ] P − a.s.

where nΓ is the exterior normal to Γ. In particular, the appearing integrals have to be well
defined.

Lemma 5.9 The process given by∫ t

0

S(t− s)nΓ(Xs)dLs

is P -a.s. continuous and adapted to Ft, t ∈ [0, T ]. This especially implies that it is predictable.

Proof As |S(t − s)nΓ(Xs)| ≤ MT |nΓ(Xs)|, s ∈ [0, T ], the integrals
∫ t
0
S(t − s)nΓ(Xs)dLs, t ∈

[0, T ], are well defined. For 0 ≤ s ≤ t ≤ T ,

|
∫ s

0

S(s− u)nΓ(Xu)dLu −
∫ t

0

S(t− u)nΓ(Xu)dLu|

≤|
∫ s

0

[S(s− u)− S(t− u)]nΓ(Xu)dLu|+ |
∫ t

s

S(t− u)nΓ(Xu)dLu|

≤
∫ s

0

|[S(s− u)− S(t− u)]nΓ(Xu)|dLu +
∫ t

s

|S(t− u)nΓ(Xu)|dLu,

where the first summand converges to zero as s ↑ t or t ↓ s, because

|1[0,s)(u)[S(s− u)− S(t− u)]nΓ(Xu)| → 0 as s ↑ t or t ↓ s.
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For the second summand we have∫ t

s

|S(t− u)nΓ(Xu)|dLu ≤MT (Lt − Ls) → 0 as s ↑ t or t ↓ s.

By the same arguments as in [25, Lemma 5.1.9] we conclude that the integral is adapted to
Ft, t ∈ [0, T ]. �

Theorem 5.10 (X(t), Lt), t ∈ [0, T ], is a solution of (5.2) if and only if it is a mild solution.

Proof (⇒) First, we prove that for arbitrary ζ ∈ C1([0, T ], D(A)) the following equation holds:

〈Xt, ζt〉 = 〈x, ζ0〉+
∫ t

0

〈ζs, dWs〉 −
∫ t

0

〈nΓ(Xs), ζs〉dLs +
∫ t

0

〈Xs,−Aζs + ζ ′s〉ds ∀t ≥ 0 P − a.s..

(5.3)
If ζs = ηfs for f ∈ C1([0, T ]) and η ∈ D(A), by Itô’s formula we have the above relation for such
ζ. Then by [25, Lemma G.0.10] and the same arguments as the proof of Proposition G.0.11 we
obtain the above formula for all ζ ∈ C1([0, T ], D(A)). As in [25, Proposition G.0.11], for the
resolvent Rn := (n + A)−1 : H → D(A) and t ∈ [0, T ] choosing ζs := S(t− s)nRnη, η ∈ H, we
deduce from (5.3) that

〈Xt, nRnη〉 =〈x, S(t)nRnη〉+
∫ t

0

〈S(t− s)nRnη, dWs〉 −
∫ t

0

〈nΓ(Xs), S(t− s)nRnη〉dLs

+

∫ t

0

〈Xs, AS(t− s)nRnη〉+ 〈Xs,−AS(t− s)nRnη〉ds

=〈S(t)x+
∫ t

0

S(t− s)dWs +

∫ t

0

S(t− s)nΓ(Xs)dLs, nRnη〉 ∀t ∈ [0, T ] P − a.s..

Letting n→ ∞, we conclude that (X(t), Lt), t ∈ [0, T ], is a mild solution.
(⇐) By Lemma 5.9 and [25, Theorem 5.1.3], we have∫ t

0

S(t− s)nΓ(Xs)dLs and

∫ t

0

S(t− s)dWs, t ∈ [0, T ],

have predictable versions. And we use the same notation for the predictable versions of the
respective processes. As (Xt, Lt) is a mild solution, for all η ∈ D(A) we get∫ t

0

〈Xs, Aη〉ds =
∫ t

0

〈S(s)x,Aη〉ds−
∫ t

0

〈
∫ s

0

S(s− u)nΓ(Xu)dLu, Aη〉ds

+

∫ t

0

〈
∫ s

0

S(s− u)dWu, Aη〉ds ∀t ∈ [0, T ] P − a.s..

