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1Program in Applied and Computational Mathematics, Princeton University,

Princeton, NJ 08544-1000, USA, e-mail: ajentzen@math.princeton.edu

2Faculty of Mathematics, Bielefeld University, 33501 Bielefeld,

Germany, e-mail: roeckner@math.uni-bielefeld.de

January 27, 2012

Abstract

This article studies an infinite dimensional analog of Milstein’s scheme for finite dimensional stochas-
tic ordinary differential equations (SODEs). The Milstein scheme is known to be impressively efficient
for SODEs which fulfill a certain commutativity type condition. This article introduces the infinite di-
mensional analog of this commutativity type condition and observes that a certain class of semilinear
stochastic partial differential equation (SPDEs) with multiplicative trace class noise naturally fulfills the
resulting infinite dimensional commutativity condition. In particular, a suitable infinite dimensional ana-
log of Milstein’s algorithm can be simulated efficiently for such SPDEs and requires less computational
operations and random variables than previously considered algorithms for simulating such SPDEs. The
analysis is supported by numerical results for a stochastic heat equation and stochastic reaction diffusion
equations showing significant computational savings.

1 Introduction

In this article an infinite dimensional analog of Milstein’s scheme for finite dimensional stochastic ordinary
differential equations (SODEs) is studied. In order to get a better understanding of this Milstein type
scheme in infinite dimensions, we first briefly review Milstein’s method for finite dimensional SODEs and
then concentrate on the case of infinite dimensional stochastic partial differential equations (SPDEs) in the
rest of this introductory section.

Let T ∈ (0,∞) be a real number, let d,m ∈ N := {1, 2, . . .} be natural numbers, let (Ω,F ,P) be a
probability space with a normal filtration (Ft)t∈[0,T ] and let w = (w1, . . . , wm) : [0, T ] × Ω → Rm be an

m-dimensional standard (Ft)t∈[0,T ]-Brownian motion. Moreover, let x0 ∈ Rd and let µ = (µ1, . . . , µd) : Rd →
Rd and σ = (σi,j)i∈{1,...,d},j∈{1,...,m} : Rd → Rd×m be two smooth functions satisfying suitable Lipschitz
assumptions (see condition (3.21) in Theorem 10.3.5 in P. E. Kloeden and E. Platen [34] for details). The
SODE

dXt = µ(Xt) dt+ σ(Xt) dwt, X0 = x0 (1)

for all t ∈ [0, T ] then admits a unique solution. More precisely, there exists an up to indistinguishability
unique adapted stochastic process X : [0, T ]× Ω → Rd with continuous sample paths which satisfies

Xt = x0 +

∫ t

0

µ(Xs) ds+

∫ t

0

σ(Xs) dws (2)

= x0 +

∫ t

0

µ(Xs) ds+
m∑
i=1

∫ t

0

σi(Xs) dw
i
s

P-a.s. for all t ∈ [0, T ]. Here σi : Rd → Rd is given by σi(x) = (σ1,i(x), . . . , σd,i(x)) for all x ∈ Rd and all
i ∈ {1, . . . ,m}. Milstein’s method (see, e.g., (3.3) in Section 10.3 in P. E. Kloeden and E. Platen [34] and
also G. N. Milstein’s original article [45]) applied to the SODE (1) is then given by F/B(Rd)-measurable
mappings yNn : Ω → Rd, n ∈ {0, 1, . . . , N}, N ∈ N, with yN0 = x0 and

yNn+1 = yNn +
T

N
· µ(yNn ) +

m∑
i=1

σi(y
N
n ) ·

(
wi

(n+1)T
N

− wi
nT
N

)
+

m∑
i,j=1

d∑
k=1

(
∂

∂xk
σi

)
(yNn ) · σk,j(y

N
n ) ·

∫ (n+1)T
N

nT
N

∫ s

nT
N

dwj
u dw

i
s

(3)
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P-a.s. for all n ∈ {0, 1, . . . , N − 1} and all N ∈ N. Although Milstein’s scheme is known to converge
significantly faster than many other methods such as the Euler-Maruyama scheme, it is only of limited use

due to difficult simulations of the iterated stochastic integrals
∫ (n+1)T

N
nT
N

∫ s
nT
N

dwj
u dw

i
s for i, j ∈ {1, . . . ,m} with

i ̸= j, n ∈ {0, 1, . . . N − 1} and N ∈ N in (3). In the special situation of so called commutative noise (see
(3.13) in Section 10.3 in [34]), i.e.,

d∑
k=1

(
∂

∂xk
σi

)
(x) · σk,j(x) =

d∑
k=1

(
∂

∂xk
σj

)
(x) · σk,i(x) (4)

for all x ∈ Rd and all i, j ∈ {1, . . . ,m}, the Milstein scheme can be simplified and complicated iterated
stochastic integrals in (3) can be avoided. More precisely, in case (4), Milstein’s scheme (3) reduces to

yNn+1 = yNn +
T

N
· µ(yNn ) +

m∑
i=1

σi(y
N
n ) ·

(
wi

(n+1)T
N

− wi
nT
N

)
+

1

2

m∑
i,j=1

d∑
k=1

(
∂

∂xk
σi

)
(yNn ) · σk,j(y

N
n ) ·

(
wi

(n+1)T
N

− wi
nT
N

)
·
(
wj

(n+1)T
N

− wj
nT
N

)

− T

2N

m∑
i=1

d∑
k=1

(
∂

∂xk
σi

)
(yNn ) · σk,i(y

N
n )

(5)

P-a.s. for all n ∈ {0, 1, . . . , N − 1} and all N ∈ N (see (3.16) in Section 10.3 in [34]). For instance, in the case
d = m = 1, condition (4) is obviously fulfilled and the Milstein scheme (5) can then be written as

yNn+1 = yNn +
T

N
· µ(yNn ) + σ(yNn ) ·

(
w (n+1)T

N
− wnT

N

)
+

1

2
· σ′(yNn ) · σ(yNn ) ·

((
w (n+1)T

N
− wnT

N

)2
− T

N

) (6)

P-a.s. for all n ∈ {0, 1, . . . , N − 1} and all N ∈ N (see (3.1) in Section 10.3 in [34]). Of course, (6) can be
simulated very efficiently. However, (4) is in the case of a multidimensional SODE seldom fulfilled and even
if it is fulfilled, Milstein’s method (5) becomes less useful if d,m ∈ N are large. For example, if d = m = 20
holds, then the middle term in (5) contains 203 = 8000 summands. So, more than 8000 additional arithmetic
operations are needed to compute yNn+1 from yNn for n ∈ {0, 1, . . . , N − 1}, N ∈ N via (5) in the case
d = m = 20 in general, which makes Milstein’s scheme less efficient. This suggests that there is no hope
to expect that an infinite dimensional analog of Milstein’s method can be simulated efficiently in the case
of infinite dimensional state spaces such as L2((0, 1),R) instead of Rd and Rm respectively. One purpose of
this article is to demonstrate that this is not true in the case of a suitable class of semilinear SPDEs with
multiplicative trace class noise. We now illustrate this in more detail.

Let H = L2((0, 1),R) be the R-Hilbert space of equivalence classes of Lebesgue square integrable functions
from (0, 1) to R and let f, b : (0, 1) × R → R be two smooth functions satisfying appropriate Lipschitz
assumptions (see (45) and (46) for details). As usual we do not distinguish between a Lebesgue square
integrable function from (0, 1) to R and its equivalence class in H. Moreover, let κ ∈ (0,∞) be a real
number, let ξ : [0, 1] → R with ξ(0) = ξ(1) = 0 be a smooth function and let W : [0, T ] × Ω → H be a
standard Q-Wiener process with respect to Ft, t ∈ [0, T ], where Q : H → H is a trace class operator (see,
for instance, Definition 2.1.12 in [52]). It is a classical result (see, e.g., Proposition 2.1.5 in [52]) that the
covariance operator Q : H → H of the Wiener process W : [0, T ]×Ω → H has an orthonormal basis gj ∈ H,
j ∈ N, of eigenfunctions with summable eigenvalues ηj ∈ [0,∞), j ∈ N. In order to have a more concrete
example, we consider the choice gj(x) =

√
2 sin(jπx) and ηj = 1

j2 for all x ∈ (0, 1) and all j ∈ N in the
following and refer to Section 2 for our general setting and to Section 4 for further possible examples. Then
we consider the SPDE

dXt(x) =

[
κ
∂2

∂x2
Xt(x) + f(x,Xt(x))

]
dt+ b(x,Xt(x)) dWt(x) (7)

with Xt(0) = Xt(1) = 0 and X0(x) = ξ(x) for x ∈ (0, 1) and t ∈ [0, T ] on H. Under the assumptions
above the SPDE (7) has a unique mild solution. Specifically, there exists an up to indistinguishability unique
adapted stochastic process X : [0, T ]× Ω → H with continuous sample paths which satisfies

Xt = eAt ξ +

∫ t

0

eA(t−s)F (Xs) ds+

∫ t

0

eA(t−s)B(Xs) dWs (8)

P-a.s. for all t ∈ [0, T ], where A : D(A) ⊂ H → H is the Laplacian with Dirichlet boundary conditions times
the constant κ ∈ (0,∞) and where F : H → H and B : H → HS(U0,H) are given by (F (v))(x) = f(x, v(x))
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and (B(v)u)(x) = b(x, v(x)) · u(x) for all x ∈ (0, 1), v ∈ H and all u ∈ U0. Here U0 = Q1/2(H) with
⟨v, w⟩U0

=
⟨
Q−1/2v,Q−1/2w

⟩
H

for all v, w ∈ U0 is the image R-Hilbert space of Q1/2 (see Appendix C in

[52]). (Note that A und Q commutate and even more satisfy −κπ2A−1 = Q in our example SPDE (8) in
this introductory section but our general setting below does not require that these conditions are fulfilled;
see Section 2 and Subsection 4.2.)

Then our goal is to solve the strong approximation problem (see Section 9.3 in [34]) of the SPDE (7).
More precisely, we want to compute an F/B(H)-measurable numerical approximation Y : Ω → H such that(

E
[∫ 1

0

|XT (x)− Y (x)|2 dx
])1/2

< ε (9)

for a given precision ε > 0 with the least possible computational effort (number of computational operations
and independent standard normal random variables needed to compute Y : Ω → H). A computational
operation is here an arithmetic operation (addition, subtraction, multiplication, division), a trigonometric
operation (sine, cosine) or an evaluation of f : (0, 1)×R → R, b : (0, 1)×R → R or the exponential function.

In order to be able to simulate such a numerical approximation on a computer both the time interval [0, T ]
and the infinite dimensional spaceH = L2((0, 1),R) have to be discretized. While for temporal discretizations
the linear implicit Euler scheme (see [9, 10, 11, 18, 23, 24, 25, 58, 59, 62]) and the linear implicit Crank-Nicolson
scheme (see [23, 24, 58, 59]) are often used, spatial discretizations are usually achieved with finite elements
(see [1, 2, 10, 11, 14, 25, 33, 36, 37, 38, 43, 59, 62]), finite differences (see [17, 22, 44, 51, 54, 55, 56, 58, 60])
and spectral Galerkin methods (see [16, 24, 28, 30, 35, 41, 42, 47, 49, 50]). For instance, the linear implicit
Euler scheme combined with spectral Galerkin methods which we denote by F/B(H)-measurable mappings
ZN
n : Ω → H, n ∈ {0, 1, . . . , N3}, N ∈ N, is given by ZN

0 = PN (ξ) and

ZN
n+1 = PN

(
I − T

N3
A

)−1(
ZN
n +

T

N3
· f(·, ZN

n ) + b(·, ZN
n ) ·

(
WN

(n+1)T

N3

−WN
nT
N3

))
(10)

P-a.s. for all n ∈ {0, 1, . . . , N3 − 1} and all N ∈ N. Here the bounded linear operators PN : H → H, N ∈ N,
and the Wiener processes WN : [0, T ]× Ω → H, N ∈ N, are given by

(PN (v))(x) =
N∑

n=1

2 sin(nπx)

∫ 1

0

sin(nπy) v(y) dy (11)

for all x ∈ (0, 1), v ∈ H, N ∈ N and by WN
t (ω) = PN (Wt(ω)) for all t ∈ [0, T ], ω ∈ Ω, N ∈ N. Moreover, the

notations v · w : (0, 1) → R, v2 : (0, 1) → R and φ(·, v) : (0, 1) → R given by(
v · w

)
(x) = v(x) · w(x),

(
v2
)
(x) =

(
v(x)

)2
,

(
φ(·, v)

)
(x) = φ(x, v(x)) (12)

for all x ∈ (0, 1) and all functions v, w : (0, 1) → R, φ : (0, 1) × R → R are used here and below. In (10) the
infinite dimensional R-Hilbert space H is projected down to the N -dimensional R-Hilbert space PN (H) with
N ∈ N and the infinite dimensional Wiener process W : [0, T ]×Ω → H is approximated by the finite dimen-
sional processes WN : [0, T ]× Ω → H, N ∈ N, for the spatial discretization. For the temporal discretization
in the scheme ZN

n , n ∈ {0, 1, . . . , N3}, above the time interval [0, T ] is divided into N3 subintervals, i.e.,
N3 time steps are used, for N ∈ N. The exact solution X : [0, T ] × Ω → H of the SPDE (7) has values in
D((−A)γ) and satisfies E

[
∥(−A)γXT ∥2H

]
< ∞ for all γ ∈ (0, 3

4 ) (see Section 4.3 in [32]). This shows(
E
[
∥XT − PN (XT )∥2H

])1/2
≤
(
E
[
∥(−A)γXT ∥2H

])1/2 ∥∥(−A)−γ(I − PN )
∥∥
L(H)

≤
(
E
[
∥(−A)γXT ∥2H

])1/2 (
1 + κ−1

)
N−2γ < ∞

for all N ∈ N and all γ ∈ (0, 3
4 ). So, PN (XT ) converges in the root mean square sense to XT with order

3
2− as N goes to infinity. (For a real number δ ∈ (0,∞), we write δ− for the convergence order if the
convergence order is higher than δ − r for all arbitrarily small r ∈ (0, δ).) Additionally, the solution process
of the SPDE (7) is known to be 1

2 -Hölder continuous in the root mean square sense (see, e.g., Theorem 1
in [32]) and therefore, the linear implicit Euler scheme converges temporally in the root mean square to the
exact solution of the SPDE (7) with order 1

2 (see, e.g., Theorem 1.1 in [62]). Combining the convergence rate
3
2− for the spatial discretization and the convergence rate 1

2 for the temporal discretization indicates that it
is asymptotically optimal to use the cubic number N3 of time steps in the linear implicit Euler scheme ZN

n ,
n ∈ {0, 1, . . . , N3}, above.

