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ABSTRACT. A time inhomogeneous generalized Mehler semigroup on a real separable
Hilbert space H is defined through

psif(z) = / fUE s)x +y) pes(dy), s, t€R, t>s, x€H,
H

for every bounded measurable function f on H, where (U (%, s));>s is an evolution family
of bounded operators on H and (p; s)¢>5 is a family of probability measures on (H, Z(H))
satisfying the following time inhomogeneous skew convolution equations

Ht,s = Ht,r * (,ur,s o U(t, 7’)71) 3 t Z T Z S.

This kind of semigroups typically arise as the “transition semigroups” of non-autonomous
(possibly non-continuous) Ornstein-Uhlenbeck processes driven by some proper additive
process. Suppose that 1, ; converges weakly to dp as ¢ | s or s T ¢. We show that y; s has
further weak continuity properties in ¢ and s. As a consequence, we prove that for every
t > s, pu is infinitely divisible. Natural stochastic processes associated with (g s)¢>s are
constructed and are applied to get probabilistic proofs for the weak continuity and infinite
divisibility. Then we analyze the structure, existence and uniqueness of the corresponding
evolution systems of measures (=space-time invariant measures) of (ps +)¢>s. We also estab-
lish a dimension free Harnack inequality for (ps ):>s and present some of its applications.
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1. INTRODUCTION

We start the introduction of time inhomogeneous generalized Mehler semigroups and
skew convolution equations from the well studied time homogeneous case.

Let H be a real separable Hilbert space with norm and inner product denoted by | - | and
(-,-) respectively. Let Z(H) be the space of Borel measurable subsets of H, and let B, (H)
be the space of all bounded Borel measurable functions on H.

A time homogeneous generalized Mehler semigroup (p;);>o on H is defined by

pf(z) = /H F(Tiw+y) u(dy), >0,z €H, € By(H). (L1)

Here (7});> is a strongly continuous semigroup on H and (f;);>¢ is a family of probability
measures on (H, %(H)) satisfying the following skew convolution (semigroup) equation

fors = s % (e o TN, 5,8 > 0. (1.2)

Recall that for any two positive Borel measures ;4 and v on H, the convolution p * v of u
and v is a Borel measure on (H, Z(H)) such that

1k v(B) ::/H/HlB(x—i—y)u(dx)l/(dy) :/H;L(B—x)u(dx), B € B(H).

Condition (1.2) is necessary and sufficient for the semigroup property of (p;):>o (and the
Markov property of the corresponding stochastic process respectively) to hold. That is (see
[22]),

(1.2) holds if and only if for all ¢, s > 0, p;ps = pi+s on By(H).

The semigroup (1.1) is a generalization of the classical Mehler formula for the transi-
tion semigroup of an Ornstein-Uhlenbeck process driven by a Wiener process. The second
named author and his coauthors studied this generalization for the Gaussian case in [8, 9] as
well as the non-Gaussian case in [22]. Indeed, under some mild conditions there is a one-
to-one correspondence between generalized Mehler semigroups and transition semigroups
of Ornstein-Uhlenbeck processes driven by Lévy processes (cf. [9, 22]).

Generalized Mehler semigroups and skew convolution equations have been extensively
studied. For instance, Schmuland and Sun [51] investigated the infinite divisibility of p; (t >
0) and the continuity of ¢ — log ji; (here fi; denotes the Fourier transformation of y;, see
also (2.11)); Lescot and Rockner considered in [33] and [34] the generator and perturbations
of (p¢):>o respectively; Wang and Rockner established some useful functional inequalities
for (p:):>0; van Neerven [53], Li and his coauthors [18, 19] studied the representation of
fi; (t > 0). For more literature on this topic we refer to [2, 3, 4, 30, 36] and the references
therein.

Recently, much work, for instance [13, 14, 23, 32, 57], has been devoted to the study
of non-autonomous Ornstein-Uhlenbeck processes which are solutions to linear stochastic
partial differential equations (SPDE) with time-dependent drifts. The noise in these equa-
tions is modeled by a stationary process such as a Wiener process or Lévy process. To get
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fully inhomogeneous Ornstein-Uhlenbeck processes, it is natural to consider more general
noise modeled by (time) non-stationary processes such as additive processes.

Let (A(t), Z(A(t)))ier be a family of linear operators on the space H with dense do-
mains. Suppose that the non-autonomous Cauchy problem

Ty =X

{dxt = A(t)x,dt, t> s,

is well posed (cf. [44]). That is, there exists an evolution family of bounded operators
(U(t, s)):>s on H associated with A(t) such that for every x € Z(A(s)), x(t) = U(t, s)x is
a unique classical solution of this Cauchy problem.

Typical examples for A(t), t € R, are partial differential operators e.g. of divergence type
on H = L*(U) with U an open bounded domain in R?. So, for example

A=y 5o (aste015).

where a; ;: U x R — R are bounded measurable functions such that for some c € (0, c0),

d
Z a;(x,1)&E > €z, € €RY
i,7=1

For details we refer to [44] and [32].
A family of bounded linear operators (U(t, s)):>s on H is said to be a (strongly continu-
ous) evolution family if:

(1) Forevery s € R, U(s, s) is the identity operator and for all t > r > s,
U(t,r)U(r,s) = Ul(t,s).

(2) For every x € H, the map (t,s) — U(t,s)z is strongly continuous on {(t,s) €
R?: ¢ > s}.
An evolution family is also called evolution system, propagator etc.. For more details we
refer e.g. to [17, 21, 44].

Let (Z;)icr be an additive process taking values in H, i.e. an H-valued stochastically
continuous stochastic process with independent increments. We shall consider stochastic
integrals fst ®(r)dZ, on [s,t] of non-random functions ®(t), ¢ € R, which takes values in
the space of all linear operators on H.

A direct way to define the stochastic integral is to regard it as the limit (e.g. in the sense
of convergence in probability) of “Riemann sums”. We refer to [38] to get some idea. For
a more general definition (using so called independently scattered random measures), we
refer to [46] for the infinite dimensional case and [48, 49] for the finite dimensional case. A
work [41] is in preparation to extend the main results in [48, 49] by the first named author.

Consider the following stochastic differential equation

(1.3)

dXt — A(t)Xtdt + dZt,
X, =u.
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Suppose that U(t,-) is integrable on [s,?] for every s < ¢ with respect to Z;. Hence the
following stochastic convolution integrals

t
Xis = / Ult,o)dZ,, t>s, (1.4)
are well defined. Then
t
X(t,s,x)—U(t,s)x+/ Ult,r)ydz,, t>s, xeH (1.5)

is called the mild solution of (1.3). For all ¢ > s, let fi; s denote the distribution of X, ;.
Obviously the transition semigroup of X (¢, s, x) is given by

Ps,tf(m) = Ef(X(ta S, 1‘)) = /Hf (U<t7 S)x + y) /]t,s(dy) (1.6)

forallz € H, f € By(H) and ¢ > s. It is easy to check that (fi, s ):>5 satisfies the following
time inhomogeneous skew convolution equation

,at,s = ﬂt,r * (ﬁ’r,s o U(t,’f’)_1> ) t Z r Z S

The aim of the present paper is to adopt the axiomatic approach in [9] and [22] to study
the non-autonomous process (1.5) through its transition semigroup (1.6). That is, we shall
start from (1.6) and define for a given strongly continuous evolution family (U (¢, s))¢>s,

psif(x) = /Hf(U(t, s)x+y) us(dy), zeH, fe By(H),t>s. 1.7)

Here (pu15)i>s is a family of probability measures on (H, Z(H)). In order that the family
(ps.t)t>s satisfies the Chapman-Kolmogorov equations (flow property), we shall assume that
(pe.s)e>s satisfies the flowing time inhomogeneous skew convolution equations

Mts = [t r * (,ur,s © U(ta r)_l) ) i 2 r Z S. (18)

In this case we call (p; )~ a time inhomogeneous generalized Mehler semigroup. Clearly,
(1.7) and (1.8) are time inhomogeneous analogs of (1.1) and (1.2).

We would like to point out that (ps ;)¢>5 is of course not a “transition semigroup” although
we call it (time inhomogeneous generalized Mehler) semigroup. In this two parameter case,
some authors call it hemigroup, see for example [6, 25] and [10, 27] where (1.7) and (1.8)
have been studied respectively in some special or different situations. So, one may also call
(1.7) a (time inhomogeneous) generalized Mehler hemigroup. Similarly, one may call (1.8)
a (time inhomogeneous) skew convolution hemigroup.

As a toy example one may consider the following time inhomogeneous one dimensional
stochastic equation

{ dxt = a(t)xtdt + dbt, (1 9)

Ty =T,
where (b;);cr is a standard one-dimensional Brownian motion in R and a(t) is a continuous

function on R. Then (exp( f: a(r) dr))s>s is the evolution family associated with a(t). The
mild solution of (1.9) is given by

t t t
x(t, s, x) = exp </ a(r) dr) x +/ exp (/ a(r) dr) db,, t>s, xeH. (1.10)
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/St exp (/uta(r) dr) db, ~ N(0,04),

i.e. a Gaussian measure with mean 0 and variance o; ; given by

t t
Ots :/ exp (2/ a(r) dr) du.

It is easy to check that (cf. (3.52))

t
Ots = Oty + Ops * €XD (2/ a(r) d?‘) , t>7r>s
'

This means that (1.8) holds. The corresponding time inhomogeneous generalized Mehler
semigroup is given by

psif(w) == /Hf (eXp (/:a(r) dT’) x +y) N(0,0,4)(dy), x€H, fe By(H), t>s.

Clearly

For further examples we refer to Section 5, where we consider time inhomogeneous
SPDEs driven by Wiener processes in infinite dimension (in particular see Example 5.3).
For corresponding examples, where the Wiener process is replaced by a Lévy process we
refer e.g. to [32].

The present paper is organized as follows.

In Section 2 the main result is Proposition 2.1, which shows that the flow property for
(ps.t)t>s holds if and only if we have (1.8) for (1 s)s>s.

In Section 3 we concentrate on the skew convolution equations (1.8). In Subsection 3.1
we give some preliminaries and motivations. In Subsection 3.2 we introduce Assumption
3.7 and show some results on the weak continuity of y; ¢ in ¢ and s. In Subsection 3.3,
we prove that for every ¢ > s, 1 s s infinitely divisible. In Subsection 3.4 we show that
there exists a natural stochastic process associated with (i s):>s. This allows us to get
probabilistic proofs of the results on the weak continuity and infinite divisibility of s
proved in previous subsections. We shall study the spectral representation of /i ; in another
work.

In Section 4 we study evolution systems of measures (i.e. space-time invariant measures)
for the semigroup (ps):>s. We first show some basic properties of the evolution systems of
measures. Then we give sufficient and necessary conditions for the existence and unique-
ness of evolution systems of measures.

In Section 5 we prove a (dimension independent) Harnack inequality for (ps¢)>s using
a simple argument. As applications of the Harnack inequality, we prove that null controlla-
bility implies the strong Feller property and that for the Gaussian case, null controllability,
Harnack inequality and strong Feller property are in fact equivalent to each other as in the
time homogeneous case.

The semigroup (ps +):>s is called strongly Feller if for every bounded measurable function
fand every t > s, psf is a bounded continuous function. In the time homogeneous case,
the strong Feller property has been investigated frequently. One of the reasons is that if a
transition semigroup is strong Feller and irreducible, then it has a unique invariant measure,
see e.g. [11].
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As an application of the Harnack inequality, we e.g. look at the hypercontractivity of
(pst)i>s- Hypercontractivity of semigroup such as (1.6) is closely related to functional
inequalities, spectral theory etc. for the Kolmogorov operator (or generator) corresponding
to SDE (1.3), see e.g. [54].

In Section 6 we append a brief introduction to the control theory of non-autonomous
linear control systems and null controllability. The minimal energy representation is useful
for the estimate of the constant in the Harnack inequality obtained in Section 5.

2. GENERALIZED MEHLER SEMIGROUPS AND SKEW CONVOLUTION EQUATIONS

First we characterize when the Chapman-Kolmogorov equations hold for (ps)i>s in
(1.7).

Proposition 2.1. Forall s <r <t,
DsyPrt = Ps¢  (“Chapman-Kolmogorov equations™) 2.1
holds on B,(H) if and only if (1.8) holds for all s < r < t.