The assertion that (X(t), Lt), t ∈ [0, T ], is a solution of (5.2) now follows as in the proof of [25,
Proposition G.0.9] because∫ t

0

〈
∫ s

0

S(s− u)nΓ(Xu)dLu, Aη〉ds =
∫ t

0

∫ s

0

〈nΓ(Xu),−
d

ds
S(s− u)η〉dLuds

=− 〈
∫ t

0

S(t− s)nΓ(Xs)dLs, η〉+ 〈
∫ t

0

nΓ(Xs)dLs, η〉.
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�
Below, we prove (5.2) has a unique solution in the sense of Definition 5.6.

Theorem 5.11 Let Γ ⊂ H satisfy Hypothesis 5.1. Then the stochastic inclusion (5.2) admits
at most one solution in the sense of Definition 5.6.

Proof Let (u, L1) and (v, L2) be two solutions of (5.2), and let {ek}k∈N be the eigenbasis of A
from above. We then have

〈ek, u(t)− v(t)〉+
∫ t

0

〈αkek, u(s)− v(s)〉ds+
∫ t

0

〈ek,nΓ(u(s))〉dL1
s −

∫ t

0

〈ek,nΓ(v(s))〉dL2
s = 0

Setting φk(t) := 〈ek, u(t)− v(t)〉, we obtain

φ2
k(t) =2

∫ t

0

φk(s)dφk(s)

=− 2(

∫ t

0

〈αkek, u(s)− v(s)〉〈ek, u(s)− v(s)〉ds+
∫ t

0

〈ek,nΓ(u(s))〉〈ek, u(s)− v(s)〉dL1
s

−
∫ t

0

〈ek,nΓ(v(s))〉〈ek, u(s)− v(s)〉dL2
s)

≤− 2

∫ t

0

〈ek,nΓ(u(s))〉〈ek, u(s)− v(s)〉dL1
s + 2

∫ t

0

〈ek,nΓ(v(s))〉〈ek, u(s)− v(s)〉dL2
s.

(5.4)
By dominated convergence theorem for all t ≥ 0 we have P − a.s:∑

k≤N

∫ t

0

〈ek,nΓ(u(s))〉〈ek, u(s)− v(s)〉dL1
s

→
∫ t

0

〈nΓ(u(s)), u(s)− v(s)〉dL1
s as N → ∞,

and ∑
k≤N

∫ t

0

〈ek,nΓ(v(s))〉〈ek, u(s)− v(s)〉dL2
s

→
∫ t

0

〈nΓ(v(s)), u(s)− v(s)〉dL2
s as N → ∞.

Summing over k ≤ N in (5.4) and letting N → ∞ yield that for all t ≥ 0 P − a.s

|u(t)− v(t)|2 ≤ 2

∫ t

0

〈nΓ(u(s)), v(s)− u(s)〉dL1
s + 2

∫ t

0

〈nΓ(v(s)), u(s)− v(s)〉dL2
s

By Remark 5.5 it follows that
|u(t)− v(t)|2 ≤ 0,

which implies
u(t) = v(t),
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and thus
L1(t) = L2(t).

�
Combining Theorem 5.4 and 5.11 with the Yamada-Watanabe Theorem, we now obtain the

following:

Theorem 5.12 If Γ satisfies Hypothesis 5.1, then there exists a Borel set M ⊂ H with
IΓ · µ(M) = µ(Γ) such that for every x ∈ M , (5.2) has a pathwise unique continuous strong
solution in the sense that for every probability space (Ω,F ,Ft, P ) with an Ft-Wiener process
W , there exists a unique pair of Ft-adapted processes (X,L) satisfying Definition 5.6 and
P (X0 = x) = 1. Moreover X(t) ∈M for all t ≥ 0 P -a.s.

Proof By Theorem 5.4 and Theorem 5.11, one sees that [15, Theorem 3.14] a) is satisfied for
the solution (X,L). So, the assertion follows from [15, Theorem 3.14] b). �

Remark 5.13 Following the same arguments as in the proof of [26, Theorem 2.1], we can
give an alternative proof of Theorem 5.12 for a stronger notion of strong solutions (see e.g.
[26]). Also, because of Theorem 5.10, by a modification of [20, Theorem 12.1], we can prove the
Yamada Watanabe Theorem for the mild solution in Definition 5.8, and then also a correspond-
ing version of Theorem 5.12 for mild solutions for (5.2). This will be contained in forthcoming
work.

