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ABSTRACT. A time inhomogeneous generalized Mehler semigroup on a real separable
Hilbert space H is defined through

ps,tf(x) =

∫
H
f(U(t, s)x+ y)µt,s(dy), s, t ∈ R, t ≥ s, x ∈ H,

for every bounded measurable function f on H, where (U(t, s))t≥s is an evolution family
of bounded operators on H and (µt,s)t≥s is a family of probability measures on (H,B(H))

satisfying the following time inhomogeneous skew convolution equations

µt,s = µt,r ∗
(
µr,s ◦ U(t, r)−1

)
, t ≥ r ≥ s.

This kind of semigroups typically arise as the “transition semigroups” of non-autonomous
(possibly non-continuous) Ornstein-Uhlenbeck processes driven by some proper additive
process. Suppose that µt,s converges weakly to δ0 as t ↓ s or s ↑ t. We show that µt,s has
further weak continuity properties in t and s. As a consequence, we prove that for every
t ≥ s, µt,s is infinitely divisible. Natural stochastic processes associated with (µt,s)t≥s are
constructed and are applied to get probabilistic proofs for the weak continuity and infinite
divisibility. Then we analyze the structure, existence and uniqueness of the corresponding
evolution systems of measures (=space-time invariant measures) of (ps,t)t≥s. We also estab-
lish a dimension free Harnack inequality for (ps,t)t≥s and present some of its applications.
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1. INTRODUCTION

We start the introduction of time inhomogeneous generalized Mehler semigroups and
skew convolution equations from the well studied time homogeneous case.

Let H be a real separable Hilbert space with norm and inner product denoted by | · | and
〈·, ·〉 respectively. Let B(H) be the space of Borel measurable subsets of H, and let Bb(H)

be the space of all bounded Borel measurable functions on H.
A time homogeneous generalized Mehler semigroup (pt)t≥0 on H is defined by

ptf(x) =

∫
H
f(Ttx+ y)µt(dy), t ≥ 0, x ∈ H, f ∈ Bb(H). (1.1)

Here (Tt)t≥0 is a strongly continuous semigroup on H and (µt)t≥0 is a family of probability
measures on (H,B(H)) satisfying the following skew convolution (semigroup) equation

µt+s = µs ∗ (µt ◦ T−1
s ), s, t ≥ 0. (1.2)

Recall that for any two positive Borel measures µ and ν on H, the convolution µ ∗ ν of µ
and ν is a Borel measure on (H,B(H)) such that

µ ∗ ν(B) :=

∫
H

∫
H

1B(x+ y)µ(dx)ν(dy) =

∫
H
µ(B − x) ν(dx), B ∈ B(H).

Condition (1.2) is necessary and sufficient for the semigroup property of (pt)t≥0 (and the
Markov property of the corresponding stochastic process respectively) to hold. That is (see
[22]),

(1.2) holds if and only if for all t, s ≥ 0, ptps = pt+s on Bb(H).

The semigroup (1.1) is a generalization of the classical Mehler formula for the transi-
tion semigroup of an Ornstein-Uhlenbeck process driven by a Wiener process. The second
named author and his coauthors studied this generalization for the Gaussian case in [8, 9] as
well as the non-Gaussian case in [22]. Indeed, under some mild conditions there is a one-
to-one correspondence between generalized Mehler semigroups and transition semigroups
of Ornstein-Uhlenbeck processes driven by Lévy processes (cf. [9, 22]).

Generalized Mehler semigroups and skew convolution equations have been extensively
studied. For instance, Schmuland and Sun [51] investigated the infinite divisibility of µt (t ≥
0) and the continuity of t 7→ log µ̂t (here µ̂t denotes the Fourier transformation of µt, see
also (2.11)); Lescot and Röckner considered in [33] and [34] the generator and perturbations
of (pt)t≥0 respectively; Wang and Röckner established some useful functional inequalities
for (pt)t≥0; van Neerven [53], Li and his coauthors [18, 19] studied the representation of
µ̂t (t ≥ 0). For more literature on this topic we refer to [2, 3, 4, 30, 36] and the references
therein.

Recently, much work, for instance [13, 14, 23, 32, 57], has been devoted to the study
of non-autonomous Ornstein-Uhlenbeck processes which are solutions to linear stochastic
partial differential equations (SPDE) with time-dependent drifts. The noise in these equa-
tions is modeled by a stationary process such as a Wiener process or Lévy process. To get
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fully inhomogeneous Ornstein-Uhlenbeck processes, it is natural to consider more general
noise modeled by (time) non-stationary processes such as additive processes.

Let (A(t),D(A(t)))t∈R be a family of linear operators on the space H with dense do-
mains. Suppose that the non-autonomous Cauchy problem{

dxt = A(t)xtdt, t ≥ s,

xs = x

is well posed (cf. [44]). That is, there exists an evolution family of bounded operators
(U(t, s))t≥s on H associated with A(t) such that for every x ∈ D(A(s)), x(t) = U(t, s)x is
a unique classical solution of this Cauchy problem.

Typical examples forA(t), t ∈ R, are partial differential operators e.g. of divergence type
on H = L2(U) with U an open bounded domain in Rd. So, for example

A(t) =
d∑

i,j=1

∂

∂xi

(
aij(x, t)

∂

∂xj

)
,

where ai,j : U × R→ R are bounded measurable functions such that for some c ∈ (0,∞),

d∑
i,j=1

aij(x, t)ξiξj ≥ c|ξ|2Rd , ξ ∈ Rd.

For details we refer to [44] and [32].
A family of bounded linear operators (U(t, s))t≥s on H is said to be a (strongly continu-

ous) evolution family if:

(1) For every s ∈ R, U(s, s) is the identity operator and for all t ≥ r ≥ s,

U(t, r)U(r, s) = U(t, s).

(2) For every x ∈ H, the map (t, s) 7→ U(t, s)x is strongly continuous on {(t, s) ∈
R2 : t ≥ s}.

An evolution family is also called evolution system, propagator etc.. For more details we
refer e.g. to [17, 21, 44].

Let (Zt)t∈R be an additive process taking values in H, i.e. an H-valued stochastically
continuous stochastic process with independent increments. We shall consider stochastic
integrals

∫ t
s

Φ(r)dZr on [s, t] of non-random functions Φ(t), t ∈ R, which takes values in
the space of all linear operators on H.

A direct way to define the stochastic integral is to regard it as the limit (e.g. in the sense
of convergence in probability) of “Riemann sums”. We refer to [38] to get some idea. For
a more general definition (using so called independently scattered random measures), we
refer to [46] for the infinite dimensional case and [48, 49] for the finite dimensional case. A
work [41] is in preparation to extend the main results in [48, 49] by the first named author.

Consider the following stochastic differential equation{
dXt = A(t)Xtdt+ dZt,

Xs = x.
(1.3)
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Suppose that U(t, ·) is integrable on [s, t] for every s ≤ t with respect to Zt. Hence the
following stochastic convolution integrals

Xt,s :=

∫ t

s

U(t, σ) dZσ, t ≥ s, (1.4)

are well defined. Then

X(t, s, x) = U(t, s)x+

∫ t

s

U(t, r) dZr, t ≥ s, x ∈ H (1.5)

is called the mild solution of (1.3). For all t ≥ s, let µ̄t,s denote the distribution of Xt,s.
Obviously the transition semigroup of X(t, s, x) is given by

Ps,tf(x) = Ef(X(t, s, x)) =

∫
H
f (U(t, s)x+ y) µ̄t,s(dy) (1.6)

for all x ∈ H, f ∈ Bb(H) and t ≥ s. It is easy to check that (µ̄t,s)t≥s satisfies the following
time inhomogeneous skew convolution equation

µ̄t,s = µ̄t,r ∗
(
µ̄r,s ◦ U(t, r)−1

)
, t ≥ r ≥ s

The aim of the present paper is to adopt the axiomatic approach in [9] and [22] to study
the non-autonomous process (1.5) through its transition semigroup (1.6). That is, we shall
start from (1.6) and define for a given strongly continuous evolution family (U(t, s))t≥s,

ps,tf(x) :=

∫
H
f(U(t, s)x+ y)µt,s(dy), x ∈ H, f ∈ Bb(H), t ≥ s. (1.7)

Here (µt,s)t≥s is a family of probability measures on (H,B(H)). In order that the family
(ps,t)t≥s satisfies the Chapman-Kolmogorov equations (flow property), we shall assume that
(µt,s)t≥s satisfies the flowing time inhomogeneous skew convolution equations

µt,s = µt,r ∗
(
µr,s ◦ U(t, r)−1

)
, t ≥ r ≥ s. (1.8)

In this case we call (ps,t)t≥s a time inhomogeneous generalized Mehler semigroup. Clearly,
(1.7) and (1.8) are time inhomogeneous analogs of (1.1) and (1.2).

We would like to point out that (ps,t)t≥s is of course not a “transition semigroup” although
we call it (time inhomogeneous generalized Mehler) semigroup. In this two parameter case,
some authors call it hemigroup, see for example [6, 25] and [10, 27] where (1.7) and (1.8)
have been studied respectively in some special or different situations. So, one may also call
(1.7) a (time inhomogeneous) generalized Mehler hemigroup. Similarly, one may call (1.8)
a (time inhomogeneous) skew convolution hemigroup.

As a toy example one may consider the following time inhomogeneous one dimensional
stochastic equation {

dxt = a(t)xtdt+ dbt,

xs = x,
(1.9)

where (bt)t∈R is a standard one-dimensional Brownian motion in R and a(t) is a continuous
function on R. Then (exp(

∫ t
s
a(r) dr))t≥s is the evolution family associated with a(t). The

mild solution of (1.9) is given by

x(t, s, x) = exp

(∫ t

s

a(r) dr

)
x+

∫ t

s

exp

(∫ t

u

a(r) dr

)
dbu, t ≥ s, x ∈ H. (1.10)
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Clearly ∫ t

s

exp

(∫ t

u

a(r) dr

)
dbu ∼ N(0, σt,s),

i.e. a Gaussian measure with mean 0 and variance σt,s given by

σt,s =

∫ t

s

exp

(
2

∫ t

u

a(r) dr

)
d u.

It is easy to check that (cf. (3.52))

σt,s = σt,r + σr,s · exp

(
2

∫ t

r

a(r) dr

)
, t ≥ r ≥ s.

This means that (1.8) holds. The corresponding time inhomogeneous generalized Mehler
semigroup is given by

ps,tf(x) :=

∫
H
f

(
exp

(∫ t

s

a(r) dr

)
x+ y

)
N(0, σt,s)(dy), x ∈ H, f ∈ Bb(H), t ≥ s.

For further examples we refer to Section 5, where we consider time inhomogeneous
SPDEs driven by Wiener processes in infinite dimension (in particular see Example 5.3).
For corresponding examples, where the Wiener process is replaced by a Lévy process we
refer e.g. to [32].

The present paper is organized as follows.
In Section 2 the main result is Proposition 2.1, which shows that the flow property for

(ps,t)t≥s holds if and only if we have (1.8) for (µt,s)t≥s.
In Section 3 we concentrate on the skew convolution equations (1.8). In Subsection 3.1

we give some preliminaries and motivations. In Subsection 3.2 we introduce Assumption
3.7 and show some results on the weak continuity of µt,s in t and s. In Subsection 3.3,
we prove that for every t ≥ s, µt,s is infinitely divisible. In Subsection 3.4 we show that
there exists a natural stochastic process associated with (µt,s)t≥s. This allows us to get
probabilistic proofs of the results on the weak continuity and infinite divisibility of µt,s
proved in previous subsections. We shall study the spectral representation of µt,s in another
work.

In Section 4 we study evolution systems of measures (i.e. space-time invariant measures)
for the semigroup (ps,t)t≥s. We first show some basic properties of the evolution systems of
measures. Then we give sufficient and necessary conditions for the existence and unique-
ness of evolution systems of measures.

In Section 5 we prove a (dimension independent) Harnack inequality for (ps,t)t≥s using
a simple argument. As applications of the Harnack inequality, we prove that null controlla-
bility implies the strong Feller property and that for the Gaussian case, null controllability,
Harnack inequality and strong Feller property are in fact equivalent to each other as in the
time homogeneous case.

The semigroup (ps,t)t≥s is called strongly Feller if for every bounded measurable function
f and every t ≥ s, ps,tf is a bounded continuous function. In the time homogeneous case,
the strong Feller property has been investigated frequently. One of the reasons is that if a
transition semigroup is strong Feller and irreducible, then it has a unique invariant measure,
see e.g. [11].
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As an application of the Harnack inequality, we e.g. look at the hypercontractivity of
(ps,t)t≥s. Hypercontractivity of semigroup such as (1.6) is closely related to functional
inequalities, spectral theory etc. for the Kolmogorov operator (or generator) corresponding
to SDE (1.3), see e.g. [54].

In Section 6 we append a brief introduction to the control theory of non-autonomous
linear control systems and null controllability. The minimal energy representation is useful
for the estimate of the constant in the Harnack inequality obtained in Section 5.

2. GENERALIZED MEHLER SEMIGROUPS AND SKEW CONVOLUTION EQUATIONS

First we characterize when the Chapman-Kolmogorov equations hold for (ps,t)t≥s in
(1.7).

Proposition 2.1. For all s ≤ r ≤ t,

ps,rpr,t = ps,t (“Chapman-Kolmogorov equations”) (2.1)

holds on Bb(H) if and only if (1.8) holds for all s ≤ r ≤ t.

We shall prove this proposition in a more general framework. This is inspired by the
fact that a generalized Mehler semigroup is a special case of the so called skew convolution
semigroups (see [35]).

Let (us,t)t≥s be a family of Borel Markov transition functions on H, i.e. each us,t is a
probability kernel on B(H) and the following Chapman-Kolmogorov equations

us,tf(x) = us,r(ur,tf)(x), x ∈ H, f ∈ Bb(H) (2.2)

hold for all t ≥ r ≥ s. Here Bb(H) denote the space of all bounded Borel measurable
functions on H. Writing (2.2) in integral form, we have∫

H2

f(z)ur,t(y, dz)us,r(x, dy) =

∫
H
f(z)us,t(x, dz). (2.3)

Assume that
us,t(x+ y, ·) = us,t(x, ·) ∗ us,t(y, ·) (2.4)

for every t ≥ s and x, y ∈ H. Clearly, Equation (2.4) implies

us,t(0, ·) = δ0. (2.5)

For every probability measure µ on (H,B(H)) we associate with us,t (t ≥ s) a new
probability measure µus,t by

µus,t(A) =

∫
H
us,t(x,A)µ(dx), A ∈ B(H)

for every t ≥ s.
Let (µt,s)t≥s be a family of probability measures on (H,B(H)). For all t ≥ s, define a

family of functions
qs,t(·, ·) : H×B(H)→ R

by
qs,t(x, ·) = us,t(x, ·) ∗ µt,s(·), x ∈ H.
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Associated with qs,t(·, ·) we define an operator qs,t on B(H) by

qs,tf(x) =

∫
H
f(y) qs,t(x, dy), x ∈ H, f ∈ Bb(H).