We shall prove this proposition in a more general framework. This is inspired by the
fact that a generalized Mehler semigroup is a special case of the so called skew convolution
semigroups (see [35]).

Let (us:):>s be a family of Borel Markov transition functions on H, i.e. each u,; is a
probability kernel on Z(H) and the following Chapman-Kolmogorov equations

s f () = sy (ure f)(2), @ € H, f e By(H) (2.2)

hold for all t > r > s. Here B,(H) denote the space of all bounded Borel measurable
functions on H. Writing (2.2) in integral form, we have

F(2)up(y, d2)us (z, dy) = / f(2)us(x, dz). (2.3)
H2 H
Assume that
us,t(aj +v, ) = us,t(xa ) * us,t<y7 ) (2.4)
for every t > s and x,y € H. Clearly, Equation (2.4) implies
us (0, +) = do. (2.5)

For every probability measure p on (H, 2(H)) we associate with us; (t > s) a new
probability measure pug; by

pus 1 (A) = /Husi(:z:, A)p(dz), Ae B(H)

for every t > s.
Let (/1 5):>s be a family of probability measures on (H, %(H)). For all t > s, define a
family of functions

gsi(v, ) Hx B(H) - R
by
qs,t<33', ) = us,t(ma ) * ,ut,s('), z € H.
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Associated with ¢ (-, -) we define an operator ¢, on B(H) by

QStf /f QSt X dy) x GH? f € Bb(H)

We have the following characterization of the Chapman-Kolmogorov equations for (¢s ;) ¢>s-
Proposition 2.2. The family of operators (qs )= satisfies
qs,t = 4s,rqrt, t>r>s (26)

if and only if
Mes = Mtr * (,ur,sur,t)7 t>r>s. (27)

Proof. For every f € By(H), z € H, we have
qS,TQT,tf(a:)

:/ qr,tf<y)q$,r(x7dy>

H

=/ QT,tf(yl +y2)us,r(x,dy1)um(dy2)
HQ

_ / F)ara(yr + you d2 g s (s dyn )i (dys)
H4

fz 4 20)urg (y1 + 2, dz1) e g (d2) us o (2, dyy ) s (dy2) 2.8)

H4

fzi1 + 212 + 22) U (Y1, d211)ur i (Y2, dzio) pie e (d2o)us (2, dyn ) pr s (dyo)
HS

= f(z11 + 212 + 22)us 1 (2, dz11 ) ur (Yo, dz12) pe e (d22) pr s (dy2)
H4

= f(le + 212 + 22)Us 1 (@, d211) (fr sty ) (d212) prep (d22)

/ F) s o2, -) % (firsting) * pia)(d2).

In the calculation above we have used (2.3) and (2.4) to get the fifth and sixth identity
respectively. If (2.7) holds, then by (2.8) we obtain

QS TQth / f ust * ,ut s}(dz) = (s tf( )

That is, (2.6) holds.
Conversely, if (2.6) holds, then we have

qs,tf(o) - qS,TQT,tf(()) (29)
for all f € B,(H). By taking x = 0 in (2.8) and using (2.5), we get

qs, rQrtf / f ,ur surt * /Ltﬂ«) (dZ)

On the other hand, we have

qs, (0 /f Jh,s(dz).
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Hence
[5G s @) = [ st
for all f € By(H). This implies (2.7). So the proof is complete. O

Proof of Proposition 2.1. Let
us,t(x7 ) = 5U(t,s)x(')
for every t > s and x € H. Then by property (1) of the evolution family (U(t, s))s>s,

(ust)t>s is @ Markov transition function satisfying (2.2). Note that we can rewrite the inho-
mogeneous generalized Mehler semigroup (1.7) as

ps,tf(x> = (6U(t,s)x * Nt,s)f; WS H7 f € Bb(H) (210)

Hence it is clear that (g, +);>s coincides with (ps;):>s. Therefore, the equivalence of (2.6)
and (2.7) in Proposition 2.2 is exactly the equivalence of (2.1) and (1.8) in Proposition 2.1.
The latter is thus proved. U

For a linear bounded operator U on H, let U* denote its adjoint. Clearly, U™ is also
bounded. Let /i denote the Fourier transform (or the characteristic functional) of a proba-
bility measure  on H, i.e.

) = / '8 u(dr), ¢ ecH. (2.11)
H

Probability measures on Hilbert spaces are determined by their characteristic functionals
(see e.g. [52, Section IV.2.2, Theorem 2.2]). In particular, (1.8) holds if and only if

fies(6) = fuus (s (U(E,1)E), € € H. (2.12)

3. TIME INHOMOGENEOUS SKEW CONVOLUTION EQUATIONS

In this section, we concentrate on (1.8). We shall study the weak continuity, infinite
divisibility and stochastic process associated with (ziz s )¢>s.

3.1. Preliminaries and motivations. In this subsection we fix some notations and present
some basic results and motivations. In particular, we give some results on the weak conver-
gence of measures satisfying convolution equations such as (1.8).

Convergence of probability measures. We recall that a sequence of probability mea-
sures (/i )n,>1 on H converges weakly to a probability measure p on H, written as

fn = [ asmn — 00,
if for every f € C(H)

i [ (o) (o) = /H £ () p(d).

n—oo
Here C},(H) denotes the space of all bounded continuous functions on H. Sometimes we
also write
lim w, = p.

n—oo
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A sequence of H-valued random variables (X,,),>1 converges stochastically, or converges
in probability, to an H-valued random variable X, written as

Pr

X, — X,

if foreach ¢ > 0,
lim P(|X, — X|>¢)=0.
n—o0

Let 1, and 1 denote the distributions of X,, and X respectively. Then it is well known that
asn — 00, X, X implies p,, = w1 (in other words, X, converges to X in distribution).
On the other hand, if in particular, X = x € H is deterministic, then p, = 9, implies
X, rox. Therefore, we have X, Pro ¢ if and only if p, = 9.

Additive processes, Lévy processes and convolution equations. Let (X;);cr be a sto-
chastic process taking values in H. Assume that X, = 0. The process (X;)cr is called an
additive process if it has independent increments, i.e. if for any ¢ > s, X; — X, is indepen-
dent of o({X,: r < s}). Let u; s denote the distribution of X; — X. Forallt > r > s, we
have

Xt - Xs = (Xt - Xr) + (Xr - XS)
This implies
Hts = Mt * Hrs, t>r=>s (31)
since X; — X,, X, — X, are independent.

Usually one requires that an additive process is stochastically continuous, i.e. for every

te Rande > 0,
lim P(| Xy — Xy| >¢) =0. (3.2)
h—0
This condition means that
fes = 0o as s Tt,

33
fes = 0g ast ] s. 3-3)

If in addition (X;),cg has stationary increments, i.e. if for any ¢ > s the distribution of
X; — X, only depends on ¢ — s, then it is called a Lévy process. In this case we shall only
consider X, for ¢t > 0. For each ¢t > 0 let y; denote the distribution of X;. Then obviously
we have the following convolution equations

Pats = fe * fs, 1,5 > 0. (3.4)
The stochastic continuity condition (3.2) is reduced to

i >¢e)=0. .
lim P(|X;| > €) =0 (3.5)

This is equivalent to
=09 ast 0.

Infinitely divisible probability measures. A probability measure p on (H, Z(H)) is
said to be infinitely divisible if for any n € N, there exists a probability measure (i, on
(H, #(H)) such that

I *No,__
M= [y 1= o K iy K K Ly
Vv
n times
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Let (u¢)¢>0 be a family of probability measures. If it satisfies (3.4), then obviously for
every t > 0, y is infinitely divisible. If (u;);>o satisfies the skew convolution equations
(1.2)

Pivs = fhs * (fg © Ts_l)v s,t >0,
then it is proved in [51] that for every ¢ > 0, i is also infinitely divisible.

Now we look at the two-parameter convolution equations (3.1). First we consider the
finite dimensional case when H = R?. It is known (see [29] or [47, Theorem 9.1 and
Theorem 9.7]) that if (4 s).>s satisfies (3.3), then for any ¢ > s, 11, is infinitely divisible.
The idea of the proof given in [47] can be described as follows.

First one shows that (11 s ):> is locally uniformly weakly continuous by using (3.3). That
is, for every ¢ > 0 and n > 0, there is § > 0 such that for all s and ¢ in [sq, to] satisfying
0 <t—s <9, we have (cf. Lemma 3.8)

pirs (] > €) <.
Then by the celebrated Kolmogorov-Khintchine limit theorems on sums of independent
random variables (see [47, Theorem 9.3]), we obtain that s, s, is infinitely divisible.

The uniform weak continuity of (i s)i>s On [sg, ] can be proved by constructing a
stochastically continuous additive process (X;)cr such that for any ¢ > s the increment
X; — X, has the distribution 1, ; (see [47, Theorem 9.7 (i1)] and [47, Lemma 9.6]).

In Subsection 3.3 we shall modify the arguments above to study the infinite divisibility
of (pur.s)1>s satisfying equation (1.8).

Weak convergence of measures satisfying convolution equations. The results in this
part will be used in Section 4. First of all we include here two results from [43]. Recall that
a set M of probability measures on H is said to be shift (relatively) compact if for every
sequence ( (i, ),>1 in M there is a sequence (1, ),>1 such that

(1) (Vn)n>1 1s a translate of (p,,),>1. That is, there exists a sequence (z,,),>1 in H such
that v, = p,, x o, foralln > 1.
(2) (vy)n>1 has a convergent subsequence.

Theorem 3.1. Let (0,,)n>1, (ttn)n>1 and (vy,)n>1 be three sequences of measures on H such
that o, = i, * v, for alln € N.
(1) ([43, Theorem I1.2.1]) If the sequences (0,,),>1 and (p,)n>1 both are relatively
compact, then so is the sequence (Vy,),>1.
(2) ([43, Theorem II1.2.2]) If the sequence (0,,),>1 is relatively compact then the se-
quences (fi,)n>1 and (Vy)n>1 are shift compact, respectively.

Now we can show the following lemma.

Lemma 3.2. Let pu,,, vy, 0, withn > 1, and p, v, o be measures on (H, 8(H)) such that
On = [bn * Up.
(1) If u, = pand v, = vasn — oo, then o,, = L%V asn — oQ.
(2) Suppose that 0,, = o and p, = | as n — oo. Then there exists a probability
measure v such that
o= p*v. 3.6)

If v is the unique measure such that (3.6) holds, then v, = v as n — oQ.
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Proof. The first conclusion says that the convolution operation preserves weak continuity.
The proof can be found, for example, in [28, Proposition 2.3] or [43, Theorem IIL.1.1].
Now we show the second assertion. Take an arbitrary subsequence (v, );>1 from (1, ),>1
and consider
On; = Hn, ¥ Vp,, ¢ 2> 1.

Since 0,, = o and u,, = p as n — oo, both (o, );>1 and (u,,);>1 are relatively compact.
By Theorem 3.1, the sequence (v, );>1 is also relatively compact. Let (v,);>1 be a weakly
convergent subsequence of (1, );>1 with limit /. Then by the first assertion of this theorem,
we have
Ot = [ % Uy = ¥ V', M — 00,

Since we also have 0,; = o as nj — oo, we get 0 = p * v/ This shows that there exists
a probability measure v = 1/ such that (3.6) holds. If there is only one measure v such
that (3.6) holds, then the discussion above shows that any subsequence of (1,),>1 contains
a further subsequence converging weakly to v. This is sufficient to conclude that (,),,>1
converges weakly to v (cf. [7, Theorem 2.6]). Hence the proof is complete. U

Remark 3.3. In the second part of the previous theorem, the assumption that v is the unique
solution to the convolution equation o = . * v amounts to saying that the following cancel-
lation law for convolution operation holds: Let v, v’ be two measures on H, if

pxv=pxv, 3.7

then v = /. It is obvious that this cancellation law holds provided /i has no zeros. Indeed,
from (3.7) we get av = v/’ If i # 0, then o = v/. So v = /. It is well known that if y is
an infinitely divisible distribution, then /i has no zeros.