5.3 The non-symmetric case

In this section, we extend our results to the non-symmetric case. For Γ ⊂ H satisfying Hy-
pothesis 5.1, we consider the non-symmetric Dirichlet form,

EΓ(u, v) =

∫
Γ

(
1

2
〈Du(z), Dv(z)〉+ 〈B(z), Du(z)〉v(z))µ(dz), u, v ∈ C1

b (Γ),

where B is a map from Γ to H such that

B ∈ L∞(Γ → H,µ),

∫
Γ

〈B,Du〉dµ ≥ 0 for all u ∈ C1
b (Γ), u ≥ 0. (5.5)

Then (E , C1
b (Γ)) is a densely defined bilinear form on L2(Γ;µ) which is positive definite,

since for all u ∈ C1
b (Γ)

EΓ(u, u) =

∫
Γ

1

2
(〈Du(z), Du(z)〉+ 〈B(z), Du2(z)〉(z))µ(dz) ≥ 0.

Furthermore, by the same argument as [17, II.3.e] we have (E , C1
b (Γ)) is closable on L

2(Γ, µ)
and its closure (EΓ,FΓ) is a Dirichlet form on L2(Γ, µ). We denote the extended Dirichlet space
of (EΓ,FΓ) by FΓ

e : Recall that u ∈ FΓ
e if and only if |u| < ∞ IΓ · µ − a.e. and there exists a

sequence {un} in FΓ such that EΓ(um−un, um−un) → 0 as n ≥ m→ ∞ and un → u IΓ ·µ−a.e.
as n→ ∞. This Dirichlet form satisfies the weak sector condition

|EΓ
1 (u, v)| ≤ KEΓ

1 (u, u)
1/2EΓ

1 (v, v)
1/2.
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Furthermore, we have:

Theorem 5.14 Suppose Γ ⊂ H satisfies Hypothesis 5.1. Then (EΓ,FΓ) is a quasi-regular
local Dirichlet form on L2(Γ;µ).

Proof The assertion follows by [17 IV,4b] and [28]. �
By virtue of Theorem 5.14 and [17], there exists a diffusion process MΓ = (Xt, Pz) on Γ

associated with the Dirichlet form (EΓ,FΓ). Since constant functions are in FΓ and EΓ(1, 1) = 0,
MΓ is recurrent and conservative. We denote by AΓ

+ the set of all positive continuous additive
functionals (PCAF in abbreviation) of MΓ, and define AΓ = AΓ

+ − AΓ
+. For A ∈ AΓ, its

total variation process is denoted by {A}. We also define AΓ
0 = {A ∈ AΓ|EIΓ·µ({A}t) <

∞ ∀t > 0}. Each element in AΓ
+ has a corresponding positive EΓ-smooth measure on Γ by

the Revuz correspondence. The totality of such measures will be denoted by SΓ
+. Accordingly,

AΓ corresponds to SΓ = SΓ
+ − SΓ

+, the set of all EΓ-smooth signed measure in the sense that
At = A1

t − A2
t for A

k
t ∈ Aρ

+, k = 1, 2 whose Revuz measures are νk, k = 1, 2 and ν = ν1 − ν2 is
the Hahn-Jordan decomposition of ν. The element of A corresponding to ν ∈ S will be denoted
byAν .

Note that for each l ∈ H the function u(z) = 〈l, z〉 belongs to the extended Dirichlet space
FΓ
e and

EΓ(l(·), v) =
∫
Γ

(
1

2
〈l, Dv(z)〉+ 〈B(z), l〉v(z))µ(dz) ∀v ∈ C1

b (Γ). (5.6)

On the other hand, the AF 〈l, Xt−X0〉 ofMΓ admits a decomposition into a sum of a martingale
AF (Mt) of finite energy and CAF (Nt) of zero energy. More precisely, for every l ∈ H

〈l, Xt −X0〉 =M l
t +N l

t ∀t ≥ 0 Pz − a.s. (5.7)

for Eρ-q.e. z ∈ Γ.
Then we have the following:

Theorem 5.15 Suppose Γ ⊂ H satisfies Hypothesis 5.1.
(1) The next three conditions are equivalent:
(i)N l ∈ A0.
(ii)|EΓ(l(·), v)| ≤ C‖v‖∞ ∀v ∈ C1

b (Γ).
(iii) There exists a finite (unique) signed measure νl on Γ such that

EΓ(l(·), v) = −
∫
Γ

v(z)νl(dz) ∀v ∈ C1
b (Γ). (5.8)

In this case, νl is automatically smooth, and

N l = Aνl .