We have the following characterization of the Chapman-Kolmogorov equations for (qs,t)t≥s.

Proposition 2.2. The family of operators (qs,t)t≥s satisfies

qs,t = qs,rqr,t, t ≥ r ≥ s (2.6)

if and only if
µt,s = µt,r ∗ (µr,sur,t), t ≥ r ≥ s. (2.7)

Proof. For every f ∈ Bb(H), x ∈ H, we have

qs,rqr,tf(x)

=

∫
H
qr,tf(y)qs,r(x, dy)

=

∫
H2

qr,tf(y1 + y2)us,r(x, dy1)µr,s(dy2)

=

∫
H4

f(z)qr,t(y1 + y2, dz)us,r(x, dy1)µr,s(dy2)

=

∫
H4

f(z1 + z2)ur,t(y1 + y2, dz1)µt,r(dz2)us,r(x, dy1)µr,s(dy2)

=

∫
H5

f(z11 + z12 + z2)ur,t(y1, dz11)ur,t(y2, dz12)µt,r(dz2)us,r(x, dy1)µr,s(dy2)

=

∫
H4

f(z11 + z12 + z2)us,t(x, dz11)ur,t(y2, dz12)µt,r(dz2)µr,s(dy2)

=

∫
H3

f(z11 + z12 + z2)us,t(x, dz11)(µr,sur,t)(dz12)µt,r(dz2)

=

∫
H
f(z)(us,t(x, ·) ∗ (µr,sur,t) ∗ µt,r)(dz).

(2.8)

In the calculation above we have used (2.3) and (2.4) to get the fifth and sixth identity
respectively. If (2.7) holds, then by (2.8) we obtain

qs,rqr,tf(x) =

∫
H
f(z)[us,t(x, ·) ∗ µt,s](dz) = qs,tf(x).

That is, (2.6) holds.
Conversely, if (2.6) holds, then we have

qs,tf(0) = qs,rqr,tf(0) (2.9)

for all f ∈ Bb(H). By taking x = 0 in (2.8) and using (2.5), we get

qs,rqr,tf(0) =

∫
H
f(z) ((µr,sur,t) ∗ µt,r) (dz).

On the other hand, we have

qs,tf(0) =

∫
H
f(z)µt,s(dz).
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Hence ∫
H
f(z) ((µr,sur,t) ∗ µt,r) (dz) =

∫
H
f(z)µt,s(dz)

for all f ∈ Bb(H). This implies (2.7). So the proof is complete. �

Proof of Proposition 2.1. Let
us,t(x, ·) = δU(t,s)x(·)

for every t ≥ s and x ∈ H. Then by property (1) of the evolution family (U(t, s))t≥s,
(us,t)t≥s is a Markov transition function satisfying (2.2). Note that we can rewrite the inho-
mogeneous generalized Mehler semigroup (1.7) as

ps,tf(x) = (δU(t,s)x ∗ µt,s)f, x ∈ H, f ∈ Bb(H). (2.10)

Hence it is clear that (qs,t)t≥s coincides with (ps,t)t≥s. Therefore, the equivalence of (2.6)
and (2.7) in Proposition 2.2 is exactly the equivalence of (2.1) and (1.8) in Proposition 2.1.
The latter is thus proved. �

For a linear bounded operator U on H, let U∗ denote its adjoint. Clearly, U∗ is also
bounded. Let µ̂ denote the Fourier transform (or the characteristic functional) of a proba-
bility measure µ on H, i.e.

µ̂(ξ) =

∫
H

ei〈x,ξ〉 µ(dx), ξ ∈ H. (2.11)

Probability measures on Hilbert spaces are determined by their characteristic functionals
(see e.g. [52, Section IV.2.2, Theorem 2.2]). In particular, (1.8) holds if and only if

µ̂t,s(ξ) = µ̂t,r(ξ)µ̂r,s(U(t, r)∗ξ), ξ ∈ H. (2.12)

3. TIME INHOMOGENEOUS SKEW CONVOLUTION EQUATIONS

In this section, we concentrate on (1.8). We shall study the weak continuity, infinite
divisibility and stochastic process associated with (µt,s)t≥s.

3.1. Preliminaries and motivations. In this subsection we fix some notations and present
some basic results and motivations. In particular, we give some results on the weak conver-
gence of measures satisfying convolution equations such as (1.8).

Convergence of probability measures. We recall that a sequence of probability mea-
sures (µn)n≥1 on H converges weakly to a probability measure µ on H, written as

µn ⇒ µ as n→∞,

if for every f ∈ Cb(H)

lim
n→∞

∫
H
f(x)µn(dx) =

∫
H
f(x)µ(dx).

Here Cb(H) denotes the space of all bounded continuous functions on H. Sometimes we
also write

lim
n→∞

µn = µ.
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A sequence of H-valued random variables (Xn)n≥1 converges stochastically, or converges
in probability, to an H-valued random variable X , written as

Xn
Pr−→ X,

if for each ε > 0,
lim
n→∞

P(|Xn −X| > ε) = 0.

Let µn and µ denote the distributions ofXn andX respectively. Then it is well known that
as n→∞, Xn

Pr−→ X implies µn ⇒ µ (in other words, Xn converges to X in distribution).
On the other hand, if in particular, X = x ∈ H is deterministic, then µn ⇒ δx implies
Xn

Pr−→ X . Therefore, we have Xn
Pr−→ x if and only if µn ⇒ δx.

Additive processes, Lévy processes and convolution equations. Let (Xt)t∈R be a sto-
chastic process taking values in H. Assume that X0 = 0. The process (Xt)t∈R is called an
additive process if it has independent increments, i.e. if for any t > s, Xt −Xs is indepen-
dent of σ({Xr : r ≤ s}). Let µt,s denote the distribution of Xt −Xs. For all t ≥ r ≥ s, we
have

Xt −Xs = (Xt −Xr) + (Xr −Xs).

This implies
µt,s = µt,r ∗ µr,s, t ≥ r ≥ s (3.1)

since Xt −Xr, Xr −Xs are independent.
Usually one requires that an additive process is stochastically continuous, i.e. for every

t ∈ R and ε > 0,
lim
h→0

P(|Xt+h −Xt| ≥ ε) = 0. (3.2)

This condition means that
µt,s ⇒ δ0 as s ↑ t,
µt,s ⇒ δ0 as t ↓ s.

(3.3)

If in addition (Xt)t∈R has stationary increments, i.e. if for any t > s the distribution of
Xt −Xs only depends on t − s, then it is called a Lévy process. In this case we shall only
consider Xt for t ≥ 0. For each t ≥ 0 let µt denote the distribution of Xt. Then obviously
we have the following convolution equations

µt+s = µt ∗ µs, t, s ≥ 0. (3.4)

The stochastic continuity condition (3.2) is reduced to

lim
t↓0

P(|Xt| ≥ ε) = 0. (3.5)

This is equivalent to
µt ⇒ δ0 as t ↓ 0.

Infinitely divisible probability measures. A probability measure µ on (H,B(H)) is
said to be infinitely divisible if for any n ∈ N, there exists a probability measure µn on
(H,B(H)) such that

µ = µ∗nn := µn ∗ µn ∗ · · · ∗ µn︸ ︷︷ ︸
n times

.
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Let (µt)t≥0 be a family of probability measures. If it satisfies (3.4), then obviously for
every t ≥ 0, µt is infinitely divisible. If (µt)t≥0 satisfies the skew convolution equations
(1.2)

µt+s = µs ∗ (µt ◦ T−1
s ), s, t ≥ 0,

then it is proved in [51] that for every t ≥ 0, µt is also infinitely divisible.
Now we look at the two-parameter convolution equations (3.1). First we consider the

finite dimensional case when H = Rd. It is known (see [29] or [47, Theorem 9.1 and
Theorem 9.7]) that if (µt,s)t≥s satisfies (3.3), then for any t ≥ s, µt,s is infinitely divisible.
The idea of the proof given in [47] can be described as follows.

First one shows that (µt,s)t≥s is locally uniformly weakly continuous by using (3.3). That
is, for every ε > 0 and η > 0, there is δ > 0 such that for all s and t in [s0, t0] satisfying
0 ≤ t− s ≤ δ, we have (cf. Lemma 3.8)

µt,s(|x| > ε) < η.

Then by the celebrated Kolmogorov-Khintchine limit theorems on sums of independent
random variables (see [47, Theorem 9.3]), we obtain that µt0,s0 is infinitely divisible.

The uniform weak continuity of (µt,s)t≥s on [s0, t0] can be proved by constructing a
stochastically continuous additive process (Xt)t∈R such that for any t ≥ s the increment
Xt −Xs has the distribution µt,s (see [47, Theorem 9.7 (ii)] and [47, Lemma 9.6]).

In Subsection 3.3 we shall modify the arguments above to study the infinite divisibility
of (µt,s)t≥s satisfying equation (1.8).

Weak convergence of measures satisfying convolution equations. The results in this
part will be used in Section 4. First of all we include here two results from [43]. Recall that
a set M of probability measures on H is said to be shift (relatively) compact if for every
sequence (µn)n≥1 in M there is a sequence (νn)n≥1 such that

(1) (νn)n≥1 is a translate of (µn)n≥1. That is, there exists a sequence (xn)n≥1 in H such
that νn = µn ∗ δxn for all n ≥ 1.

(2) (νn)n≥1 has a convergent subsequence.

Theorem 3.1. Let (σn)n≥1, (µn)n≥1 and (νn)n≥1 be three sequences of measures on H such
that σn = µn ∗ νn for all n ∈ N.

(1) ([43, Theorem III.2.1]) If the sequences (σn)n≥1 and (µn)n≥1 both are relatively
compact, then so is the sequence (νn)n≥1.

(2) ([43, Theorem III.2.2]) If the sequence (σn)n≥1 is relatively compact then the se-
quences (µn)n≥1 and (νn)n≥1 are shift compact, respectively.

Now we can show the following lemma.

Lemma 3.2. Let µn, νn, σn with n ≥ 1, and µ, ν, σ be measures on (H,B(H)) such that
σn = µn ∗ νn.

(1) If µn ⇒ µ and νn ⇒ ν as n→∞, then σn ⇒ µ ∗ ν as n→∞.
(2) Suppose that σn ⇒ σ and µn ⇒ µ as n → ∞. Then there exists a probability

measure ν such that
σ = µ ∗ ν. (3.6)

If ν is the unique measure such that (3.6) holds, then νn ⇒ ν as n→∞.
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Proof. The first conclusion says that the convolution operation preserves weak continuity.
The proof can be found, for example, in [28, Proposition 2.3] or [43, Theorem III.1.1].

Now we show the second assertion. Take an arbitrary subsequence (νni)i≥1 from (νn)n≥1

and consider
σni = µni ∗ νni , i ≥ 1.

Since σn ⇒ σ and µn ⇒ µ as n → ∞, both (σni)i≥1 and (µni)i≥1 are relatively compact.
By Theorem 3.1, the sequence (νni)i≥1 is also relatively compact. Let (νn′i)i≥1 be a weakly
convergent subsequence of (νni)i≥1 with limit ν ′. Then by the first assertion of this theorem,
we have

σn′i = µn′i ∗ νn′i ⇒ µ ∗ ν ′, n′i →∞.
Since we also have σn′i ⇒ σ as n′i → ∞, we get σ = µ ∗ ν ′. This shows that there exists
a probability measure ν = ν ′ such that (3.6) holds. If there is only one measure ν such
that (3.6) holds, then the discussion above shows that any subsequence of (νn)n≥1 contains
a further subsequence converging weakly to ν. This is sufficient to conclude that (νn)n≥1

converges weakly to ν (cf. [7, Theorem 2.6]). Hence the proof is complete. �

Remark 3.3. In the second part of the previous theorem, the assumption that ν is the unique
solution to the convolution equation σ = µ ∗ ν amounts to saying that the following cancel-
lation law for convolution operation holds: Let ν, ν ′ be two measures on H, if

µ ∗ ν = µ ∗ ν ′, (3.7)

then ν = ν ′. It is obvious that this cancellation law holds provided µ̂ has no zeros. Indeed,
from (3.7) we get µ̂ν̂ = µ̂ν̂ ′. If µ̂ 6= 0, then ν̂ = ν̂ ′. So ν = ν ′. It is well known that if µ is
an infinitely divisible distribution, then µ̂ has no zeros.

Remark 3.4. After the proof of the second assertion of Lemma 3.2, we found that there is
a similar result in [26, Corollary 2.2.4] where the condition that µ̂ has no zeros is used. Our
proof is different. The example after [37, Theorem 5.1.1] shows that there exist probability
measures µ, ν and ν ′ on R with ν 6= ν ′ such that (3.7) holds. It is called Khintchine phe-
nomenon in the literature. So if (3.7) holds, then it is necessary to require ν = ν ′ for the
second assertion of Lemma 3.2. Otherwise, if ν 6= ν ′, then (µ ∗ νn)n≥1 with ν2k−1 = ν and
ν2k = ν ′ for all k ≥ 1 converges weakly, but (νn)n≥1 does not converge weakly.

As a summary of the discussion above, we have the following result.

Corollary 3.5. Let µn, νn, σn with n ≥ 1 and σ, µ be measures on H with the following
properties

(1) For all n ≥ 1, σn = µn ∗ νn;
(2) As n→∞, σn ⇒ σ and µn ⇒ µ.

If µ is an infinitely divisible distribution, then the sequence (νn)n≥1 converges weakly to
some measure ν on H such that σ = µ ∗ ν as n→∞.

In particular, we have the following result.

Corollary 3.6. Let µn, νn, σn with n ≥ 1, and σ be measures on H. Suppose that for all
n ≥ 1, σn = µn ∗ νn. If σn ⇒ σ and µn ⇒ δ0 as n→∞, then νn ⇒ σ as n→∞.
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3.2. Weak continuity. We shall use the following assumption.

Assumption 3.7. For all s ∈ R

lim
t↓s

µt,s = lim
t↑s

µs,t = δ0. (3.8)

Let us explain that the weak limit δ0 in (3.8) is natural. Taking s = r = t in (1.8) we
obtain

µt,t = µt,t ∗ µt,t, t ∈ R. (3.9)

That is, for every t ∈ R, µt,t is an idempotent probability measure on (H,B(H)). By
[52, Section I.4.3, Proposition 4.7, Page 67, see also Section IV.2.2, Corollary 1, Page 203]
(or [43, Section III.3, Theorem 3.1, Page 62] and noting that there is no nontrivial compact
subgroup in H), the trivial measure δ0 is the only idempotent measure on (H,B(H)). Hence

µt,t = δ0. (3.10)

Now Assumption 3.7 means that µt,s is weakly continuous on the diagonal {(t, s) : (t, s) ∈
R2, t = s} in two directions. We aim to show that, combined with the skewed convolution
equation (1.8), this assumption in fact implies more about the weak continuity of µt,s in t
and s.

We need the following simple fact.