Remark 3.4. After the proof of the second assertion of Lemma 3.2, we found that there is
a similar result in [26, Corollary 2.2.4] where the condition that /i has no zeros is used. Our
proof is different. The example after [37, Theorem 5.1.1] shows that there exist probability
measures j, v and v/ on R with v # v/ such that (3.7) holds. It is called Khintchine phe-
nomenon in the literature. So if (3.7) holds, then it is necessary to require v = v/ for the
second assertion of Lemma 3.2. Otherwise, if v # v/, then (i * 1,),>1 With v9,_; = v and
vor, = v/ for all k > 1 converges weakly, but (v,,),,>1 does not converge weakly.

As a summary of the discussion above, we have the following result.
Corollary 3.5. Let ji,,, vy, 0, withn > 1 and o, u be measures on H with the following

properties

(1) Foralln > 1, 0,, = iy, * Uy,
(2) Asn — oo, 0, = 0 and i, = L.

If p is an infinitely divisible distribution, then the sequence (v,,),>1 converges weakly to
some measure v on H such that 0 = p v as n — oo.

In particular, we have the following result.

Corollary 3.6. Let ji,, vy, 0, withn > 1, and o be measures on H. Suppose that for all
n>1, 0, = iy * Uy If 0, = 0 and p, = 0y as n — oo, then v,, = g as n — Q.
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3.2. Weak continuity. We shall use the following assumption.

Assumption 3.7. For all s € R

lﬁwnggm¢=%. (3.8)
Let us explain that the weak limit J, in (3.8) is natural. Taking s = r = ¢ in (1.8) we
obtain

Mt = feg * feg, ¢ €R. (3.9)
That is, for every t € R, y, is an idempotent probability measure on (H, %(H)). By
[52, Section 1.4.3, Proposition 4.7, Page 67, see also Section IV.2.2, Corollary 1, Page 203]

(or [43, Section III.3, Theorem 3.1, Page 62] and noting that there is no nontrivial compact
subgroup in H), the trivial measure ¢ is the only idempotent measure on (H, %(H)). Hence

[ttt = 0. (3.10)

Now Assumption 3.7 means that y, ; is weakly continuous on the diagonal {(¢, s): (¢,s) €
R2, t = s} in two directions. We aim to show that, combined with the skewed convolution
equation (1.8), this assumption in fact implies more about the weak continuity of ji; s in ¢
and s.

We need the following simple fact.

Lemma 3.8. Let (11,,),>1 be a sequence of probability measures on H. Then p,, = &y as
n — oo if and only if for all € > 0,

ILm pn({x € H: |z| > e}) = 0. (3.11)

Proof. Suppose that y,, = &g as n — oo. Then by the Portmanteau theorem (see for
instance [7, Theorem 2.1]),

limsup i, (F) < 8(F)

n—o0

for all closed sets £ in H. Obviously {x € H: |z| > ¢} is closed. Hence
0 <limsup p,({z € H: |z| > €})

n—o0

<limsup p,({z € H: |z| > e}) < do({z € H: {|z| > &}) = 0.

n—o0

So (3.11) holds.
Now we assume that (3.11) holds for all € > 0. Let f be a continuous bounded function
on H. Define

M i=sup|f] + 1.

We are going to show i, (f) — do(f) as n — oc.
Since f is continuous, for any n > 0, there exists a constant ¢, > 0 such that for all
|z| < e,
(@)= FO)| < 5. (3.12)
By (3.11) there exists a constant N > 0 such that for all n > N,

pn({z € H: |z| > e0}) < (3.13)

/.
AM
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Combining (3.12) and (3.13) we obtain

/Hfdun—/Hfdéo

< /H f(2) — F(0)] dps,
-/ £0) ~ FO)dpo + [ 7(@) — F(O0)] dp
{z€H: |z|>e0}

{a€H: |¢|<co}

<2Mpn ({2 € H: [z > e0}) + sup [f(2) = f(O)] - pn({z € H: || < &0})

‘x|<60
U n
2M - —— + = =m.
=Mt T
This completes the proof. U

By Lemma 3.8 we have the following equivalent description of Assumption 3.7.
Proposition 3.9. Equation (3.8) is equivalent to

1gflﬂt,s({x e H: |z| > ¢}) = ligl,ut,s({:c e H: |z| >¢})=0 (3.14)

for all € > 0. More precisely, they are equivalent to the following two conditions: for every
e,n > 0, and for every u € R, there exists a constant 9,, such that:

(1) Foreveryt € (u,u+ d,),
pe({z € H: |z| > }) <n. (3.15)
(2) Forevery s € (u— &, u),
pus({x € H: |z| > e}) <n. (3.16)
We shall use the following two lemmas.

Lemma 3.10. For every sy < tg, there exists some constant ¢ > 1 such that for all sy <
s <t <t

|U(t,s)x| <cle|, xeH, sg<s<t<t. (3.17)
Proof. Forevery x € H, |U(t, s)x| is a continuous function of (¢, s) on Ay, 4, := {(t,s): 5o <

s <t < ty}. Hence |U(t, s)x| is uniformly bounded on Ay, 4, for every x € H. By the
Banach-Steinhaus theorem we have

sup  [|U(t,s)[| < oo.
(t,s)eAtO’So

That is, there exists some ¢ > 0 such that (3.17) holds. [l
Lemma 3.11. Let T be a bounded linear operator on H, hence for all x € H, |Tz| < c|z|

for some constant ¢ > 0. Let p be a measure on H and € > 0 be any constant. Then we
have

poTr*{zx e H: |z| > e}) < p({x € H: |z| > ¢/c}). (3.18)
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Proof. By assumption we have
poT'{x e H: x| >¢e}) =u({xr € H: |Tx| > ¢})
<u({x € H: |z| > ¢/c}).

Now we can prove the following result.

Theorem 3.12. Suppose that Assumption 3.7 and (1.8) hold for a family of probability

measures (fi; s)i>s. Then:

(1) For everyt € R, the map s — i s with s < t is weakly continuous.
(2) Foreveryt,s € Rwitht > s we have

Hite,s = His Ase€ i 07

where € | 0 means € > 0 and € — 0.
(3) Forevery ty,t,s € Rwithty >t > s,

fiecsoUlty,t —e) "t = s 0U(te,t)™" ase 0.

Proof. (1) Let s < t. We need to show

Kt s—e = Ht,s aSE i 0
and

Kt s+e = Hts aSE \L 0.

Equation (1.8) implies that for every € € (0,t — s)
Mis—e = s * (,us,s—a o U(t, 3)_1)
and
Mts = Mt sye * (:U/s—‘rs,s o U(ta s+ 5)_1) .

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

By Lemma 3.10 there exists some constant ¢ > 1 such that for all € € (0,¢ — s), we have

U(t,s+e)| <ec.
Hence by Lemma 3.11 we have for all n > 0
pss—e o U(t,s) " ({x € H: |2 > n}) < pss—c ({2 € H: 2] > n/c}).
Because jt5 s = dp as € | 0, by Lemma 3.8 we get
lim f1,,s— ({2 € H: |2] > /c}) =0.
Hence it follows from (3.25) that

lim 1, 0 Ut )™ ({r € H: Ja] > }) = 0.

By Lemma 3.8, we obtain
s s—e o U(t, ) t=14p, €10

Therefore, applying the first result of Lemma 3.2 to (3.23) we get (3.21).
By the same arguments, it is easy to show that

MS+S7SOU(t,s+8)*1 =0y ase 0.

(3.25)
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Then by Corollary 3.6, (3.22) follows from (3.24).
(2) According to (1.8) we have forall ¢t > s, > 0,
Hites = Hitet * (:ut,s © U<t + &, t)il)'

By assumption we have (4. = 9o as € | 0. Hence by applying the first assertion of
Lemma 3.2, we get (3.19) by proving

pesoU(t+e,t) " =y, asel0. (3.26)

Now we show (3.26). Let f be a continuous and bounded function on H. For every £ > 0
set

felx) = f(U({t+e,t)r), xeH
It is clear that f. converges to f pointwise as ¢ | 0. Moreover, since f is bounded, we know
that f. is bounded. Hence by Lebesgue’s dominated convergence theorem we have

lun/f Ydugso Ut +e,t)” —hm/fs ) dpg s (x /f ) dpig s (x
This proves (3.26).
(3) We first show in particular the following result:
fi—es 0 U(t,t — 5)_1 = s ase 0. (3.27)
By (1.8) we have forallt >t — e > s,
Ht,s = Htt—e * (,utfs,s o U(tat - 8)71)'
Since fu;,—. = dp as € | 0, by Corollary 3.6, we get (3.27).
Now let us show (3.20). By (3.27), we have for any bounded continuous function f on H

hm/f ) dpie—en 0 Ut t — €)1 (2)
— lim /H F(Uto t — £)) dpiy_- o(2)

el0

~tim [ U =) dpcsfa)

el0

:hm/ f t(), d,U/t €,s U(Tﬂt_g)il(y)

el0

/f (to, t)y) dpirs(y)

— [ $)due 0 Ulta,) )
This proves (3.20). U
Concerning the space-homogeneous case, we have the following result.
Theorem 3.13. Let (fi; s ):>s be a family of probability measures on (H, 2(H)) satisfying
fits = fitg * firg, t27 > (3.28)

and
lim ﬂ = lim /~L = {p.
ts t,s Sit t,s 0
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Then [i; s is weakly continuous int and s witht > s.

Proof. Below we always assume that we have ¢’ > s’ when we write /i ». Let €, and 9,, be
two nonnegative sequences converging to 0 as n — oo. Recall that by Theorem 3.12,

[lt 55, = [t,s, aST — 00. (3.29)
By (3.28) we have
ﬁt,sidn = ﬂt,t—an * ,at—an,s:l:dn- (3.30)

Note that as n — oo, we have [i;;_., = do by assumption. Hence by (3.29) and by
applying Corollary 3.6 to Equation (3.30) we obtain

/:Lt_sms:t(;n = /:Lt,sa as n — oQ. (331)
Now by (3.28) we also have
ﬂt+sn,sian = ,[LtJren,t * ﬁt,si&n- (3.32)

By assumption we have /i, + = Jdp as n — oo. Hence by using the weak continuity of
the convolution operator and by applying (3.29) to (3.32), we get

flite, s+, = [bt,s, AS T — OO. (3.33)
Combining (3.31) and (3.33) we get
fite, sts, = ft,s, @SN — 00
and hence the proof is complete. U

Remark 3.14. We provide also probabilistic proofs of Theorem 3.12 and Theorem 3.13 in
Subsection 3.4 below.

For every ¢t > s, it is clear that py, is Feller, i.e. ps(Cy(H)) C C,(H). Now we look at
the continuity of the map (s, z) — ps.f(x) for every f in C,(H). The proposition below is
a direct generalization of [9, Lemma 2.1]. The proof is similar to the proof in [9].

Proposition 3.15. Let s,,,t, € R, x, € H, s,, < t, withn > 1 such that (s,,t,) — (s,t) €
R? and v, — x € Hasn — oo. If iy, 5, = prs as n — oo, then for any f € Cy(H),
Dsntn S (Tn) = psif(x) as n — oo.

Proof. Since (i, s, = [it,s as n — 00, by Prohorov’s theorem, for every € > 0, there exists
a compact set K C H such that

pro(K)>1—¢, forall (r,0) € {(t,s),(tn,sn): n € N}. (3.34)

For abbreviation, we set z,, = U(t,, s,)z, and z = U(t, s)x. By the strong continuity of
the evolution family (U (¢, s))¢>s, the set Z := {z, z,,: n € N} is compact. Hence Z + K is
also compact. So there exists an N € N such that for any n > N and forany y € K,

[flzn+y) = fz+y)l <&, (3.35)

since f is uniformly continuous on compacts.
Because i, s, = [t,s as n — 0o, (taking [V larger if necessary) we have for all n > N

/ F(2 4 9) e, (dy) — / F(z + ) pus(dy)| < e (3.36)
H H
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From (3.34), (3.35) and (3.36) we get

[ et st - [ 5+ ut,swy)]

<

/Hf(z +Y) b, s, (dy) — /Hf(z +y) ut,s(dy)‘

" /K Gt 9) = F + 9)] o () + 201 oope(H\ )

<2e(1 + [ fllo0)-

Hence the result is proved since € was arbitrary.

3.3. Infinite divisibility. The main result of this section is the following theorem.

Theorem 3.16. Suppose that Assumption 3.7 and (1.8) hold for (p s)i>s. Then for every
t > s, s is infinitely divisible.