We now review how efficiently the numerical method (10) solves the strong approximation problem (9) of
the SPDE (7). Standard results in the literature (see, for instance, Theorem 2.1 in [24]) yield the existence
of real numbers Cr > 0, r ∈ (0, 3

2 ), such that(
E
[∫ 1

0

∣∣XT (x)− ZN
N3(x)

∣∣2 dx])1/2 ≤ Cr ·N (r− 3
2 ) (13)
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for all N ∈ N and all arbitrarily small r ∈ (0, 3
2 ). The linear implicit Euler approximation ZN

N3 thus
converges in the root mean square sense to XT with order 3

2− as N goes to infinity. Moreover, since
PN (H) is N -dimensional and since N3 time steps are used in (10), O(N4 log(N)) computational operations
and random variables are needed to compute ZN

N3 . The logarithmic term in O(N4 log(N)) arises due to
computing the nonlinearities f and b with fast Fourier transform where aliasing errors are neglected here and
below. Combining the computational effort O(N4 log(N)) and the convergence order 3

2− in (13) shows that

the linear implicit Euler scheme needs about O(ε−
8
3 ) computational operations and independent standard

normal random variables to achieve the desired precision ε > 0 in (9). In fact, we have demonstrated that

Euler’s method (10) needs O(ε−( 8
3+r)) computational operations and independent standard normal random

variables to solve (9) for all arbitrarily small r ∈ (0,∞). However, we write about O(ε−
8
3 ) computational

operations and independent standard normal random variables for simplicity here and below.
Having reviewed Euler’s method (10), we now derive and study an infinite dimensional analog of Milstein’s

scheme. In the finite dimensional SODE case, the Milstein scheme (3) is derived by applying Itô’s formula
to the integrand process σ(Xt), t ∈ [0, T ], in (2). This approach is based on the fact that the diffusion
coefficient σ is a smooth test function and that the solution process of (1) is an Itô process. This strategy is
not directly available in infinite dimensions since (7) does in general not admit a strong solution to which the
standard Itô formula could be applied. Recently, in [31] in the case of additive noise and in [29] in the general
case, this problem has been overcome by first applying Taylor’s formula in Banach spaces to the diffusion
coefficient B in the mild integral equation (8) and by then inserting a lower order approximation recursively
(see Section 4.3 in [29]). More formally, using F (Xs) ≈ F (X0) and B(Xs) ≈ B(X0) + B′(X0)(Xs −X0) for
small s ∈ [0, T ] in (8) shows

Xt ≈ eAtξ +

∫ t

0

eA(t−s)F (X0) ds+

∫ t

0

eA(t−s)B(X0) dWs +

∫ t

0

eA(t−s)B′(X0)(Xs −X0) dWs

≈ eAt

(
X0 + t · F (X0) +

∫ t

0

B(X0) dWs +

∫ t

0

B′(X0)(Xs −X0) dWs

)
for small t ∈ [0, T ]. (We would like to remark that B is, in general, not Fréchet differentiable on H but on
a suitable dense subspace of H; see Assumption 4 below for details. In this introductory section we simply
write B′ for this Fréchet derivative on a suitable dense subspace of H and refer to Section 2 below for the
precise handling of this issue.) The estimate Xs ≈ X0 +

∫ s

0
B(X0) dWu for small s ∈ [0, T ] then gives

Xt ≈ eAt

(
X0 + t · F (X0) +

∫ t

0

B(X0) dWs +

∫ t

0

B′(X0)

(∫ s

0

B(X0) dWu

)
dWs

)
(14)

for small t ∈ [0, T ]. Using Itô’s formula this temporal approximation has already been obtained in (1.12) in
[46] under additional smoothness assumptions of the driving noise process of the SPDE (8) (see Assumption
C in [46]) which guarantee the existence of a strong solution and thus allow the application of the standard
Itô formula. Combining the temporal approximation (14) and the spatial discretization in (10) suggests the
numerical scheme with F/B(H)-measurable mappings Y N

n : Ω → H, n ∈ {0, 1, . . . , N2}, N ∈ N, given by
Y N
0 = PN (ξ) and

Y N
n+1 = PN eA

T
N2

(
Y N
n +

T

N2
· F (Y N

n ) +B(Y N
n )

(
WN

(n+1)T

N2

−WN
nT
N2

)

+

∫ (n+1)T

N2

nT
N2

B′(Y N
n )

(∫ s

nT
N2

B(Y N
n ) dWN

u

)
dWN

s

) (15)

P-a.s. for all n ∈ {0, 1, . . . , N2 − 1} and all N ∈ N. Now, we are at a stage similar to the finite dimensional
case (3): a higher order Milstein type method seems to be derived which nevertheless seems to be of limited
use due to the iterated high dimensional stochastic integral in (15). However, a key observation here is the
formula∫ (n+1)T

N2

nT
N2

B′(Y N
n )

(∫ s

nT
N2

B(Y N
n ) dWN

u

)
dWN

s

=
1

2

(
∂

∂y
b

)
(·, Y N

n ) · b(·, Y N
n ) ·

((
WN

(n+1)T

N2

−WN
nT
N2

)2
− T

N2

N∑
i=1

ηi(gi)
2

)
(16)

P-a.s. for all n ∈ {0, 1, . . . , N2 − 1} and all N ∈ N (see Subsection 5.7 for the proof of the iterated integral
identity (16) and see below for a heuristic explanation of this fact). So, the iterated high dimensional
stochastic integral in (15) reduces to a simple product of functions. The function ∂

∂y b : (0, 1)×R → R is here
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the partial derivative ( ∂
∂y b)(x, y) for x ∈ (0, 1) and y ∈ R. Using (16) the numerical scheme (15) thus reduces

to

Y N
n+1 = PN eA

T
N2

(
Y N
n +

T

N2
· f(·, Y N

n ) + b(·, Y N
n ) ·

(
WN

(n+1)T

N2

−WN
nT
N2

)

+
1

2

(
∂

∂y
b

)
(·, Y N

n ) · b(·, Y N
n ) ·

((
WN

(n+1)T

N2

−WN
nT
N2

)2
− T

N2

N∑
i=1

ηi(gi)
2

)) (17)

P-a.s. for all n ∈ {0, 1, . . . , N2−1} and all N ∈ N. Note that only increments of the finite dimensional Wiener
processes WN : [0, T ] × Ω → H, N ∈ N, are used in (17). Moreover, observe that, as in the case of (10),
the infinite dimensional R-Hilbert space H is projected down to the N -dimensional R-Hilbert space PN (H)
with N ∈ N and the infinite dimensional Wiener process W : [0, T ] × Ω → H is approximated by the finite
dimensional Wiener processes WN : [0, T ] × Ω → H, N ∈ N, for the spatial discretization in (17). For the
temporal discretization in the scheme Y N

n , n ∈ {0, 1, . . . , N2}, above the time interval [0, T ] is divided into
N2 subintervals, i.e., N2 instead of N3 time steps are used in (17), for N ∈ N. In the following we explain
why it is crucial to use N2 time steps in (17) instead of N3 time steps in the case of the linear implicit Euler
scheme (10).

More formally, we now illustrate how efficiently the Milstein type algorithm (17) solves the strong approx-
imation problem (9) of the SPDE (7). Theorem 1 (see Section 3 below) gives the existence of real numbers
Cr > 0, r ∈ (0, 3

2 ), such that (
E
[∫ 1

0

∣∣XT (x)− Y N
N2(x)

∣∣2 dx])1/2 ≤ Cr ·N (r− 3
2 ) (18)

for all N ∈ N and all arbitrarily small r ∈ (0, 3
2 ). The approximation Y N

N2 thus converges in the root mean
square sense to XT with order 3

2− as N goes to infinity. The expression

1

2

(
∂

∂y
b

)
(·, Y N

n ) · b(·, Y N
n ) ·

((
WN

(n+1)T

N2

−WN
nT
N2

)2
− T

N2

N∑
i=1

ηi(gi)
2

)
(19)

for n ∈ {0, 1, . . . , N2−1} and N ∈ N in the Milstein type approximation (17) contains additional information
of the solution process of (7) and this allows us to use less time steps, N2 in (17) instead of N3 in (10),
to achieve the same convergence rate as the linear implicit Euler scheme (10) (compare (13) and (18)).

Nonetheless, (19) and hence the numerical method (17) can be simulated easily. The function T
N2

∑N
i=1 ηi (gi)

2

in (19) can be computed once in advance for which O(N2) computational operations are needed. Having

computed T
N2

∑N
i=1 ηi (gi)

2
, O(N log(N)) further computational operations and random variables are needed

to compute (19) from Y N
n for one fixed n ∈

{
0, 1, . . . , N2 − 1

}
by using fast Fourier transform. Since

O(N log(N)) computational operations and independent standard normal random variables are needed for
one time step and since N2 time steps are used in (17), O(N3 log(N)) computational operations and random
variables are needed to compute Y N

N2 . Combining the computational effort O(N3 log(N)) and the convergence
order 3

2− in (18) shows that the Milstein type method (17) needs about O(ε−2) computational operations
and independent standard normal random variables to achieve the desired precision ε > 0 in (9). To sum
up, the Milstein type algorithm (17) requires about O(ε−2) and the linear-impicit Euler scheme (10) requires

about O(ε−
8
3 ) computational operations and independent standard normal random variables for solving the

strong approximation problem (9) for the SPDE (7).

The convergence rates O(ε−
8
3 ) and O(ε−2) are both asymptotic results as ε > 0 tends to zero. Therefore,

from a more practical point of view, one may ask whether the Milstein type algorithm (17) solves the strong
approximation problem (9) more efficiently than the linear implicit Euler scheme (10) for a given concrete
ε > 0 and a given example of the form (7). In order to study this question we compare both methods in
the case of a simple stochastic reaction diffusion equation. More formally, let κ = 1

100 , let ξ : [0, 1] → R be
given by ξ(x) = 0 for all x ∈ [0, 1] and suppose that f, b : (0, 1) × R → R are given by f(x, y) = 1 − y and
b(x, y) = 1−y

1+y2 for all x ∈ (0, 1), y ∈ R. The SPDE (7) thus reduces to

dXt(x) =

[
1

100

∂2

∂x2
Xt(x) + 1−Xt(x)

]
dt+

1−Xt(x)

1 +Xt(x)2
dWt(x) (20)

withXt(0) = Xt(1) = 0 andX0 = 0 for x ∈ (0, 1) and t ∈ [0, 1] (see also Section 4.1 for more details concerning
this example). Additionally, assume that (9) for the SPDE (20) should be solved with the precision of say
three decimals, i.e., with the precision ε = 1

1000 in (9). In Figure 1 the approximation error in the sense
of (9) of the linear implicit Euler approximation ZN

N3 (see (10)) and of the approximation Y N
N2 (see (17))

is plotted against the precise number of independent standard normal random variables needed to compute
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the corresponding approximation for N ∈ {2, 4, 8, 16, 32, 64, 128}: It turns out that Z128
1283 in the case of the

linear implicit Euler scheme (10) and that Y 128
1282 in the case of the Milstein type algorithm (17) achieve the

desired precision ε = 1
1000 in (9) for the SPDE (20). The Matlab codes for simulating Z128

1283 via (10) and
Y 128
1282 via (17) for the SPDE (20) are presented below in Figure 2 and Figure 3 respectively. The differences

of the codes and the additional code needed for the Milstein type algorithm (17) are printed bold in Figure 3.
The Matlab code in Figure 2 requires on our Intel Pentium D running at 3.0 GHz a CPU time of about
15 minutes and 25.03 seconds (925.03 seconds) while the code in Figure 3 requires a CPU time of about 8.93
seconds to be evaluated on the same computer. So, on the above computer the Milstein type algorithm (17)
is for the SPDE (20) about hundred times faster than the linear implicit Euler scheme (10) in order to achieve
a precision of three decimals in (9). Further numerical examples for the Milstein type algorithm (17) can be
found in Section 4 below.
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Order lines 1/2, 3/8
Approximation error 1/1000

Figure 1: SPDE (20): Approximation error in the sense of (9) of the linear implicit Euler approxima-
tion ZN

N3 (see (10)) and of the Milstein type approximation Y N
N2 (see (17)) against the precise number of

independent standard normal random variables needed to compute the corresponding approximation for
N ∈ {2, 4, 8, 16, 32, 64, 128}.

1 N = 128 ; M = Nˆ3 ; A = −pi ˆ2∗ (1 :N) . ˆ 2 /100 ; Y = ze ro s (1 ,N) ;
2 mu = (1 :N).ˆ−2; f = @(x ) 1−x ; b = @(x ) (1−x )./(1+x . ˆ 2 ) ;
3 f o r m=1:M
4 y = dst (Y) ∗ s q r t ( 2 ) ;
5 dW = dst ( randn (1 ,N) .∗ s q r t (mu∗2/M) ) ;
6 y = y + f (y )/M + b(y ) . ∗dW;
7 Y = id s t ( y ) / sq r t (2 ) . / ( 1 − A/M ) ;
8 end
9 p lo t ( ( 0 :N+1)/(N+1) , [ 0 , dst (Y)∗ sq r t ( 2 ) , 0 ] ) ;

Figure 2: Matlab code for simulating the linear implicit Euler approximation ZN
N3 with N = 128 (see (10))

for the SPDE (20).

Having illustrated the efficiency of the method (17), we now take a short look at the literature of numerical
analysis for SPDEs. First, it should be mentioned that any combination of finite elements, finite differences or
spectral Galerkin methods for the spatial discretization and the linear implicit Euler scheme or also the linear
implicit Crank-Nicolson scheme for the temporal discretization do not reduce the computational effort O(ε−

8
3 )

for the problem (9) in case of the SPDE (7). However, the splitting-up method (see [6, 7, 13, 19, 20, 21, 27]
and the references therein) converges with a higher temporal order than the linear implicit Euler scheme. The
key idea of the splitting-up method is to split the considered SPDE into appropriate subequations that are
easier to solve than the original SPDE, e.g., that can be solved explicitly. The applicability of the splitting-up
method thus essentially depends on the simplicity of the resulting subequations and can therefore in general
not be used efficiently for nonlinear SPDEs. Nonetheless, in the case of an appropriate class of linear SPDEs,
the splitting-up method and the Milstein type scheme here require nearly the same computational effort for
solving the strong approximation problem (see Section 4.3 for a more detailed comparison of the splitting-up
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1 N = 128 ; M = Nˆ2 ; A = −pi ˆ2∗ (1 :N) . ˆ 2 /100 ; Y = ze ro s (1 ,N) ;
2 mu = (1 :N).ˆ−2; f = @(x ) 1−x ; b = @(x ) (1−x )./(1+x . ˆ 2 ) ;
3 bb = @(x) (1−x).∗(x.ˆ2−2∗x−1)/2./(1+x.ˆ2).ˆ3; g = zeros (1 ,N) ;
4 for n=1:N
5 g = g+2∗sin (n∗(1:N)/(N+1)∗pi ).ˆ2∗mu(n)/M;
6 end
7 f o r m=1:M
8 y = dst (Y) ∗ s q r t ( 2 ) ;
9 dW = dst ( randn (1 ,N) .∗ s q r t (mu∗2/M) ) ;

10 y = y + f (y )/M + b(y ) . ∗dW + bb(y).∗(dW.ˆ2 − g) ;
11 Y = exp( A/M ) .∗ i d s t ( y ) / sq r t ( 2 ) ;
12 end
13 p lo t ( ( 0 :N+1)/(N+1) , [ 0 , dst (Y)∗ sq r t ( 2 ) , 0 ] ) ;

Figure 3: Matlab code for simulating the Milstein type approximation Y N
N2 with N = 128 (see (17)) for the

SPDE (20).

method and the Milstein type algorithm here). Additionally, in the case f = 0 in (7), T. Müller-Gronbach
and K. Ritter proposed a new scheme which reduces the number of independent standard normal random
variables needed for solving a similar problem as (9) from about O(ε−

8
3 ) to about O(ε−2) (see [47] and

also [48]). Nonetheless, the number of computational operations needed and thus the overall computational
effort could not be reduced by the algorithm in [47]. Moreover, Milstein type schemes for SPDEs have been
considered in [16, 35, 39, 46]. In [16], W. Grecksch and P. E. Kloeden proposed a Milstein like scheme for an
SPDE driven by a scalar one-dimensional Brownian motion (see also [35]). In view of (6), the Milstein type
scheme in [16, 35] can be simulated efficiently since the driving noise process is one-dimensional. Furthermore,
in the case of a suitable linear SPDE, A. Lang, P.-L. Chow and J. Potthoff constructed in the interesting
article [39] a scheme similar to (15) but with an additional term. (The additional term may be useful for
decreasing the error constant but turns out not to be needed in order to achieve the higher approximation
order due to Theorem 1 here.) In order to simulate the iterated stochastic integral in their scheme, they then
suggest to omit the summands in the double sum in (5) for which i ̸= j holds (see (10) in [39] and also [40]).
Their idea thus yields a scheme that can be simulated very efficiently, but does in general not converge with a
higher order anymore, except for a linear SPDE driven by a scalar one-dimensional Brownian motion. Finally,
based on Itô’s formula, Y. S. Mishura and G. M. Shevchenko proposed in [46] the temporal approximation (14)
under additonal smoothness assumptions of the driving noise process of the SPDE (8) which garantuee the
existence of a strong solution and thus allow the application of Itô’s formula (see Assumption C in [46]). The
simulation of the iterated stochastic integrals in the Milstein type approximation in [46] remained an open
question (see Remark 1.1 in [46]). To sum up, in the general setting of the possibly nonlinear SPDE (7), the
Milstein type algorithm (17) is – to the best of our knowledge – the first numerical approximation method
which has been shown to require asymptotically less computational operations and independent standard
normal random variables than the required O(ε−

8
3 ) of the linear-implicit Euler scheme in order to solve the

strong approximation problem (9) of the SPDE (7).
The rest of this article is organized as follows. In Section 2 the setting and the assumptions used are

formulated. The numerical method and its convergence result (Theorem 1) are presented in Section 3. In
Section 4 several examples of Theorem 1 including a stochastic heat equation and stochastic reaction diffusion
equations in one and two dimensions are considered. The proof of Theorem 1 is postponed to Section 5.