Lemma 3.8. Let (µn)n≥1 be a sequence of probability measures on H. Then µn ⇒ δ0 as
n→∞ if and only if for all ε > 0,

lim
n→∞

µn({x ∈ H : |x| > ε}) = 0. (3.11)

Proof. Suppose that µn ⇒ δ0 as n → ∞. Then by the Portmanteau theorem (see for
instance [7, Theorem 2.1]),

lim sup
n→∞

µn(F ) ≤ δ0(F )

for all closed sets F in H. Obviously {x ∈ H : |x| ≥ ε} is closed. Hence

0 ≤ lim sup
n→∞

µn({x ∈ H : |x| > ε})

≤ lim sup
n→∞

µn({x ∈ H : |x| ≥ ε}) ≤ δ0({x ∈ H : {|x| ≥ ε}) = 0.

So (3.11) holds.
Now we assume that (3.11) holds for all ε > 0. Let f be a continuous bounded function

on H. Define
M := sup |f |+ 1.

We are going to show µn(f)→ δ0(f) as n→∞.
Since f is continuous, for any η > 0, there exists a constant ε0 > 0 such that for all
|x| ≤ ε0,

|f(x)− f(0)| < η

2
. (3.12)

By (3.11) there exists a constant N > 0 such that for all n > N ,

µn({x ∈ H : |x| > ε0}) <
η

4M
. (3.13)
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Combining (3.12) and (3.13) we obtain∣∣∣∣∫
H
f dµn −

∫
H
f dδ0

∣∣∣∣
≤
∫
H
|f(x)− f(0)| dµn

=

∫
{x∈H : |x|≥ε0}

|f(x)− f(0)| dµn +

∫
{x∈H : |x|<ε0}

|f(x)− f(0)| dµn

≤2Mµn({x ∈ H : |x| > ε0}) + sup
|x|<ε0

|f(x)− f(0)| · µn({x ∈ H : |x| ≤ ε0})

<2M · η

4M
+
η

2
= η.

This completes the proof. �

By Lemma 3.8 we have the following equivalent description of Assumption 3.7.

Proposition 3.9. Equation (3.8) is equivalent to

lim
t↓s

µt,s({x ∈ H : |x| > ε}) = lim
s↑t

µt,s({x ∈ H : |x| > ε}) = 0 (3.14)

for all ε > 0. More precisely, they are equivalent to the following two conditions: for every
ε, η > 0, and for every u ∈ R, there exists a constant δu such that:

(1) For every t ∈ (u, u+ δu),

µt,u({x ∈ H : |x| > ε}) < η. (3.15)

(2) For every s ∈ (u− δu, u),

µu,s({x ∈ H : |x| > ε}) < η. (3.16)

We shall use the following two lemmas.

Lemma 3.10. For every s0 < t0, there exists some constant c ≥ 1 such that for all s0 ≤
s ≤ t ≤ t0,

|U(t, s)x| ≤ c|x|, x ∈ H, s0 ≤ s ≤ t ≤ t0. (3.17)

Proof. For every x ∈ H, |U(t, s)x| is a continuous function of (t, s) on Λt0,s0 := {(t, s) : s0 ≤
s ≤ t ≤ t0}. Hence |U(t, s)x| is uniformly bounded on Λt0,s0 for every x ∈ H. By the
Banach-Steinhaus theorem we have

sup
(t,s)∈Λt0,s0

‖U(t, s)‖ <∞.

That is, there exists some c > 0 such that (3.17) holds. �

Lemma 3.11. Let T be a bounded linear operator on H, hence for all x ∈ H, |Tx| ≤ c|x|
for some constant c > 0. Let µ be a measure on H and ε > 0 be any constant. Then we
have

µ ◦ T−1({x ∈ H : |x| > ε}) ≤ µ({x ∈ H : |x| > ε/c}). (3.18)
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Proof. By assumption we have

µ ◦ T−1({x ∈ H : |x| > ε}) =µ({x ∈ H : |Tx| > ε})
≤µ({x ∈ H : |x| > ε/c}).

�

Now we can prove the following result.

Theorem 3.12. Suppose that Assumption 3.7 and (1.8) hold for a family of probability
measures (µt,s)t≥s. Then:

(1) For every t ∈ R, the map s 7→ µt,s with s ≤ t is weakly continuous.
(2) For every t, s ∈ R with t ≥ s we have

µt+ε,s ⇒ µt,s as ε ↓ 0, (3.19)

where ε ↓ 0 means ε ≥ 0 and ε→ 0.
(3) For every t0, t, s ∈ R with t0 ≥ t > s,

µt−ε,s ◦ U(t0, t− ε)−1 ⇒ µt,s ◦ U(t0, t)
−1 as ε ↓ 0. (3.20)

Proof. (1) Let s < t. We need to show

µt,s−ε ⇒ µt,s as ε ↓ 0 (3.21)

and
µt,s+ε ⇒ µt,s as ε ↓ 0. (3.22)

Equation (1.8) implies that for every ε ∈ (0, t− s)

µt,s−ε = µt,s ∗
(
µs,s−ε ◦ U(t, s)−1

)
(3.23)

and
µt,s = µt,s+ε ∗

(
µs+ε,s ◦ U(t, s+ ε)−1

)
. (3.24)

By Lemma 3.10 there exists some constant c ≥ 1 such that for all ε ∈ (0, t− s), we have

‖U(t, s+ ε)‖ ≤ c.

Hence by Lemma 3.11 we have for all η > 0

µs,s−ε ◦ U(t, s)−1({x ∈ H : |x| > η}) ≤ µs,s−ε({x ∈ H : |x| > η/c}). (3.25)

Because µs,s−ε ⇒ δ0 as ε ↓ 0, by Lemma 3.8 we get

lim
ε↓0

µs,s−ε({x ∈ H : |x| > η/c}) = 0.

Hence it follows from (3.25) that

lim
ε↓0

µs,s−ε ◦ U(t, s)−1({x ∈ H : |x| > η}) = 0.

By Lemma 3.8, we obtain

µs,s−ε ◦ U(t, s)−1 ⇒ δ0, ε ↓ 0.

Therefore, applying the first result of Lemma 3.2 to (3.23) we get (3.21).
By the same arguments, it is easy to show that

µs+ε,s ◦ U(t, s+ ε)−1 ⇒ δ0 as ε ↓ 0.
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Then by Corollary 3.6, (3.22) follows from (3.24).

(2) According to (1.8) we have for all t ≥ s, ε ≥ 0,

µt+ε,s = µt+ε,t ∗ (µt,s ◦ U(t+ ε, t)−1).

By assumption we have µt+ε,t ⇒ δ0 as ε ↓ 0. Hence by applying the first assertion of
Lemma 3.2, we get (3.19) by proving

µt,s ◦ U(t+ ε, t)−1 ⇒ µt,s, as ε ↓ 0. (3.26)

Now we show (3.26). Let f be a continuous and bounded function on H. For every ε > 0

set
fε(x) := f (U(t+ ε, t)x) , x ∈ H.

It is clear that fε converges to f pointwise as ε ↓ 0. Moreover, since f is bounded, we know
that fε is bounded. Hence by Lebesgue’s dominated convergence theorem we have

lim
ε↓0

∫
H
f(x) dµt,s ◦ U(t+ ε, t)−1(x) = lim

ε↓0

∫
H
fε(x) dµt,s(x) =

∫
H
f(x) dµt,s(x).

This proves (3.26).

(3) We first show in particular the following result:

µt−ε,s ◦ U(t, t− ε)−1 ⇒ µt,s as ε ↓ 0. (3.27)

By (1.8) we have for all t ≥ t− ε > s,

µt,s = µt,t−ε ∗ (µt−ε,s ◦ U(t, t− ε)−1).

Since µt,t−ε ⇒ δ0 as ε ↓ 0, by Corollary 3.6, we get (3.27).
Now let us show (3.20). By (3.27), we have for any bounded continuous function f on H

lim
ε↓0

∫
H
f(x) dµt−ε,s ◦ U(t0, t− ε)−1(x)

= lim
ε↓0

∫
H
f (U(t0, t− ε)x) dµt−ε,s(x)

= lim
ε↓0

∫
H
f (U(t0, t)U(t, t− ε)x) dµt−ε,s(x)

= lim
ε↓0

∫
H
f (U(t0, t)y) dµt−ε,s ◦ U(t, t− ε)−1(y)

=

∫
H
f (U(t0, t)y) dµt,s(y)

=

∫
H
f(y) dµt,s ◦ U(t0, t)

−1(y).

This proves (3.20). �

Concerning the space-homogeneous case, we have the following result.

Theorem 3.13. Let (µ̃t,s)t≥s be a family of probability measures on (H,B(H)) satisfying

µ̃t,s = µ̃t,r ∗ µ̃r,s, t ≥ r ≥ s (3.28)

and
lim
t↓s

µ̃t,s = lim
s↑t

µ̃t,s = δ0.
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Then µ̃t,s is weakly continuous in t and s with t ≥ s.

Proof. Below we always assume that we have t′ ≥ s′ when we write µ̃t′,s′ . Let εn and δn be
two nonnegative sequences converging to 0 as n→∞. Recall that by Theorem 3.12,

µ̃t,s±δn ⇒ µ̃t,s, as n→∞. (3.29)

By (3.28) we have
µ̃t,s±δn = µ̃t,t−εn ∗ µ̃t−εn,s±δn . (3.30)

Note that as n → ∞, we have µ̃t,t−εn ⇒ δ0 by assumption. Hence by (3.29) and by
applying Corollary 3.6 to Equation (3.30) we obtain

µ̃t−εn,s±δn ⇒ µ̃t,s, as n→∞. (3.31)

Now by (3.28) we also have

µ̃t+εn,s±δn = µ̃t+εn,t ∗ µ̃t,s±δn . (3.32)

By assumption we have µ̃t+εn,t ⇒ δ0 as n→∞. Hence by using the weak continuity of
the convolution operator and by applying (3.29) to (3.32), we get

µ̃t+εn,s±δn ⇒ µ̃t,s, as n→∞. (3.33)

Combining (3.31) and (3.33) we get

µ̃t±εn,s±δn ⇒ µ̃t,s, as n→∞

and hence the proof is complete. �

Remark 3.14. We provide also probabilistic proofs of Theorem 3.12 and Theorem 3.13 in
Subsection 3.4 below.

For every t ≥ s, it is clear that ps,t is Feller, i.e. ps,t(Cb(H)) ⊂ Cb(H). Now we look at
the continuity of the map (s, x) 7→ ps,tf(x) for every f in Cb(H). The proposition below is
a direct generalization of [9, Lemma 2.1]. The proof is similar to the proof in [9].

Proposition 3.15. Let sn, tn ∈ R, xn ∈ H, sn ≤ tn with n ≥ 1 such that (sn, tn)→ (s, t) ∈
R2 and xn → x ∈ H as n → ∞. If µtn,sn ⇒ µt,s as n → ∞, then for any f ∈ Cb(H),
psn,tnf(xn)→ ps,tf(x) as n→∞.

Proof. Since µtn,sn ⇒ µt,s as n→∞, by Prohorov’s theorem, for every ε > 0, there exists
a compact set K ⊂ H such that

µr,σ(K) ≥ 1− ε, for all (r, σ) ∈ {(t, s), (tn, sn) : n ∈ N}. (3.34)

For abbreviation, we set zn = U(tn, sn)xn and z = U(t, s)x. By the strong continuity of
the evolution family (U(t, s))t≥s, the set Z := {z, zn : n ∈ N} is compact. Hence Z +K is
also compact. So there exists an N ∈ N such that for any n > N and for any y ∈ K,

|f(zn + y)− f(z + y)| < ε, (3.35)

since f is uniformly continuous on compacts.
Because µtn,sn ⇒ µt,s as n→∞, (taking N larger if necessary) we have for all n > N∣∣∣∣∫

H
f(z + y)µtn,sn(dy)−

∫
H
f(z + y)µt,s(dy)

∣∣∣∣ < ε. (3.36)
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From (3.34), (3.35) and (3.36) we get∣∣∣∣∫
H
f(zn + y)µtn,sn(dy)−

∫
H
f(z + y)µt,s(dy)

∣∣∣∣
≤
∣∣∣∣∫

H
f(z + y)µtn,sn(dy)−

∫
H
f(z + y)µt,s(dy)

∣∣∣∣
+

∫
K

|f(zn + y)− f(z + y)| µtn,sn(dy) + 2‖f‖∞µ(H \K)

<2ε(1 + ‖f‖∞).

Hence the result is proved since ε was arbitrary.
�

3.3. Infinite divisibility. The main result of this section is the following theorem.

Theorem 3.16. Suppose that Assumption 3.7 and (1.8) hold for (µt,s)t≥s. Then for every
t ≥ s, µt,s is infinitely divisible.

We shall use a similar method as indicated in Subsection 3.1. The main difficulty is
proving the following lemma, i.e. showing (µt,s ◦ U(t0, t)

−1)t≥s is uniformly weakly con-
tinuous on [s0, t0]. In this subsection we prove it analytically. In Subsection 3.4 we present
a probabilistic proof of it by constructing an associated stochastically continuous additive
process.

Lemma 3.17. Suppose that (µt,s)t≥s satisfies (1.8) and Assumption 3.7. Then on every
compact interval [s0, t0], for all ε, η > 0, there exists a constant δ > 0 such that for all
s, t ∈ [s0, t0] with 0 ≤ t− s < δ,

µt,s ◦ U(t0, t)
−1({x ∈ H : |x| > ε}) < η. (3.37)

Proof. It is trivial to see that (3.37) holds for the case when t = s. So we shall assume
t > s. By Lemma 3.10, there exists a constant c ≥ 1 such that

|U(t, s)x| ≤ c|x|, x ∈ H, s0 ≤ s < t ≤ t0. (3.38)

Let us set
ε′ = ε/c

and
A(r) := {x ∈ H : |x| > r}, r > 0.

By Assumption 3.7 and Equations (3.15), (3.16) in Proposition 3.9, for every ε, η > 0,
t ∈ [s0, t0], there exists a constant δt ≥ 0 such that

µt,s

(
A

(
ε′

2c

))
< η/2, s ∈ (t− δt, t) (3.39)

and

µr,t

(
A

(
ε′

2c

))
< η/2, r ∈ (t, t+ δt). (3.40)

Since c ≥ 1 we have ε′

2c
≤ ε′

2
. Hence from estimates (3.39) and (3.40) it follows that

µt,s (A (ε′/2)) < η/2, s ∈ (t− δt, t) (3.41)
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and

µr,t (A (ε′/2)) < η/2, r ∈ (t, t+ δt). (3.42)

Moreover, according to Lemma 3.11 and (3.38), from estimates (3.39) and (3.40) we
obtain

µt,s ◦ U(t′, t)−1 (A (ε′/2)) < η/2, t− δt ≤ s ≤ t, t ≤ t′ ≤ t0 (3.43)

and

µr,t ◦ U(r′, r)−1 (A (ε′/2)) < η/2, t ≤ r ≤ t+ δt, r ≤ r′ ≤ t0. (3.44)

For every t ∈ [s0, t0], let

It := (t− δt, t+ δt).

Obviously {It : t ∈ [s0, t0]} covers the interval [s0, t0]. Hence there is a finite sub–covering
{Itj : j = 1, 2 · · · , n} of [s0, t0]. Then for every t ∈ [s0, t0], we have t ∈ Itj for some
j ∈ {1, 2, · · · , n}. Let

δ := min

{
δtj
2

: j = 1, 2, . . . , n

}
.