We shall use a similar method as indicated in Subsection 3.1. The main difficulty is
proving the following lemma, i.e. showing (p; s o U(to,t)"!);>s is uniformly weakly con-
tinuous on [sg, o). In this subsection we prove it analytically. In Subsection 3.4 we present
a probabilistic proof of it by constructing an associated stochastically continuous additive
process.

Lemma 3.17. Suppose that (ju;s)i>s satisfies (1.8) and Assumption 3.7. Then on every
compact interval [sg, to], for all e,n > 0, there exists a constant § > 0 such that for all
s,t € [so,to] with0 <t — s <9,

s o Ulto, ) '({z € H: |z| > €}) < n. (3.37)

Proof. 1t is trivial to see that (3.37) holds for the case when ¢ = s. So we shall assume
t > s. By Lemma 3.10, there exists a constant ¢ > 1 such that

|U(t,s)z] <clz|, xeH, sog<s<t<t. (3.38)
Let us set
g =c¢/c
and
A(r):={z e H: |z| >r}, r>0.

By Assumption 3.7 and Equations (3.15), (3.16) in Proposition 3.9, for every €, > 0,
t € [so, to], there exists a constant ¢; > 0 such that

Ht,s (A <2€—;)) < 77/27 S € (t - 5t7t> (339)
and /
L (A (%)) <n/2, rE LS. (3.40)

Since ¢ > 1 we have ;—; < %/ Hence from estimates (3.39) and (3.40) it follows that

ps (A(E)2)) <n/2, s €(t—dt) (3.41)
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and
prg (A(E'/2)) < /2, 1€ (1 + ). (3.42)

Moreover, according to Lemma 3.11 and (3.38), from estimates (3.39) and (3.40) we
obtain

pes o UM ) THA(E)2) <n/2, t—0<s<t t<t <t (3.43)
and
prs o U 1) H(A(E)2)) <n/2, t<r<t+d, r<r <t. (3.44)
For every ¢ € [so, to], let
Iy i= (t — 0¢, t + 0y).

Obviously {I;: t € [s, to]} covers the interval [so, to]. Hence there is a finite sub—covering
{Ii;: j = 1,2--- ,n} of [sg,to]. Then for every t € [so,to], we have t € I, for some

je{1,2,--- ,n}. Let
Oy
5::min{§:j:1,2,...,n}.

For every s € [sg, to] such that 0 < ¢ — s < ¢, we have
s —t;] <[s —t[+ [t —t;| <0+ 0y,/2 < 0y,

Therefore, both ¢ and s are in the same sub-interval It].. We need to consider the following
three cases respectively: 1. s <t; <;2. s <t <t;;3.1; <s <H{.

Case 1 (s < t; < t). Note that for all z,y € H, if |z + y| > ¢/, then either |z| > £'/2
or y| > €’/2. That is, the following inequality holds

Laen(z+y) < Lae () + Lae /2 (y). (3.45)
By (1.8), (3.42), (3.43) and (3.45) we have
fi5(A(€) = puag, * (pe,s 0 UL, 1) 1) (A(€))

//1A (2 + ) oy, (d) (1, 0 U, £)~4) (dy)

< [ @@ + La 00) ey (o) o U 1)) )
= i1, (A(€/2)) + (ptry,6 0 U(t,15) T (A('/2))
< g + g =7.
Therefore, by Lemma 3.11 and (3.38) we have
pirs 0 Ulto,t) " ({z € H: Jz| > €}) <7
Case 2 (s < t < t;). We first show that
(s 0 U(t;, 1) )(A()) <

by contradiction. If otherwise, the following inequality

(s 0 U(ty, )" )(A(€) = (3.46)
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holds. Then by (1.8), (3.41) and (3.46) we obtain

n _

5> ;5 (A(E')2)) = pray e % (s 0 U(ts, )7 (A(E'/2))
= [ Lot + ) ) 0 Ula 00

> /H/HJ‘A(EI/Q)C (z) - 1A(s’)(y) th,t(d:v) (s © U(tj,t)fl)(dy)

= ,utj,t<A(5//2)C) ) (:ut,s © U(tj’ t)il)(A(gl))

19

Here we have used the fact that for all 7,y € H, |z +y| > |y| — |2| > S if [y| > ¢ and

|z| < ¢&’/2. Now we have

2
n n
—_ > -
9 1T g

consequently, n > 1. By (3.46) this means that
(pe,s 0 U(t5, 1) )(A()) > 1.
This is impossible since i s is a probability measure.
Then by Lemma 3.11 and (3.38) we have
pes o Ulto, t) ' ({x € H: |z| > €})
= (p,s 0 U(t;,8)7") o Ulto, ;)" ({z € H: |z| > €})
<prso Uty t) '({z € H: |z| > ¢/c})
=pte,s 0 U(t;, )" (A(€) <.

Case 3 (t; < s < t). Similar to Case 1 we only need to show s, s(A(e")) < 1 whose

proof turns out to be similar to the proof in Case 2. Indeed, if

pas(A(E") 2 1,
then by (1.8), (3.42) and (3.44)

g > Kt t; (A(8//2)) = s * (:us,tj o U(t, 3)_1)(A(5//2))
= /H/HlA(E//Q)(w +y) pie,s(dx) (:us,tj o ULt 3)_1)(dy)

> pies(A(€)) - (s, 0 U(t,5) ) (A(€'/2)%)

0(1-2)

This implies 7 > 1 which contradicts (3.47) because i 5 is a probability measure.

(3.47)

Combining the three cases discussed above, we obtain (3.37) and hence the proof is

complete.

Now we are ready to prove Theorem 3.16.

U

Proof of Theorem 3.16. For simplicity we only show that 1 o is infinitely divisible. The

proof for the case i s with arbitrary ¢ > s is similar.
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First of all, we shall show by induction that for every m € N,

2m -1 1!
o= 11 w4 oU (1, ‘72—m) . (3.48)
7=0

Here []" denotes the convolution product.

By (1.8) we have
1\ !
10 = iy 1 % </J§,0 olU (1, 5) ) ,

So (3.48) holds for m = 1. Now we assume that (3.48) holds for some m > 1. Then by
(1.8) we have forall j =0,1,--- ;2™ — 1,

I _ U (2 +1)+1 2j+1\""
Hitl 4 = [hEi+n+1 2541 * | (h2i+1 25 O om+1 " omr .

PUCRP UL om+1 om+1 om+17gm+1

For any probability measures x, v on H and measurable map 7" on H, it is easy to check
that

(p*xv)oTt=(uoT ) x(voT™). (3.49)
. —1
- j+1
i U (12—m)
2j+1)+1\ " 2+ 1\ "
Shegun g oU (17—( 2m+)1 ) * (/“‘5%111,2,311 °U <1a—2m+l )

_2j+1* o k1)l
_H leﬁn++l172rf+1 © 7 9m+1 )

k=2j

So,

-

Therefore, by assumption we have

om_1 2j+1

* k+1\""
wo=11 11 rpey x o0 (17—%1)

j=0 k=2j

m+1__
T o1y
o ]}_J(; M2§n++1172mk+1 © 7 9m+1 ’

This proves (3.48) for all m > 1.
By (3.48) and Lemma 3.17, p; ¢ is the limit of an infinitesimal triangular array. Hence
{410 1s infinitely divisible according to [43, Corollary VI.6.2]. U

Now we assume that for every ¢ > s, the measure 14  1s infinitely divisible. Then by the
Lévy-Khintchine theorem [43, Theorem VI1.4.10], there exists a negative definite, Sazonov
continuous function v, ; on H such that

,at,s(f) = eXp<_¢t,s(£))> 5 cH
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and v, , has the following form

Y€)= ~i0n, &) + {6 Fust)

~ iea) 1 _ i(&fc))
/H(e LT P mys(dz), &€ H,

where a; ; € H, R, 5 is a nonnegative definite, symmetric trace class operator on H, and m; 4
is a Lévy measure on H. We shall write

(3.50)

Hi,s = [at,sa Rt,sa mt,s]a t Z S.
In terms of the characteristic exponent ¢, ; of 11, s, condition (1.8) is equivalent to

Urs(€) = Yur(€) + s (U, 1)°E), £ €H (3.51)

foreveryt > r > s.
According to (3.50) the right hand side of (3.51) is given by

Vi (§) + e s(U(E, 7))
== il ©) + 56 Rund) = [ (00601 SEE ) an

1+ |z]?

—(U(t,r)ars, &) + %(ﬁ, U(t,r)R,.U(t,r)*¢)
_/ (ei(E,U(t,r)x) 1 i(ﬁ,U(t,r)x)) m,.,(dz)
H

1+ |z)?

=—i{ar, +U(t,7)ars, &) + %(5, (R, +U(t, )R, U (t,7)")E)
_ i&x) 1 ’L<€,QI> o _
/ (e w0 L W) (g, -+, 0 Ut 7)) (do)

+/Hi<§,U(t,r)x) m,«,s(d:c)—/ i€, U(t,r)xT m,..(dz).

1+ |z|? a1+ |U(t, r)z|?

Therefore, by the uniqueness of the canonical representation for infinitely divisible dis-
tributions we have the following identities (cf. also the proof of [40, Corollary 1.4.11]): for
everyt > r > s,

ars =, + UL, 7)ar s
1 1
U(t,r)x m, ;(dz),
/ ( + U, r)z]? 1+|ﬂf|2> (@) (3.52)

Res = Rey + Ut 1) ResU(t, )"

mg s = My, + m;, s © U(tv T)

In particular, from (3.52) (or directly from (3.10)) we have

Ay = O, Rt,t = 0, m;; = O7 t e R. (353)
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3.4. Associated stochastic processes. There are natural Lévy processes and additive pro-
cesses associated with the convolution equations (3.4) and (3.1) respectively. We refer to
[47, Theorem 7.10 (ii) and Theorem 9.7 (ii)] for details. The following theorem shows that
in some sense there is also a natural additive process associated with the family of measures
satisfying the skewed convolution equations (1.8).

Theorem 3.18. Let ty € R and (pu15)t,>t>s be a system of probability measures on H such
that forall s < r <t <t

fis = ey (prs 0 U (7)) (3.54)
and
Hes =0y asstt,
(3.55)
fis = g ast] s.
Set forall s <t <t
fies = pes 0 Ulto, 1)1
Then
(1) Forall s <r <t <t
flis = flir * s, (3.56)
fis,s = Oo (3.57)
and )
firs = 0 assTt, (3.58)

firs = 0 ast] s.
(2) There is a stochastically continuous additive process (X;)i,>t satisfying the follow-
ing conditions:
(a) For all t < to, Xy has the distribution [, .. In particular, X;, = 0 almost

surely.
(b) Forallty >t > s, the increment X, — X, has the distribution [i; .
(c) Forallty > t4 >ty > - -+ > iy, the increments Xy, — Xy, , withj =1,2,---.n

are independent.

Proof. (1) By (3.54) we have
,at,s = MH¢,s © U(t()v t)_l

- (,ut,r * (Hr,s o U(t; T)_l)) o U<t07 t)_l

= (Nt,v" o U(t07 t)71> * (,ur,s © U(t07 71)71)

- ﬂt,r * ﬂr,s~
This proves (3.56). Hence for all s < t;, we have jigs = figs * fiss. Since the unique
idempotent measure on a Hilbert space is the Dirac measure 9, (3.57) follows immediately.

Fix some sy < t;. By Lemma 3.10 there exists some constant ¢ > ( such that for all
r € Hand sy < s <t<tgy|U(ts)x| <c|z|. Hence for any € > 0, as in Lemma 3.11 we
have
frs({x € H: x| > e}) < e s({xr € H: |z| > ¢/c}).