(2) M l is a martingale AF with quadratic variation process

〈M l〉t = t|l|2, t ≥ 0. (5.9)

Proof (1) By [21, Theorem 5.2.7] and the same arguments as in [11], we can extend Theorem
6.2 in [11] to our nonsymmetric case to prove the assertions.
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(2)Since

EΓ(u, v) =

∫
Γ

(
1

2
〈Du(z), Dv(z)〉+ 〈B(z), Du(z)〉v(z))µ(dz), u, v ∈ FΓ,

by [21 Theorem 5.1.5] for u ∈ C1
b (Γ), f ∈ FΓ bounded we have∫

f̃(x)µ〈M [u]〉(dx) =2EΓ(u, uf)− EΓ(u2, f)

=2

∫
Γ

(
1

2
〈Du(z), D(uf̃)(z)〉+ 〈B(z), Du(z)〉u(z)f̃(z))µ(dz)

−
∫
Γ

(
1

2
〈D(u(z)2), Df̃(z)〉+ 〈B(z), D(u2)(z)〉f̃(z))µ(dz)

=

∫
Γ

〈Du(z), Du(z)〉f̃(z)µ(dz).

Here f̃ denotes the EΓ-quasi-continuous version of f , µ〈M [u]〉 is the Reuvz measure for 〈M [u]〉 and
M [u] is the martingale additive functional in the Fukushima decomposition for u(Xt). Hence
we have

µ〈M [u]〉(dz) = IΓ〈Du(z), Du(z)〉 · µ(dz).

By [21, (5.1.3)] we also have

e(〈M l〉) = e(M l) =

∫
Γ

1

2
〈l, l〉µ(dz)

where e(M l) is the energy of M l. Then (5.9) easily follows. �
By Theorem 3.1 we can now prove the following:

Theorem 5.16 Suppose Γ ⊂ H satisfies Hypothesis 5.1. Then there is an EΓ-exceptional
set S ⊂ Γ such that ∀z ∈ Γ\S, under Pz there exists an Mt- cylindrical Wiener process W z,
such that the sample paths of the associated OU-process MΓ on Γ satisfy the following: for
l ∈ D(A) ∩H1

〈l, Xt−X0〉 =
∫ t

0

〈l, dW z
s 〉−

1

2

∫ t

0
H1〈l,nΓ(Xs)〉H∗

1
dL‖∂Γ‖

s −
∫ t

0

〈Al,Xs〉ds−
∫ t

0

〈l, B(Xs)〉ds Pz−a.s.

(5.11)

Here, L
‖∂Γ‖
t is the real valued PCAF associated with ‖∂Γ‖ by the Revuz correspondence, which

has the following additional property: ∀z ∈ Γ\S

I∂Γ(Xs)dL
‖∂Γ‖
s = dL‖∂Γ‖

s Pz − a.s.. (5.12)

Here nΓ := Dg
|Dg| is the exterior normal to Γ, and

‖∂Γ‖(dy) = |Dg(y)|
|Q1/2Dg(y)|

µ∂Γ(dy),

where µ∂Γ the surface measure induced by µ.
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Proof By (5.6) and (3.16) we have

EΓ(l(·), v) =
∫
Γ

1

2
〈l, Dv(z)〉+ 〈B(z), l〉v(z)µ(dz)

=

∫
Γ

〈B(z), l〉v(z)µ(dz) +
∫
Γ

v(z)〈Al, z〉µ(dz) + 1

2

∫
∂Γ

v(z)〈l,nΓ(z)〉‖∂Γ‖(dz).

Thus, by Theorem 5.15

N l
t = −〈Al,

∫ t

0

Xs(ω)ds〉 − 〈l,
∫ t

0

B(Xs(ω))ds〉 −
1

2
〈l,

∫ t

0

nΓ(Xs(ω))dL
‖∂Γ‖
s (ω)〉.

By Theorem 5.15 and the same method as in Theorem 3.2 one then proves the first assertion,
and the last assertion follows by Theorem 5.3 and 5.4. �

Let Γ ⊂ H and our linear operator A satisfy Hypothesis 5.1 and Hypothesis 2.1, respectively.
As in Section 5.2 we shall now prove the existence and uniqueness of a solution of the following
stochastic differential inclusion on the Hilbert space H,{

dX(t) + (AX(t) +B(X(t)) +NΓ(X(t)))dt 3 dW (t),
X(0) = x,

(5.13)

where B satisfies condition (5.5), W (t) is a cylindrical Wiener process in H on a filtered
probability space (Ω,F ,Ft, P ) and NΓ(x) is the normal cone to Γ at x, i.e.