For every s ∈ [s0, t0] such that 0 < t− s < δ, we have

|s− tj| ≤ |s− t|+ |t− tj| < δ + δtj/2 ≤ δtj .

Therefore, both t and s are in the same sub-interval Itj . We need to consider the following
three cases respectively: 1. s ≤ tj < t; 2. s < t ≤ tj; 3. tj < s < t.

Case 1 (s ≤ tj < t). Note that for all x, y ∈ H, if |x + y| > ε′, then either |x| > ε′/2

or |y| > ε′/2. That is, the following inequality holds

1A(ε′)(x+ y) ≤ 1A(ε′/2)(x) + 1A(ε′/2)(y). (3.45)

By (1.8), (3.42), (3.43) and (3.45) we have

µt,s(A(ε′)) = µt,tj ∗ (µtj ,s ◦ U(t, tj)
−1)(A(ε′))

=

∫
H

∫
H

1A(ε′)(x+ y)µt,tj(dx)(µtj ,s ◦ U(t, tj)
−1)(dy)

≤
∫
H

∫
H

(1A(ε′/2)(x) + 1A(ε′/2)(y))µt,tj(dx)(µtj ,s ◦ U(t, tj)
−1)(dy)

= µt,tj(A(ε′/2)) + (µtj ,s ◦ U(t, tj)
−1)(A(ε′/2))

<
η

2
+
η

2
= η.

Therefore, by Lemma 3.11 and (3.38) we have

µt,s ◦ U(t0, t)
−1({x ∈ H : |x| > ε}) < η.

Case 2 (s < t ≤ tj). We first show that

(µt,s ◦ U(tj, t)
−1)(A(ε′)) < η

by contradiction. If otherwise, the following inequality

(µt,s ◦ U(tj, t)
−1)(A(ε′)) ≥ η (3.46)
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holds. Then by (1.8), (3.41) and (3.46) we obtain
η

2
> µtj ,s(A(ε′/2)) = µtj ,t ∗ (µt,s ◦ U(tj, t)

−1)(A(ε′/2))

=

∫
H

∫
H

1A(ε′/2)(x+ y)µtj ,t(dx)(µt,s ◦ U(tj, t)
−1)(dy)

≥
∫
H

∫
H

1A(ε′/2)c(x) · 1A(ε′)(y) µtj ,t(dx)(µt,s ◦ U(tj, t)
−1)(dy)

= µtj ,t(A(ε′/2)c) · (µt,s ◦ U(tj, t)
−1)(A(ε′))

≥ η
(

1− η

2

)
= η − η2

2
.

Here we have used the fact that for all x, y ∈ H, |x + y| ≥ |y| − |x| > ε′

2
if |y| > ε′ and

|x| ≤ ε′/2. Now we have
η

2
> η − η2

2
,

consequently, η > 1. By (3.46) this means that

(µt,s ◦ U(tj, t)
−1)(A(ε′)) > 1.

This is impossible since µt,s is a probability measure.
Then by Lemma 3.11 and (3.38) we have

µt,s ◦ U(t0, t)
−1({x ∈ H : |x| > ε})

=
(
µt,s ◦ U(tj, t)

−1
)
◦ U(t0, tj)

−1({x ∈ H : |x| > ε})
≤µt,s ◦ U(tj, t)

−1({x ∈ H : |x| > ε/c})
=µt,s ◦ U(tj, t)

−1(A(ε′)) < η.

Case 3 (tj < s < t). Similar to Case 1 we only need to show µt,s(A(ε′)) < η whose
proof turns out to be similar to the proof in Case 2. Indeed, if

µt,s(A(ε′)) ≥ η, (3.47)

then by (1.8), (3.42) and (3.44)
η

2
> µt,tj(A(ε′/2)) = µt,s ∗ (µs,tj ◦ U(t, s)−1)(A(ε′/2))

=

∫
H

∫
H

1A(ε′/2)(x+ y)µt,s(dx)(µs,tj ◦ U(t, s)−1)(dy)

≥ µt,s(A(ε′)) · (µs,tj ◦ U(t, s)−1)(A(ε′/2)c)

≥ η
(

1− η

2

)
.

This implies η > 1 which contradicts (3.47) because µt,s is a probability measure.
Combining the three cases discussed above, we obtain (3.37) and hence the proof is

complete. �

Now we are ready to prove Theorem 3.16.

Proof of Theorem 3.16. For simplicity we only show that µ1,0 is infinitely divisible. The
proof for the case µt,s with arbitrary t ≥ s is similar.
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First of all, we shall show by induction that for every m ∈ N,

µ1,0 =

2m−1∏∗

j=0

µ j+1
2m

, j
2m
◦ U

(
1,
j + 1

2m

)−1

. (3.48)

Here
∏∗ denotes the convolution product.

By (1.8) we have

µ1,0 = µ1, 1
2
∗

(
µ 1

2
,0 ◦ U

(
1,

1

2

)−1
)
.

So (3.48) holds for m = 1. Now we assume that (3.48) holds for some m ≥ 1. Then by
(1.8) we have for all j = 0, 1, · · · , 2m − 1,

µ j+1
2m

, j
2m

= µ (2j+1)+1

2m+1 , 2j+1

2m+1
∗

(
µ 2j+1

2m+1 ,
2j

2m+1
◦ U

(
(2j + 1) + 1

2m+1
,
2j + 1

2m+1

)−1
)
.

For any probability measures µ, ν on H and measurable map T on H, it is easy to check
that

(µ ∗ ν) ◦ T−1 = (µ ◦ T−1) ∗ (ν ◦ T−1). (3.49)

So,

µ j+1
2m

, j
2m
◦ U

(
1,
j + 1

2m

)−1

=µ (2j+1)+1

2m+1 , 2j+1

2m+1
◦ U

(
1,

(2j + 1) + 1

2m+1

)−1

∗

(
µ 2j+1

2m+1 ,
2j

2m+1
◦ U

(
1,

2j + 1

2m+1

)−1
)

=

2j+1∏∗

k=2j

µ k+1

2m+1 ,
k

2m+1
◦ U

(
1,
k + 1

2m+1

)−1

.

Therefore, by assumption we have

µ1,0 =

2m−1∏∗

j=0

2j+1∏∗

k=2j

µ k+1

2m+1 ,
k

2m+1
◦ U

(
1,
k + 1

2m+1

)−1

=

2m+1−1∏∗

k=0

µ k+1

2m+1 ,
k

2m+1
◦ U

(
1,
k + 1

2m+1

)−1

.

This proves (3.48) for all m ≥ 1.
By (3.48) and Lemma 3.17, µ1,0 is the limit of an infinitesimal triangular array. Hence

µ1,0 is infinitely divisible according to [43, Corollary VI.6.2]. �

Now we assume that for every t ≥ s, the measure µt,s is infinitely divisible. Then by the
Lévy-Khintchine theorem [43, Theorem VI.4.10], there exists a negative definite, Sazonov
continuous function ψt,s on H such that

µ̂t,s(ξ) = exp(−ψt,s(ξ)), ξ ∈ H



MEHLER SEMIGROUPS AND SKEW CONVOLUTION EQUATIONS 21

and ψt,s has the following form

ψt,s(ξ) = −i〈at,s, ξ〉+
1

2
〈ξ, Rt,sξ〉

−
∫
H

(
ei〈ξ,x〉−1− i〈ξ, x〉

1 + |x|2

)
mt,s(dx), ξ ∈ H,

(3.50)

where at,s ∈ H, Rt,s is a nonnegative definite, symmetric trace class operator on H, and mt,s

is a Lévy measure on H. We shall write

µt,s = [at,s, Rt,s,mt,s], t ≥ s.

In terms of the characteristic exponent ψt,s of µt,s, condition (1.8) is equivalent to

ψt,s(ξ) = ψt,r(ξ) + ψr,s(U(t, r)∗ξ), ξ ∈ H (3.51)

for every t ≥ r ≥ s.
According to (3.50) the right hand side of (3.51) is given by

ψt,r(ξ) + ψr,s(U(t, r)∗ξ)

=− i〈at,r, ξ〉+
1

2
〈ξ, Rt,rξ〉 −

∫
H

(
ei〈ξ,x〉−1− i〈ξ, x〉

1 + |x|2

)
mt,r(dx)

− i〈U(t, r)ar,s, ξ〉+
1

2
〈ξ, U(t, r)Rr,sU(t, r)∗ξ〉

−
∫
H

(
ei〈ξ,U(t,r)x〉−1− i〈ξ, U(t, r)x〉

1 + |x|2

)
mr,s(dx)

=− i〈at,r + U(t, r)ar,s, ξ〉+
1

2
〈ξ, (Rt,r + U(t, r)Rr,sU(t, r)∗)ξ〉

−
∫
H

(
ei〈ξ,x〉−1− i〈ξ, x〉

1 + |x|2

)
(mt,r + mr,s ◦ U(t, r)−1)(dx)

+

∫
H

i〈ξ, U(t, r)x〉
1 + |x|2

mr,s(dx)−
∫
H

i〈ξ, U(t, r)x〉
1 + |U(t, r)x|2

mr,s(dx).

Therefore, by the uniqueness of the canonical representation for infinitely divisible dis-
tributions we have the following identities (cf. also the proof of [40, Corollary 1.4.11]): for
every t ≥ r ≥ s,

at,s = at,r + U(t, r)ar,s

+

∫
H
U(t, r)x

(
1

1 + |U(t, r)x|2
− 1

1 + |x|2

)
mr,s(dx),

Rt,s = Rt,r + U(t, r)Rr,sU(t, r)∗,

mt,s = mt,r + mr,s ◦ U(t, r)−1

(3.52)

In particular, from (3.52) (or directly from (3.10)) we have

at,t = 0, Rt,t = 0, mt,t = 0, t ∈ R. (3.53)
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3.4. Associated stochastic processes. There are natural Lévy processes and additive pro-
cesses associated with the convolution equations (3.4) and (3.1) respectively. We refer to
[47, Theorem 7.10 (ii) and Theorem 9.7 (ii)] for details. The following theorem shows that
in some sense there is also a natural additive process associated with the family of measures
satisfying the skewed convolution equations (1.8).

Theorem 3.18. Let t0 ∈ R and (µt,s)t0≥t≥s be a system of probability measures on H such
that for all s ≤ r ≤ t ≤ t0,

µt,s = µt,r ∗ (µr,s ◦ U(t, r)−1) (3.54)

and
µt,s ⇒ δ0 as s ↑ t,
µt,s ⇒ δ0 as t ↓ s.

(3.55)

Set for all s ≤ t ≤ t0
µ̃t,s := µt,s ◦ U(t0, t)

−1.

Then

(1) For all s ≤ r ≤ t ≤ t0,
µ̃t,s = µ̃t,r ∗ µ̃r,s, (3.56)

µ̃s,s = δ0 (3.57)

and
µ̃t,s ⇒ δ0 as s ↑ t,
µ̃t,s ⇒ δ0 as t ↓ s.

(3.58)

(2) There is a stochastically continuous additive process (Xt)t0≥t satisfying the follow-
ing conditions:
(a) For all t ≤ t0, Xt has the distribution µt0,t. In particular, Xt0 = 0 almost

surely.
(b) For all t0 ≥ t ≥ s, the increment Xs −Xt has the distribution µ̃t,s.
(c) For all t0 ≥ t1 > t2 > · · · > tn, the incrementsXtj−Xtj−1

with j = 1, 2, · · · , n
are independent.

Proof. (1) By (3.54) we have

µ̃t,s = µt,s ◦ U(t0, t)
−1

=
(
µt,r ∗

(
µr,s ◦ U(t, r)−1

))
◦ U(t0, t)

−1

=
(
µt,r ◦ U(t0, t)

−1
)
∗
(
µr,s ◦ U(t0, r)

−1
)

= µ̃t,r ∗ µ̃r,s.

This proves (3.56). Hence for all s ≤ t0, we have µ̃ss = µ̃ss ∗ µ̃ss. Since the unique
idempotent measure on a Hilbert space is the Dirac measure δ0, (3.57) follows immediately.

Fix some s0 < t0. By Lemma 3.10 there exists some constant c > 0 such that for all
x ∈ H and s0 ≤ s ≤ t ≤ t0, |U(t, s)x| ≤ c|x|. Hence for any ε > 0, as in Lemma 3.11 we
have

µ̃t,s({x ∈ H : |x| > ε}) ≤ µt,s({x ∈ H : |x| > ε/c}).
Therefore, by Lemma 3.8 we obtain (3.58) from (3.55).
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(2) For any n ∈ N, t0 ≥ t1 > t2 > · · · > tn, let Υt1,t2,··· ,tn be the probability measure
defined on (H⊗n,B(H⊗n)) in the following way:

Υt1,t2··· ,tn(B1 ×B2 × · · · ×Bn)

=

∫
H

1B1(y1)µ̃t0,t1(dy1)

∫
H

1B2(y1 + y2)µ̃t1,t2(dy2)

× · · · ×
∫
H

1Bn(y1 + y2 + · · ·+ yn)µ̃tn−1,tn(dyn),

(3.59)

where Bj ∈ B(H) for j = 1, 2, · · · , n.
By using (3.56), the family of probability measures (Υt1,t2,··· ,tn)t0≥t1>t2>···>tn satisfies

the consistency condition. Therefore, by Kolmogorov’s extension theorem there is a unique
probability measure P on the path space (Ω,F ) :=

(
H(−∞,t0],B(H(−∞,t0])

)
such that for

all Bj ∈ B(H), j = 1, 2, · · · , n,

P(Xt1 ∈ B1, Xt2 ∈ B2, · · · , Xtn ∈ Bn) = Υt1,t2,··· ,tn(B1 ×B2 × · · · ×Bn). (3.60)

Here Xt is the canonical process on (Ω,F ) defined by Xt(ω) = ω(t), t ≤ t0.
Note that for any f ∈ Bb(H⊗n), (3.59) and (3.60) imply

E[f(Xt1 , Xt2 , · · · , Xtn)]

=

∫
H⊗n

f(y1, y1 + y2, · · · , y1 + y2 + · · ·+ yn) µ̃t0,t1(dy1)

× µ̃t1,t2(dy2)× · · · × µ̃tn−1,tn(dyn).

(3.61)

In particular, from (3.61) we get that for every t ≤ t0, Xt is distributed as µ̃t0,t = µt0,t.
Hence P(Xt0 = 0) = 1 since Xt0 ∼ µ̃t0,t0 = δ0.

Let z1, · · · , zn ∈ H. It follows from (3.61) that

E

[
exp

(
i

n∑
j=1

〈
zj, Xtj −Xtj−1

〉)]

=

∫
H⊗n

exp

(
i

n∑
j=1

〈zj, yj〉

)
µ̃t0,t1µ̃t1,t2(dy2) · · · µ̃tn−1,tn(dyn)

=
n∏
j=1

∫
H

exp(i〈zj, yj〉) µ̃tj−1,tj(dyj).