Therefore, by Lemma 3.8 we obtain (3.58) from (3.55).
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(2)Foranyn € N, tg > t; > tg > --- > t,, let T4, 4, ..+, be the probability measure
defined on (H®", Z(H®")) in the following way:

Yy to 1, (B1 X By X -+ - X By)
:/HlBl(’yl)ﬂto,tl(dyl)/Hle(Z/l + Y2) fit, 1, (dy2) (3.59)

X oo X / 1Bn(y1 + y2 + e + yn)ﬁtn—lytn(dyn>7
H

where B; € Z(H) forj =1,2,--- ,n

By using (3.56), the family of probability measures (Yy, 1, ... 1, )tg>t: >to>->t, Satisfies
the consistency condition. Therefore, by Kolmogorov’s extension theorem there is a unique
probability measure P on the path space (Q,.%) := (H(>>%) B(H(>>"l)) such that for
all Bje Z#H),j=1,2,---,n

P(th - Bl,Xt2 - BQ, oo ,th c Bn) = Ttl,tz,---,tn(Bl X BQ X+ X Bn) (360)

Here X is the canonical process on (§2,.%) defined by X;(w) = w(t), t < ty.
Note that for any f € B,(H®"), (3.59) and (3.60) imply

E[f<Xt17 thv e 7th)]

= flyt, v+ yo, -, yi + Y2+ -+ Yn) fugt, (dyr) (3.61)

Hen

X ﬂt17t2 (dy2> XX /jl’t'nfl,tn (dyn)

In particular, from (3.61) we get that for every ¢t < ¢, X, is distributed as fi¢, ; = i, ¢
Hence P(X,;, = 0) = 1 since X;, ~ fi, 4, = do-

Let 21, --- , 2z, € H. It follows from (3.61) that
E |exp (@ Z <zj, X, — th_1>>]
j=1

- /® exXp (Zz<z]a yj>> ﬁto,tllatl,tz (dyQ) T ﬁtn—lvt” (dyn)
H®n j=1
:H/exp(i(zj,?/j»ﬂtj1,tj(dyj)-
i=17H

This implies for every j = 1,2,...,n,

E [exp (i(z), Xy, = Xi,,))] = /Hexp( (2 43)) g ;- (dy;) (3.62)

and

exp <ZZ zj, Xy — )] HIE exp iz, Xy, th,1>)} . (3.63)

Equation (3.62) shows that X;, — X;._, has distribution fi;, ;. _,, while Equation (3.63) shows
that (X;);,>¢ has independent increments.
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For any t, > t > s, the increment X, — X, has distribution /i, . It follows from (3.58)
that X, — X, converges to 0 in probability as ¢ tends to s or s tends to ¢. This proves that
(Xt)t,>¢ 1s stochastically continuous. O

There is another way to construct a stochastic process associated with (p; s)¢>5 satisfying
(1.8).

Theorem 3.19. Let sy € R and (fus)1>s>5, be a system of probability measures on H such
that for all s < s <r <,

Mis = Mt * (,ur,s o U<t7 ’f’)_l). (364)
Then there is a stochastically continuous process (Ys)s>s, satisfying the following condi-
tions:

(1) For every sy < s, Y has the distribution ps 5. In particular, Y, = 0 almost surely.
(2) For every sy < s < t, the increment Y, — U(t, s)Y; has the distribution ji; s. More-
over, Y; — U(t, s)Ys and Y are independent.

Suppose that for every s > S, [tsies = 0p as € | 0. Then Y, . converges in probability to
Ysase ] 0. So pisyc s, converges weakly to s 5, as € | 0.

Proof. Let (Q, %) = (Hl=>) B(HF—>))) and let (Y;)s>, be the canonical process on
(Q,.7) defined by

Yi(w) =w(s), s> so.

Forany n € N, 59 < 51 < 59 < --- < sy, let 75, 5, ... 5, be the probability measure
defined on (H®", Z(H®")) by

Ts1.s9..5n (B1 X By X +++ X By)

:/ 1Bl(y1)us1,so(dyl)/ 1, (U(s2,51)y1 + Y2) Hsy,s: (dY2)
H H

X / 15,(U (53, 51)y1 + U(s3, 82)02 + Y3) b0 (dY3) (3.65)
H
n—1
X oo X / 1Bn (Z U(3n7 S])yj + yn) /J“Smsn—l(dyn))
H =t

where B; € #(H), j =1,2,--- ,n.

Equation (3.64) implies that the family of probability measures (7, s, ... s, )so<s; <ss<-<sn
satisfies the consistency condition. Hence by Kolmogorov’s extension theorem, there is a
unique probability measure P on (€2, .%#) such that for all B; € #(H), j =1,2,--- ,n, and
S50 < 81 < 89 < - < Sy,

P(Y;, € B1,Y,, € By, -+ Y, € By) = Ty 59,5, (B1 X Ba X -+ X By). (3.66)

Hence for every f € By(H®?), so < s < t, we have

E[f(Ys, Y1)] = F i, Ut s)yn + y2) sso (dyr) e s (dya). (3.67)

HxH
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Therefore, for every 21, 2o € H, 5o < s <, we have
E [exp (i (21, Xs) + (22, Xy — U(t, 5) Xs)]
— [ el (o)) [ e ()
H

H

This implies that X, and X; — U(¢, s) X, are independent and they have distributions fi; s,
and s respectively. In particular, the distribution of X, is given by do. So, X, = 0
almost surely. Thus, (1) and (2) are proved.

Now for every s > sp and € > 0, we have

Xope = Xs = (Xsje —U(s+6,9)Xs) + (U(s +¢e,8) — I) X,.
Since X and X, ;. — U(s + ¢, s) X are independent, the distribution of X ,. — X is given
by
Hste,s * (MS,SO o(U(s+e,s)— ])_1) .

It is obvious that as & | 0, pis., 0 (U(s +¢&,s) — 1)~ converges weakly to &;. Indeed, for

every continuous bounded function f on H, we have

i [ (@) diteg o (U(s +29) =17 @)

:/Hlimf (U(s+e¢,s)—1I)x) d,u&SO(x)

el0

= [ 50) ditas (@) = 7(0) = 61
H
Suppose in addition that /1. s converges weakly to dy as € | 0. Then we have
fsses * (fsso © (U(s+e,8) = 1)) =8y, ase 0.

Hence X, . converges in probablity to X as € | 0. This implies that X,,. converges in
distribution to X as € | 0. That is, pts4. 5, converges weakly to p 5, as € | 0. U

In the following example, we construct concrete stochastic processes (X; )<y, and (Ys)s<s,
that satisfy the conditions in Theorem 3.18 and Theorem 3.19 respectively.

Example 3.20. Let (U(¢, s));>s be an evolution system of bounded operators on H and let
(Z¢)ter be a stochastically continuous additive process on some probability space (€2, P)
taking values in H. As in (1.4), we assume that the following stochastic convolution inte-
grals

t
Xis = / Ult,o)dZ,, t>s
are well defined. Let 1, s be the distribution of X ;.
(1) For fixed ¢y € R, consider the stochastic process (X;)¢,>t := (X, )1,>e- It is clear

that for all ¢ < ¢, X, has distribution /i, ;. Moreover, (1 s):,>¢>s fulfills condition (3.54).
Note that for all £y > ¢ > s, the increment X,, ; — X, ; has distribution

ﬁt,s = M5 O U(th t)_l-
First, we note that (cf. [41])

to to t
Xigs — Xigt = / Ulto,0)dZ, — / Ulty,0)dZ, = U(to,t)/ U(t,o)dZ,.
s t s
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So, for all B € #(H) we have

t
P(Xts — Xttt € B) =P (/ Ul(t,o)dZ, € U(to,t)_lB)

= :Ut,S<U<t0’t>7lB) = /]t,S(B>'
Clearly, the increments of (X, ;):,>+ are independent. Hence
Xigs = Xtot = (Xig,s = Xoor) + (Xigr — Xpop), s <1 <t <ty,

implies (3.56).

Suppose that (3.55) holds. Then it follows that the process (X, ¢):,>¢ is stochastically
continuous. Hence (3.58) follows.

(2) For fixed sy € R, consider the stochastic process (Y;)s>s, := (Xs.s,)s>s,- Clearly for
every s > sy, Ys has distribution y, ,. Moreover, for every ¢t > s > sj, we have

t S
Yt—U(t,s)Ys:/ U(t,o)ch,—U(t,s)/ U(s,0) dZ,
t S
_ / Ut,0)dZ, — / U(t, o) dZ, (3.68)
s0 s0
t

- / U(t,o)dZ,.

This shows that Y; — U(¢, s)Y; has distribution 1 s and that Y; — U(¢, s)Y; is independent
of Y,.
Let s > spand € > 0. By (3.68), it is clear that

Ys+€ - Y; = Xs+e,s + (U(S +e&, 5) - I) XS,SO-
Note that X, . s and X 5, are independent. So the distribution of Y. — Y is given by
Hste,s * (,US,SO o(U(s+e,s)— I)_l) :

Suppose that X, . ; converges in probability to O (equivalently, 1. s converges weakly
to do) as £ | 0. Since we also know that i, ., o (U(s 4 ¢, s) — I)”" converges weakly to d,
we obtain that Y. converges in probability to Y; as € | 0. Therefore, Y . converges in
distribution to Y as € | 0, 1.e. fi51¢ 5, cOnverges weakly to 15 5, as € | 0.

Using the stochastic processes constructed in Theorem 3.18 and Theorem 3.19, we have
probabilistic proofs of Theorem 3.12, Theorem 3.13 and Lemma 3.17, as we shall show
now:

Another proof of Theorem 3.12. Since Part (2) has been shown in Theorem 3.19, it remains
to show (1) and (3). By Theorem 3.18 there is a stochastically continuous additive process
(X¢)1,>¢ such that for all ¢, > ¢, the distribution of X is given by p, ;, and forall ty > ¢ > s,
the distribution of the increment X — X; is given by fi; s = s © U(to, t). Hence for every
0> 0,t) > s,and ¢ € R we have

Hm P(| X, — X, > 0) = 0.
e—0

This means that X, ,. converges in probability to X, as ¢ — 0. This implies that X,
converges in distribution to X, as ¢ — 0. That is, p, 1. converges weakly to ji, s as
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e — 0. Since ¢, was arbitrary, we have 1 ;. converges weakly to ;s as e — 0. So (1) is
proved.
Now for every ty > t > s, we have

hﬁ]lp(l(Xs - Xt—s) - (Xs - Xt>| > 5) =0.
So X — X;_. converges in distribution to X — X; as € | 0. This proves (3). [

Another proof of Theorem 3.13. Similar to the proof of Theorem 3.18, there is a stochasti-
cally continuous additive process (X;);cr such that fi; s is the distribution of the increment
X; — X, forall t > s. Hence for every § > 0, we have

lim P([(Xipe = Xopy) = (X = X)) 2 0) = 0.

e—0,n—

This implies that X, . — X, converges in distribution to X; — X,. Hence [i;} ¢4, con-
verges weakly to ji; s ase — O and n — 0. U

To give a probabilistic proof of Lemma 3.17, let us recall the following lemma which has
been proved in [47, Lemma 9.6] for the finite dimensional case. The proof for the infinite
dimensional case is the same.

Lemma 3.21. A stochastically continuous process (X;)icr taking values in H is uniformly
stochastically continuous on any finite interval. That is, for every sy < t, for every € > 0
andn > 0, there is § > 0 such that for all s and t in [so, to] with [t — s| < J, we have

P(|X; — Xs| > ¢) <.

Another proof of Lemma 3.17. By Theorem 3.18 there is a stochastically continuous addi-
tive process (X;)s,>t>s, such that fi; ; is the distribution of the increment X, — X, for all
to >t > s > so. By Lemma 3.21 we obtain that (X;),>>s, is uniformly stochastically
continuous. This means that for every ¢ > 0 and np > 0, there is a 6 > 0 such that for all
s,t € [so, to] satisfying |t — s| < §, we have

]P)(|XS — Xt| > 5) <.
In other words
fir,s(|x] > €) <.
This proves (3.37) since ji; s = pu1.s © Ul(to, t) " by definition. O

4. EVOLUTION SYSTEMS OF MEASURES

In general, we cannot expect a stationary invariant measure for the time inhomogeneous
generalized Mehler semigroup (p;+):>s defined in (1.7). So, we shall look for a family of
probability measures (v;);cg on H such that

/Hps,tf(x) Vs(d:c):/Hf(:c) v(dx), s<t 4.1)

for all f € By(H). Such a family of probability measures is called an evolution system of
measures for (ps+)>s in [14] (and entrance law in [20]). It can be regarded as a space-time
invariant measure for (ps ;).

We shall first show some properties of evolution systems of measures for (ps;):>s and
then study their existence and uniqueness.
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4.1. Some properties.