Next let us add some concluding remarks. There are a number of directions for further research arising
from this work. One is to analyze whether the exponential term in (17) can be replaced by a simpler mollifier
such as (I − T

N2A)
−1 for N ∈ N. This would make the scheme even simpler to simulate. A second direction

is to combine the temporal approximation in (17) with other spatial discretizations such as finite elements.
This makes it possible to handle more complicated multidimensional domains on which the eigenfunctions of
the Laplacian are not known explicitly. A third direction is to reduce the Lipschitz assumptions in Section 2
in order to handle further classes of SPDEs with non-globally Lipschitz nonlinearities such as stochastic
Burgers equations, stochastic porous medium equations and hyperbolic SPDEs. Next a combination of the
multilevel Monte Carlo approach (see [26, 15]) with the Milstein type algorithm here should result in a faster
approximation of statistical quantities of the solution process of the SPDE (7). After a first preprint of this
work has appeared, a few research articles related to this work have appeared; see [4, 3, 61, 5, 8]. Some of
the above outlined future research directions and other issues such as Runge-Kutta type schemes for SPDEs
based on the Milstein type scheme here and Milstein type schemes for SPDEs driven by non-Gaussian noise
have been investigated in these articles.

Finally, let us point out limitations of the Milstein type algorithm presented here. There are essentially
two assumptions which need to be fulfilled so that the above outlined Milstein type algorithm can be applied.
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First, the noise must be of trace class type. Indeed, the covariance operator Q : H → H of the Wiener process
is assumed to be a trace class operator here and we do not know how to treat the case where Q : H → H is
bounded but without a finite trace with the above outlined Milstein type algorithm. Second, the diffusion
coefficient B must satisfy a certain commutativity type condition; see Remark 1 below for details. In the
setting of the SPDE (7) this condition is always fulfilled and no restriction is required even when the domain
of the SPDE becomes multi-dimensional dimensional (see, e.g., Section 4.3) but in the more general setting
of systems of SPDEs this results in a serious restriction on the diffusion coefficient of the considered system
of SPDEs. In addition to these two essential restrictions, several further restrictive assumptions such as the
semilinear structure of the SPDE, the explicit knowledge of the eigenfunctions of A and Q as well as Lipschitz
assumptions on the nonlinearities F and B are used in this article. These further assumptions are, however,
no serious restrictions since they can be relaxed or have already been relaxed (see [61, 4, 3, 8]).

2 Setting and assumptions

Throughout this article suppose that the following setting and the following assumptions are fulfilled. Let
T ∈ (0,∞), let (Ω,F ,P) be a probability space with a normal filtration (Ft)t∈[0,T ] and let (H, ⟨·, ·⟩H , ∥·∥H)
and (U, ⟨·, ·⟩U , ∥·∥U ) be two separable R-Hilbert spaces. Moreover, let Q : U → U be a trace class operator
and let W : [0, T ]× Ω → U be a standard Q-Wiener process with respect to (Ft)t∈[0,T ].

Assumption 1 (Linear operator A). Let I be a finite or countable set and let (λi)i∈I ⊂ (0,∞) be a family of
real numbers with infi∈I λi ∈ (0,∞). Moreover, let (ei)i∈I be an orthonormal basis of H and let A : D(A) ⊂
H → H be a linear operator with

Av =
∑
i∈I

−λi ⟨ei, v⟩H ei (21)

for all v ∈ D(A) and with D(A) =
{
w ∈ H :

∑
i∈I |λi|2 |⟨ei, w⟩H |2 < ∞

}
.

By Hr := D((−A)
r
) equipped with the norm ∥v∥Hr

:= ∥(−A)rv∥H for all v ∈ Hr and all r ∈ [0,∞) we
denote the R-Hilbert spaces of domains of fractional powers of the linear operator −A : D(A) ⊂ H → H.

Assumption 2 (Drift coefficient F ). Let β ∈ [0, 1) be a real number and let F : Hβ → H be a twice contin-
uously Fréchet differentiable mapping with supv∈Hβ

∥F ′(v)∥L(H) < ∞ and supv∈Hβ
∥F ′′(v)∥L(2)(Hβ ,H) < ∞.

For formulating the assumption on the diffusion coefficient of our SPDE, denote by
(
U0, ⟨·, ·⟩U0

, ∥·∥U0

)
the separable R-Hilbert space U0 := Q1/2(U) with ⟨v, w⟩U0

=
⟨
Q−1/2v,Q−1/2w

⟩
U

for all v, w ∈ U0 (see,
for example, Section 2.3.2 in [52]). For an arbitrary bounded linear operator S ∈ L(U), we denote by
S−1 : im(S) ⊂ U → U the pseudo inverse of S (see, for instance, Appendix C in [52]).

Assumption 3 (Diffusion coefficient B). Let B : Hβ → HS(U0, H) be a twice continuously Fréchet dif-
ferentiable mapping with supv∈Hβ

∥B′(v)∥L(H,HS(U0,H)) < ∞ and supv∈Hβ
∥B′′(v)∥L(2)(Hβ ,HS(U0,H)) < ∞.

Moreover, let α, c ∈ (0,∞), δ, ϑ ∈ (0, 1
2 ), γ ∈ [max(δ, β), δ + 1

2 ) be real numbers, let B(Hδ) ⊂ HS(U0,Hδ)
and suppose that

∥B(u)∥HS(U0,Hδ)
≤ c

(
1 + ∥u∥Hδ

)
, (22)

∥B′(v)B(v)−B′(w)B(w)∥HS(2)(U0,H) ≤ c ∥v − w∥H , (23)∥∥(−A)−ϑB(v)Q−α
∥∥
HS(U0,H)

≤ c
(
1 + ∥v∥Hγ

)
(24)

for all u ∈ Hδ and all v, w ∈ Hγ . Finally, let the bilinear Hilbert-Schmidt operator B′(v)B(v) ∈ HS(2)(U0,H)
be symmetric for all v ∈ Hβ.

We now add some comments concerning Assumption 3. First, we note that Assumption 3 implies β ≤
δ + 1

2 . Indeed, β > δ + 1
2 implies [max(δ, β), δ + 1

2 ) = ∅, which contradicts to γ ∈ [max(δ, β), δ + 1
2 )

in Assumption 3. Furthemore, we observe that the above assumption supv∈Hβ
∥B′(v)∥L(H,HS(U0,H)) < ∞

and the fact that Hβ is dense in H imply that B : Hβ → HS(U0,H) can be continuously extended to a

globally Lipschitz continuous mapping B̃ : H → HS(U0,H) from H to HS(U0,H). Here and below we
do not distinguish between B : Hβ → HS(U0, H) and its extension B̃ : H → HS(U0, H) for simplicity of
presentation. Additionally, we note that the operator B′(v)B(v) : U0 × U0 → H given by(

B′(v)B(v)
)
(u, ũ) =

(
B′(v)

(
B(v)u

))
(ũ) (25)

for all u, ũ ∈ U0 is a bilinear Hilbert-Schmidt operator in

HS(2)(U0,H) ∼= HS(U0 ⊗ U0,H) (26)

for all v ∈ Hβ . Next we add a remark on the symmetry assumption on these bilinear Hilbert-Schmidt
operators in Assumption 3.
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Remark 1 (Commutative noise in infinite dimensions). The assumed symmetry of the bilinear Hilbert-
Schmidt operator B′(v)B(v) ∈ HS(2)(U0,H) in Assumption 3 reads as(

B′(v)
(
B(v)u

))
(ũ) =

(
B′(v)

(
B(v)ũ

))
(u) (27)

for all u, ũ ∈ U0 and all v ∈ Hβ. Note that (27) is the abstract possibly infinite dimensional coordinate free
analog of (4). More formally, if H = Rd, U = Rm and Q = I with d,m ∈ N holds, then (27) reduces to (4)
(with σ replaced by B).

In Section 4 below we describe a natural class of examples of SPDEs which satisfy the commutativity
condition (27) (see (47) and (51) for details). Finally, we emphasize that we do not assume that the linear
operators A : D(A) ⊂ H → H and Q : U → U are simultaneously diagonalizable.

Assumption 4 (Initial value ξ). Let ξ : Ω → Hγ be an F0/B (Hγ)-measurable mapping with E
[
∥ξ∥4Hγ

]
< ∞.

These assumptions suffice to ensure the existence of an up to modifications unique solution of the
SPDE (28).

Proposition 1 (Existence, uniqueness and regularity of solutions). Let Assumptions 1-4 in Section 2 be
fulfilled. Then there exists an up to modifications unique predictable stochastic process X : [0, T ] × Ω → Hγ

which fulfills supt∈[0,T ] E
[
∥Xt∥4Hγ

]
< ∞, supt∈[0,T ] E

[
∥B(Xt)∥4HS(U0,Hδ)

]
< ∞ and

Xt = eAtξ +

∫ t

0

eA(t−s)F (Xs) ds+

∫ t

0

eA(t−s)B(Xs) dWs (28)

P-a.s. for all t ∈ [0, T ]. Moreover, we have

sup
t1,t2∈[0,T ]

t1 ̸=t2

(
E
[
∥Xt2 −Xt1∥4Hr

]) 1
4

|t2 − t1|min(γ−r, 12 )
< ∞ (29)

for all r ∈ [0, γ]. Additionally, the solution process Xt, t ∈ [0, T ], is continuous with respect to
(
E
[
∥·∥pHγ

])1/p
.

Proposition 1 immediately follows from Theorem 1 in [32].

3 Numerical scheme and main result

In this section the numerical method is introduced and its convergence result is stated. To this end let J be
a set, let (gj)j∈J ⊂ U be an orthonormal basis of eigenfunctions of Q : U → U and let (ηj)j∈J ⊂ [0,∞) be

the corresponding family of eigenvalues (such an orthonormal basis of eigenfunctions exists since Q : U → U
is a trace class operator, see, e.g., Proposition 2.1.5 in [52]). In particular, we have

Qu =
∑
j∈J

ηj ⟨gj , u⟩U gj (30)

for all u ∈ U . Additionally, let (IN )N∈N and (JK)K∈N be sequences of finite subsets of I and J respectively.
Then we define the linear projection operators PN : H → H, N ∈ N, by PN (v) :=

∑
i∈IN

⟨ei, v⟩H ei for all

v ∈ H and all N ∈ N. Furthermore, we define Wiener processes WK : [0, T ]× Ω → U0, K ∈ N, by

WK
t (ω) :=

∑
j∈JK
ηj ̸=0

⟨gj ,Wt(ω)⟩U gj (31)

for all t ∈ [0, T ], ω ∈ Ω and all K ∈ N. We also use the F/B(U0)-measurable mappings ∆WM,K
m : Ω →

U0, m ∈ {0, 1, . . . ,M − 1}, M,K ∈ N, given by ∆WM,K
m (ω) := WK

(m+1)T
M

(ω) − WK
mT
M

(ω) for all ω ∈ Ω,

m ∈ {0, 1, . . . ,M − 1} and all M,K ∈ N. The numerical scheme which we denote by F/B(H)-measurable

mappings Y N,M,K
m : Ω → HN , m ∈ {0, 1, . . . ,M}, N,M,K ∈ N, is then given by Y N,M,K

0 := PN (ξ) and

Y N,M,K
m+1 := PN eA

T
M

(
Y N,M,K
m +

T

M
· F
(
Y N,M,K
m

)
+B

(
Y N,M,K
m

)
∆WM,K

m

+
1

2
B′(Y N,M,K

m

)(
B
(
Y N,M,K
m

)
∆WM,K

m

)
∆WM,K

m

− T

2M

∑
j∈JK
ηj ̸=0

ηjB
′(Y N,M,K

m

)(
B
(
Y N,M,K
m

)
gj

)
gj

) (32)
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for all m ∈ {0, 1, . . . ,M − 1} and all N,M,K ∈ N. Note that only increments of the Wiener processes
WK : [0, T ] × Ω → U0, K ∈ N, are used in the scheme above and we emphasize that for many SPDEs the
method (33) is easy to simulate and to implement (see Sections 1 and 4 for a few examples). Moreover,
observe that the scheme (33) can also be written as

Y N,M,K
m+1 = PN eA

T
M

(
Y N,M,K
m +

T

M
· F
(
Y N,M,K
m

)
+B

(
Y N,M,K
m

)
∆WM,K

m

+
1

2
B′(Y N,M,K

m

)(
B
(
Y N,M,K
m

)
∆WM,K

m

)
∆WM,K

m

− 1

2
E
[
B′(Y N,M,K

m

)(
B
(
Y N,M,K
m

)
∆WM,K

m

)
∆WM,K

m

∣∣FmT
M

]) (33)

for all m ∈ {0, 1, . . . ,M−1} and all N,M,K ∈ N. In the next step the convergence result for the scheme (33)
is presented.

Theorem 1 (Main result). Let Assumptions 1-4 in Section 2 be fulfilled. Then there is a real number
C ∈ (0,∞) such that(

E
[∥∥XmT

M
− Y N,M,K

m

∥∥2
H

]) 1
2 ≤ C

((
inf

i∈I\IN

λi

)−γ

+

(
sup

j∈J\JK

ηj

)α
+M−min(2(γ−β),γ)

)
(34)

for all m ∈ {0, 1, . . . ,M} and all N,M,K ∈ N.

We now explain the result of Theorem 1 in more detail. The strong root mean square difference
(
E
[
∥XmT

M
−

Y N,M,K
m ∥2H

])1/2
for m ∈ {0, 1, . . . ,M} and for N,M,K ∈ N of the exact solution of the SPDE (28) and of

the numerical solution (33) is estimated in (34) by a constant times the sum of three terms. The first
term, i.e., (infi∈I\IN

λi)
−γ for N ∈ N, arises due to discretizing the exact solution spatially, i.e., due to

E
[
∥Xt − PN (Xt)∥2H

]
for N ∈ N and t ∈ [0, T ]. The second expression, i.e., (supj∈J\JK

ηj)
α for K ∈ N,

occurs due to discretizing the noise spatially, i.e., due to E
[
∥Wt − WK

t ∥2H
]
for K ∈ N and t ∈ [0, T ]. If

U0 ⊂ U is finite dimensional we choose JK :=
{
j ∈ J

∣∣ηj ̸= 0
}
for all K ∈ N and obtain (supj∈J\JK

ηj)
α = 0

for all K ∈ N in that case. The third term, i.e., M−min(2(γ−β),γ) for M ∈ N, corresponds to the temporal
discretization error and converges to zero as the number of time steps M ∈ N goes to infinity.