This implies for every j = 1, 2, . . . , n,

E
[
exp

(
i〈zj, Xtj −Xtj−1

〉
)]

=

∫
H

exp (i〈zj, yj〉) µ̃tj ,tj−1
(dyj) (3.62)

and

E

[
exp

(
i

n∑
j=1

〈zj, Xtj −Xtj−1
〉

)]
=

n∏
j=1

E
[
exp

(
i〈zj, Xtj −Xtj−1

〉
)]
. (3.63)

Equation (3.62) shows thatXtj−Xtj−1
has distribution µ̃tj ,tj−1

, while Equation (3.63) shows
that (Xt)t0≥t has independent increments.
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For any t0 ≥ t ≥ s, the increment Xs − Xt has distribution µ̃t,s. It follows from (3.58)
that Xs − Xt converges to 0 in probability as t tends to s or s tends to t. This proves that
(Xt)t0≥t is stochastically continuous. �

There is another way to construct a stochastic process associated with (µt,s)t≥s satisfying
(1.8).

Theorem 3.19. Let s0 ∈ R and (µt,s)t≥s≥s0 be a system of probability measures on H such
that for all s0 ≤ s ≤ r ≤ t,

µt,s = µt,r ∗ (µr,s ◦ U(t, r)−1). (3.64)

Then there is a stochastically continuous process (Ys)s≥s0 satisfying the following condi-
tions:

(1) For every s0 ≤ s, Ys has the distribution µs,s0 . In particular, Ys0 = 0 almost surely.
(2) For every s0 ≤ s ≤ t, the increment Yt − U(t, s)Ys has the distribution µt,s. More-

over, Yt − U(t, s)Ys and Ys are independent.

Suppose that for every s ≥ s0, µs+ε,s ⇒ δ0 as ε ↓ 0. Then Ys+ε converges in probability to
Ys as ε ↓ 0. So µs+ε,s0 converges weakly to µs,s0 as ε ↓ 0.

Proof. Let (Ω,F ) =
(
H[s0,−∞),B(H[s0,−∞))

)
and let (Ys)s≥s0 be the canonical process on

(Ω,F ) defined by

Ys(ω) = ω(s), s ≥ s0.

For any n ∈ N, s0 ≤ s1 < s2 < · · · < sn, let τs1,s2,··· ,sn be the probability measure
defined on (H⊗n,B(H⊗n)) by

τs1,s2,··· ,sn (B1 ×B2 × · · · ×Bn)

=

∫
H

1B1(y1)µs1,s0(dy1)

∫
H

1B1 (U(s2, s1)y1 + y2)µs2,s1(dy2)

×
∫
H

1B3(U(s3, s1)y1 + U(s3, s2)y2 + y3)µs3,s2(dy3)

× · · · ×
∫
H

1Bn

(
n−1∑
j=1

U(sn, sj)yj + yn

)
µsn,sn−1(dyn),

(3.65)

where Bj ∈ B(H), j = 1, 2, · · · , n.
Equation (3.64) implies that the family of probability measures (τs1,s2,··· ,sn)s0≤s1<s2<···<sn

satisfies the consistency condition. Hence by Kolmogorov’s extension theorem, there is a
unique probability measure P on (Ω,F ) such that for all Bj ∈ B(H), j = 1, 2, · · · , n, and
s0 ≤ s1 < s2 < · · · < sn,

P(Ys1 ∈ B1, Ys2 ∈ B2, · · · , Ysn ∈ Bn) = τs1,s2,··· ,sn(B1 ×B2 × · · · ×Bn). (3.66)

Hence for every f ∈ Bb(H⊗2), s0 ≤ s < t, we have

E[f(Ys, Yt)] =

∫
H×H

f (y1, U(t, s)y1 + y2) µs,s0(dy1)µt,s(dy2). (3.67)
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Therefore, for every z1, z2 ∈ H, s0 ≤ s ≤ t, we have

E [exp (i 〈z1, Xs〉+ i〈z2, Xt − U(t, s)Xs〉]

=

∫
H

exp(i 〈z1, y1〉)µs,s0(dy1)

∫
H

exp(i 〈z2, y2〉)µt,s(dy2)

This implies that Xs and Xt − U(t, s)Xs are independent and they have distributions µs,s0
and µt,s respectively. In particular, the distribution of Xs0 is given by δ0. So, Xs0 = 0

almost surely. Thus, (1) and (2) are proved.
Now for every s ≥ s0 and ε > 0, we have

Xs+ε −Xs = (Xs+ε − U(s+ ε, s)Xs) + (U(s+ ε, s)− I)Xs.

Since Xs and Xs+ε−U(s+ ε, s)Xs are independent, the distribution of Xs+ε−Xs is given
by

µs+ε,s ∗
(
µs,s0 ◦ (U(s+ ε, s)− I)−1

)
.

It is obvious that as ε ↓ 0, µs,s0 ◦ (U(s+ ε, s)− I)−1 converges weakly to δ0. Indeed, for
every continuous bounded function f on H, we have

lim
ε↓0

∫
H
f(x) dµs,s0 ◦ (U(s+ ε, s)− I)−1 (x)

=

∫
H

lim
ε↓0

f ((U(s+ ε, s)− I)x) dµs,s0(x)

=

∫
H
f(0) dµs,s0(x) = f(0) = δ0(f).

Suppose in addition that µs+ε,s converges weakly to δ0 as ε ↓ 0. Then we have

µs+ε,s ∗
(
µs,s0 ◦ (U(s+ ε, s)− I)−1

)
⇒ δ0, as ε ↓ 0.

Hence Xs+ε converges in probablity to Xs as ε ↓ 0. This implies that Xs+ε converges in
distribution to Xs as ε ↓ 0. That is, µs+ε,s0 converges weakly to µs,s0 as ε ↓ 0. �

In the following example, we construct concrete stochastic processes (Xt)t≤t0 and (Ys)s≤s0
that satisfy the conditions in Theorem 3.18 and Theorem 3.19 respectively.

Example 3.20. Let (U(t, s))t≥s be an evolution system of bounded operators on H and let
(Zt)t∈R be a stochastically continuous additive process on some probability space (Ω,P)

taking values in H. As in (1.4), we assume that the following stochastic convolution inte-
grals

Xt,s :=

∫ t

s

U(t, σ) dZσ, t ≥ s

are well defined. Let µt,s be the distribution of Xt,s.
(1) For fixed t0 ∈ R, consider the stochastic process (Xt)t0≥t := (Xt0,t)t0≥t. It is clear

that for all t ≤ t0, Xt has distribution µt0,t. Moreover, (µt,s)t0≥t≥s fulfills condition (3.54).
Note that for all t0 ≥ t > s, the increment Xt0,s −Xt0,t has distribution

µ̃t,s = µt,s ◦ U(t0, t)
−1.

First, we note that (cf. [41])

Xt0,s −Xt0,t =

∫ t0

s

U(t0, σ) dZσ −
∫ t0

t

U(t0, σ) dZσ = U(t0, t)

∫ t

s

U(t, σ) dZσ.
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So, for all B ∈ B(H) we have

P(Xt0,s −Xt0,t ∈ B) = P
(∫ t

s

U(t, σ) dZσ ∈ U(t0, t)
−1B

)
= µt,s(U(t0, t)

−1B) = µ̃t,s(B).

Clearly, the increments of (Xt0,t)t0≥t are independent. Hence

Xt0,s −Xt0,t = (Xt0,s −Xt0,r) + (Xt0,r −Xt0,t), s ≤ r ≤ t ≤ t0,

implies (3.56).
Suppose that (3.55) holds. Then it follows that the process (Xt0,t)t0≥t is stochastically

continuous. Hence (3.58) follows.
(2) For fixed s0 ∈ R, consider the stochastic process (Ys)s≥s0 := (Xs,s0)s≥s0 . Clearly for

every s ≥ s0, Ys has distribution µs,s0 . Moreover, for every t ≥ s ≥ s0, we have

Yt − U(t, s)Ys =

∫ t

s0

U(t, σ) dZσ − U(t, s)

∫ s

s0

U(s, σ) dZσ

=

∫ t

s0

U(t, σ) dZσ −
∫ s

s0

U(t, σ) dZσ

=

∫ t

s

U(t, σ) dZσ.

(3.68)

This shows that Yt − U(t, s)Ys has distribution µt,s and that Yt − U(t, s)Ys is independent
of Ys.

Let s ≥ s0 and ε > 0. By (3.68), it is clear that

Ys+ε − Ys = Xs+ε,s + (U(s+ ε, s)− I)Xs,s0 .

Note that Xs+ε,s and Xs,s0 are independent. So the distribution of Ys+ε − Ys is given by

µs+ε,s ∗
(
µs,s0 ◦ (U(s+ ε, s)− I)−1) .

Suppose that Xs+ε,s converges in probability to 0 (equivalently, µs+ε,s converges weakly
to δ0) as ε ↓ 0. Since we also know that µs,s0 ◦ (U(s+ ε, s)− I)−1 converges weakly to δ0,
we obtain that Ys+ε converges in probability to Ys as ε ↓ 0. Therefore, Ys+ε converges in
distribution to Ys as ε ↓ 0, i.e. µs+ε,s0 converges weakly to µs,s0 as ε ↓ 0.

Using the stochastic processes constructed in Theorem 3.18 and Theorem 3.19, we have
probabilistic proofs of Theorem 3.12, Theorem 3.13 and Lemma 3.17, as we shall show
now:

Another proof of Theorem 3.12. Since Part (2) has been shown in Theorem 3.19, it remains
to show (1) and (3). By Theorem 3.18 there is a stochastically continuous additive process
(Xt)t0≥t such that for all t0 ≥ t, the distribution ofXt is given by µt0,t, and for all t0 ≥ t ≥ s,
the distribution of the increment Xs −Xt is given by µ̃t,s = µt,s ◦U(t0, t). Hence for every
δ > 0, t0 > s, and ε ∈ R we have

lim
ε→0

P(|Xs+ε −Xs| ≥ δ) = 0.

This means that Xs+ε converges in probability to Xs as ε → 0. This implies that Xs+ε

converges in distribution to Xs as ε → 0. That is, µt0,s+ε converges weakly to µt0,s as
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ε → 0. Since t0 was arbitrary, we have µt,s+ε converges weakly to µt,s as ε → 0. So (1) is
proved.

Now for every t0 ≥ t ≥ s, we have

lim
ε↓0

P(|(Xs −Xt−ε)− (Xs −Xt)| ≥ δ) = 0.

So Xs −Xt−ε converges in distribution to Xs −Xt as ε ↓ 0. This proves (3). �

Another proof of Theorem 3.13. Similar to the proof of Theorem 3.18, there is a stochasti-
cally continuous additive process (Xt)t∈R such that µ̃t,s is the distribution of the increment
Xt −Xs for all t ≥ s. Hence for every δ > 0, we have

lim
ε→0,η→0

P(|(Xt+ε −Xs+η)− (Xt −Xs)| ≥ δ) = 0.

This implies that Xt+ε − Xs+η converges in distribution to Xt − Xs. Hence µ̃t+ε,s+η con-
verges weakly to µ̃t,s as ε→ 0 and η → 0. �

To give a probabilistic proof of Lemma 3.17, let us recall the following lemma which has
been proved in [47, Lemma 9.6] for the finite dimensional case. The proof for the infinite
dimensional case is the same.

Lemma 3.21. A stochastically continuous process (Xt)t∈R taking values in H is uniformly
stochastically continuous on any finite interval. That is, for every s0 < t0, for every ε > 0

and η > 0, there is δ > 0 such that for all s and t in [s0, t0] with |t− s| < δ, we have

P(|Xt −Xs| > ε) < η.

Another proof of Lemma 3.17. By Theorem 3.18 there is a stochastically continuous addi-
tive process (Xt)t0≥t≥s0 such that µ̃t,s is the distribution of the increment Xs − Xt for all
t0 ≥ t ≥ s ≥ s0. By Lemma 3.21 we obtain that (Xt)t0≥t≥s0 is uniformly stochastically
continuous. This means that for every ε > 0 and η > 0, there is a δ > 0 such that for all
s, t ∈ [s0, t0] satisfying |t− s| < δ, we have

P(|Xs −Xt| > ε) < η.

In other words
µ̃t,s(|x| > ε) < η.

This proves (3.37) since µ̃t,s = µt,s ◦ U(t0, t)
−1 by definition. �

4. EVOLUTION SYSTEMS OF MEASURES

In general, we cannot expect a stationary invariant measure for the time inhomogeneous
generalized Mehler semigroup (ps,t)t≥s defined in (1.7). So, we shall look for a family of
probability measures (νt)t∈R on H such that∫

H
ps,tf(x) νs(dx) =

∫
H
f(x) νt(dx), s ≤ t (4.1)

for all f ∈ Bb(H). Such a family of probability measures is called an evolution system of
measures for (ps,t)t≥s in [14] (and entrance law in [20]). It can be regarded as a space-time
invariant measure for (ps,t)t≥s.

We shall first show some properties of evolution systems of measures for (ps,t)t≥s and
then study their existence and uniqueness.
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4.1. Some properties.

Lemma 4.1. A family of probability measures (νt)t∈R on H is an evolution system of mea-
sures for (ps,t)t≥s if and only if for every t ≥ s,

µt,s ∗
(
νs ◦ U(t, s)−1

)
= νt, (4.2)

or equivalently, for every t ≥ s,

µ̂t,s(ξ)ν̂s
(
U(t, s)∗ξ

)
= ν̂t(ξ), ξ ∈ H. (4.3)

Proof. Note that for all f ∈ Bb(H) and s ≤ t, we have∫
H
ps,tf(x) νs(dx)

=

∫
H

∫
H
f(U(t, s)x+ y)µt,s(dy)νs(dx)

=

∫
H

∫
H
f(x+ y)µt,s(dy)(νs ◦ U(t, s)−1)(dx)

=

∫
H
f(z) (µt,s ∗ (νs ◦ U(t, s)−1)(dz).

So, (4.1) holds if and only if for all f ∈ Bb(H),∫
H
f(z) (µt,s ∗ (νs ◦ U(t, s)−1)(dz) =

∫
H
f(z) νt(dz). (4.4)

Thus, the proof is complete by noting that (4.4) holds if and only if (4.2) holds. �

Remark 4.2. A probability measure µ on H is said to be operator self-decomposable if

µ = (µ ◦ T−1
t ) ∗ µt, t ≥ 0, (4.5)

holds for a family of semigroups (Tt)t≥0 and measures (µt)t≥0. Operator self-decomposability
has been studied very well, see for example, [2, 5, 31, 50, 56] and the references therein.
In the setting of (1.1), any solution µ to the convolution equation (4.5) is just an invari-
ant measure for the generalized Mehler semigroup (1.1). Obviously, Equation (4.5) is the
homogeneous version of Equation (4.2).

Proposition 4.3. Let (νt)t∈R and (µt,s)t≥s be families of probability measures on H. Let
(U(t, s))t≥s be an evolution family of operators on H. Suppose that (4.2) holds and for all
ξ ∈ H and all t, s ∈ R, t ≥ s, ν̂t(U(t, s)∗ξ) 6= 0. Then (µt,s)t≥s satisfies (1.8).