Lemma 4.1. A family of probability measures (v;),cr on H is an evolution system of mea-
sures for (ps+)i>s if and only if for every t > s,

prs* (Vo Ut 8)™) = m, (4.2)
or equivalently, for every t > s,
s (§)0s(U(t,5)°¢) = n(€), € € HL (4.3)
Proof. Note that for all f € B,(H) and s < ¢, we have
/ps,tf(l') Vs(dm)
H

:/H/Hf(U(t, 8)x +y) fur,s(dy)vs(d)
- /H /H F(@ 4+ y) pes(dy) (vs 0 U(t, 5)~") (dar)

:/ f(2) (s % (vs 0 U(t, s)_l)(dz).
H
So, (4.1) holds if and only if for all f € By(H),

/ F(2) (s * (s 0 UL, 8) 1) (d2) = / f(2) v(dz). 4.4)
H H
Thus, the proof is complete by noting that (4.4) holds if and only if (4.2) holds. U

Remark 4.2. A probability measure ; on H is said to be operator self-decomposable if
p=(poTy ) *p, t>0, (4.5)

holds for a family of semigroups (7} ):>o and measures (i ):>o. Operator self-decomposability
has been studied very well, see for example, (2, 5, 31, 50, 56] and the references therein.
In the setting of (1.1), any solution yx to the convolution equation (4.5) is just an invari-
ant measure for the generalized Mehler semigroup (1.1). Obviously, Equation (4.5) is the
homogeneous version of Equation (4.2).

Proposition 4.3. Let (v;)icr and (pu5)i>s be families of probability measures on H. Let
(U(t, s))t>s be an evolution family of operators on H. Suppose that (4.2) holds and for all
¢e€Handallt,s € Rt > s, 0, (U(t,s)*E) # 0. Then (furs)>s satisfies (1.8).

Proof. For any t > r > s, by (4.2) and (3.49) we have

Ht,s * (Vs © U<t7 5)71) =l

= pu* (vro Ut,r) ™)

= it * ([prs * (Vs 0 U(r, )] 0 U(t,7) ™)

= ez ([rs 0 UL, 7) 1] #[(vs 0 U(r,s) ™) o U(t, 1))
= pire % (pirs 0 U, 7)) 5 (s 0 U(L,5)71).

So, for all £ € H, we have
/lt,s(f) . ZA/S(U(ta 3)*5) = ,&t,r(é) ’ ﬂr,s(U(ra S)*g) : ﬁs(U(ta 8)*5)
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Since 4 (U(t, s)*€¢) # 0 by assumption, we have

fit,s(§) = fuer(§) - furs (U1, 8)"E).
This proves (1.8). 0

Similar as in Theorem 3.19, there exists a stochastic process associated with () cr.

Theorem 4.4. Let (v;)icr and (jiis)i>s be families of probability measures on H. Let
(U(t, s))i>s be an evolution family of operators on H. Suppose that (1.8) and (4.2) hold.
Then there is a stochastic process (X, _ )ier, such that foreveryt > s, X; _—U(t,5) X5 o
and X, _ are independent and have distributions |1, s and v, respectively.

Proof. Let Q = H(°>) be the collection of all functions w = (w(t))e(—00,00) from
(—00,00) into H. Let

Xt —oo(w) =w(t), te(—00,00),
be the canonical process on €. Let .# be the Borel o-algebra generated by cylinder sets on
Q. Foranyn € N, —oo <t <ty <---<t, <00, B; € ZH),j=1,2,--- ,n,define

Vty g tn (B1 X By X - -+ X By)
:/ Lo () (dy1>/ 1, (U(t2, t)yr + y2)bo i (dy2)
H H

X / 1Bs(U(t37 tl)yl + U(tg, tz)yg + y3)ﬂt3,t2 (dy3> NEEE (46)
H

n—1
X / 1p, (Z Uty t;)y; + yn> [t 1 (AYn).-
H

j=1
Then we extend vy, 4, ... 1, to a probability measure on (H®", Z(H®")). Then it is easy
to check that the family of probability measures {14, 4, ... t, }t,<to<..<t, satisfies the consis-
tency condition. Therefore, by Kolmogorov’s extension theorem there is a unique probabil-
ity measure IP on (€2, .#) such that forall —oo < t; <t, <.-- <t, < oo,and B; € #(H),
j=1,2,--- n,wehave
IPD()(tl,—oo S B17Xt2,—oo S B27 e 7th,—oo S Bn)

:th,tg,"’,tn(Bl X B2 X oo X Bn)
Similar to the proof of Theorem 3.19, for every z1, 2o € H, s < ¢, we have

E [exp (Z <z1a Xs,—oo> + i<22, Xt,—oo - U(t, S)Xs,—oo”

_ / exp(i (21, 41) s (dy) / exp(i (2, yo))1ies (dya).

H

4.7)

This implies that X ., and X; — U(t, s) X _~ are independent and they have distributions
vs and 1 s respectively. So, the proof is complete. U

Example 4.5. As in Example 3.20 let (U(¢, s)):>s be an evolution system of bounded op-
erators on H and let (Z;);cr be an additive process taking values in H. Suppose that for all
s < t, U(t,-) is integrable with respect to (Z;):cr on [s, t]. That is, the following stochastic
convolution integrals

t
Xis ::/ Ut,o)dZ,, t>s
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are well defined. Suppose that for all ¢ € R, X, , converges in probability to X, _, as
s — —oo. That is, we assume that the following improper integral

t
X o ::/ Ult,0)dZ,, tcR

exists (cf. [41]). For every t > s, let ji; s be the distribution of X, ;. For every t € R, let v,
denote the distribution of X; ..
Note that for all ¢t > s,

X0 = U(t, )Xy oo + Xy (4.8)

So, X oo — U(t, s) X5 _oo has distribution p, ;. Since X, _., and X, , are independent,
we obtain that X, _, and X; o, — U(t,s) X, _~ are independent. By (4.8) we get 1, =
[hts * (ys o Ul(t, s)*l). This proves that (14)cg is an evolution system of measures for the
transition function (ps)i>s of X (¢,s,2) :==U(t,s)x + Xy, x € H, t > s.

Concerning the infinite divisibility of v;, we have the following simple result.

Proposition 4.6. Let (14);cr be an evolution system of measure for (psy)i>s. Suppose that
for some sy € R the measures v, and (1t s, )i>s, are infinitely divisible, then for all t > s,
vy is infinitely divisible.

Proof. According to (4.2), for all t > s, v; is the convolution of j 5, and vy, o U(t,s)™.
Since f1; 5, 18 infinitely divisible, we only need to show that v, o U(t, so) ! is also infinitely
divisible.

Because v, 1s infinitely divisible, for any n € N, there is some probability measure l/ng)
on (H, #(H)) such that vy, = (yﬁg))*" . So by (3.49), we have

ve, o U(t, 50) " = (Vs(g) o U(t,se) ).
for all ¢ > sg. This proves that v, o U(t, so) " is also infinitely divisible. O

Theorem 4.7. Let (I/t(l))teR be an evolution system of measures for (ps;)i>s. Let (l/t(z))teR
and (0y)ier be two families of probability measures on H such that

v =W xo, teR (4.9)
and
op=o0,0U(t,s)”!, t>s.
Then (ut(2))t€R is also an evolution system of measures for (s +)>s.
Proof. For every £ € H, by (4.3) and (4.9), we have
517 (€) = 00(€)61(€) = fu (P (U, 5)°€) 64(€)
= fu, (DD (UL, 8)°€)6(U (L, 8)°€) = fie,s (€)047 (U (1, 5)*€).

Hence the assertion follows by Lemma 4.1. 0
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4.2. Existence and uniqueness. For special cases of our (p;,);>, in this paper, existence
and uniqueness of evolution systems of measures have been studied in [13, 32, 57] etc.
in different settings. Our framework is more general. We emphasize that Theorem 4.9,
Theorem 4.10 and Corollary 4.12 below not only generalize the corresponding results in
[57] for finite dimensional Lévy driven non-autonomous Ornstein-Uhlenbeck processes,
but also contain some new results even in the finite dimension case.

From now on we always assume that

(1) The family (g s)+>s satisfies (1.8). That is, for all s < r <,
Hes = Hir * (,ur,s © U(tu 7”)71) .

(2) For every t > s, i ¢ 1s infinitely divisible with representation (as e.g. in the case it
satisfies Assumption 3.7)

Ht,s = [at,& Rt,sv mt,s]7

where a; ; € H, R, ; is a nonnegative definite, self-adjoint trace class operator on H,
and m, 4 is a Lévy measure on H.

By (3.52), for every fixed ¢ € R, (my):>5 is a family of Lévy measures decreasing in s
in the sense that forall A € Z(H \ {0}), and all s < r <,

mt,s(A> 2 mt,r(A)7
which allows us to define m; _, for every ¢t € R by setting m; _,,({0}) = 0 and
M oo(A) = lim m,(4), A€ BH{0))
Conditions under which m; ., is a Lévy measure will be given later in Theorem 4.9.

Lemma 4.8. Suppose that for every t € R,
sup tr R; s < oo. (4.10)

s<t

Then there is a trace class operator R, _, on H such that for all x,y € H,
(Ri—oox,y) = lim (R sx,vy). 4.11)
s——00

Proof. By (3.52), forevery x € Hand ¢t € R, (R; sz, z) is decreasing in s. More precisely,
forevery x € Hand s < r < t, we have

(Ryse,x) = (R, x) + (R U(t,r) x, U(t,r)*z) > (R o, ).
It follows that for every s < r <,
tr Rt,T S tr Rt,S'

Therefore, as s tends to —oo, the limit of (R, sx, x) exists.
By (4.10), for every t € R, there exists a constant C; > 0 such that

Sup<Rt,s$7x> é Ct‘xP
s<t

holds for every = € H. By the polarization identity, forevery ¢ € R, x,y € H, lims, o (R: 2, y)
exists. Fixing x € H and letting y € H vary, we get a functional lim,_, . (R; sz, -). So, by
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Riesz’s representation theorem, for every x € M, there exists an element z; € H for every
t € R such that for all y € H,

lim (R x,y) = (27, ).

§——00
Let R; o denote the map x — z}. By (4.10), it is clear that ?; . is a trace class operator.
This proves (4.11). ]

Now we are ready to show the following result on the existence of evolution system of
measures for (ps;)>s.

Theorem 4.9. Suppose that for every t € R, the following three hypotheses hold:

(HI) supg,tr Ry s < 005

(H2) sup,<; [z (1 A |2]?) my s (da) < oo;

(H3) Foreveryt € R, a; _o = lim,_,_ a5 exists and is finite.
Then for everyt € R, m; ., is a Lévy measure, IR, _ is a nonnegative definite, self-adjoint
trace class operator such that

tr Ry oo = sup Ry s < 00.
s<t

Moreover; the system of measures (V;)icr given by
Ve = 4 —ocs Rt—0o, My o], tER
is an evolution system of measures for (ps.t)>s.

Proof. Suppose that (H1), (H2) and (H3) hold. By Lemma 4.8, forevery t € R, R, _isa
nonnegative definite, self-adjoint trace class operator satisfying

tr Ry oo = sup Ry s < 00.
s<t

Foreacht € R,
/(1 A )P my oo (dy) = sup/(l Az ?) my o (dz) < oo.
H s<t JH

This shows that m; _ is a Lévy measure.
Now we show that (1/;)cr is an evolution system of measures for (p;;);>s. By (1.8), for
everyt > s >,

pies * (prsp 0 U, 8)71) = pies. (4.12)

Note that pi; s = [ars, Rt s, m; 5] converges weakly to [as oo, Rt —oo, My o] = V4 a5 5 —
—oo (cf. [22, Lemma 3.4]). Hence letting » — —oo on both sides of (4.12) we obtain

fies * (Vs o UL, 8)71) = 1.
By Lemma 4.1 this proves that (1;).cr is an evolution system of measures for (ps;)i>s. O

The following theorem is the converse to Theorem 4.9. It also gives some sufficient
conditions for the uniqueness of the evolution system of measures.

Theorem 4.10. Suppose that there is an evolution system of measures (y)ier for (Dst)i>s-
Then
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(1) Hypotheses (H1) and (H2) hold and for everyt € R
0, Rt s, mys] = [0, Rt oo, My o] as s — —00. (4.13)
(2) There exists a family of probability measures (7;);cr such that for every t € R,
Oy * (ﬁs o U(t, 5)’1) =0, ass— —00 (4.14)
and
Uy = [0, Rt oo, My oo ¥ Gy, tER. (4.15)
(3) Suppose that the following hypothesis holds:
(H4) For everyt € R, as s — —o0, 50 U(t, s)~! converges weakly to some proba-
bility measure o, on H.