NΓ(x) = {z ∈ H : 〈z, y − x〉 ≤ 0 ∀y ∈ Γ}.

Definition 5.17 A pair of continuousH×R-valued and Ft-adapted processes (X(t), L(t)), t ∈
[0, T ], is called a solution of (5.13) if the following conditions hold.

(i) X(t) ∈ Γ for all t ∈ [0, T ] P -a.s;
(ii) L is an increasing process with the property that

I∂Γ(Xs)dLs = dLs P − a.s,

and for any l ∈ D(A) we have

〈l, Xt−x〉 =
∫ t

0

〈l, dWs〉−
∫ t

0

〈l,nΓ(Xs)〉dLs−
∫ t

0

〈l, B(Xs)〉ds−
∫ t

0

〈Al,Xs〉ds ∀t ≥ 0 P − a.s.,

where nΓ is the exterior normal to Γ.
Below we prove (5.13) has a unique solution in the sense of Definition 5.17.

Theorem 5.18 Let Γ ⊂ H satisfy Hypothesis 5.1 and B satisfy the monotonicity condition

〈B(u)−B(v), u− v〉 ≥ −α|u− v|2 (5.14)

for all u, v ∈ dom(B), for some α ∈ [0,∞) independent of u, v. The stochastic inclusion (5.13)
admits at most one solution in the sense of Definition 5.17.
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Proof Let (u, L1) and (v, L2) be two solutions of (5.13), and let {ek}k∈N be the eigenbasis of
A from above. We then have

〈ek, u(t)− v(t)〉+
∫ t

0

〈αkek, u(s)− v(s)〉ds+
∫ t

0

〈ek, B(u(s))−B(v(s))〉ds

+

∫ t

0

〈ek,nΓ(u(s))〉dL1
s −

∫ t

0

〈ek,nΓ(v(s))〉dL2
s = 0.

Setting φk(t) := 〈ek, u(t)− v(t)〉, and we have

φ2
k(t) =2

∫ t

0

φk(s)dφk(s)

=− 2(

∫ t

0

〈αkek, u(s)− v(s)〉〈ek, u(s)− v(s)〉ds+
∫ t

0

〈ek, B(u(s))−B(v(s))〉〈ek, u(s)− v(s)〉ds

+

∫ t

0

〈ek,nΓ(u(s))〉〈ek, u(s)− v(s)〉dL1
s −

∫ t

0

〈ek,nΓ(v(s))〉〈ek, u(s)− v(s)〉dL2
s)

≤− 2

∫ t

0

〈ek, B(u(s))−B(v(s))〉〈ek, u(s)− v(s)〉ds

− 2

∫ t

0

〈ek,nΓ(u(s))〉〈ek, u(s)− v(s)〉dL1
s + 2

∫ t

0

〈ek,nΓ(v(s))〉〈ek, u(s)− v(s)〉dL2
s.

(5.15)
By the same argument as Theorem 5.11, we have the following P − a.s:∑

k≤N

∫ t

0

〈ek, B(u(s))−B(v(s))〉〈ek, u(s)− v(s)〉ds

→
∫ t

0

〈B(u(s))−B(v(s)), u(s)− v(s)〉ds as N → ∞,

∑
k≤N

∫ t

0

〈ek,nΓ(u(s))〉〈ek, u(s)− v(s)〉dL1
s

→
∫ t

0

〈nΓ(u(s)), u(s)− v(s)〉dL1
s as N → ∞,

and ∑
k≤N

∫ t

0

〈ek,nΓ(v(s))〉〈ek, u(s)− v(s)〉dL2
s

→
∫ t

0

〈nΓ(v(s)), u(s)− v(s)〉dL2
s as N → ∞.

Summing over k ≤ N in (5.15) and letting N → ∞ yield that for all t ≥ 0, P − a.s

|u(t)− v(t)|2 + 2

∫ t

0

〈B(u(s))−B(v(s)), u(s)− v(s)〉ds

≤ 2

∫ t

0

〈nΓ(u(s)), v(s)− u(s)〉dL1
s + 2

∫ t

0

〈nΓ(v(s)), u(s)− v(s)〉dL2
s.
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By Remark 5.4 it follows that

|u(t)− v(t)|2 + 2

∫ t

0

〈B(u(s))−B(v(s)), u(s)− v(s)〉ds ≤ 0.

By (5.14) and Gronwall’s Lemma it follows that

u(t) = v(t),

and thus
L1(t) = L2(t).