Proof. For any t ≥ r ≥ s, by (4.2) and (3.49) we have

µt,s ∗
(
νs ◦ U(t, s)−1

)
= νt

= µt,r ∗
(
νr ◦ U(t, r)−1

)
= µt,r ∗

(
[µr,s ∗ (νs ◦ U(r, s)−1)] ◦ U(t, r)−1

)
= µt,r ∗

(
[µr,s ◦ U(t, r)−1] ∗ [(νs ◦ U(r, s)−1) ◦ U(t, r)−1]

)
= µt,r ∗

(
µr,s ◦ U(t, r)−1

)
∗
(
νs ◦ U(t, s)−1

)
.

So, for all ξ ∈ H, we have

µ̂t,s(ξ) · ν̂s(U(t, s)∗ξ) = µ̂t,r(ξ) · µ̂r,s(U(r, s)∗ξ) · ν̂s(U(t, s)∗ξ).
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Since ν̂t(U(t, s)∗ξ) 6= 0 by assumption, we have

µ̂t,s(ξ) = µ̂t,r(ξ) · µ̂r,s(U(r, s)∗ξ).

This proves (1.8). �

Similar as in Theorem 3.19, there exists a stochastic process associated with (νt)t∈R.

Theorem 4.4. Let (νt)t∈R and (µt,s)t≥s be families of probability measures on H. Let
(U(t, s))t≥s be an evolution family of operators on H. Suppose that (1.8) and (4.2) hold.
Then there is a stochastic process (Xt,−∞)t∈R, such that for every t ≥ s,Xt,−∞−U(t, s)Xs,−∞
and Xs,−∞ are independent and have distributions µt,s and νs respectively.

Proof. Let Ω = H(−∞,∞) be the collection of all functions ω = (ω(t))t∈(−∞,∞) from
(−∞,∞) into H. Let

Xt,−∞(ω) = ω(t), t ∈ (−∞,∞),

be the canonical process on Ω. Let F be the Borel σ-algebra generated by cylinder sets on
Ω. For any n ∈ N, −∞ < t1 ≤ t2 ≤ · · · ≤ tn <∞, Bj ∈ B(H), j = 1, 2, · · · , n, define

νt1,t2,··· ,tn(B1 ×B2 × · · · ×Bn)

=

∫
H

1B1(y1)νt1(dy1)

∫
H

1B2(U(t2, t1)y1 + y2)µt2,t1(dy2)

×
∫
H

1B3(U(t3, t1)y1 + U(t3, t2)y2 + y3)µt3,t2(dy3)× · · ·

×
∫
H

1Bn

(
n−1∑
j=1

U(tn, tj)yj + yn

)
µtn,tn−1(dyn).

(4.6)

Then we extend νt1,t2,··· ,tn to a probability measure on (H⊗n,B(H⊗n)). Then it is easy
to check that the family of probability measures {νt1,t2,··· ,tn}t1≤t2≤···≤tn satisfies the consis-
tency condition. Therefore, by Kolmogorov’s extension theorem there is a unique probabil-
ity measure P on (Ω,F ) such that for all−∞ < t1 ≤ t2 ≤ · · · ≤ tn <∞, andBj ∈ B(H),
j = 1, 2, · · · , n, we have

P(Xt1,−∞ ∈ B1, Xt2,−∞ ∈ B2, · · · , Xtn,−∞ ∈ Bn)

=νt1,t2,··· ,tn(B1 ×B2 × · · · ×Bn).
(4.7)

Similar to the proof of Theorem 3.19, for every z1, z2 ∈ H, s ≤ t, we have

E [exp (i 〈z1, Xs,−∞〉+ i〈z2, Xt,−∞ − U(t, s)Xs,−∞〉]

=

∫
H

exp(i 〈z1, y1〉)νs(dy1)

∫
H

exp(i 〈z2, y2〉)µt,s(dy2).

This implies that Xs,−∞ and Xt−U(t, s)Xs,−∞ are independent and they have distributions
νs and µt,s respectively. So, the proof is complete. �

Example 4.5. As in Example 3.20 let (U(t, s))t≥s be an evolution system of bounded op-
erators on H and let (Zt)t∈R be an additive process taking values in H. Suppose that for all
s < t, U(t, ·) is integrable with respect to (Zt)t∈R on [s, t]. That is, the following stochastic
convolution integrals

Xt,s :=

∫ t

s

U(t, σ) dZσ, t ≥ s
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are well defined. Suppose that for all t ∈ R, Xt,s converges in probability to Xt,−∞ as
s→ −∞. That is, we assume that the following improper integral

Xt,−∞ :=

∫ t

−∞
U(t, σ) dZσ, t ∈ R

exists (cf. [41]). For every t ≥ s, let µt,s be the distribution of Xt,s. For every t ∈ R, let νt
denote the distribution of Xt,−∞.

Note that for all t ≥ s,

Xt,−∞ = U(t, s)Xs,−∞ +Xt,s. (4.8)

So, Xt,−∞ − U(t, s)Xs,−∞ has distribution µt,s. Since Xs,−∞ and Xt,s are independent,
we obtain that Xs,−∞ and Xt,−∞ − U(t, s)Xs,−∞ are independent. By (4.8) we get νt =

µt,s ∗
(
νs ◦ U(t, s)−1

)
. This proves that (νt)t∈R is an evolution system of measures for the

transition function (ps,t)t≥s of X(t, s, x) := U(t, s)x+Xt,s, x ∈ H, t ≥ s.

Concerning the infinite divisibility of νt, we have the following simple result.

Proposition 4.6. Let (νt)t∈R be an evolution system of measure for (ps,t)t≥s. Suppose that
for some s0 ∈ R the measures νs0 and (µt,s0)t≥s0 are infinitely divisible, then for all t ≥ s0,
νt is infinitely divisible.

Proof. According to (4.2), for all t ≥ s0, νt is the convolution of µt,s0 and νs0 ◦ U(t, s)−1.
Since µt,s0 is infinitely divisible, we only need to show that νs0 ◦U(t, s0)−1 is also infinitely
divisible.

Because νs0 is infinitely divisible, for any n ∈ N, there is some probability measure ν(n)
s0

on (H,B(H)) such that νs0 = (ν
(n)
s0 )∗n . So by (3.49), we have

νs0 ◦ U(t, s0)−1 = (ν(n)
s0
◦ U(t, s0)−1)∗n.

for all t ≥ s0. This proves that νs0 ◦ U(t, s0)−1 is also infinitely divisible. �

Theorem 4.7. Let (ν
(1)
t )t∈R be an evolution system of measures for (ps,t)t≥s. Let (ν

(2)
t )t∈R

and (σt)t∈R be two families of probability measures on H such that

ν
(2)
t = ν

(1)
t ∗ σt, t ∈ R (4.9)

and

σt = σs ◦ U(t, s)−1, t ≥ s.

Then (ν
(2)
t )t∈R is also an evolution system of measures for (ps,t)t≥s.

Proof. For every ξ ∈ H, by (4.3) and (4.9), we have

ν̂
(2)
t (ξ) = ν̂

(1)
t (ξ)σ̂t(ξ) = µ̂t,s(ξ)ν̂

(1)
s

(
U(t, s)∗ξ

)
σ̂t(ξ)

= µ̂t,s(ξ)ν̂
(1)
s

(
U(t, s)∗ξ

)
σ̂s(U(t, s)∗ξ) = µ̂t,s(ξ)ν̂

(2)
s

(
U(t, s)∗ξ

)
.

Hence the assertion follows by Lemma 4.1. �
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4.2. Existence and uniqueness. For special cases of our (ps,t)t≥s in this paper, existence
and uniqueness of evolution systems of measures have been studied in [13, 32, 57] etc.
in different settings. Our framework is more general. We emphasize that Theorem 4.9,
Theorem 4.10 and Corollary 4.12 below not only generalize the corresponding results in
[57] for finite dimensional Lévy driven non-autonomous Ornstein-Uhlenbeck processes,
but also contain some new results even in the finite dimension case.

From now on we always assume that

(1) The family (µt,s)t≥s satisfies (1.8). That is, for all s ≤ r ≤ t,

µt,s = µt,r ∗
(
µr,s ◦ U(t, r)−1

)
.

(2) For every t ≥ s, µt,s is infinitely divisible with representation (as e.g. in the case it
satisfies Assumption 3.7)

µt,s = [at,s, Rt,s,mt,s],

where at,s ∈ H, Rt,s is a nonnegative definite, self-adjoint trace class operator on H,
and mt,s is a Lévy measure on H.

By (3.52), for every fixed t ∈ R, (mt,s)t≥s is a family of Lévy measures decreasing in s
in the sense that for all A ∈ B(H \ {0}), and all s ≤ r ≤ t,

mt,s(A) ≥ mt,r(A),

which allows us to define mt,−∞ for every t ∈ R by setting mt,−∞({0}) = 0 and

mt,−∞(A) = lim
s→−∞

mt,s(A), A ∈ B(H \ {0}).

Conditions under which mt,−∞ is a Lévy measure will be given later in Theorem 4.9.

Lemma 4.8. Suppose that for every t ∈ R,

sup
s≤t

trRt,s <∞. (4.10)

Then there is a trace class operator Rt,−∞ on H such that for all x, y ∈ H,

〈Rt,−∞x, y〉 = lim
s→−∞

〈Rt,sx, y〉. (4.11)

Proof. By (3.52), for every x ∈ H and t ∈ R, 〈Rt,sx, x〉 is decreasing in s. More precisely,
for every x ∈ H and s ≤ r ≤ t, we have

〈Rt,sx, x〉 = 〈Rt,rx, x〉+ 〈Rr,sU(t, r)∗x, U(t, r)∗x〉 ≥ 〈Rt,rx, x〉.

It follows that for every s ≤ r ≤ t,

trRt,r ≤ trRt,s.

Therefore, as s tends to −∞, the limit of 〈Rt,sx, x〉 exists.
By (4.10), for every t ∈ R, there exists a constant Ct > 0 such that

sup
s≤t
〈Rt,sx, x〉 ≤ Ct|x|2

holds for every x ∈ H. By the polarization identity, for every t ∈ R, x, y ∈ H, lims→−∞〈Rt,sx, y〉
exists. Fixing x ∈ H and letting y ∈ H vary, we get a functional lims→−∞〈Rt,sx, ·〉. So, by
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Riesz’s representation theorem, for every x ∈ H, there exists an element x∗t ∈ H for every
t ∈ R such that for all y ∈ H,

lim
s→−∞

〈Rt,sx, y〉 = 〈x∗t , y〉.

Let Rt,−∞ denote the map x 7→ x∗t . By (4.10), it is clear that Rt,−∞ is a trace class operator.
This proves (4.11). �

Now we are ready to show the following result on the existence of evolution system of
measures for (ps,t)t≥s.

Theorem 4.9. Suppose that for every t ∈ R, the following three hypotheses hold:

(H1) sups≤t trRt,s <∞;
(H2) sups≤t

∫
H(1 ∧ |x|2) mt,s(dx) <∞;

(H3) For every t ∈ R, at,−∞ := lims→−∞ at,s exists and is finite.

Then for every t ∈ R, mt,−∞ is a Lévy measure, Rt,−∞ is a nonnegative definite, self-adjoint
trace class operator such that

trRt,−∞ = sup
s≤t

Rt,s <∞.

Moreover, the system of measures (νt)t∈R given by

νt = [at,−∞, Rt,−∞,mt,−∞], t ∈ R

is an evolution system of measures for (ps,t)t≥s.

Proof. Suppose that (H1), (H2) and (H3) hold. By Lemma 4.8, for every t ∈ R, Rt,−∞ is a
nonnegative definite, self-adjoint trace class operator satisfying

trRt,−∞ = sup
s≤t

Rt,s <∞.

For each t ∈ R, ∫
H

(1 ∧ |y|2) mt,−∞(dy) = sup
s≤t

∫
H

(1 ∧ |x|2) mt,s(dx) <∞.

This shows that mt,−∞ is a Lévy measure.
Now we show that (νt)t∈R is an evolution system of measures for (ps,t)t≥s. By (1.8), for

every t ≥ s ≥ r,
µt,s ∗

(
µs,r ◦ U(t, s)−1

)
= µt,r. (4.12)

Note that µt,s = [at,s, Rt,s,mt,s] converges weakly to [at,−∞, Rt,−∞,mt,−∞] = νt as s →
−∞ (cf. [22, Lemma 3.4]). Hence letting r → −∞ on both sides of (4.12) we obtain

µt,s ∗
(
νs ◦ U(t, s)−1

)
= νt.

By Lemma 4.1 this proves that (νt)t∈R is an evolution system of measures for (ps,t)t≥s. �

The following theorem is the converse to Theorem 4.9. It also gives some sufficient
conditions for the uniqueness of the evolution system of measures.

Theorem 4.10. Suppose that there is an evolution system of measures (ν̃t)t∈R for (ps,t)t≥s.
Then
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(1) Hypotheses (H1) and (H2) hold and for every t ∈ R

[0, Rt,s,mt,s]⇒ [0, Rt,−∞,mt,−∞] as s→ −∞. (4.13)

(2) There exists a family of probability measures (σ̃t)t∈R such that for every t ∈ R,

δat,s ∗
(
ν̃s ◦ U(t, s)−1

)
⇒ σ̃t as s→ −∞ (4.14)

and
ν̃t = [0, Rt,−∞,mt,−∞] ∗ σ̃t, t ∈ R. (4.15)

(3) Suppose that the following hypothesis holds:
(H4) For every t ∈ R, as s→ −∞, ν̃s ◦ U(t, s)−1 converges weakly to some proba-

bility measure σt on H.
If for each t ∈ R, σt is infinitely divisible, then the limit in (H3) exists. Moreover,
for all t ∈ R we have

σ̃t = δat,−∞ ∗ σt, (4.16)

ν̃t = νt ∗ σt (4.17)

and
σt = σs ◦ U(t, s)−1, t ≥ s. (4.18)

Here (νt)t∈R is as defined in Theorem 4.9.
(4) If the limit in (H3) exists, then the limit in (H4) exists. Hence (4.16), (4.17) and

(4.18) hold.

Proof. (1) For every t ≥ s, we set

NRt,s := [0, NRt,s , 0], Mt,s := [0, 0,mt,s].

Since (ν̃t)t∈R is an evolution system of measures for (ps,t)t≥s, by Lemma 4.1 we have for
all t ≥ s,

ν̃t = µt,s ∗
(
ν̃s ◦ U(t, s)−1

)
= [at,s, Rt,s,mt,s] ∗

(
ν̃s ◦ U(t, s)−1

)
= δat,s ∗NRt,s ∗Mt,s ∗

(
ν̃s ◦ U(t, s)−1

)
.