If for each t € R, o, is infinitely divisible, then the limit in (H3) exists. Moreover,
forallt € R we have

Gt = Oar_. * 04, (4.16)
Dy = vy % 0y 4.17)

and
oy =o0,0U(t,s)7!, t>s. (4.18)

Here (14)cr is as defined in Theorem 4.9.
(4) If the limit in (H3) exists, then the limit in (H4) exists. Hence (4.16), (4.17) and
(4.18) hold.

Proof. (1) For every t > s, we set
Ng,, :=10,Ng,,,0], M :=1[0,0,m,.
Since (7;)cr is an evolution system of measures for (ps);>s, by Lemma 4.1 we have for
allt > s,
U = s * (s 0 U(t,8)7Y) = [ays, Res,mys) % (7,0 U(L, 5) ")
= 0g. % N, % My g% (750 U(t,5)7").

at,s

(4.19)

Applying Theorem 3.1 to (4.19), the sequence of probability measure (J,, _, * Ng, _, *
M; _p,)n>1 is shift compact. That is, for every ¢ € R, there exists a sequence (; _,),>1 in
H such that the following sequence of probability measures

5yt7_n * <5at7_n * NRt,_n * Mt,fn) = [yt,fn + at,fm Rt,fna mt,fn]; n 2 17
is weakly relatively compact. This implies (see [43, Theorem VI1.5.3])

supm; _,({x € H: |z| > 1}) < o0 (4.20)
neN
and
sup (tr R, _, +/ |x|2mt7_n(dx)) < 0. 4.21)
neN |z|<1

It follows from (4.21) that

sup tr 7y ¢ < oo.
s<t

Combining (4.20) and (4.21) we obtain

sup/(l A |x|*) my 4 (dz) < oo.
H

s<t
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Therefore, for every ¢ € R we obtain by taking limits as before a Lévy measure m; _, and
a trace class operator ?; _ .. Hence (4.13) follows.
(2) By (4.19) we have forallt > s

U = (Gay, % (70 U(t,5)7")) % Ny, % M.

We have shown in (4.13) that Ng, M, ; converges weakly to an infinitely divisible measure
[0, Rt — o, My o] as s — —oo. Therefore by Corollary 3.5, the measures Oay., * (ﬁs o
U(t,s)™1) converges weakly as s — —oc0. So, (4.14) and (4.15) are proved.

(3) Applying Corollary 3.5 to (4.14), using (H4) and the assumption that o, is infinitely
divisible for every ¢ € R, the limit of a,, as s — —oo exists. So, (H3) and hence (4.16)
hold. By (4.15) and (4.16), we have for every ¢t € R,

Uy = [07 Rt,—ooamt,—oo] * 0y = [at,—ocn Rt,—oo,mt,—oo] * 0y = Vg * Oy.

This proves (4.17).
Now we show (4.18). For every u < s < t and £ € H, we have

Du(U(tu)"€) = 0, (U(s,u) Ut 9)"€). (4.22)

Letting u — —oo in (4.22) and using (H4), we get 6,(¢) = 6, (U (¢, s)*¢). This is equivalent
to (4.18).

(4) If (H3) holds, then ¢,,, = d,, ., as s — —oo. Note that any Dirac measure is

infinitely divisible. So, by applying Corollary 3.5 to (4.14), we see that the limit in (H4)

exists and hence (4.17) and (4.18) hold.
O

Remark 4.11. As is known, any invariant measure v for a time homogeneous Gaussian
Ornstein-Uhlenbeck semigroup is of the form v * p.,, where v is a measure on H that is
invariant under the action of a semigroup, and /i, is a Gaussian measure. We refer to [24,
Theorem 5.22] for details. We emphasize that the structure of v * 1, is analogous to (4.17).

By Theorem 4.10 we have the following result on the uniqueness.

Corollary 4.12. Let (#;)cr be an evolution system of measures for (ps;)i>s. Suppose that
for every t € R, there is a sequence (s,)n,>1 bounded above by t such that the following
conditions are fulfilled:

(1) Asn — oo, 5, = —00.
(2) There exist some constants M,w > 0 such that

|U(t, 5,)]| < M e s (4.23)

(3) The sequence of probability measures (Us, ),>1 is uniformly tight.

Then (H1), (H2) and (H3) hold. Hence ([at oo, Rt — oo, Mt —oo) )ter €xists and it is the unique
evolution system of measures for (ps+)i>s, hence equal to (D4)ier.

Proof. By the proof of Theorem 4.10, it is sufficient to show
5Sn oU(t,sp) ' =y asn — oo. (4.24)

Lete,n > 0. Since (75, ),,>1 is uniformly tight, there is a compact set /,, C H such that for
alln > 1,
by, (H\ K,) <. (4.25)
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Set forallm > 1, C, = M~ 1e(t=sn) Since s, — —o0 as n — 00, also C,, — 00
as n — o0o. So, there exists some Ny > 0 such that the compact set K, is contained in
{z € H: |z| < eC,} for all n > Ny. Therefore, for all n > N,, we have

Us,({x € H: |z| > C,}) < 75, {(H\ K, }) <. (4.26)
Because
Ut su)ll < M et =1/C,,
by (4.26) we have for all n > N,
U, o U(t,s,) '({w € H: |z| > ¢}) < 7, ({x € H: |z| > £C,,) < 1.
By Lemma 3.8 this implies (4.24). Thus, the proof is complete. U

As an application of Corollary 4.12, we consider the uniqueness of periodic evolution
systems of measures.

Corollary 4.13. Suppose that (H1), (H2) and (H3) hold and that (ji s)i>s is periodic with
periodT > 0, i.e. foreveryt > s, g s = pir,s. Then ()ier = ([at,—cos Rt —cos Mt oo )teRr
exists and is a periodic evoluton system of measures for (ps)i>s with period T. That is, for
everyt € R, vy p = vy Suppose in addition that there exist some constants M,w > 0 such
that

Ut s)]| < M)
Then (v;)tcr is the unique periodic evolution system of measures with period T for (ps¢)¢>s.

Proof. By Theorem 4.9, (t)tcr = ([at—o0, Rt —cos Mt — oo )1er €Xists. For every t > s we
have

Mt4+T,s+T = Mt,s- (4.27)

By letting s — —oo on both sides of (4.27) we obtain v, = v;. This shows that (1/;)cR is
periodic with period 7'.

Now it remains to show the uniqueness. Take any sy < ¢ and set s,, = so — n1" for all
n > 1. Then vy, = v,, for all n > 1. So it is obvious that (g, ),>1 is uniformly tight. By
Corollary 4.12, (4).er is the unique evolution system of measures for (ps ¢ )s>s. O

Remark 4.14. Existence and uniqueness of evolution systems of measures have been stud-
ied for stochastic evolution equations with time dependent periodic coefficients driven by
Gaussian and Lévy processes in [13] and [32] respectively. Clearly, Corollary 4.13 applies
to these cases. More generally, one can apply it to study stochastic evolution equations with
time dependent periodic coefficients driven by so called semi-Lévy processes. A stochastic
process (Z;)icr is called a semi-Lévy process with period 7' > 0 if it is an additive process
such that for all ¢ > s, Z;. 1+ — Z, 1 has the same distribution as Z; — Z; as in [39].

In [39] it is shown that for the finite dimensional case, under some conditions, v/ is semi-
self-decomposable. Moreover, this is closely related to the so called semi-selfsimilar and
semi-stationary processes. One may study similar self-decomposibility and semi-stationarity
in the infinite dimensional case as in [1, 39].
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5. HARNACK INEQUALITIES AND APPLICATIONS

Harnack inequalities for generalized Mehler semigroups or Ornstein-Uhlenbeck semi-
group driven by Lévy processes were proved in [32, 40, 42, 45]. The method in [32] and
[45] relies on taking the derivative of a proper functional; the method in [40, 42] is based
on coupling of stochastic processes and Girsanov transformation. Here we shall establish a
Harnack inequality for (p;;):>, defined by (1.7) by a much simper method.

Suppose that for all t > s, p; s = [ars, Re s, My ] is an infinitely divisible measure on H
satisfying (1.8).

For each t > s, set

Mtg,s = {07 Rt,s? 0]7 :U'g,s = [at,sv 07 mt,s]

and for every f € By(H), x € H, set

P () = (s % Buoge) (f) = / FUE5) + ) il (dy),

PLof () = (i, % 6.)(f) = /H F(x + ) i (dy).

With these notations, we have the following decomposition for ps, which plays a key
role.

Proposition 5.1. Foreveryt > s, x € Hand f € B,(H), we have

psf(7) = pg,t(p{s,t)f('x)'

Proof. Since ji;s = i, * Mg,s’ we get

ps,tf(x) :<Nt,s * 5U(t,5)w)(f) = (N?,s * /l‘{,s * 5U(t,s):v)(f)
=((1f s * due.pa) * 161.4) (f)

= [t Suantiy) [ 2l
H H
= (1 s * ut)e) WL f) = s (0, f) ().
This completes the proof. U

Define for every t > s,
Ty, = R, U (1, s) (5.1)
with domain
P(Ty,) == {z € H: U(t,s)z € Ry (H)}.

If 2 ¢ P(T,) then we set |, ;x| := oo. Let B (H) denote the space of all bounded
positive measurable functions on Hl.

Theorem 5.2. Foreverya > 1,t > sand f € B,f (H), we have

a|ll'ts(x —y)
2(a—1)

2
(ps,tf<x))a S exXp ( ‘ ) ps,tfa(y)v z,y € H (52)
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Proof. We only need to consider the case when U(t, s)(H) € R}/ 2( H). Otherwise, the
right hand side of (5.2) is infinite by the definition of |I'; ;(-)| and hence the inequality (5.2)
becomes trivial.

Let us first show that it is sufficient to have the following Harnack inequality for p ;:

N2
oty <o (TSI ), wyen )

Indeed, by Proposition 5.1, we have p,; = pitpg,t. So by applying inequality (5.3) to p?,
and Jensen’s inequality to pf;,t we obtain

(ps,tf(l’))a :(pg,t(pg,tf) (@)a
<o (500 (.04 0)
< exp (“‘Fm(x - ”'2) (V7,0 ) ()

2(a—1)
—ep (A0 o) ).

This proves (5.3)

Now it remains to show (5.3). The method is the same as in the case of a one dimensional
(time homogeneous) Ornstein-Uhlenbeck process, see [40, Page 69].