4 Examples

In this section Theorem 1 is illustrated with various examples. To this end let d ∈ {1, 2, 3} and let H =
U = L2((0, 1)d,R) be the R-Hilbert space of equivalence classes of Lebesgue square integrable functions from
(0, 1)d to R. As usual we do not distinguish between a Lebesgue square integrable function from (0, 1)d to R
and its equivalence class in H. The scalar product and the norm in H and U are given by

⟨v, w⟩H = ⟨v, w⟩U =

∫
(0,1)d

v(x) · w(x) dx (35)

and

∥v∥H = ∥v∥U =

(∫
(0,1)d

|v(x)|2 dx

) 1
2

(36)

for all v, w ∈ H = U . Additionally, the notations

∥v∥C((0,1)d,R) := sup
x∈(0,1)d

|v(x)| ∈ [0,∞] (37)

and

∥v∥Cr((0,1)d,R) := sup
x∈(0,1)d

|v(x)|+ sup
x,y∈(0,1)d

x ̸=y

|v(x)− v(y)|
∥x− y∥rRd

∈ [0,∞] (38)

are used troughout this section for all functions v : (0, 1)d → R and all r ∈ (0, 1]. Here and below we use the
Euclidean norms ∥x∥Rn := (|x1|2 + . . . + |xn|2)1/2 for all x = (x1, . . . , xn) ∈ Rn and all n ∈ N. Concerning
the Wiener process W : [0, T ] × Ω → U we assume that the eigenfunctions gj ∈ U , j ∈ J , of the covariance
operator Q : U → U are continuous and satisfy

sup
j∈J

∥gj∥C((0,1)d,R) < ∞ and
∑
j∈J

(
ηj ∥gj∥2Cρ((0,1)d,R)

)
< ∞ (39)
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for some ρ ∈ (0, 1) in this section. We will give some concrete examples for the (gj)j∈J that fulfill (39) later.

Additionally, we denote by sn(D) ∈ [0,∞), n ∈ N, the sequence of characteristic numbers of a compact
operator D : H → H (see, e.g., Section 9 in Chapter XI in [12]). Finally, we define the Schatten norms by

∥D∥Sp(H) :=

( ∞∑
n=1

|sn(D)|p
)1

p

∈ [0,∞] (40)

for all compact operators D : H → H and all p ∈ [1,∞) (see also the above named reference).
We now present a prominent example of the linear operator A in Assumption 1. Let I = Nd and

let ei ∈ H for i ∈ I be given by

ei(x) = 2
d
2 sin(i1πx1) · . . . · sin(idπxd) (41)

for all x = (x1, . . . , xd) ∈ (0, 1)d and all i = (i1, . . . , id) ∈ Nd. Additionally, let κ ∈ (0,∞) be a fixed real
number and let (λi)i∈I be given by

λi = κπ2
(
(i1)

2 + . . .+ (id)
2
)

(42)

for all i = (i1, . . . , id) ∈ Nd. Hence, the linear operator A : D(A) ⊂ H → H in Assumption 1 reduces to the
Laplacian with Dirichlet boundary conditions times the constant κ ∈ (0,∞), i.e.,

Av = κ ·∆v = κ

{(
∂2

∂x2
1

)
v + . . .+

(
∂2

∂x2
d

)
v

}
(43)

for all v ∈ D(A) in this section. Furthermore, let (IN )N∈N be given by IN = {1, . . . , N}d for all N ∈ N.
In order to describe a natural candidate for the drift coefficient in Assumption 2, let β = d

5 and

let f : (0, 1)d × R → R be a twice continuously differentiable function with
∫
(0,1)d

|f(x, 0)|2 dx < ∞ and

supx∈(0,1)d supy∈R
∣∣( ∂n

∂yn f
)
(x, y)

∣∣ < ∞ for all n ∈ {1, 2}. Then the (in general nonlinear) operator F : Hβ → H
given by (

F (v)
)
(x) = f(x, v(x)) (44)

for all x ∈ (0, 1)d and all v ∈ Hβ satisfies Assumption 2 since Hβ = H d
5

⊂ L5((0, 1)d,R) continuously

(see Remark 6.94 in [53]).
In the next step a natural example for the diffusion coefficient in Assumption 3 is given. Let

b : (0, 1)d × R → R be a twice continuously differentiable function with

|b(x, 0)| ≤ q,

∣∣∣∣( ∂n

∂yn
b

)
(x, y)

∣∣∣∣ ≤ q,

∥∥∥∥( ∂

∂x
b

)
(x, y)

∥∥∥∥
L(Rd,R)

≤ q (45)

and ∣∣∣∣( ∂

∂y
b

)
(x, y) · b(x, y)−

(
∂

∂y
b

)
(x, z) · b(x, z)

∣∣∣∣ ≤ q |y − z| (46)

for all x ∈ (0, 1)d, y, z ∈ R, n ∈ {1, 2} and some given q ∈ (0,∞). We refer to Subsections 4.1-4.3 below
for concrete functions b : (0, 1)d × R → R satisfying (45) and (46). Now let B : Hβ → HS(U0,H) be the (in
general nonlinear) operator (

B(v)u
)
(x) = b(x, v(x)) · u(x) (47)

for all x ∈ (0, 1)d, v ∈ Hβ and all u ∈ U0 ⊂ U = H. We now check step by step that B : Hβ → HS(U0,H)
given by (47) satisfies Assumption 3. First of all, B is well defined. More precisely, we have

∥B(v)∥2HS(U0,H) =
∑
j∈J

∥∥B(v)
√
ηjgj

∥∥2
H

=
∑
j∈J

ηj ∥B(v)gj∥2H

=
∑
j∈J

ηj

(∫
(0,1)d

|b(x, v(x)) · gj(x)|2 dx

)
≤
∑
j∈J

ηj

(∫
(0,1)d

|b(x, v(x))|2 dx

)(
sup

x∈(0,1)d
|gj(x)|2

)

and hence

∥B(v)∥2HS(U0,H) ≤
∑
j∈J

ηj

(∫
(0,1)d

(|b(x, v(x))− b(x, 0)|+ |b(x, 0)|)2 dx

)
∥gj∥2C((0,1)d,R)

≤
∑
j∈J

q2ηj

(∫
(0,1)d

(|v(x)|+ 1)
2
dx

)
∥gj∥2C((0,1)d,R)

11



and finally

∥B(v)∥HS(U0,H) ≤ q (∥v∥H + 1)

∑
j∈J

ηj ∥gj∥2C((0,1)d,R)

 1
2

≤ q (∥v∥H + 1)

∑
j∈J

ηj

 1
2 (

sup
j∈J

∥gj∥C((0,1)d,R)

)
(48)

= q
√
Tr(Q)

(
sup
j∈J

∥gj∥C((0,1)d,R)

)
(∥v∥H + 1) < ∞

for all v ∈ Hβ which indeed shows that B is well defined. Moreover, B is twice continuously Fréchet
differentiable and we have

∥B′(v)u∥2HS(U0,H) =
∑
j∈J

∥∥(B′(v)u)
√
ηjgj

∥∥2
H

=
∑
j∈J

ηj ∥(B′(v)u) gj∥
2

H

=
∑
j∈J

ηj

(∫
(0,1)d

∣∣∣∣( ∂

∂y
b

)
(x, v(x)) · u(x) · gj(x)

∣∣∣∣2 dx
)

≤
∑
j∈J

q2ηj

(∫
(0,1)d

|u(x) · gj(x)|2 dx

)

and hence

∥B′(v)u∥HS(U0,H) ≤

∑
j∈J

q2ηj ∥u∥2H ∥gj∥2C((0,1)d,R)

1/2

≤ q ∥u∥H

∑
j∈J

ηj

1/2(
sup
j∈J

∥gj∥C((0,1)d,R)

)
= q
√
Tr(Q)

(
sup
j∈J

∥gj∥C((0,1)d,R)

)
∥u∥H

for all u, v ∈ Hβ which shows

sup
v∈Hβ

∥B′(v)∥L(H,HS(U0,H)) ≤ q
√
Tr(Q)

(
sup
j∈J

∥gj∥C((0,1)d,R)

)
< ∞. (49)

Additionally, we have

∥B′′(v)(u,w)∥2HS(U0,H) =
∑
j∈J

∥∥B′′(v)(u,w)
√
ηjgj

∥∥2
H

=
∑
j∈J

ηj

(∫
(0,1)d

∣∣∣∣( ∂2

∂y2
b

)
(x, v(x)) · u(x) · w(x) · gj(x)

∣∣∣∣2 dx
)

≤
∑
j∈J

q2ηj

(∫
(0,1)d

|u(x) · w(x)|2 dx

)
∥gj∥2C((0,1)d,R)

and using L5
(
(0, 1)d,R

)
⊂ L4

(
(0, 1)d,R

)
continuously shows

∥B′′(v)(u,w)∥HS(U0,H)

≤ q
√
Tr(Q)

(∫
(0,1)d

|u(x)|4 dx

)1
4
(∫

(0,1)d
|w(x)|4 dx

)1
4 (

sup
j∈J

∥gj∥C((0,1)d,R)

)

≤ q
√
Tr(Q)

(
sup
j∈J

∥gj∥C((0,1)d,R)

)(∫
(0,1)d

|u(x)|5 dx

)1
5
(∫

(0,1)d
|w(x)|5 dx

)1
5

for all u, v, w ∈ Hβ . Therefore, Hβ ⊂ L5
(
(0, 1)d,R

)
continuously shows

sup
v∈Hβ

∥B′′(v)∥L(2)(Hβ ,HS(U0,H)) < ∞ (50)

due to (39) and hence, it remains to establish (22)-(24) and the symmetry of B′(v)B(v) ∈ HS(2)(U0.H) for
all v ∈ Hβ . For the latter one, note that((

B′(v)B(v)
)
(u, ũ)

)
(x) =

(
B′(v)

(
B(v)u

)
ũ

)
(x) =

(
∂

∂y
b

)
(x, v(x)) · b(x, v(x)) · u(x) · ũ(x) (51)
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for all x ∈ (0, 1)d, u, ũ ∈ U0 and all v ∈ Hβ which immediately shows that B′(v)B(v) ∈ HS(2)(U0, H) is
symmetric for all v ∈ Hβ (see (27)). Moreover, we have

∥B′(v)B(v)−B′(w)B(w)∥2HS(2)(U0,H) =
∑

j,k∈J

ηjηk ∥B′(v) (B(v)gj) gk −B′(w) (B(w)gj) gk∥
2

H

≤
∑

j,k∈J

ηjηk

(∫
(0,1)d

∣∣∣∣∣
(

∂

∂y
b

)
(x, v(x)) · b(x, v(x))−

(
∂

∂y
b

)
(x,w(x)) · b(x,w(x))

∣∣∣∣∣
2

dx

)[
sup
l∈J

∥gl∥4C((0,1)d,R)

]
and using (46) yields

∥B′(v)B(v)−B′(w)B(w)∥HS(2)(U0,H) ≤ q ∥v − w∥H

 ∑
j,k∈J

ηjηk

 1
2 (

sup
i∈J

∥gj∥2C((0,1)d,R)

)

= qTr(Q)

(
sup
i∈J

∥gj∥2C((0,1)d,R)

)
∥v − w∥H

for all v, w ∈ Hβ which shows that (23) indeed holds. Estimates (22) and (24) will be verified in the more
concrete examples in Subsections 4.1-4.3 below.

Concerning the initial value in Assumption 4, let x0 : [0, 1]
d → R be a twice continuously differentiable

function with x0|∂(0,1)d ≡ 0. Then the F0/B(Hγ)-measurable mapping ξ : Ω → Hγ given by ξ(ω) = x0 for all
ω ∈ Ω fulfills Assumption 4 for all γ ∈ (0, 1).

Having constructed examples for Assumptions 1-4, we now formulate the SPDE (28) in the setting of this
section. More precisely, in the setting above the SPDE (28) reduces to

dXt(x) =
[
κ∆Xt(x) + f(x,Xt(x))

]
dt+ b(x,Xt(x)) dWt(x) (52)

with Xt | ∂(0,1)d ≡ 0 and X0(x) = x0(x) for t ∈ [0, T ] and x ∈ (0, 1)d. Moreover, we define a family

βj : [0, T ]× Ω → R, j ∈ {k ∈ J : ηk ̸= 0}, of independent standard Brownian motions by

βj
t (ω) :=

1
√
ηj

⟨gj ,Wt(ω)⟩U

for all ω ∈ Ω, t ∈ [0, T ] and all j ∈ J with ηj ̸= 0. Using this notation, the SPDE (52) can be written as

dXt(x) =
[
κ∆Xt(x) + f(x,Xt(x))

]
dt+

∑
j∈J
ηj ̸=0

[
b(x,Xt(x))

√
ηj gj(x)

]
dβj

t (53)

with Xt | ∂(0,1)d ≡ 0 and X0(x) = x0(x) for t ∈ [0, T ] and x ∈ (0, 1)d. The Milstein type algorithm (33)

applied to the SPDE (52) then reduces to Y N,M,K
0 = PN (x0) and

Y N,M,K
m+1 = PN eA

T
M

(
Y N,M,K
m +

T

M
· f(·, Y N,M,K

m ) + b(·, Y N,M,K
m ) ·∆WM,K

m

+
1

2

(
∂

∂y
b

)
(·, Y N,M,K

m ) · b(·, Y N,M,K
m ) ·

((
∆WM,K

m

)2 − T

M

∑
j∈JK

ηj(gj)
2

)) (54)

for all m ∈ {0, 1, . . . ,M − 1} and all N,M,K ∈ N. Finally, Theorem 1 shows the existence of a real number
C ∈ (0,∞) such that(

E

[∫
(0,1)d

∣∣XT (x)− Y N,M,K
M (x)

∣∣2 dx])1/2

≤ C

(
N−2γ +

(
sup

j∈J\JK

ηj

)α

+M−min(2(γ−β),γ)

)
(55)

for all N,M,K ∈ N. We now illustrate estimate (55) in the following three more concrete examples. We
begin with the introductory example from Section 1 (see (7) and (20)).