(4.19)

Applying Theorem 3.1 to (4.19), the sequence of probability measure (δat,−n ∗ NRt,−n ∗
Mt,−n)n≥1 is shift compact. That is, for every t ∈ R, there exists a sequence (yt,−n)n≥1 in
H such that the following sequence of probability measures

δyt,−n ∗ (δat,−n ∗NRt,−n ∗Mt,−n) = [yt,−n + at,−n, Rt,−n,mt,−n], n ≥ 1,

is weakly relatively compact. This implies (see [43, Theorem VI.5.3])

sup
n∈N

mt,−n({x ∈ H : |x| ≥ 1}) <∞ (4.20)

and

sup
n∈N

(
trRt,−n +

∫
|x|<1

|x|2 mt,−n(dx)

)
<∞. (4.21)

It follows from (4.21) that
sup
s≤t

trRt,s <∞.

Combining (4.20) and (4.21) we obtain

sup
s≤t

∫
H

(1 ∧ |x|2) mt,s(dx) <∞.
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Therefore, for every t ∈ R we obtain by taking limits as before a Lévy measure mt,−∞ and
a trace class operator Rt,−∞. Hence (4.13) follows.

(2) By (4.19) we have for all t ≥ s

ν̃t =
(
δat,s ∗

(
ν̃s ◦ U(t, s)−1

))
∗NRt,s ∗Mt,s.

We have shown in (4.13) thatNRt,s∗Mt,s converges weakly to an infinitely divisible measure
[0, Rt,−∞,mt,−∞] as s → −∞. Therefore by Corollary 3.5, the measures δat,s ∗

(
ν̃s ◦

U(t, s)−1) converges weakly as s→ −∞. So, (4.14) and (4.15) are proved.
(3) Applying Corollary 3.5 to (4.14), using (H4) and the assumption that σt is infinitely

divisible for every t ∈ R, the limit of at,s as s → −∞ exists. So, (H3) and hence (4.16)
hold. By (4.15) and (4.16), we have for every t ∈ R,

ν̃t = [0, Rt,−∞,mt,−∞] ∗ σ̃t = [at,−∞, Rt,−∞,mt,−∞] ∗ σt = νt ∗ σt.

This proves (4.17).
Now we show (4.18). For every u ≤ s ≤ t and ξ ∈ H, we have

ˆ̃νu(U(t, u)∗ξ) = ˆ̃νu
(
U(s, u)∗U(t, s)∗ξ

)
. (4.22)

Letting u→ −∞ in (4.22) and using (H4), we get σ̂t(ξ) = σ̂s
(
U(t, s)∗ξ

)
. This is equivalent

to (4.18).
(4) If (H3) holds, then δat,s ⇒ δat,−∞ as s → −∞. Note that any Dirac measure is

infinitely divisible. So, by applying Corollary 3.5 to (4.14), we see that the limit in (H4)
exists and hence (4.17) and (4.18) hold.

�

Remark 4.11. As is known, any invariant measure ν for a time homogeneous Gaussian
Ornstein-Uhlenbeck semigroup is of the form ν ∗ µ∞, where ν is a measure on H that is
invariant under the action of a semigroup, and µ∞ is a Gaussian measure. We refer to [24,
Theorem 5.22] for details. We emphasize that the structure of ν ∗µ∞ is analogous to (4.17).

By Theorem 4.10 we have the following result on the uniqueness.

Corollary 4.12. Let (ν̃t)t∈R be an evolution system of measures for (ps,t)t≥s. Suppose that
for every t ∈ R, there is a sequence (sn)n≥1 bounded above by t such that the following
conditions are fulfilled:

(1) As n→∞, sn → −∞.
(2) There exist some constants M,ω > 0 such that

‖U(t, sn)‖ ≤M e−ω(t−sn) . (4.23)

(3) The sequence of probability measures (ν̃sn)n≥1 is uniformly tight.
Then (H1), (H2) and (H3) hold. Hence ([at,−∞, Rt,−∞,mt,−∞])t∈R exists and it is the unique
evolution system of measures for (ps,t)t≥s, hence equal to (ν̃t)t∈R.

Proof. By the proof of Theorem 4.10, it is sufficient to show
ˆ̃νsn ◦ U(t, sn)−1 ⇒ δ0 as n→∞. (4.24)

Let ε, η > 0. Since (ν̃sn)n≥1 is uniformly tight, there is a compact set Kη ⊂ H such that for
all n ≥ 1,

ν̃sn(H \Kη) < η. (4.25)
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Set for all n ≥ 1, Cn = M−1 eω(t−sn) . Since sn → −∞ as n → ∞, also Cn → ∞
as n → ∞. So, there exists some N0 > 0 such that the compact set Kη is contained in
{x ∈ H : |x| ≤ εCn} for all n ≥ N0. Therefore, for all n ≥ N0, we have

ν̃sn({x ∈ H : |x| > εCn}) ≤ ν̃sn({H \Kη}) < η. (4.26)

Because

‖U(t, sn)‖ ≤M e−ω(t−sn) = 1/Cn,

by (4.26) we have for all n ≥ N0,

ν̃sn ◦ U(t, sn)−1({x ∈ H : |x| > ε}) ≤ ν̃sn({x ∈ H : |x| > εCn) < η.

By Lemma 3.8 this implies (4.24). Thus, the proof is complete. �

As an application of Corollary 4.12, we consider the uniqueness of periodic evolution
systems of measures.

Corollary 4.13. Suppose that (H1), (H2) and (H3) hold and that (µt,s)t≥s is periodic with
period T > 0, i.e. for every t ≥ s, µt+T,s+T = µt,s. Then (νt)t∈R = ([at,−∞, Rt,−∞,mt,−∞])t∈R
exists and is a periodic evoluton system of measures for (ps,t)t≥s with period T . That is, for
every t ∈ R, νt+T = νt. Suppose in addition that there exist some constants M,ω > 0 such
that

‖U(t, s)‖ ≤M e−ω(t−s) .

Then (νt)t∈R is the unique periodic evolution system of measures with period T for (ps,t)t≥s.

Proof. By Theorem 4.9, (νt)t∈R = ([at,−∞, Rt,−∞,mt,−∞])t∈R exists. For every t ≥ s we
have

µt+T,s+T = µt,s. (4.27)

By letting s→ −∞ on both sides of (4.27) we obtain νt+T = νt. This shows that (νt)t∈R is
periodic with period T .

Now it remains to show the uniqueness. Take any s0 ≤ t and set sn = s0 − nT for all
n ≥ 1. Then νsn ≡ νs0 for all n ≥ 1. So it is obvious that (νsn)n≥1 is uniformly tight. By
Corollary 4.12, (νt)t∈R is the unique evolution system of measures for (ps,t)t≥s. �

Remark 4.14. Existence and uniqueness of evolution systems of measures have been stud-
ied for stochastic evolution equations with time dependent periodic coefficients driven by
Gaussian and Lévy processes in [13] and [32] respectively. Clearly, Corollary 4.13 applies
to these cases. More generally, one can apply it to study stochastic evolution equations with
time dependent periodic coefficients driven by so called semi-Lévy processes. A stochastic
process (Zt)t∈R is called a semi-Lévy process with period T > 0 if it is an additive process
such that for all t ≥ s, Zt+T − Zs+T has the same distribution as Zt − Zs as in [39].

In [39] it is shown that for the finite dimensional case, under some conditions, ν0 is semi-
self-decomposable. Moreover, this is closely related to the so called semi-selfsimilar and
semi-stationary processes. One may study similar self-decomposibility and semi-stationarity
in the infinite dimensional case as in [1, 39].
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5. HARNACK INEQUALITIES AND APPLICATIONS

Harnack inequalities for generalized Mehler semigroups or Ornstein-Uhlenbeck semi-
group driven by Lévy processes were proved in [32, 40, 42, 45]. The method in [32] and
[45] relies on taking the derivative of a proper functional; the method in [40, 42] is based
on coupling of stochastic processes and Girsanov transformation. Here we shall establish a
Harnack inequality for (ps,t)t≥s defined by (1.7) by a much simper method.

Suppose that for all t ≥ s, µt,s = [at,s, Rt,s,mt,s] is an infinitely divisible measure on H
satisfying (1.8).

For each t ≥ s, set

µgt,s = [0, Rt,s, 0], µjt,s = [at,s, 0,mt,s]

and for every f ∈ Bb(H), x ∈ H, set

pgs,tf(x) := (µgt,s ∗ δU(t,s)x)(f) =

∫
H
f(U(t, s)x+ y)µgt,s(dy),

pjs,tf(x) := (µjt,s ∗ δx)(f) =

∫
H
f(x+ y)µjt,s(dy).

With these notations, we have the following decomposition for ps,t which plays a key
role.

Proposition 5.1. For every t ≥ s, x ∈ H and f ∈ Bb(H), we have

ps,tf(x) = pgs,t(p
j
s,t)f(x).

Proof. Since µt,s = µgt,s ∗ µ
j
t,s, we get

ps,tf(x) =(µt,s ∗ δU(t,s)x)(f) = (µgt,s ∗ µ
j
t,s ∗ δU(t,s)x)(f)

=
(
(µgt,s ∗ δU(t,s)x) ∗ µjt,s

)
(f)

=

∫
H
µgt,s ∗ δU(t,s)x(dy)

∫
H
f(y + z)µjt,s(dz)

=
(
µgt,s ∗ δU(t,s)x

)
(pjs,tf) = pgs,t(p

j
s,tf)(x).

This completes the proof. �

Define for every t ≥ s,

Γt,s := R
−1/2
t,s U(t, s) (5.1)

with domain

D(Γt,s) := {x ∈ H : U(t, s)x ∈ R1/2
t,s (H)}.

If x /∈ D(Γt,s) then we set |Γt,sx| := ∞. Let B+
b (H) denote the space of all bounded

positive measurable functions on H.

Theorem 5.2. For every α > 1, t ≥ s and f ∈ B+
b (H), we have

(ps,tf(x))α ≤ exp

(
α|Γt,s(x− y)|2

2(α− 1)

)
ps,tf

α(y), x, y ∈ H. (5.2)
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Proof. We only need to consider the case when U(t, s)(H) ∈ R
1/2
t,s (H). Otherwise, the

right hand side of (5.2) is infinite by the definition of |Γt,s(·)| and hence the inequality (5.2)
becomes trivial.

Let us first show that it is sufficient to have the following Harnack inequality for pgs,t:

(pgs,tf(x))α ≤ exp

(
α|Γt,s(x− y)|2

2(α− 1)

)
pgs,tf

α(y), x, y ∈ H. (5.3)

Indeed, by Proposition 5.1, we have ps,t = pgs,tp
j
s,t. So by applying inequality (5.3) to pgs,t

and Jensen’s inequality to pjs,t we obtain

(
ps,tf(x)

)α
=
(
pgs,t(p

j
s,tf)(x)

)α
≤ exp

(
α|Γt,s(x− y)|2

2(α− 1)

)(
pgs,t(p

j
s,tf)α

)
(y)

≤ exp

(
α|Γt,s(x− y)|2

2(α− 1)

)(
pgs,t(p

j
s,tf

α)
)
(y)

= exp

(
α|Γt,s(x− y)|2

2(α− 1)

)(
ps,tf

α
)
(y).

This proves (5.3)
Now it remains to show (5.3). The method is the same as in the case of a one dimensional

(time homogeneous) Ornstein-Uhlenbeck process, see [40, Page 69].
Let N(m,Q) denote the Gaussian measure on H with mean m ∈ H and covariance

operatorQ on H. By the Cameron-Martin formula for Gaussian measures (see [15, Theorem
2.21]), we have

ρt,s(x− y, z) :=
dN(U(t, s)(x− y), Rt,s)

dN(0, Rt,s)
(z)

= exp

(〈
R
−1/2
t,s U(t, s)(x− y), R

−1/2
t,s z

〉
− 1

2
|R−1/2

t,s U(t, s)(x− y)|2
)
.

(5.4)

Moreover, for any h ∈ H, we have (see [16, Proposition 1.2.5])

∫
H

exp(〈h, x〉) dµgt,s(x) = exp

(
1

2
|R1/2

t,s h|2
)
. (5.5)
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By changing variables and using (5.4) we obtain

pgs,tf(x)

=

∫
H
f(U(t, s)x+ z)µgt,s(dz)

=

∫
H
f(U(t, s)y + U(t, s)(x− y) + z)N(0, Rt,s)(dz)

=

∫
H
f(U(t, s)y + z′)

dN(U(t, s)(x− y), Rt,s)

dN(0, Rt,s)
(z′)N(0, Rt,s)(dz

′)

=

∫
H
f(U(t, s)y + z′)ρt,s(x− y, z′)µgt,s(dz′)

= exp

(
−1

2
|Γt,s(x− y)|2

)
·
∫
H
f(U(t, s)y + z′) exp

(〈
R
−1/2
t,s U(t, s)(x− y), R

−1/2
t,s z

〉)
µgt,s(dz

′)

(5.6)

By Hölder’s inequality and (5.5) we have∫
H
f(U(t, s)y + z′) exp

(〈
R
−1/2
t,s U(t, s)(x− y), R

−1/2
t,s z

〉)
µgt,s(dz

′)

≤
(∫

H
fα(U(t, s)y + z′)µgt,s(dz

′)

)1/α

·
(∫

H
exp

(
α

α− 1
〈R−1/2

t,s R
−1/2
t,s U(t, s)(x− y), z′〉

)
µgt,s(dz

′)

)(α−1)/α

≤
(
pgs,tf

α(y)
)1/α ·

(
exp

(
1

2

α2

(α− 1)2
|R−1/2

t,s U(t, s)(x− y)|2
))(α−1)/α

=
(
pgs,tf

α(y)
)1/α

exp

(
α

2(α− 1)
|Γt,s(x− y)|2

)
.

(5.7)

Combining (5.6) and (5.7) we get

pgs,tf(x)

≤ exp

(
−1

2
|Γt,s(x− y)|2

)(
pgs,tf

α(y)
)1/α

exp

(
α

2(α− 1)
|Γt,s(x− y)|2

)
= exp

(
1

2(α− 1)
|Γt,s(x− y)|2

)(
pgs,tf

α(y)
)1/α

.

This proves (5.3). Hence the proof is complete as we have argued at the beginning that
(5.3) is sufficient. �

Example 5.3. Suppose that H = L2(0, 1). Let ∆ denote the Dirichlet Laplacian on H. Let
en, n ≥ 1, be the eigenbasis of ∆ with respective eigenvalues −n2π2, n ≥ 1. Let a(t) be a
continuous function on R. Then

a(t)∆en = −a(t)n2π2en, n = 1, 2, · · · .
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The evolution family (U(t, s))t≥s associated with a(t)∆ is given by

U(t, s)x =
∞∑
n=1

exp

(
−n2π2

∫ t

s

a(r) dr

)
〈x, en〉en, x ∈ H.

Let (Wt)t∈R be a R-Wiener process taking values in H. We assume that there exist a
sequence of nonnegative real numbers (λn)n≥1 such that

Ren = λnen

and a sequence (bn)n≥1 of real independent Brownian motion such that

〈Wt, x〉 =
∞∑
n=1

√
λn〈x, en〉bn(t), x ∈ H, t ∈ R.

Now let us consider the following SPDE on H.{
dXt = a(t)∆Xtdt+ dWt,

Xs = x.
(5.8)

Assume that for all t ≥ s,

rt,s : =
∞∑
n=0

λn

∫ t

s

exp

(
−2n2π2

∫ t

s

a(r) dr

)
du <∞.