Let N(m, Q) denote the Gaussian measure on H with mean m € H and covariance
operator () on H. By the Cameron-Martin formula for Gaussian measures (see [15, Theorem
2.21]), we have

prale =) = T W Bl

—oxp (809 =) B2 = IR ) = )P )

5.4)

Moreover, for any i € H, we have (see [16, Proposition 1.2.5])

/ exp((h, z)) did () —exp( |R1/2h|2>. (5.5)
H
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By changing variables and using (5.4) we obtain

ps tf

/f (t, s)e + 2) ud o (d2)

= /H fU,s)y+U(t,s)(z—y)+ 2) N0, R 5)(dz)

~ [ rwsy+ oIV = 9) Bus) 1y (o, R, ) (02

AN (0, R, ) (5.6)

_ /H FU )y + ) prs(e — y, #) i o(d2)
—exp (=5na(e - )

[ s+ e (RO )@ =) R2) ) i)

By Holder’s inequality and (5.5) we have

| 5@+ e (R0 =), Bl ) it a2

= (/H fHUE s)y +2) Mf,s(dzf)) 1/a

(a=1)/a
(o (2l R U6 -0 ) ) 5.7
[ (2

o L a2 oy V@
<o) (o (3 Sl e - ) )
— ()" e (5 Tl = )7 )
Combining (5.6) and (5.7) we get
plef ()
<exp (—5lTule 0P ) (2" 0) " 0 (Tl =)

—ex (Gt = ) (200"

This proves (5.3). Hence the proof is complete as we have argued at the beginning that
(5.3) is sufficient. [

Example 5.3. Suppose that H = L?(0, 1). Let A denote the Dirichlet Laplacian on H. Let
en, > 1, be the eigenbasis of A with respective eigenvalues —n?72, n > 1. Let a(t) be a
continuous function on R. Then

a(t)Ae, = —a(t)n’n’e,, n=1,2,---
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The evolution family (U(¢, s));>s associated with a(t) A is given by
00 t
Ult,s)x = Zexp (—n27r2/ a(r) dr) (x,en)e,, x€H.
n=1 $

Let (W;):er be a R-Wiener process taking values in H. We assume that there exist a
sequence of nonnegative real numbers (A, ),>1 such that

Re,, = M\,

and a sequence (b, ),>; of real independent Brownian motion such that

(Wi, x) = Z VAl en)b,(t), zeH, telR.
n=1

Now let us consider the following SPDE on H.

dXt = Cl(t)AXtdt + th,
(5.8)
X, ==x.
Assume that for all ¢ > s,
[e%¢) t t
Tre: = )\n/ exp (—2n27r2/ a(r) dr) du < oo.
n=0 § §
Then the following stochastic convolution
t
Wy (t,s) == / U(t,r)dW,
is well defined. The distribution of Wi, (¢, s) is given by pt s ~ N(0, R, ), where
t
Ry s = / U(t,r)RU(t,r)* dr.
Clearly tr R; s = 1 5. By [15, Chapter 5], the mild solution of (5.8) is given by
X(t,s,x) =U(t,s)x +Wy(t,s), xzeH, t>s.
The generalized Mehler semigroup of X (¢, s, ) is given by
poaf (@) = [ FU(ES) 4 ) sl 59)
H

forallz € H, f € By(H) and ¢t > s.
We are going to look for the Harnack inequality for p, ;.
Let',, = R;SI/ZU(t, s). Note that for all n > 1,

t t
Ry sen = A\, {/ exp (—2n27r2/ a(r) dr) du} en.

exp (—n27r2 [a(r) dr)

[)\n [fexp <—2n27r2 [ra(r) dr) du

We have

Rl:sl/QU(ta S)en =

€n

i| 1/2
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Therefore for every x € H, we have
ICysl® = (R PUG ), By UL, s>x>
exp( 2n27r2f dr)
=1 An fst exp <—2n27r2 fs a(r) dr) du
Hence we obtain the following Harnack inequality for p; ;:
o % exp (—2n27r2 f; a(r) dr) (r —y,e,)?
2a—1) = ) [Fexp <—2n27r2 [a(r) dr) du

foreverya > 1, z,y € H, t > sand f € B, (H).

(z,e,)°.

(pspf(2))* < exp P f(Y),

Applying Theorem 5.2, we have the following result.

Theorem 5.4. Fixt > s. The implications (1) = (2) = (3) = (4) = (5) of the following
statements hold:
(1) one has
Ult,s)(H) C Ri(H), (5.10)
(2) ||Tesll < oo and for every a > 1, f € B/ (H),

at@) < o (WY, o) wyem s

(3) ||Tssl| < oo and there exists some o > 1 such that (5.11) holds for all f € By (H);
(4) |Te.sll < oo and for every f € B, (H) with f > 1,

”Ft,SH2
2

pslog f(x) < logps,f(y) + lx—y’, z,y€H; (5.12)

(5) psz is strong Feller, i.e. for every f € By(H), ps.f € Cy(H).

In particular, if m; s = 0, then all these statements are equivalent.

Proof. If (5.10) holds, then I'; ; is a bounded linear operator on H. Hence by Theorem
5.2, we get (2) from (1). That (2) implies (3) is trivial. The implications (3)=-(4)=-(5) are
consequences of Harnack inequalities, as proved in [55].

Now we show that if m; ; = 0, then (5) implies (1). Note that

poef(@) = [ £) N5}z, Re) ().
If (5.10) does not hold, then there exists an = € H such that U (¢, s)zq ¢ Rtl{f(H) Take

1
rpn=—xo€H, n=12....
n

By the Cameron-Martin theorem (see e.g. [15]), for each n = 1,2,---, the Gaussian
measure /i, ‘= N(U(t, s)xy, R ) is orthogonal to 19 := N(0, R; ), since U(t, s)x,, ¢
Ri/sz(H) It means that for every n = 1,2,--- | there exists a set A, € Z(H) such that
pn(A,) = 1and po(A,) = 0. Let A := U,>1A4,. Then we have 1p(A) = 0, pun(A) =1
since po(A) < 37 po(A,) = 0 and p,(A) > pn(4,) = 1.
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Take f = 14. Because x, tends to 0 as n — oo and py, is strong Feller, p,.f(z,)
converges to p,;f(0) as n — co. But this is impossible because we have p; . f(z,) = 1 for
alln > 1 and p,,f(0) = 0. So, (5.10) must hold. O

Remark 5.5. If 1?; ; has the form (6.2), then (5.10) is equivalent to the null controllability of
a non-autonomous control system (6.1) (see Section 6 for details). For this reason, condition
(5.10) is also called null-controllability condition. This gives an equivalent description of
the strong Feller property in the Gaussian case.

Remark 5.6. In [12] it is shown that the null controllability implies the strong Feller prop-
erty for autonomous Ornstein-Uhlenbeck processes with deterministic perturbation driven
by a Wiener process. Obviously, our result generalizes this result.

In fact (5.10) implies more. Let UC(H) denote the space of all infinitely Fréchet dif-
ferentiable functions with uniform continuous derivatives on H.

Proposition 5.7. Suppose that (5.10) holds. Then for every f € By(H) and every t > s,
psif € UC™®(H).

Proof. In view of the decomposition ps; = pitpg,t shown in Proposition 5.1, we only need
to show that pJ , € UC™(H) for every g € B,(H). The rest of the proof is the same as in
[16, Theorem 6.2.2]. ]

We have the following quantitative estimate for the strong Feller property. This result is
shown in [42] for Lévy driven Ornstein-Uhlenbeck process by a coupling method.

Proposition 5.8. Lett > s and v,y € H. Then
|ps,tf(w) - ps,tf(y)|2

2 (5.13)
< (e‘rt’s(m_y)‘ —1> min {pe.f(2) = (psuf(2))*: 2 = 2,y } -
Proof. Let h = pg’t [ Then by Proposition 5.1 we have p,; f = pJ ;h. Moreover,
h? = (pi,tf)z < pg,th
by Jensen’s inequality. So, for every z € H, we have
2
p? 2 (2) — (p? k(2
h*(2) = (pfeh(2)) 5.14)

<pL ) f2(2) — (DL F(2)) = poaf2(2) — (s f (2)2

Note also that (5.13) is symmetric in z and y. So, according to (5.14) we only need to show
the following inequality

p?,h(z) — plh(y)|* < <e‘“’s(x’y)‘2 —1> (2P (y) — (p2,h(y))?) - (5.15)

Using the notation in (5.4) we have

peh(z) = /Hh(U(t, s)x + z) pi,(dz) = /Hpt,s(l’ —y, 2)W(U(t, 8)y + 2) pi s (dz).
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Therefore we obtain

2 h(x) — P h(y)
_ ( [l = .2 = 10 U9+ 2) = 2,1 ui’,s(dZ))
< / (prsl — 9, 2) — 1) i (d) /H (WUt s)y + 2) — o oh(y)]? 1 (d)

- ([ s —vomta 1) (Hh2 (t25)y + 2) i d2) — 42,00
:<e|rt,s<z—y>|2 )(pst;ﬂ() (p? ,h(y))?)

Note that here we have used (5.5) to obtain

z—)[2
/ p?,s(x - Y, Z) /Ltgjs(dz) = e‘Fivs( y)l )
H
U

Now we apply the Harnack inequality (5.2) to study the hyperboundedness of the transi-
tion function p; ;. In [23] hypercontractivity is studied for the Gaussian case via log-Sobolev
inequality.

Theorem 5.9. Let (v;):cr be an evolution system of measures for (ps)i>s. For every s < t,
a>1 ande >0, let

Then forall f € L*(H, 1),

”ps,tfHLa(lJra)(H’l,s) S 037,5(05, g)*a(lJrE) HfHLa(H’Vt)' (516)
Proof. From the Harnack inequality (5.2) we have

a|l'ys(z —y)
2(a—1)

(psef(x))* exp {— ] <ps:fi(y), x,yeH.

Integrating both sides of the inequality above with respect to v,(dy) and using the fact that
(1¢)1er is an evolution system of measures, we obtain

el 10) [ exp (-0 v < [ 11100 mta)

Hence

107 < [ [ e (<Y )

Integrating both sides of the inequality above with respect to v (dx), we get (5.16). U
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6. APPENDIX: NULL CONTROLLABILITY

Consider the following non-autonomous linear control system
{ dz(t) = A(t)z(t)dt + C(t)u(t) dt,

2(s) =z,

6.1

where (A(t)):cr is a family of linear operators on H with dense domains and (C'(t))cr is
a family of bounded linear operators on H. Let (U(t, s)):>s be an evolution family on H
associated with (A(t))cgr. Consider the mild solution of (6.1)

2(t,s,x) = U(t,s)r + /t U(t,r)C(r)u(r)dr. x €M, t>s.

In control theory, z(t, s, x) is interpreted as the state of the system and u as a strategy to
control the system. If there exists some u € L*([s, t], H) such that z(¢, s, ) = 0, then we
say the system (6.1) can be transferred to O at time ¢ from the initial state z € H at time
s. If for every initial state x € H the system (6.1) can be transferred to 0 then we say the
system (6.1) is null controllable at time ¢. We refer to [58] (see also [15, Appendix B]) for
the details on null controllability of autonomous control systems.

Set forevery t > s

t
M.z — / Ut /)OO Ut r) dr, « € H. 6.2)
Proposition 6.1. Let x € H and t > s. The system (6.1) can be transferred to 0 at time

t from x if and only if U(t,s)z € Hi{f(H) Moreover, the minimal energy among all
2

strategies transferring x to 0 at time t is given by |H;:/2U(t, s)z|?, ie.

I, Ut s)a?

in {/t ()2 dr: 2(ts,2) = 0, 2(s,5,7) = 2, u € L?([s,t],H)} |

Proof. For every t > s, define a linear operator

(6.3)

t
Lis: L*([s,t],H) — H, uw— Lygu = / U(t,m)C(r)u(r)dr.

The adjoint L; ; of L s is given by
(Lix)(r)=C*"(r)U(t,r)*z, x€H, rels,t.
It is easy to check that
Ht,s = Lt,sLZS~

Then by [15, Corollary B.4], L, ((L*([s,t],H) = TI, ,(H). Hence the first assertion of the
theorem is proved, since the initial state x can be transferred to 0 if and only if U (¢, s)z is
contained in the image space of L, ; due to the fact that z(¢, s,x) = U(t, s)x + Ly su.

By [15, Corollary B.4] we also get

0, %yl = |Ltyl,  y € Liy(L3([s, 1], H)). (6.4)

,S

Here the inverse is understood as a pseudo—inverse. Taking y = U(¢, s)x in (6.4), we obtain
(6.3). 0J
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From Proposition 6.1, we get the following corollary.
Corollary 6.2. The system (6.1) is null controllable at time t if and only if
U(t,s)(H) C 11,7 (H). (6.5)

From (6.3), it is easy to get upper bounds of |II;_ ! 2y (t, s)z|* by choosing proper null
control functions u. The following proposition is analogous to [42, Proposition 2.1].

Proposition 6.3. Lett > s. Assume that for every r € [s, t], the operator C(r) is invertible.
Then for every strictly positive function £ € C([s, t]),

f |IC(r) U (r, s)z|* 2 dr

)
In particular, if C(r) = C and |C7'U(r, s)z|> < h(r)|C~'x|? for every x € H, then
—1,.02
I, 20U, s)a]? < B (6.7)
f h(r)~tdr’

;U (t, s)

, z el (6.6)

Proof. We only need to consider the case when U (¢, s)z € 11, / *(H) and the function [s, ] 3

S

r— &C(r)~U(r, s)z belongs to L*([0,¢], H). Then the following function

& 1
u(r) .= —————0C(r)" " "U(r,s)x, 1 €|s,t],
(1) = =g CO U)o, 7 ela
is a null control of the system (6.1). And hence the estimate (6.6) follows from (6.3). The
second estimate (6.7) follows by taking £(r) = h(r)~! forall r € [s, t]. O
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