4.1 A one-dimensional stochastic reaction diffusion equation

In this subsection let d = 1, T = 1, κ = 1
100 , let x0 : [0, 1] → R be given by x0(x) = 0 for all x ∈ [0, 1], let

f, b : (0, 1) × R → R be given by f(x, y) = 1 − y and b(x, y) = 1−y
1+y2 for all x ∈ (0, 1), y ∈ R, let J = N, let

JK = {1, 2, . . . ,K} for all K ∈ N, let ηj = 1
j2 and let gj = ej for all j ∈ N. The SPDE (53) thus reduces to

dXt(x) =

[
1

100

∂2

∂x2
Xt(x) + 1−Xt(x)

]
dt+

∞∑
j=1

1−Xt(x)

1 +Xt(x)2

√
2

j
sin(jπx) dβj

t (56)
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with Xt(0) = Xt(1) = 0 and X0(x) = 0 for x ∈ (0, 1) and t ∈ [0, 1]. The SPDE (56) is nothing else
than equation (20) in the introduction. In order to apply Theorem 1 it remains to verify (22) and (24).
Estimate (22) is fulfilled for all δ ∈ (0, 1

4 ) here due to Subsection 4.3 in [32]. In order to establish (24) several

preparations are needed. More formally, let (Ω̃, F̃ , P̃) be a further probability space on which a sequence
χi : Ω̃ → R, i ∈ N, of F̃/B(R)-measurable independent standard normal random variables is defined. Then
we define the F̃/B(U0)-measurable mappings χK,ϑ : Ω̃ → U0 by

χK,ϑ(ω, x) :=

K∑
i=1

χi(ω) (λi)
−ϑ

ei(x) (57)

for all ω ∈ Ω̃, x ∈ (0, 1), K ∈ N and all ϑ ∈ (0, 1
2 ). It will be essential to estimate Ẽ

[
|χK,ϑ(x)|2

]
and

Ẽ
[
|χK,ϑ(x)− χK,ϑ(y)|2

]
for x, y ∈ (0, 1), K ∈ N and ϑ ∈ (0, 1

2 ) in order to check (24). (Here Ẽ[Z] :=∫
Ω̃
Z(ω̃) P̃(ω̃) ∈ [0,∞] for every F̃/B([0,∞))-measurable mapping Z : Ω̃ → [0,∞).) To this end note that

Ẽ
[∣∣χK,ϑ(x)

∣∣2] = K∑
i=1

(λi)
−2ϑ |ei(x)|2 ≤ 2

K∑
i=1

(
κπ2i2

)−2ϑ ≤ 2
(
1 + κ−1

)( ∞∑
i=1

i−4ϑ

)
(58)

for all x ∈ (0, 1), K ∈ N and all ϑ ∈ (0, 1
2 ). Moreover, we have

Ẽ
[∣∣χK,ϑ(x)− χK,ϑ(y)

∣∣2] = K∑
i=1

(λi)
−2ϑ |ei(x)− ei(y)|2

≤
K∑
i=1

(λi)
−2ϑ |ei(x)− ei(y)|2s (|ei(x)|+ |ei(y)|)2(1−s) ≤

K∑
i=1

(λi)
−2ϑ (

2π2i2
)s

8(1−s) |x− y|2s

≤ 8

(
K∑
i=1

(
κπ2i2

)−2ϑ (
π2i2

)s) |x− y|2s ≤ 8

κ2ϑ

(
K∑
i=1

(πi)
(2s−4ϑ)

)
|x− y|2s (59)

≤ 3
(
1 + κ−1

)( ∞∑
i=1

i(2s−4ϑ)

)
|x− y|2s

for all x, y ∈ (0, 1), K ∈ N, ϑ ∈ ( s2 + 1
4 ,

1
2 ) and all s ∈ (0, 1

2 ). We also use the notation

∥v∥W r,2 :=

(∫ 1

0

|v(x)|2 dx+

∫ 1

0

∫ 1

0

|v(x)− v(y)|2

|x− y|(1+2r)
dx dy

) 1
2

∈ [0,∞]

for all B((0, 1))/B(R)-measurable mapping v : (0, 1) → R and all r ∈ (0,∞). Then we obtain

E
[∥∥B(v)χK,ϑ

∥∥2
W r,2((0,1),R)

]
=

∫ 1

0

E
[∣∣b(x, v(x)) · χK,ϑ(x)

∣∣2] dx
+

∫ 1

0

∫ 1

0

E
[∣∣b(x, v(x)) · χK,ϑ(x)− b(y, v(y)) · χK,ϑ(y)

∣∣2]
|x− y|(1+2r)

dx dy

≤ 2

∫ 1

0

|b(x, v(x))|2 E
[∣∣χK,ϑ(x)

∣∣2] dx
+ 2

∫ 1

0

∫ 1

0

|b(x, v(x))|2 E
[∣∣χK,ϑ(x)− χK,ϑ(y)

∣∣2]
|x− y|(1+2r)

dx dy

+ 2

∫ 1

0

∫ 1

0

|b(x, v(x))− b(y, v(y))|2 E
[∣∣χK,ϑ(y)

∣∣2]
|x− y|(1+2r)

dx dy
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and using (58) and (59) shows

E
[∥∥B(v)χK,ϑ

∥∥2
W r,2((0,1),R)

]
≤ 4

(
1 + κ−1

)( ∞∑
i=1

i−4ϑ

)
∥b(·, v)∥2W r,2((0,1),R)

+ 6
(
1 + κ−1

)( ∞∑
i=1

i(2s−4ϑ)

)∫ 1

0

∫ 1

0

|b(x, v(x))|2

|x− y|(1+2r−2s)
dx dy

≤ 4
(
1 + κ−1

)( ∞∑
i=1

i(2s−4ϑ)

)
∥b(·, v)∥2W r,2((0,1),R)

+ 12
(
1 + κ−1

)( ∞∑
i=1

i(2s−4ϑ)

)
∥b(·, v)∥2H

∫ 1

0

y(2s−2r−1) dy

≤
10
(
1 + κ−1

)
(s− r)

( ∞∑
i=1

i(2s−4ϑ)

)
∥b(·, v)∥2W r,2((0,1),R)

for all v ∈ H, ϑ ∈ ( s2 + 1
4 ,

1
2 ), s ∈ (r, 1

2 ), K ∈ N and all r ∈ (0, 1
2 ). Therefore, inequality (25) in Section 4 in

[32] gives(
sup
K∈N

E
[∥∥B(v)χK,ϑ

∥∥2
W r,2((0,1),R)

])1
2

≤
4
(
1 + κ−1

)
(s− r)

√√√√ ∞∑
i=1

i(2s−4ϑ) ∥b(·, v)∥W r,2((0,1),R)

≤
4
(
1 + κ−1

)
(s− r)

( ∞∑
i=1

i(2s−4ϑ)

)
3qC r

2

(1− r)

(
1 + ∥v∥H r

2

)
(60)

≤
12C r

2
q
(
1 + κ−1

)
(s− r)2

( ∞∑
i=1

i(2s−4ϑ)

)(
1 + ∥v∥H r

2

)
< ∞

for all ϑ ∈ ( s2 + 1
4 ,

1
2 ), s ∈ (r, 1

2 ), v ∈ H r
2
and all r ∈ (0, 1

2 ). Moreover, we have∥∥∥(−A)
−ϑ

B(v)Q−α
∥∥∥
HS(U0,H)

=
∥∥∥(−A)

−ϑ
B(v)Q( 1

2−α)
∥∥∥
HS(H)

=
∥∥∥Q( 1

2−α)B(v) (−A)
−ϑ
∥∥∥
HS(H)

=
(
κπ2

)( 1
2−α)

∥∥∥∥∥
(

Q

κπ2

)( 1
2−α)

B(v) (−A)
−ϑ

∥∥∥∥∥
HS(H)

=
(
κπ2

)( 1
2−α)

∥∥∥B(v) (−A)
−ϑ
∥∥∥
HS(H,H(α−1/2))

and using inequality (20) in Section 4 in [32] and estimate (60) in this article then yields∥∥∥(−A)
−ϑ

B(v)Q−α
∥∥∥
HS(U0,H)

=
(
κπ2

)( 1
2−α)

(
sup
K∈N

E
[∥∥B(v)χK,ϑ

∥∥2
H(α−1/2)

]) 1
2

≤ C(α− 1
2 )

(
1 + κ−1

)(
sup
K∈N

E
∥∥B(v)χK,ϑ

∥∥2
W 2α−1,2((0,1),R)

) 1
2

≤
12C2

(α− 1
2 )
q
(
1 + κ−1

)2
(s+ 1− 2α)

2

( ∞∑
i=1

i(2s−4ϑ)

)(
1 + ∥v∥H

(α− 1
2
)

)
< ∞

for all ϑ ∈ ( s2 + 1
4 ,

1
2 ), s ∈ (2α− 1, 1

2 ), v ∈ H(α− 1
2 )

and all α ∈ ( 12 ,
3
4 ). Therefore, estimate (24) is satisfied for

all α ∈ (0, 3
4 ) and all γ ∈ ( 12 ,

3
4 ). This finally shows that Assumptions 1-4 are fullfilled for the SPDE (56) for

all α ∈ (0, 3
4 ), β = 1

5 and all γ ∈ ( 12 ,
3
4 ).

Theorem 1 therefore yields the existence of real numbers Cr ∈ (0,∞), r ∈ (0, 3
4 ), such that(

E
[∫ 1

0

∣∣∣XT (x)− Y N,M,K
M (x)

∣∣∣2 dx])1
2

≤ Cr

(
N (r− 3

2 ) +K(r− 3
2 ) +M (r− 3

4 )
)

(61)

for all N,M,K ∈ N and all arbitrarily small r ∈ (0, 3
4 ). In order to balance the error terms on the right

hand side of (61) we choose N2 = K2 = M in (61) and obtain the existence of real numbers Cr ∈ (0,∞),
r ∈ (0, 3

2 ), such that (
E
[∫ 1

0

∣∣∣XT (x)− Y N,N2,N
N2 (x)

∣∣∣2 dx]) 1
2

≤ Cr ·N (r− 3
2 ) (62)

for all N ∈ N and all arbitrarily small r ∈ (0, 3
2 ). Estimate (62) is nothing else than inequality (18) in the

introduction. We also refer to Figure 1 in the introduction for a numerical result illustrating (62).
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4.2 A one-dimensional stochastic reaction diffusion equation with AQ ̸= QA

In Subsection 4.1 we assumed that the eigenfunctions of the dominating linear operatorA and of the covariance
operator Q of the driving Wiener process W : [0, T ] × Ω → H of the SPDE (52) coincide and in particular,
we assumed in Subsection 4.1 that

AQv = QAv (63)

holds for all v ∈ D(A). However, our general setting in Section 2 does not need condition (63) to be fulfilled.
To illustrate this fact we consider in this subsection an example in which (63) fails to hold. More precisely,
in this subsection let d = 1, T = 1, κ = 1

20 , let x0 : [0, 1] → R be given by x0(x) = 0 for all x ∈ [0, 1],
let f, b : (0, 1) × R → R be given by f(x, y) = 1 − y and b(x, y) = y

1+y2 for all x ∈ (0, 1), y ∈ R, let

J = {0, 1, 2, . . .}, let JK = {0, 1, . . . ,K} for all K ∈ N, let η0 = 0, ηj = 1
j3 and let gj : (0, 1) → R be given

by g0(x) = 1, gj(x) =
√
2 cos(jπx) for all x ∈ (0, 1) and all j ∈ N. The SPDE (52) thus reduces to

dXt(x) =

[
1

20

∂2

∂x2
Xt(x) + 1−Xt(x)

]
dt+

Xt(x)

1 +Xt(x)2
dWt(x) (64)

with Xt(0) = Xt(1) = 0 and X0(x) = 0 for x ∈ (0, 1) and t ∈ [0, 1]. Of course, the SPDE (64) can also be
written as

dXt(x) =

[
1

20

∂2

∂x2
Xt(x) + 1−Xt(x)

]
dt+

∞∑
j=1

Xt(x)

1 +Xt(x)2

√
2

j1.5
cos(jπx) dβj

t

with Xt(0) = Xt(1) = 0 and X0(x) = 0 for x ∈ (0, 1) and t ∈ [0, 1]. Estimate (22) is here fulfilled for all
δ ∈ (0, 1

2 ) due to Subsection 4.2 in [32]. Moreover, as in Subsection 4.1 it can be shown that inequality (24)
holds for all α ∈ (0, 2

3 ) and all γ ∈ ( 12 , 1). This finally shows that Assumptions 1-4 are fullfilled for the
SPDE (64) for all α ∈ (0, 2

3 ), β = 1
5 and all γ ∈ ( 12 , 1).

Theorem 1 therefore yields the existence of real numbers Cr ∈ (0,∞), r ∈ (0, 1), such that(
E
[∫ 1

0

∣∣∣XT (x)− Y N,M,K
M (x)

∣∣∣2 dx])1
2

≤ Cr

(
N (r−2) +K(r−2) +M (r−1)

)
(65)

for all N,M,K ∈ N and all arbitrarily small r ∈ (0, 1). Choosing N2 = K2 = M in (65) hence gives the
existence of real numbers Cr ∈ (0,∞), r ∈ (0, 2), such that(

E
[∫ 1

0

∣∣∣XT (x)− Y N,N2,N
N2 (x)

∣∣∣2 dx])1
2

≤ Cr ·N (r−2) (66)

for all N ∈ N and all arbitrarily small r ∈ (0, 2). The Milstein type approximation Y N,N2,N
N2 thus converges in

the root mean square sense to XT with order 2− as N goes to infinity. Since PN (H) ⊂ H is N -dimensional

and since N2 time steps are used to simulate Y N,N2,N
N2 , O(N3 log(N)) computational operations and random

variables are needed to simulate Y N,N2,N
N2 here. Combining the computational effort O(N3 log(N)) and the

convergence order 2− in (66) shows that the Milstein type algorithm (54) with N2 = K2 = M needs about

O(ε−
3
2 ) computational operations and random variables to achieve a root mean square precision ε > 0.

The linear implicit Euler scheme combined with spectral Galerkin methods which we denote by F/B(H)-
measurable mappings ZN

n : Ω → H, n ∈
{
0, 1, . . . , N4

}
, N ∈ N, is given by ZN

0 = 0 and

ZN
n+1 = PN

(
I − T

N4
A

)−1(
ZN
n +

T

N4
· f(·, ZN

n ) + b(·, ZN
n ) ·∆WN4,N

n

)
(67)

for all n ∈
{
0, 1, . . . , N4 − 1

}
and all N ∈ N here.

In Figure 4 the root mean square approximation error
(
E
[
∥XT −ZN

N4∥2H
])1/2

of the linear implicit Euler

approximation ZN
N4 (see (67)) and the root mean square approximation error

(
E
[
∥XT − Y N,N2,N

N2 ∥2H
])1/2

of the Milstein type approximation Y N,N2,N
N2 (see (33) and (54)) is plotted against the precise number of

independent standard normal random variables needed to compute the corresponding approximation for
N ∈ {4, 8, 16, 32}.

4.3 A two-dimensional stochastic heat equation and splitting-up approximations

In this subsection the Milstein type algorithm (33) is compared and related to certain splitting-up type
approximations in the case of a two-dimensional linear stochastic heat equation with multiplicative noise.
More formally, in this subsection let d = 2, T = 1, κ = 1

50 , let x0 : [0, 1]
2 → R be given by x0(x1, x2) =

2 sin(πx1) sin(πx2) for all x1, x2 ∈ [0, 1], let f, b : (0, 1)2×R → R be given by f(x1, x2, y) = 0 and b(x1, x2, y) =

16
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Figure 4: SPDE (64): Root mean square approximation error
(
E
[
∥XT − ZN

N4∥2H
])1/2

of the linear implicit

Euler approximation ZN
N4 (see (67)) and root mean square approximation error

(
E
[
∥XT − Y N,N2,N

N2 ∥2H
])1/2

of the Milstein type approximation Y N,N2,N
N2 (see (33) and (54)) against the precise number of independent

standard normal random variables needed to compute the corresponding approximation for N ∈ {4, 8, 16, 32}.

y for all x1, x2 ∈ (0, 1), y ∈ R, let J = N2, let JK = {1, 2, . . . ,K}2 for all K ∈ N, let η(j1,j2) = (j1 + j2)
−4

and let g(j1,j2) = e(j1,j2) for all j1, j2 ∈ N. The SPDE (52) thus reduces to

dXt(x1, x2) =

[
1

50

(
∂2

∂x2
1

+
∂2

∂x2
2

)
Xt(x1, x2)

]
dt+Xt(x1, x2) dWt(x1, x2) (68)

with Xt|∂(0,1)2 ≡ 0 and X0(x1, x2) = 2 sin(πx1) sin(πx2) for x1, x2 ∈ (0, 1) and t ∈ [0, 1]. In view of (53) the
SPDE (68) can also be written as

dXt(x1, x2) =

[
1

50

(
∂2

∂x2
1

+
∂2

∂x2
2

)
Xt(x1, x2)

]
dt+

∞∑
j1,j2=1

Xt(x1, x2)

(j1 + j2)2
2 sin(j1πx1) sin(j2πx2) dβ

(j1,j2)
t (69)

with Xt|∂(0,1)2 ≡ 0 and X0(x1, x2) = 2 sin(πx1) sin(πx2) for x1, x2 ∈ (0, 1) and t ∈ [0, 1].