�
Combining Theorem 5.16 and 5.18 with the Yamada-Watanabe Theorem, we obtain the

following:

Theorem 5.19 If Γ satisfies Hypothesis 5.1 and B in (5.13) satisfies (5.14), then there exists
a Borel set M ⊂ H with IΓ · µ(M) = µ(Γ) such that for every x ∈ M , (5.13) has a pathwise
unique continuous strong solution in the sense that for every probability space (Ω,F ,Ft, P ) with
an Ft-Wiener process W there exists a unique pair of Ft-adapted processes (X,L) satisfying
Definition 5.17 and P (X0 = x) = 1. Moreover X(t) ∈M for all t ≥ 0 P -a.s.

Proof The proof is completely analogous to that of Theorem 5.12. �

6 Reflected OU-processeses on a class of convex sets

Below for a topological space X we denote its Borel σ-algebra by B(X). In this section, we
consider the case where H := L2(0, 1), ρ = IKα , where Kα := {f ∈ H|f ≥ −α}, α ≥ 0, and
A = −1

2
d2

dr2
with Dirichlet boundary conditions on (0,1). So in this case ej =

√
2 sin(jπr), j ∈

N, is the corresponding eigenbases. We recall that (cf [28]) we have µ(C0([0, 1])) = 1. In [28],
L.Zambotti proved the following integration by parts formulae in this situation:

For α > 0,∫
Kα

〈l, Dϕ〉dµ = −
∫
Kα

ϕ(x)〈x, l′′〉µ(dx)−
∫ 1

0

drl(r)

∫
ϕ(x)σα(r, dx), ∀l ∈ D(A), ϕ ∈ C1

b (H),

for α = 0,∫
K0

〈l, Dϕ〉dν = −
∫
K0

ϕ(x)〈x, l′′〉ν(dx)−
∫ 1

0

drl(r)

∫
ϕ(x)σ0(r, dx), ∀l ∈ D(A), ϕ ∈ C1

b (H),

(6.1)
where ν is the law of the Bessel Bridge of dimension 3 over [0, 1] which is zero at 0 and
1, σα(r, dx) = σα(r)µα(r, dx), and for α > 0, σα is a positive bounded function, and for
α = 0, σ0(r) =

1√
2πr3(1−r)3

, where µα(r, dx), α ≥ 0, are probability kernels from (H,B(H)) to

([0, 1],B([0, 1])).

Remark 6.1 Since each l inD(A) has a second derivative in L2, its first derivative is bounded,
hence l goes faster than linear to zero at any point where l is zero, in particular at the boundary
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points r = 0 and r = 1. Hence the second integral in the right hand side of the above equality
is well-defined.

We know by (3.5) that for all l ∈ D(A)

D∗(ϕ(·)l) = −〈l, Dϕ〉 − ϕ〈l′′, ·〉.

Hence for α > 0,∫
Kα

D∗(ϕ(·)l)dµ =

∫ 1

0

l(r)

∫
ϕ(x)σα(r, dx)dr ∀l ∈ D(A), ϕ ∈ C1

b (H). (6.2)

Now take

cj :=

{
(jπ)

1
2
+ε, if α > 0

(jπ)β, if α = 0,
(6.3)

where ε ∈ (0, 3
2
] and β ∈ (3

2
, 2] respectively, and define

H1 := {x ∈ H|
∞∑
j=1

〈x, ej〉2c2j <∞},

equipped with the inner product

〈x, y〉H1 :=
∞∑
j=1

c2j〈x, ej〉〈y, ej〉.

We note that D(A) ⊂ H1 continuously for all α ≥ 0, since ε ≤ 3
2
, β ≤ 2. Furthermore,

(H1, 〈, 〉H1) is a Hilbert space such that H1 ⊂ H continuously and densely. Identifying H with
its dual we obtain the continuous and dense embeddings

H1 ⊂ H(≡ H∗) ⊂ H∗
1 .

It follows that

H1〈z, v〉H∗
1
= 〈z, v〉H∀z ∈ H1, v ∈ H,

and that (H1, H,H
∗
1 ) is a Gelfand triple.

The following is the main result of this section.

Theorem 6.2 If α > 0, then IKα ∈ BV (H,H1) ∩H.