Then the following stochastic convolution

WU(t, s) :=

∫ t

s

U(t, r) dWr

is well defined. The distribution of WU(t, s) is given by µt,s ∼ N(0, Rt,s), where

Rt,s :=

∫ t

s

U(t, r)RU(t, r)∗ dr.

Clearly trRt,s = rt,s. By [15, Chapter 5], the mild solution of (5.8) is given by

X(t, s, x) = U(t, s)x+WU(t, s), x ∈ H, t ≥ s.

The generalized Mehler semigroup of X(t, s, x) is given by

ps,tf(x) =

∫
H
f (U(t, s)x+ y)µt,s(dy) (5.9)

for all x ∈ H, f ∈ Bb(H) and t ≥ s.
We are going to look for the Harnack inequality for ps,t.
Let Γt,s = R

−1/2
t,s U(t, s). Note that for all n ≥ 1,

Rt,sen = λn

[∫ t

s

exp

(
−2n2π2

∫ t

s

a(r) dr

)
du

]
en.

We have

R
−1/2
t,s U(t, s)en =

exp
(
−n2π2

∫ t
s
a(r) dr

)
[
λn
∫ t
s

exp
(
−2n2π2

∫ t
s
a(r) dr

)
du
]1/2

en
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Therefore for every x ∈ H, we have

‖Γt,sx‖2 = 〈R−1/2
t,s U(t, s)x,R

−1/2
t,s U(t, s)x〉

=
∞∑
n=1

exp
(
−2n2π2

∫ t
s
a(r) dr

)
λn
∫ t
s

exp
(
−2n2π2

∫ t
s
a(r) dr

)
du
〈x, en〉2.

Hence we obtain the following Harnack inequality for ps,t:

(ps,tf(x))α ≤ exp

 α

2(α− 1)

∞∑
n=1

exp
(
−2n2π2

∫ t
s
a(r) dr

)
〈x− y, en〉2

λn
∫ t
s

exp
(
−2n2π2

∫ t
s
a(r) dr

)
du

 ps,tf
α(y),

for every α > 1, x, y ∈ H, t ≥ s and f ∈ B+
b (H).

Applying Theorem 5.2, we have the following result.

Theorem 5.4. Fix t ≥ s. The implications (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5) of the following
statements hold:

(1) one has
U(t, s)(H) ⊂ R

1/2
t,s (H), (5.10)

(2) ‖Γt,s‖ <∞ and for every α > 1, f ∈ B+
b (H),

(ps,tf(x))α ≤ exp

(
α(‖Γt,s‖ · |x− y|)2

2(α− 1)

)
ps,tf

α(y), x, y ∈ H; (5.11)

(3) ‖Γt,s‖ <∞ and there exists some α > 1 such that (5.11) holds for all f ∈ B+
b (H);

(4) ‖Γt,s‖ <∞ and for every f ∈ B+
b (H) with f > 1,

ps,t log f(x) ≤ log ps,tf(y) +
‖Γt,s‖2

2
|x− y|2, x, y ∈ H; (5.12)

(5) ps,t is strong Feller, i.e. for every f ∈ Bb(H), ps,tf ∈ Cb(H).

In particular, if mt,s ≡ 0, then all these statements are equivalent.

Proof. If (5.10) holds, then Γt,s is a bounded linear operator on H. Hence by Theorem
5.2, we get (2) from (1). That (2) implies (3) is trivial. The implications (3)⇒(4)⇒(5) are
consequences of Harnack inequalities, as proved in [55].

Now we show that if mt,s ≡ 0, then (5) implies (1). Note that

ps,tf(x) =

∫
H
f(y)N(U(t, s)x,Rt,s)(dy).

If (5.10) does not hold, then there exists an x0 ∈ H such that U(t, s)x0 /∈ R1/2
t,s (H). Take

xn =
1

n
x0 ∈ H, n = 1, 2, . . . .

By the Cameron-Martin theorem (see e.g. [15]), for each n = 1, 2, · · · , the Gaussian
measure µn := N(U(t, s)xn, Rt,s) is orthogonal to µ0 := N(0, Rt,s), since U(t, s)xn /∈
R

1/2
t,s (H). It means that for every n = 1, 2, · · · , there exists a set An ∈ B(H) such that

µn(An) = 1 and µ0(An) = 0. Let A := ∪n≥1An. Then we have µ0(A) = 0, µn(A) = 1

since µ0(A) ≤
∑∞

n=1 µ0(An) = 0 and µn(A) ≥ µn(An) = 1.
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Take f = 1A. Because xn tends to 0 as n → ∞ and ps,t is strong Feller, ps,tf(xn)

converges to ps,tf(0) as n→∞. But this is impossible because we have ps,tf(xn) = 1 for
all n ≥ 1 and ps,tf(0) = 0. So, (5.10) must hold. �

Remark 5.5. IfRt,s has the form (6.2), then (5.10) is equivalent to the null controllability of
a non-autonomous control system (6.1) (see Section 6 for details). For this reason, condition
(5.10) is also called null-controllability condition. This gives an equivalent description of
the strong Feller property in the Gaussian case.

Remark 5.6. In [12] it is shown that the null controllability implies the strong Feller prop-
erty for autonomous Ornstein-Uhlenbeck processes with deterministic perturbation driven
by a Wiener process. Obviously, our result generalizes this result.

In fact (5.10) implies more. Let UC∞(H) denote the space of all infinitely Fréchet dif-
ferentiable functions with uniform continuous derivatives on H.

Proposition 5.7. Suppose that (5.10) holds. Then for every f ∈ Bb(H) and every t > s,
ps,tf ∈ UC∞(H).

Proof. In view of the decomposition ps,t = pgs,tp
j
s,t shown in Proposition 5.1, we only need

to show that pgs,t ∈ UC∞(H) for every g ∈ Bb(H). The rest of the proof is the same as in
[16, Theorem 6.2.2]. �

We have the following quantitative estimate for the strong Feller property. This result is
shown in [42] for Lévy driven Ornstein-Uhlenbeck process by a coupling method.

Proposition 5.8. Let t > s and x, y ∈ H. Then

|ps,tf(x)− ps,tf(y)|2

≤
(

e|Γt,s(x−y)|2 −1
)

min
{
ps,tf

2(z)− (ps,tf(z))2 : z = x, y
}
.

(5.13)

Proof. Let h = pjs,tf . Then by Proposition 5.1 we have ps,tf = pgs,th. Moreover,

h2 = (pjs,tf)2 ≤ pjs,tf
2

by Jensen’s inequality. So, for every z ∈ H, we have

pgs,th
2(z)−

(
pgs,th(z)

)2

≤pgs,tp
j
s,tf

2(z)−
(
pgs,tp

j
s,tf(z)

)2
= ps,tf

2(z)− (ps,tf(z))2.
(5.14)

Note also that (5.13) is symmetric in x and y. So, according to (5.14) we only need to show
the following inequality

|pgs,th(x)− pgs,th(y)|2 ≤
(

e|Γt,s(x−y)|2 −1
) (
pgs,th

2(y)− (pgs,th(y))2
)
. (5.15)

Using the notation in (5.4) we have

pgs,th(x) =

∫
H
h(U(t, s)x+ z)µgt,s(dz) =

∫
H
ρt,s(x− y, z)h(U(t, s)y + z)µgt,s(dz).
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Therefore we obtain

|pgs,th(x)− pgs,th(y)|2

=

(∫
H

[ρt,s(x− y, z)− 1] · [h(U(t, s)y + z)− pgs,th(y)]µgt,s(dz)

)2

≤
∫
H

(ρt,s(x− y, z)− 1)2 µgt,s(dz)

∫
H

[
h(U(t, s)y + z)− pgs,th(y)

]2
µgt,s(dz)

=

(∫
H
ρ2
t,s(x− y, z)µ

g
t,s(dz)− 1

)
·
(∫

H
h2(U(t, s)y + z)µgt,s(dz)− (pgs,th(y))2

)
=
(

e|Γt,s(x−y)|2 −1
) (
pgs,th

2(y)− (pgs,th(y))2
)
.

Note that here we have used (5.5) to obtain∫
H
ρ2
t,s(x− y, z)µ

g
t,s(dz) = e|Γt,s(x−y)|2 .

�

Now we apply the Harnack inequality (5.2) to study the hyperboundedness of the transi-
tion function ps,t. In [23] hypercontractivity is studied for the Gaussian case via log-Sobolev
inequality.

Theorem 5.9. Let (νt)t∈R be an evolution system of measures for (ps,t)t≥s. For every s ≤ t,
α > 1, and ε ≥ 0, let

Cs,t(α, ε) :=

∫
H

[∫
H

exp

(
−α|Γt,s(x− y)|2

2(α− 1)

)
νs(dy)

]−(1+ε)

νs(dx).

Then for all f ∈ Lα(H, νt),

‖ps,tf‖Lα(1+ε)(H,νs) ≤ Cs,t(α, ε)
−α(1+ε)‖f‖Lα(H,νt). (5.16)

Proof. From the Harnack inequality (5.2) we have

(ps,tf(x))α exp

[
−α|Γt,s(x− y)|2

2(α− 1)

]
≤ ps,tf

α(y), x, y ∈ H.

Integrating both sides of the inequality above with respect to νs(dy) and using the fact that
(νt)t∈R is an evolution system of measures, we obtain

(ps,t|f |)α(x)

∫
H

exp

(
−α|Γt,s(x− y)|2

2(α− 1)

)
νs(dy) ≤

∫
H
|f |α(y) νt(dy).

Hence

(ps,t|f |)α(1+ε)(x) ≤
[∫

H
exp

(
−α|Γt,s(x− y)|2

2(α− 1)

)
νs(dy)

]−(1+ε)

‖f‖α(1+ε)
Lα(H,νt).

Integrating both sides of the inequality above with respect to νs(dx), we get (5.16). �
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6. APPENDIX: NULL CONTROLLABILITY

Consider the following non-autonomous linear control system{
dz(t) = A(t)z(t)dt+ C(t)u(t) dt,

z(s) = x,
(6.1)

where (A(t))t∈R is a family of linear operators on H with dense domains and (C(t))t∈R is
a family of bounded linear operators on H. Let (U(t, s))t≥s be an evolution family on H
associated with (A(t))t∈R. Consider the mild solution of (6.1)

z(t, s, x) = U(t, s)x+

∫ t

s

U(t, r)C(r)u(r) dr. x ∈ H, t ≥ s.

In control theory, z(t, s, x) is interpreted as the state of the system and u as a strategy to
control the system. If there exists some u ∈ L2([s, t],H) such that z(t, s, x) = 0, then we
say the system (6.1) can be transferred to 0 at time t from the initial state x ∈ H at time
s. If for every initial state x ∈ H the system (6.1) can be transferred to 0 then we say the
system (6.1) is null controllable at time t. We refer to [58] (see also [15, Appendix B]) for
the details on null controllability of autonomous control systems.

Set for every t ≥ s

Πt,sx :=

∫ t

s

U(t, r)C(r)C(r)∗U(t, r)∗ dr, x ∈ H. (6.2)

Proposition 6.1. Let x ∈ H and t ≥ s. The system (6.1) can be transferred to 0 at time
t from x if and only if U(t, s)x ∈ Π

1/2
t,s (H). Moreover, the minimal energy among all

strategies transferring x to 0 at time t is given by |Π−1/2
t,s U(t, s)x|2, i.e.

|Π−1/2
t,s U(t, s)x|2

= inf

{∫ t

s

|u(r)|2 dr : z(t, s, x) = 0, z(s, s, x) = x, u ∈ L2([s, t],H)

}
.

(6.3)

Proof. For every t ≥ s, define a linear operator

Lt,s : L2([s, t],H)→ H, u 7→ Lt,su :=

∫ t

s

U(t, r)C(r)u(r) dr.

The adjoint L∗t,s of Lt,s is given by

(L∗t,sx)(r) = C∗(r)U(t, r)∗x, x ∈ H, r ∈ [s, t].

It is easy to check that
Πt,s = Lt,sL

∗
t,s.

Then by [15, Corollary B.4], Lt,s(L2([s, t],H) = Πt,s(H). Hence the first assertion of the
theorem is proved, since the initial state x can be transferred to 0 if and only if U(t, s)x is
contained in the image space of Lt,s due to the fact that z(t, s, x) = U(t, s)x+ Lt,su.

By [15, Corollary B.4] we also get

|Π−1/2
t,s y| = |L−1

t,s y|, y ∈ Lt,s(L2([s, t],H)). (6.4)

Here the inverse is understood as a pseudo–inverse. Taking y = U(t, s)x in (6.4), we obtain
(6.3). �
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From Proposition 6.1, we get the following corollary.

Corollary 6.2. The system (6.1) is null controllable at time t if and only if

U(t, s)(H) ⊂ Π
1/2
t,s (H). (6.5)

From (6.3), it is easy to get upper bounds of |Π−1/2
t,s U(t, s)x|2 by choosing proper null

control functions u. The following proposition is analogous to [42, Proposition 2.1].

Proposition 6.3. Let t > s. Assume that for every r ∈ [s, t], the operator C(r) is invertible.
Then for every strictly positive function ξ ∈ C([s, t]),

|Π−1/2
t U(t, s)x|2 ≤

∫ t
s
|C(r)−1U(r, s)x|2 ξ2

r dr(∫ t
s
ξr dr

)2 , x ∈ H. (6.6)

In particular, if C(r) ≡ C and |C−1U(r, s)x|2 ≤ h(r)|C−1x|2 for every x ∈ H, then

|Π−1/2
t U(t, s)x|2 ≤ |C−1x|2∫ t

s
h(r)−1 dr

, x ∈ H. (6.7)

Proof. We only need to consider the case when U(t, s)x ∈ Π
1/2
t,s (H) and the function [s, t] 3

r 7→ ξrC(r)−1U(r, s)x belongs to L2([0, t],H). Then the following function

u(r) := − ξr∫ t
s
ξr dr

C(r)−1U(r, s)x, r ∈ [s, t],

is a null control of the system (6.1). And hence the estimate (6.6) follows from (6.3). The
second estimate (6.7) follows by taking ξ(r) = h(r)−1 for all r ∈ [s, t]. �
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[39] Makoto Maejima and Ken-iti Sato, Semi-Lévy processes, semi-selfsimilar additive processes, and semi-

stationary Ornstein-Uhlenbeck type processes, J. Math. Kyoto Univ. 43 (2003), no. 3, 609–639.
[40] Shun-Xiang Ouyang, Harnack inequalities and applications for stochastic equations, Ph.D. thesis, Biele-

feld University, 2009, Available on http://bieson.ub.uni-bielefeld.de/volltexte/

2009/1463/pdf/ouyang.pdf.
[41] , Infinite dimensional additive processes and stochastic integrals, in preparation, 2014.
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Lévy noise, Comm. Stoch. Anal. 5 (2011), no. 2, 353–370.
[58] Jerzy Zabczyk, Mathematical control theory, Modern Birkhäuser Classics, Birkhäuser Boston Inc.,
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