Due to Subsection 4.3 in [32] inequality (22) holds for all δ ∈ (0, 1
2 ) here. In order to verify (24) the

notation
∥v∥L∞((0,1)2,R) := inf

{
R ∈ [0,∞] : λ

({
x ∈ (0, 1)2 : v(x) > R

})
= 0
}
∈ [0,∞]

is used for all B((0, 1)2)/B(R)-measurable mappings v : (0, 1)2 → R in this subsection. Then

∥v∥L∞((0,1)2,R) ≤
∑
i∈N2

|⟨ei, v⟩H | ∥ei∥C((0,1)2,R)

≤ 2

(∑
i∈N2

(λi)
−2r

)1
2
(∑

i∈N2

(λi)
2r |⟨ei, v⟩H |2

)1
2

= 2

(∑
i∈N2

(λi)
−2r

)1
2

∥v∥Hr

(70)

for all v ∈ Hr and all r ∈ ( 12 ,∞). Moreover, we have∥∥∥(−A)
−ϑ

B(v)Q−α
∥∥∥
HS(U0,H)

=
∥∥∥(−A)

−ϑ
B(v)Q( 1

2−α)
∥∥∥
HS(H)

=
∥∥∥(−A)

−ϑ
B(v)Q( 1

2−α)
∥∥∥
S2(H)

≤
∥∥∥(−A)

−ϑ
∥∥∥
S 1

α
(H)

∥B(v)∥L(H)

∥∥∥Q( 1
2−α)

∥∥∥
S 2

(1−2α)
(H)

≤

(∑
i∈N2

(λi)
− ϑ

α

)α

∥b(·, v)∥L∞((0,1)2,R)

∑
j∈J

η
( 1
2−α) 2

(1−2α)

j


(1−2α)

2
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and using (70) shows

∥∥∥(−A)
−ϑ

B(v)Q−α
∥∥∥
HS(U0,H)

≤

(∑
i∈N2

(λi)
− ϑ

α

)α (
q ∥v∥L∞((0,1)2,R) + q

)
(Tr(Q))

( 1
2−α)

≤ q (1 + Tr(Q))

(∑
i∈N2

(λi)
− ϑ

α

)α (
1 + ∥v∥L∞((0,1)2,R)

)

≤ 2q (1 + Tr(Q))

(∑
i∈N2

(λi)
− ϑ

α

)α(
1 +

∑
i∈N2

(λi)
−2γ

)(
1 + ∥v∥Hγ

)
< ∞

for all ϑ ∈ (α, 1
2 ), α ∈ (0, 1

2 ), v ∈ Hγ and all γ ∈ ( 12 , 1). Inequality (24) thus holds for all α ∈ (0, 1
2 ) and all

γ ∈ ( 12 , 1) here. This finally shows that Assumptions 1-4 are fulfilled for the SPDE (68) for all α ∈ (0, 1
2 ),

β = 2
5 and all γ ∈ ( 12 , 1).

Theorem 1 therefore yields the existence of real numbers Cr ∈ (0,∞), r ∈ (0, 1), such that(
E
[∫ 1

0

∫ 1

0

∣∣XT (x1, x2)− Y N,M,K
M (x1, x2)

∣∣2 dx1 dx2

])1/2
≤ Cr

(
N (r−2) +K(r−2) +M (r−1)

)
(71)

holds for all N,M,K ∈ N and all arbitrarily small r ∈ (0, 1). In order to balance the error terms on the right
hand side of (71) we choose M = N2 = K2 in (71) and obtain the existence of real numbers Cr ∈ (0,∞),
r ∈ (0, 2), such that(

E
[∫ 1

0

∫ 1

0

∣∣XT (x1, x2)− Y N,N2,N
N2 (x1, x2)

∣∣2 dx1 dx2

])1/2
≤ Cr ·N (r−2) (72)

holds for all N ∈ N and all arbitrarily small r ∈ (0, 2). The approximation Y N,N2,N
N2 thus converges in

the root mean square sense to XT with order 2− as N goes to infinity. The numerical approximations

Y N,N2,N
n : Ω → H, n ∈

{
0, 1, . . . , N2

}
, N ∈ N, (see (33) and (54)) are here given by Y N,N2,N

0 = x0 and

Y N,N2,N
n+1 = PN eA

T
N2

[1 + ∆WN2,N
n +

1

2

(
∆WN2,N

n

)2
− T

2N2

∑
j∈JK

ηj(gj)
2
]
· Y N,N2,N

n

 (73)

for all n ∈
{
0, 1, . . . , N2 − 1

}
and all N ∈ N. Since PN (H) ⊂ H is N2-dimensional here and since N2 time

steps are used to simulate Y N,N2,N
N2 , O(N4 log(N)) computational operations and random variables are needed

to simulate Y N,N2,N
N2 . Combining the computational effort O(N4 log(N)) and the convergence order 2− in

(72) shows that the algorithm (73) in this article needs about O(ε−2) computational operations and random
variables to achieve a root mean square precision ε > 0.

The linear implicit Euler scheme combined with spectral Galerkin methods which we denote by F/B(H)-
measurable mappings ZN

n : Ω → H, n ∈
{
0, 1, . . . , N4

}
, N ∈ N, is given by ZN

0 = x0 and

ZN
n+1 = PN

(
I − T

N4
A

)−1 ([
1 + ∆WN4,N

n

]
· ZN

n

)
(74)

for all n ∈
{
0, 1, . . . , N4 − 1

}
and all N ∈ N here.

Moreover, since the SPDE (68) is linear here, the splitting-up method can be used in order to solve (68)
approximatively. The idea of the splitting-up approach is to split the SPDE (68) into the explicit solvable
subequations

dX̃t(x1, x2) =

[
1

50

(
∂2

∂x2
1

+
∂2

∂x2
2

)
X̃t(x1, x2)

]
dt, X̃t|∂(0,1)2 ≡ 0 (75)

and
d ˜̃Xt(x1, x2) =

˜̃Xt(x1, x2) dWt(x1, x2) (76)

for t ∈ [0, 1] and x1, x2 ∈ (0, 1). For the solution processes X̃, ˜̃X : [0, T ] × Ω → H of (75) and (76) we

obtain X̃t = eAtX̃0 and ˜̃Xt = e(Wt− t
2

∑
j∈J ηj(gj)

2) · ˜̃X0 P-a.s. for all t ∈ [0, 1]. This suggests the splitting-up
approximation

Xt ≈ eAt
(
e(Wt− t

2

∑
j∈J ηj(gj)

2) ·X0

)
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for t ∈ [0, 1] where X : [0, T ] × Ω → H is the solution process of the SPDE (68). The resulting splitting-up
method which we denote by F/B(H)-measurable mappings Z̃N

n : Ω → H, n ∈ {0, 1, . . . , N2}, N ∈ N, is then
given by Z̃N

0 = x0 and

Z̃N
n+1 = PN eA

T
N2

(
e

(
∆WN2,N

n − T
2N2

∑
j∈JK

ηj(gj)
2
)
· Z̃N

n

)
(77)

for all n ∈ {0, 1, . . . , N2 − 1} and all N ∈ N. Using the Talyor approximation ex ≈ 1 + x+ x2

2 for all x ∈ R
then yields

e

(
∆WN2,N

n − T
2N2

∑
j∈JK

ηj(gj)
2
)

≈ 1 + ∆WN2,N
n − T

2N2

∑
j∈JK

ηj(gj)
2 +

1

2

∆WN2,N
n − T

2N2

∑
j∈JK

ηj(gj)
2

2

≈ 1 + ∆WN2,N
n +

1

2

(
∆WN2,N

n

)2
− T

2N2

∑
j∈JK

ηj(gj)
2 (78)

for all n ∈
{
0, 1, . . . , N2 − 1

}
and all N ∈ N. Using approximation (78) in (77) finally shows

Z̃N
n+1≈ PN eA

T
N2

[1 + ∆WN2,N
n +

1

2

(
∆WN2,N

n

)2
− T

2N2

∑
j∈JK

ηj(gj)
2
]
· Z̃N

n


for all n ∈

{
0, 1, . . . , N2 − 1

}
and all N ∈ N which is nothing else than the recursion for Y N,N2,N

n , n ∈{
0, 1, . . . , N2

}
, N ∈ N, in (73). So, in the case of the linear SPDE (68) an alternative way for deriving the

Milstein type algorithm (73) is to apply an appropriate Taylor approximation for the exponential function
(see (78) for details) to the splitting-up approximation (77). More results on splitting-up methods can be
found in A. Bensoussan, R. Glowinski and A. Rascanu [6, 7], P. Florchinger and F. Le Gland [13], I. Gyöngy
and N. Krylov [19, 20, 21] and K. Ito and B. L. Rozovskii [27] and the references therein.

In Figure 5 the root mean square approximation error
(
E
[
∥XT − ZN

N4∥2H
])1/2

of the linear implicit Eu-

ler approximation ZN
N4 (see (74)), the root mean square approximation error

(
E
[
∥XT − Y N,N2,N

N2 ∥2H
])1/2

of the Milstein type approximation Y N,N2,N
N2 (see (73)) and the root mean square approximation error(

E
[
∥XT − Z̃N

N2∥2H
])1/2

of the splitting-up approximation Z̃N
N2 (see (77)) is plotted against the precise number

of independent standard normal random variables needed to compute the corresponding approximation for
N ∈ {2, 4, 8, 16, 32}: It turns out that Z32

324 (326 = 1073 741 824 random variables) in the case of the linear

implicit Euler scheme (74), that Y 32,322,32
32 (324 = 1048 576 random variables) in the case of the algorithm (73)

and that Z̃32
322 (324 = 1048 576 random variables) in the case of the splitting-up method (77) achieve a root

mean square precision ε = 1
1000 for the SPDE (68).

5 Proof of Theorem 1

Throughout this section the notation

∥Z∥Lp(Ω;E) :=
(
E
[
∥Z∥pE

])1/p
∈ [0,∞] (79)

is used for an R-Banach space (E, ∥·∥E), an F/B(E)-measurable mapping Z : Ω → E and a real number
p ∈ [1,∞). We also use the following simple lemma (see, e.g., Theorem 37.5 in [57]).

Lemma 1. Let Assumptions 1-4 in Section 2 be fulfilled. Then∥∥(−tA)reAt
∥∥
L(H)

≤ 1 and
∥∥(−tA)−r(eAt − I)

∥∥
L(H)

≤ 1 (80)

for all t ∈ (0,∞) and all r ∈ [0, 1].

We now prove Theorem 1. First of all, note that the exact solution of the SPDE (28) satisfies

Xmh = eAmhξ +

∫ mh

0

eA(mh−s)F (Xs) ds+

∫ mh

0

eA(mh−s)B(Xs) dWs (81)

= eAmhξ +

m−1∑
l=0

∫ (l+1)h

lh

eA(mh−s)F (Xs) ds+

m−1∑
l=0

∫ (l+1)h

lh

eA(mh−s)B(Xs) dWs
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Figure 5: SPDE (68): Root mean square approximation error
(
E
[
∥XT − ZN

N4∥2H
])1/2

of the linear implicit
Euler approximation ZN

N4 (see (74)), root mean square approximation error of the linear implicit Euler approx-

imation ZN
N4 (see (74)), the root mean square approximation error

(
E
[
∥XT −Y N,N2,N

N2 ∥2H
])1/2

of the Milstein

type approximation Y N,N2,N
N2 (see (73)) and root mean square approximation error

(
E
[
∥XT − Z̃N

N2∥2H
])1/2

of

the splitting-up approximation Z̃N
N2 (see (77)) against the precise number of independent standard normal

random variables needed to compute the corresponding approximation for N ∈ {2, 4, 8, 16, 32}.

P-a.s. for all m ∈ {0, 1, . . . ,M} and all M ∈ N. Here and below h is the time stepsize h = hM = T
M with

M ∈ N. In particular, (81) shows

PN (Xmh) = eAmhPN (ξ) + PN

(
m−1∑
l=0

∫ (l+1)h

lh

eA(mh−s)F (Xs) ds

)

+ PN

(
m−1∑
l=0

∫ (l+1)h

lh

eA(mh−s)B(Xs) dWs

)
(82)

P-a.s. for all m ∈ {0, 1, . . . ,M} and all N,M ∈ N. In order to estimate the difference of the exact solution (81)
and the numerical solution (33) we rewrite the numerical method (33) in some sense. More precisely, the
identity

1

2
B′(Y N,M,K

m

)(
B
(
Y N,M,K
m

)
∆WM,K

m

)
∆WM,K

m − T

2M

∑
j∈JK
ηj ̸=0

ηjB
′(Y N,M,K

m

)(
B
(
Y N,M,K
m

)
gj

)
gj

=

∫ (m+1)T
M

mT
M

B′(Y N,M,K
m

)(∫ s

mT
M

B
(
Y N,M,K
m

)
dWK

u

)
dWK

s

(83)

P-a.s. holds for all m ∈ {0, 1, . . . ,M − 1} and all N,M,K ∈ N. The proof of (83) can be found in Subsec-
tion 5.7. Using (83) shows that the numerical solution (33) fulfills

Y N,M,K
m+1 = PN eA

T
M

(
Y N,M,K
m +

T

M
· F
(
Y N,M,K
m

)
+

∫ (m+1)T
M

mT
M

B
(
Y N,M,K
m

)
dWK

s

+

∫ (m+1)T
M

mT
M

B′(Y N,M,K
m

)(∫ s

mT
M

B
(
Y N,M,K
m

)
dWK

u

)
dWK

s

) (84)
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P-a.s. for all m ∈ {0, 1, . . . ,M − 1} and all N,M,K ∈ N. Therefore, the numerical solution (33) satisfies

Y N,M,K
m = eAmhPN (ξ) + PN

(
m−1∑
l=0

∫ (l+1)h

lh

eA(m−l)hF
(
Y N,M,K
l

)
ds

)

+ PN

(
m−1∑
l=0

∫ (l+1)h

lh

eA(m−l)hB
(
Y N,M,K
l

)
dWK

s

)
(85)

+ PN

(
m−1∑
l=0

∫ (l+1)h

lh

eA(m−l)hB′
(
Y N,M,K
l

)(∫ s

lh

B
(
Y N,M,K
l

)
dWK

u

)
dWK

s

)

P-a.s. for all m ∈ {0, 1, . . . ,M} and all N,M,K ∈ N. In order to estimate E
[
∥Xmh − Y N,M,K

m ∥2H
]
for

m ∈ {0, 1, . . . ,M} and N,M,K ∈ N, we define the F/B(H)-measurable mappings ZN,M,K
m : Ω → H, m ∈