Proof First for σα as in (6.2) we show that for each B ∈ B(H) the function r 7→ σα(r,B) is in
H∗

1 and that the map B 7→ σα(·, B) is in fact an H∗
1 -valued measure of bounded variation, i.e

sup{
∞∑
n=1

‖σα(·, Bn)‖H∗
1
: Bn ∈ B(H), n ∈ N, H = ∪̇∞

n=1Bn} <∞,

that is,

sup{
∞∑
n=1

(
∞∑
j=1

c−2
j (

∫ 1

0

σα(r, Bn) sin(jπr)dr)
2)1/2 : Bn ∈ B(H), n ∈ N, H = ∪̇∞

n=1Bn} <∞,
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where ∪̇∞
n=1Bn means disjoint union.

For α > 0 we have

∞∑
n=1

(
∞∑
j=1

c−2
j (

∫ 1

0

σα(r,Bn) sin(jπr)dr)
2)1/2

≤
∞∑
n=1

(
∞∑
j=1

c−2
j (

∫ 1

0

σα(r,Bn)dr)
2)1/2

≤C
∞∑
n=1

∫ 1

0

σα(r, Bn)dr

=C

∫ 1

0

σα(r)dr <∞.

Thus σα in (6.2) is of bounded variation as an H∗
1 -valued measure. Hence by the theory of

vector-valued measures (cf [2, Section 2.1]), there is a unit vector field nα : H → H∗
1 , such that

σα = nα‖σα‖, where ‖σα‖(B) := sup{
∑∞

n=1 ‖σα(·, Bn)‖H∗
1
: Bn ∈ B(H), n ∈ N, B = ∪̇∞

n=1Bn} is
a nonnegative measure, which is finite by the above proof. So (6.2) becomes∫

Kα

D∗(ϕ(·)l)dµ =

∫
H1〈ϕ(x)l, nα(x)〉H∗

1
‖σα‖(dx) ∀l ∈ D(A), ϕ ∈ C1

b (H),

which by linearity extends to all G ∈ (C1
b )D(A)∩H1 . Thus by Theorem 3.1(iii), we get that

IKα ∈ BV (H,H1).
IKα ∈ H follows by Remark 4.1. �

Remark 6.3 It has been proved by Guan Qingyang that IKα is not in BV (H,H).

Theorem 6.4 For α = 0, then there exist a positive finite measure ‖σ0‖ on H and a Borel-
measurable map n0 : H → H∗

1 such that ‖n0(z)‖H∗
1
= 1 ‖σ0‖ − a.e, and

−
∫
K0

〈l, Dϕ〉dν−
∫
K0

ϕ(x)〈x, l′′〉ν(dx) =
∫

H1〈ϕ(x)l, n0(x)〉H∗
1
‖σ0‖(dx), ∀l ∈ D(A), ϕ ∈ C1

b (H),

(6.4)

Proof For α = 0 using that | sin(jπr)| ≤ 2jπr(1− r) ∀r ∈ [0, 1], we have

∞∑
n=1

(
∞∑
j=1

c−2
j (

∫ 1

0

σ0(r, Bn) sin(jπr)dr)
2)1/2

≤
∞∑
n=1

(
∞∑
j=1

c−2
j (

∫ 1

0

σ0(r, Bn)2jπr(1− r)dr)2)1/2

≤C
∞∑
n=1

∫ 1

0

σ0(r, Bn)r(1− r)dr

=C

∫ 1

0

σ0(r)r(1− r)dr <∞
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Thus σ0 in (6.1) is of bounded variation as an H∗
1 -valued measure. Hence by the theory of

vector-valued measures (cf [2, Section 2.1]), there is a unit vector field n0 : H → H∗
1 , such that

σ0 = n0‖σα‖, where ‖σ0‖(B) := sup{
∑∞

n=1 ‖σ0(·, Bn)‖H∗
1
: Bn ∈ B(H), n ∈ N, B = ∪̇∞

n=1Bn} is
a nonnegative measure, which is finite by the above proof. So the result follows by (6.1). �

Since here µ(K0) = 0, we have to change the reference measure of the Dirichlet form.
Consider

EK0(u, v) =
1

2

∫
K0

〈Du,Dv〉dν, u, v ∈ C1
b (K0).

Since IK0 ∈ H by Remark 4.1, the closure of (EIK0 , C1
b (K0)) is also a quasi-regular local Dirichlet

form on L2(F ; ρ · ν) in the sense of [17, IV Definition 3.1]. As before, there exists a diffusion
process M IK0 = (Ω,M, {Mt}, θt, Xt, Pz) on F associated with this Dirichlet form. M IK0 will
also be called distorted OU-process on K0. As before, M

IK0 is recurrent and conservative. As
before, we also have the associated PCAF and the Revuz correspondence.