{0, 1, . . . ,M}, N,M,K ∈ N, by

ZN,M,K
m := eAmhPN (ξ) + PN

(
m−1∑
l=0

∫ (l+1)h

lh

eA(m−l)hF (Xlh) ds

)

+ PN

(
m−1∑
l=0

∫ (l+1)h

lh

eA(m−l)hB(Xlh) dW
K
s

)
(86)

+ PN

(
m−1∑
l=0

∫ (l+1)h

lh

eA(m−l)hB′(Xlh)

(∫ s

lh

B(Xlh) dW
K
u

)
dWK

s

)

P-a.s. for all m ∈ {0, 1, . . . ,M} and all N,M,K ∈ N. The inequality

(a1 + . . .+ an)
2 ≤ n

(
(a1)

2
+ . . .+ (an)

2
)

(87)

for all a1, . . . , an ∈ R and all n ∈ N then shows

E
[
∥Xmh − Y N,M,K

m ∥2H
]

(88)

≤ 3 · E
[
∥Xmh − PN (Xmh) ∥2H

]
+ 3 · E

[
∥PN (Xmh)− ZN,M,K

m ∥2H
]
+ 3 · E

[
∥ZN,M,K

m − Y N,M,K
m ∥2H

]
for all m ∈ {0, 1, . . . ,M} and all N,M,K ∈ N. In order to estimate the expressions E

[
∥Xmh − PN (Xmh)∥2H

]
,

E
[
∥PN (Xmh)− ZN,M,K

m ∥2H
]
and E

[
∥ZN,M,K

m − Y N,M,K
m ∥2H

]
for m ∈ {0, 1, . . . ,M} and N,M,K ∈ N, a real

number R ∈ (0,∞) satisfying

E
[
∥B(Xt)∥2HS(U0,Hδ)

]
≤ R, ∥F ′(v)∥L(H) ≤ R, ∥F ′′(v)∥L(2)(Hβ ,H) ≤ R,

E
[
∥F (Xt) ∥2H

]
≤ R, ∥B′(v)∥L(H,HS(U0,H)) ≤ R, ∥B′′(v)∥L(2)(Hβ ,HS(U0,H)) ≤ R,

E
[
∥(−A)γXt∥2H

]
= E

[
∥Xt∥2Hγ

]
≤ R, E

[
∥Xt2 −Xt1∥4Hβ

]
≤ R |t2 − t1|min(4(γ−β),2)

,

c+
1

(1− γ)
+

1

(1− 2ϑ)
+

1

(1− 2δ)
+ T +

∥∥A−1
∥∥
L(H)

≤ R

for all v ∈ Hβ and all t, t1, t2 ∈ [0, T ] is used throughout this proof. Due to Assumptions 1-4 in Section 2 and
Proposition 1 such a real number indeed exists. For the spatial discretization error E

[
∥Xmh − PN (Xmh)∥2H

]
we then obtain

E
[
∥Xmh − PN (Xmh)∥2H

]
= E

[
∥(I − PN )Xmh∥2H

]
= E

[∥∥∥(−A)
−γ

(I − PN ) (−A)
γ
Xmh

∥∥∥2
H

]
≤
∥∥∥(−A)

−γ
(I − PN )

∥∥∥2
L(H)

E
[
∥Xmh∥2Hγ

]
≤ R (rN )

2

(89)

for all m ∈ {0, 1, . . . ,M} and all N,M ∈ N where here and below the real numbers (rN )N∈N ⊂ R are given
by

rN :=
∥∥∥(−A)

−γ
(I − PN )

∥∥∥
L(H)

=

(
inf

i∈I\IN

λi

)−γ

(90)

for all N ∈ N. The rest of this proof is then divided into six parts. In the first part (see Subsection 5.1) we
establish

E

∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

(
eA(mh−s)F (Xs)− eA(m−l)hF (Xlh)

)
ds

∥∥∥∥∥
2

H

 ≤ 36R8

Mmin(4(γ−β),2γ)
(91)
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for all m ∈ {0, 1, . . . ,M} and all M ∈ N. We show

E

∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

eA(mh−s)B(Xs) d
(
Ws −WK

s

)∥∥∥∥∥
2

H

 ≤ 4R5

(
sup

j∈J\JK

ηj

)2α
(92)

for all m ∈ {0, 1, . . . ,M} and all M,K ∈ N in the second part (see Subsection 5.2) and

E

∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

(
eA(mh−s) − eA(m−l)h

)
B(Xs) dW

K
s

∥∥∥∥∥
2

H

 ≤ 3R4

M (1+2δ)
(93)

for all m ∈ {0, 1, . . . ,M} and all M,K ∈ N in the third part (see Subsection 5.3). The fourth part (see
Subsection 5.4) gives

E

∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

eA(m−l)h

∫ 1

0

B′′(Xlh + r (Xs −Xlh)) (Xs −Xlh, Xs −Xlh) (1− r) dr dWK
s

∥∥∥∥∥
2

H


≤ R6

Mmin(4(γ−β),2)
(94)

and in the fifth part (see Subsection 5.5) we obtain

E

∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

eA(m−l)hB′(Xlh)

(
Xs −Xlh −

∫ s

lh

B(Xlh) dW
K
u

)
dWK

s

∥∥∥∥∥
2

H


≤ 20R13

Mmin(4(γ−β),2γ)
+ 20R11

(
sup

j∈J\JK

ηj

)2α
(95)

for all m ∈ {0, 1, . . . ,M} and all M,K ∈ N. The inequalities (91)-(95) are used below to estimate
E
[
∥PN (Xmh) − ZN,M,K

m ∥2H
]
for m ∈ {0, 1, . . . ,M} and N,M,K ∈ N in (88). In the sixth part (see Subsec-

tion 5.6) we estimate

E
[∥∥ZN,M,K

m − Y N,M,K
m

∥∥2
H

]
≤ 9R4

M

(
m−1∑
l=0

E
[∥∥∥Xlh − Y N,M,K

l

∥∥∥2
H

])
(96)

for all m ∈ {0, 1, . . . ,M} and all N,M,K ∈ N by using the global Lipschitz continuity of the coefficients
F : Hβ → H (see Assumption 2) and B : Hβ → HS(U0,H) (see Assumption 3). Combining (88), (89) and
(96) then yields

E
[∥∥Xmh − Y N,M,K

m

∥∥2
H

]
≤ 3R (rN )

2
+ 3 · E

[∥∥PN (Xmh)− ZN,M,K
m

∥∥2
H

]
+

27R4

M

(
m−1∑
l=0

E
[∥∥∥Xlh − Y N,M,K

l

∥∥∥2
H

]) (97)

for all m ∈ {0, 1, . . . ,M} and all N,M,K ∈ N. Hence, (82), (86), (87) and the fact ∥PN (v)∥H ≤ ∥v∥H for all
v ∈ H show

E
[∥∥Xmh − Y N,M,K

m

∥∥2
H

]
≤ 9 · E

∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

(
eA(mh−s)F (Xs)− eA(m−l)hF (Xlh)

)
ds

∥∥∥∥∥
2

H


+ 9 · E

∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

eA(mh−s)B(Xs) d
(
Ws −WK

s

)∥∥∥∥∥
2

H


+ 9 · E

[∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

(
eA(mh−s)B(Xs)− eA(m−l)hB(Xlh)

)
dWK

s

−
m−1∑
l=0

∫ (l+1)h

lh

eA(m−l)hB′(Xlh)

(∫ s

lh

B(Xlh) dW
K
u

)
dWK

s

∥∥∥∥∥
2

H

]

+ 3R (rN )
2
+

27R4

M

(
m−1∑
l=0

E
[∥∥∥Xlh − Y N,M,K

l

∥∥∥2
H

])

22



for all m ∈ {0, 1, . . . ,M} and all N,M,K ∈ N. Therefore, (91) and (92) yield

E
[∥∥Xmh − Y N,M,K

m

∥∥2
H

]
≤ 324R8

Mmin(4(γ−β),2γ)
+ 36R5

(
sup

j∈J\JK

ηj

)2α

+ 18 · E

∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

(
eA(mh−s) − eA(m−l)h

)
B(Xs) dW

K
s

∥∥∥∥∥
2

H


+ 18 · E

[∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

eA(m−l)h (B(Xs)−B(Xlh)) dW
K
s

−
m−1∑
l=0

∫ (l+1)h

lh

eA(m−l)hB′(Xlh)

(∫ s

lh

B(Xlh) dW
K
u

)
dWK

s

∥∥∥∥∥
2

H

]

+ 3R (rN )
2
+

27R4

M

(
m−1∑
l=0

E
[∥∥∥Xlh − Y N,M,K

l

∥∥∥2
H

])
and (93) shows

E
[∥∥Xmh − Y N,M,K

m

∥∥2
H

]
≤ 324R8

Mmin(4(γ−β),2γ)
+ 36R5

(
sup

j∈J\JK

ηj

)2α
+

54R4

M (1+2δ)

+ 18 · E

[∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

eA(m−l)h (B(Xs)−B(Xlh)) dW
K
s

−
m−1∑
l=0

∫ (l+1)h

lh

eA(m−l)hB′(Xlh)

(∫ s

lh

B(Xlh) dW
K
u

)
dWK

s

∥∥∥∥∥
2

H

]

+ 3R (rN )
2
+

27R4

M

(
m−1∑
l=0

E
[∥∥∥Xlh − Y N,M,K

l

∥∥∥2
H

])
for all m ∈ {0, 1, . . . ,M} and all N,M,K ∈ N. The fact

B(Xs)−B(Xlh) = B′(Xlh)(Xs −Xlh) +

∫ 1

0

B′′(Xlh + r(Xs −Xlh))(Xs −Xlh, Xs −Xlh)(1− r) dr (98)

for all s ∈ [lh, (l + 1)h], l ∈ {0, 1, . . . ,M − 1} and all M ∈ N then yields

E
[∥∥Xmh − Y N,M,K

m

∥∥2
H

]
≤ 324R8

Mmin(4(γ−β),2γ)
+ 36R5

(
sup

j∈J\JK

ηj

)2α
+

54R4

M (1+2δ)

+ 36 · E

∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

eA(m−l)hB′(Xlh)

(
Xs −Xlh −

∫ s

lh

B(Xlh) dW
K
u

)
dWK

s

∥∥∥∥∥
2

H


+ 36 · E

∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

eA(m−l)h

∫ 1

0

B′′(Xlh + r (Xs −Xlh))
(
Xs −Xlh, Xs −Xlh

)
(1− r) dr dWK

s

∥∥∥∥∥
2

H


+ 3R (rN )

2
+

27R4

M

(
m−1∑
l=0

E
[∥∥∥Xlh − Y N,M,K

l

∥∥∥2
H

])
for all m ∈ {0, 1, . . . ,M − 1} and all N,M,K ∈ N. Therefore, (94) and (95) give

E
[∥∥Xmh − Y N,M,K

m

∥∥2
H

]
≤ 324R8

Mmin(4(γ−β),2γ)
+ 756R11

(
sup

j∈J\JK

ηj

)2α
+

54R4

M (1+2δ)

+
720R13

Mmin(4(γ−β),2γ)
+

36R6

Mmin(4(γ−β),2)
+ 3R (rN )

2
+

27R4

M

(
m−1∑
l=0

E
[∥∥∥Xlh − Y N,M,K

l

∥∥∥2
H

])
and hence

E
[∥∥Xmh − Y N,M,K

m

∥∥2
H

]
≤
(
324R8 + 54R4 + 720R13 + 36R6

) 1

Mmin(4(γ−β),2γ)

+ 756R11

(
sup

j∈J\JK

ηj

)2α
+ 3R (rN )

2
+

27R4

M

(
m−1∑
l=0

E
[∥∥∥Xlh − Y N,M,K

l

∥∥∥2
H

])
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for all m ∈ {0, 1, . . . ,M} and all N,M,K ∈ N. Gronwall’s lemma thus shows

E
[∥∥Xmh − Y N,M,K

m

∥∥2
H

]
≤ e27R

4

((
324R8 + 54R4 + 720R13 + 36R6

)
Mmin(4(γ−β),2γ)

+ 756R11

(
sup

j∈J\JK

ηj

)2α
+ 3R (rN )

2

)

≤ 1134R13e27R
4

(
(rN )

2
+

(
sup

j∈J\JK

ηj

)2α
+M−min(4(γ−β),2γ)

)
for all m ∈ {0, 1, . . . ,M} and all N,M,K ∈ N. Finally, we obtain(

E
[∥∥Xmh − Y N,M,K

m

∥∥2
H

]) 1
2 ≤ 34R7e14R

4

((
inf

i∈I\IN

λi

)−γ

+

(
sup

j∈J\JK

ηj

)α
+M−min(2(γ−β),γ)

)

≤ e20R
4

((
inf

i∈I\IN

λi

)−γ

+

(
sup

j∈J\JK

ηj

)α
+M−min(2(γ−β),γ)

)
for all m ∈ {0, 1, . . . ,M} and all N,M,K ∈ N.

5.1 Temporal discretization error: Proof of (91)

First of all, we have ∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

(
eA(mh−s)F (Xs)− eA(m−l)hF (Xlh)

)
ds

∥∥∥∥∥
L2(Ω;H)

≤
m−1∑
l=0

∫ (l+1)h

lh

∥∥∥(eA(mh−s) − eA(m−l)h
)
F (Xs)

∥∥∥
L2(Ω;H)

ds

+

∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

eA(m−l)h (F (Xs)− F (Xlh)) ds

∥∥∥∥∥
L2(Ω;H)

for all m ∈ {0, 1, . . . ,M} and all M ∈ N. Using

F (Xs)− F (Xlh) = F ′(Xlh) (Xs −Xlh) +

∫ 1

0

F ′′(Xlh + r (Xs −Xlh)) (Xs −Xlh, Xs −Xlh) (1− r) dr (99)

for all s ∈ [lh, (l + 1)h], l ∈ {0, 1, . . . ,M − 1} and all M ∈ N then shows∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

(
eA(mh−s)F (Xs)− eA(m−l)hF (Xlh)

)
ds

∥∥∥∥∥
L2(Ω;H)

≤
m−1∑
l=0

∫ (l+1)h

lh

∥∥∥eA(mh−s) − eA(m−l)h
∥∥∥
L(H)

∥F (Xs)∥L2(Ω;H) ds

+

∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

eA(m−l)hF ′(Xlh) (Xs −Xlh) ds

∥∥∥∥∥
L2(Ω;H)

+
m−1∑
l=0

∫ (l+1)h

lh

∫ 1

0

∥F ′′(Xlh + r (Xs −Xlh)) (Xs −Xlh, Xs −Xlh)∥L2(Ω;H) (1− r) dr ds

and hence ∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

(
eA(mh−s)F (Xs)− eA(m−l)hF (Xlh)

)
ds

∥∥∥∥∥
L2(Ω;H)

≤ R

(
2h+

m−2∑
l=0

∫ (l+1)h

lh

∥∥∥eA(mh−s) − eA(m−l)h
∥∥∥
L(H)

ds

)

+

∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

eA(m−l)hF ′(Xlh) (Xs −Xlh) ds

∥∥∥∥∥
L2(Ω;H)

+

m−1∑
l=0

∫ (l+1)h

lh

∫ 1

0

∥∥∥R ∥Xs −Xlh∥2Hβ

∥∥∥
L2(Ω;R)

(1− r) dr ds
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for all m ∈ {0, 1, . . . ,M} and all M ∈ N. Therefore, we obtain∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

(
eA(mh−s)F (Xs)− eA(m−l)hF (Xlh)

)
ds

∥∥∥∥∥
L2(Ω;H)

≤ R

(
2h+

m−2∑
l=0

∫ (l+1)h

lh

∥∥∥AeA(mh−s)
∥∥∥
L(H)