Combining these two cases: for α > 0 by Theorem 3.2 and for α = 0 by the same argument
as Theorem 3.2, since we have (6.4), we have the following theorem.

Theorem 6.5 Let ρ := IKα , α ≥ 0 and consider the measure ‖σα‖ and nα appearing in
Theorem 6.2 and Theorem 6.4. Then there is an Eρ-exceptional set S ⊂ F such that ∀z ∈ F\S,
under Pz there exists an Mt- cylindrical Wiener process W z, such that the sample paths of the
associated distorted OU-process Mρ on F satisfy the following: for l ∈ D(A)

〈l, Xt −X0〉 =
∫ t

0

〈l, dWs〉+
1

2

∫ t

0
H1〈l, nα(Xs)〉H∗

1
dL‖σα‖

s −
∫ t

0

〈Al,Xs〉ds Pz − a.e. (6.5)

Here L
‖σα‖
t is the real valued PCAF associated with ‖σα‖ by the Revuz correspondence with

respect to Mρ, satisfying
I{Xs+α 6=0}dL

‖σα‖
s = 0, (6.6)

and for l ∈ H1 with l(r) ≥ 0 we have∫ t

0
H1〈l, nα(Xs)〉H∗

1
dL‖σα‖

s ≥ 0. (6.7)

Furthermore, for all z ∈ F

Pz[Xt ∈ C0[0, 1] for a.e. t ∈ [0,∞)] = 1. (6.8)

Proof For α > 0, the first part of the assertion follows by Theorem 3.2 and the uniqueness
part of Theorem 3.1 (ii). For α = 0, the assertion follows by the same argument as in Theorem
3.2. (6.6) and (6.7) follow by the property of σα in [28]. By [22, p.135 Theorem 2.4], we have
C0[0, 1] is a Borel subset of L2[0, 1]. By [10, (5.1.13)], we have

Eρµ[

∫ k

k−1

1F\C0[0,1](Xs)ds] = ρµ(F \ C0[0, 1]) = 0 ∀k ∈ N,

hence

Eρµ[

∫ ∞

0

1F\C0[0,1](Xs)ds] = 0.
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Since Ex[
∫∞
0

1F\C0[0,1](Xs)ds] is a 0-excessive function in x ∈ Kα, it is finely continuous with
respect to the process X. Then for Eρ − q.e. z ∈ F ,

Ez[

∫ ∞

0

1F\C0[0,1](Xs)ds] = 0,

thus, for Eρ − q.e. z ∈ F ,

Pz[

∫ ∞

0

1F\C0[0,1](Xs)ds = 0] = 1.

As a consequence, we have that Λ0 := {Xt ∈ C0[0, 1] for a.e. t ∈ [0,∞)} is measurable and for
Eρ − q.e. z ∈ F

Pz(Λ0) = 1.

As Λ0 = ∩t∈Q,t>0θ
−1
t Λ0 and since by [4] we have that the semigroup associated with Xt is strong

Feller, by the Markov property as in [8, Lemma 7.1], we obtain that for any z ∈ F, t ∈ Q, t > 0,

Pz(θ
−1
t Λ0) = 1.

Hence for any z ∈ F we have

Pz[Xt ∈ C0[0, 1] for a.e. t ∈ [0,∞)] = 1.

�

Remark 6.6 We emphasize that in the present situation it was proved in [19, Theorem 1.3]
that for all initial conditions x ∈ H, there exists a unique strong solution to (1.1). By [28] the
solution in [19] is associated to our Dirichlet form, hence satisfies (6.5) by Theorem 6.5. Hence
it follows that the solution in [19, Theorem 1.3] is solution to an infinite-dimensional Skorohod
problem.
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[5] S. Albeverio and M. Röckner, Classical Dirichlet forms on topological vector spaces–
closability and a Cameron-Martin formula, Journal of Functional Analysis. 88 (1990),
395-436

[6] V. Barbu, G. Da Prato and L. Tubaro, Kolmogorov equation associated to the stochastic
reflection problem on a smooth convex set of a Hilbert spaces, The Annals of Probability.
4 (2009), 1427-1458

[7] V. Barbu, G.Da Prato and L. Tubaro, Kolmogorov equation associated to the stochastic
reflection problem on a smooth convex set of a Hilbert spaces, preprint, 2010
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