∥∥∥A−1
(
eA(s−lh) − I

)∥∥∥
L(H)

ds

)

+

∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

eA(m−l)hF ′(Xlh) (Xs −Xlh) ds

∥∥∥∥∥
L2(Ω;H)

+
R

2

(
m−1∑
l=0

∫ (l+1)h

lh

(
E ∥Xs −Xlh∥4Hβ

) 1
2

ds

)

and Lemma 1 gives∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

(
eA(mh−s)F (Xs)− eA(m−l)hF (Xlh)

)
ds

∥∥∥∥∥
L2(Ω;H)

≤ R

(
2h+

m−2∑
l=0

∫ (l+1)h

lh

(s− lh)

(mh− s)
ds

)

+

m−1∑
l=0

∫ (l+1)h

lh

∥∥∥eA(m−l)hF ′(Xlh)
((

eA(s−lh) − I
)
Xlh

)∥∥∥
L2(Ω;H)

ds

+

m−1∑
l=0

∫ (l+1)h

lh

∥∥∥∥eA(m−l)hF ′(Xlh)

(∫ s

lh

eA(s−u)F (Xu) du

)∥∥∥∥
L2(Ω;H)

ds

+

∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

eA(m−l)hF ′(Xlh)

(∫ s

lh

eA(s−u)B(Xu) dWu

)
ds

∥∥∥∥∥
L2(Ω;H)

+
R

2

(
m−1∑
l=0

∫ (l+1)h

lh

(
R (s− lh)

min(4(γ−β),2)
) 1

2

ds

)

for all m ∈ {0, 1, . . . ,M} and all M ∈ N. This shows∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

(
eA(mh−s)F (Xs)− eA(m−l)hF (Xlh)

)
ds

∥∥∥∥∥
L2(Ω;H)

≤ R

(
2h+

m−2∑
l=0

∫ (l+1)h

lh

(s− lh)

(m− l − 1)h
ds

)

+
m−1∑
l=0

∫ (l+1)h

lh

∥∥∥F ′(Xlh)
((

eA(s−lh) − I
)
Xlh

)∥∥∥
L2(Ω;H)

ds

+
m−1∑
l=0

∫ (l+1)h

lh

∥∥∥∥F ′(Xlh)

(∫ s

lh

eA(s−u)F (Xu) du

)∥∥∥∥
L2(Ω;H)

ds

+


m−1∑
l=0

E

∥∥∥∥∥
∫ (l+1)h

lh

eA(m−l)hF ′(Xlh)

(∫ s

lh

eA(s−u)B(Xu) dWu

)
ds

∥∥∥∥∥
2

H


1
2

+
R2

2

(
m−1∑
l=0

h(1+min(2(γ−β),1))

)
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and ∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

(
eA(mh−s)F (Xs)− eA(m−l)hF (Xlh)

)
ds

∥∥∥∥∥
L2(Ω;H)

≤ R

(
2h+

m−2∑
l=0

h

2(m− l − 1)

)
+

1

2
R2Thmin(2(γ−β),1)

+R

(
m−1∑
l=0

∫ (l+1)h

lh

∥∥∥(eA(s−lh) − I
)
Xlh

∥∥∥
L2(Ω;H)

ds

)

+R

(
m−1∑
l=0

∫ (l+1)h

lh

∥∥∥∥∫ s

lh

eA(s−u)F (Xu) du

∥∥∥∥
L2(Ω;H)

ds

)

+
√
h

{
m−1∑
l=0

∫ (l+1)h

lh

E
∥∥∥∥F ′(Xlh)

(∫ s

lh

eA(s−u)B(Xu) dWu

)∥∥∥∥2
H

ds

} 1
2

for all m ∈ {0, 1, . . . ,M} and all M ∈ N. Hence, we have∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

(
eA(mh−s)F (Xs)− eA(m−l)hF (Xlh)

)
ds

∥∥∥∥∥
L2(Ω;H)

≤ R

(
2h+

h

2

(
m−1∑
l=1

1

l

))
+

1

2
R3hmin(2(γ−β),1)

+R

(
m−1∑
l=0

∫ (l+1)h

lh

∥∥∥(−A)
−γ
(
eA(s−lh) − I

)∥∥∥
L(H)

∥(−A)
γ
Xlh∥L2(Ω;H) ds

)

+R

(
m−1∑
l=0

∫ (l+1)h

lh

∫ s

lh

∥F (Xu)∥L2(Ω;H) du ds

)

+R
√
h

{
m−1∑
l=0

∫ (l+1)h

lh

E
∥∥∥∥∫ s

lh

eA(s−u)B(Xu) dWu

∥∥∥∥2
H

ds

} 1
2

and Lemma 1 shows ∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

(
eA(mh−s)F (Xs)− eA(m−l)hF (Xlh)

)
ds

∥∥∥∥∥
L2(Ω;H)

≤ R

(
2h+

h

2
(1 + ln(M))

)
+

1

2
R4M−min(2(γ−β),1)

+R2

(
m−1∑
l=0

∫ (l+1)h

lh

(s− lh)
γ
ds

)
+

1

2
R2Mh2

+R
√
h

{
m−1∑
l=0

∫ (l+1)h

lh

∫ s

lh

E
∥∥∥eA(s−u)B(Xu)

∥∥∥2
HS(U0,H)

du ds

} 1
2
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for all m ∈ {0, 1, . . . ,M} and all M ∈ N. Therefore, we obtain∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

(
eA(mh−s)F (Xs)− eA(m−l)hF (Xlh)

)
ds

∥∥∥∥∥
L2(Ω;H)

≤ Rh

(
5

2
+

1

2
ln(M)

)
+

1

2
R4M−min(2(γ−β),1) +R2Mh(1+γ) +

1

2
R3h

+R
√
h

{
m−1∑
l=0

∫ (l+1)h

lh

∫ s

lh

E ∥B(Xu)∥2HS(U0,H) du ds

} 1
2

≤ R2M−1

(
5

2
+

1

2
ln(M)

)
+

1

2
R4M−min(2(γ−β),1) +R4M−γ +

1

2
R4M−1

+R
√
h

{
m−1∑
l=0

∫ (l+1)h

lh

∫ s

lh

∥∥∥(−A)
−δ
∥∥∥2
L(H)

E
∥∥∥(−A)

δ
B(Xu)

∥∥∥2
HS(U0,H)

du ds

} 1
2

≤ 5

2
R2M−1 (1 + ln(M)) +

1

2
R4M−min(2(γ−β),1) +R4M−γ +

1

2
R4M−1 +R2

√
h

(
1

2
Mh2

) 1
2

for all m ∈ {0, 1, . . . ,M} and all M ∈ N. The estimate

1 + ln(x) = 1 +

∫ x

1

1

s
ds ≤ 1 +

∫ x

1

1

s(1−r)
ds = 1 +

(xr − 1)

r
=

xr

r
− (1− r)

r
≤ xr

r

for all r ∈ (0, 1] and all x ∈ [1,∞) then shows∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

(
eA(mh−s)F (Xs)− eA(m−l)hF (Xlh)

)
ds

∥∥∥∥∥
L2(Ω;H)

≤ 5

2
R2 M (1−γ)

M (1− γ)
+

R4

2Mmin(2(γ−β),1)
+

R4

Mγ
+

R4

2M
+R2

√
h (Th)

1
2

≤ 5R4

2Mγ
+

R4

2Mmin(2(γ−β),1)
+

R4

Mγ
+

R4

2M
+

R4

M

and finally ∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

(
eA(mh−s)F (Xs)− eA(m−l)hF (Xlh)

)
ds

∥∥∥∥∥
L2(Ω;H)

≤
(
5

2
+

1

2
+ 1 +

1

2
+ 1

)
R4

Mmin(2(γ−β),γ)
≤ 6R4

Mmin(2(γ−β),γ)

for all m ∈ {0, 1, . . . ,M} and all M ∈ N.

5.2 Noise discretization error: Proof of (92)

We have

E
∥∥∥∥∫ t

s

eA(t−u)B(Xu) d
(
Wu −WK

u

)∥∥∥∥2
H

= E

∥∥∥∥∥∥∥∥
∑

j∈J\JK

ηj ̸=0

∫ t

s

eA(t−u)B(Xu)gj d⟨gj ,Wu⟩U

∥∥∥∥∥∥∥∥
2

H

=
∑

j∈J\JK

ηj ̸=0

ηj

∫ t

s

E
∥∥∥eA(t−u)B(Xu)gj

∥∥∥2
H
du =

∑
j∈J\JK

ηj ̸=0

ηj

∫ t

s

E
∥∥∥eA(t−u)B(Xu)Q

−α (Qαgj)
∥∥∥2
H
du

=
∑

j∈J\JK

ηj ̸=0

(ηj)
(1+2α)

(∫ t

s

E
∥∥∥eA(t−u)B(Xu)Q

−αgj

∥∥∥2
H
du

)
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for all s, t ∈ [0, T ] with s ≤ t and all K ∈ N. This shows

E
∥∥∥∥∫ t

s

eA(t−u)B(Xu) d
(
Wu −WK

u

)∥∥∥∥2
H

≤
(

sup
j∈J\JK

ηj

)2α ∑
j∈J\JK

ηj ̸=0

ηj

(∫ t

s

E
∥∥∥eA(t−u)B(Xu)Q

−αgj

∥∥∥2
H
du

)
≤
(

sup
j∈J\JK

ηj

)2α∑
j∈J

ηj

∫ t

s

E
∥∥∥eA(t−u)B(Xu)Q

−αgj

∥∥∥2
H
du


≤
(

sup
j∈J\JK

ηj

)2α(∫ t

s

E
∥∥∥eA(t−u)B(Xu)Q

−α
∥∥∥2
HS(U0,H)

du

)
≤
(

sup
j∈J\JK

ηj

)2α(∫ t

s

(t− u)
−2ϑ E

∥∥∥(−A)
−ϑ

B(Xu)Q
−α
∥∥∥2
HS(U0,H)

du

)
for all s, t ∈ [0, T ] with s ≤ t and all K ∈ N. Therefore, we obtain

E
∥∥∥∥∫ t

s

eA(t−u)B(Xu) d
(
Wu −WK

u

)∥∥∥∥2
H

≤ c2
(

sup
j∈J\JK

ηj

)2α(∫ t

s

(t− u)
−2ϑ E

[(
1 + ∥Xu∥Hγ

)2]
du

)
≤ 2c2

(
sup

j∈J\JK

ηj

)2α(∫ t

s

(t− u)
−2ϑ

(
1 + E ∥Xu∥2Hγ

)
du

)

≤ 4R3

(
sup

j∈J\JK

ηj

)2α(∫ t

s

(t− u)
−2ϑ

du

)
= 4R3

(
sup

j∈J\JK

ηj

)2α(∫ (t−s)

0

u−2ϑ du

)

for all s, t ∈ [0, T ] with s ≤ t and all K ∈ N. Hence, we have

E
∥∥∥∥∫ t

s

eA(t−u)B(Xu) d
(
Wu −WK

u

)∥∥∥∥2
H

≤ 4R3

(
sup

j∈J\JK

ηj

)2α [
u(1−2ϑ)

(1− 2ϑ)

]u=(t−s)

u=0

≤ 4R4

(
sup

j∈J\JK

ηj

)2α
(t− s)

(1−2ϑ) ≤ 4R5

(
sup

j∈J\JK

ηj

)2α
(100)

for all s, t ∈ [0, T ] with s ≤ t and all K ∈ N. In particular, we obtain

E

∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

eA(mh−s)B(Xs) d
(
Ws −WK

s

)∥∥∥∥∥
2

H

= E

∥∥∥∥∥
∫ mh

0

eA(mh−s)B(Xs) d
(
Ws −WK

s

)∥∥∥∥∥
2

H

≤ 4R5

(
sup

j∈J\JK

ηj

)2α
for all m ∈ {0, 1, . . . ,M} and all M,K ∈ N which shows (92).

5.3 Temporal discretization error: Proof of (93)

We have

E

∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

(
eA(mh−s) − eA(m−l)h

)
B(Xs) dW

K
s

∥∥∥∥∥
2

H

≤
m−1∑
l=0

∫ (l+1)h

lh

E
∥∥∥(eA(mh−s) − eA(m−l)h

)
B(Xs)

∥∥∥2
HS(U0,H)

ds

≤
m−1∑
l=0

∫ (l+1)h

lh

∥∥∥(−A)
−δ
(
eA(mh−s) − eA(m−l)h

)∥∥∥2
L(H)

E
∥∥∥(−A)

δ
B(Xs)

∥∥∥2
HS(U0,H)

ds
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and hence

E

∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

(
eA(mh−s) − eA(m−l)h

)
B(Xs) dW

K
s

∥∥∥∥∥
2

H

≤ R

(
m−1∑
l=0

∫ (l+1)h

lh

∥∥∥(−A)
−δ
(
eA(mh−s) − eA(m−l)h

)∥∥∥2
L(H)

ds

)

≤ R

∫ mh

(m−1)h

∥∥∥(−A)
−δ
(
eA(mh−s) − eAh

)∥∥∥2
L(H)

ds

+R

(
m−2∑
l=0

∫ (l+1)h

lh

∥∥∥(−A)
−1
(
eA(s−lh) − I

)∥∥∥2
L(H)

∥∥∥(−A)
(1−δ)

eA(mh−s)
∥∥∥2
L(H)

ds

)

for all m ∈ {0, 1, . . . ,M} and all M,K ∈ N. Therefore, we obtain

E

∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

(
eA(mh−s) − eA(m−l)h

)
B(Xs) dW

K
s

∥∥∥∥∥
2

H

≤ R

∫ mh

(m−1)h

∥∥∥(−A)
−δ
(
eA(s−(m−1)h) − I

)∥∥∥2
L(H)

ds

+Rh2

(
m−2∑
l=0

∫ (l+1)h

lh

∥∥∥(−A)
(1−δ)

eA(mh−s)
∥∥∥2
L(H)

ds

)

≤ R

∫ mh

(m−1)h

(s− (m− 1)h)
2δ

ds+Rh2

(
m−2∑
l=0

∫ (l+1)h

lh

(mh− s)
2(δ−1)

ds

)

≤ Rh(1+2δ) +Rh3

(
m−2∑
l=0

(m− l − 1)
2(δ−1)

h2(δ−1)

)

for all m ∈ {0, 1, . . . ,M} and all M,K ∈ N. This implies

E

∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

(
eA(mh−s) − eA(m−l)h

)
B(Xs) dW

K
s

∥∥∥∥∥
2

H

≤ Rh(1+2δ) +Rh(1+2δ)

(
m−1∑
l=1

l2(δ−1)

)

≤ Rh(1+2δ)

(
2 +

∞∑
l=2

l2(δ−1)

)
≤ Rh(1+2δ)

(
2 +

∫ ∞

1

s2(δ−1)ds

)

≤ Rh(1+2δ)

(
2 +

[
s(2δ−1)

(2δ − 1)

]s=∞

s=1

)
= Rh(1+2δ)

(
2 +

1

(1− 2δ)

)
≤ 3R2h(1+2δ) ≤ 3R4

M (1+2δ)

for all m ∈ {0, 1, . . . ,M} and all M,K ∈ N.

5.4 Temporal discretization error: Proof of (94)

We have

E

∥∥∥∥∥
m−1∑
l=0

∫ (l+1)h

lh

eA(m−l)h

∫ 1

0

B′′(Xlh + r (Xs −Xlh)) (Xs −Xlh, Xs −Xlh) (1− r) dr dWK
s

∥∥∥∥∥
2

H

≤
m−1∑
l=0

∫ (l+1)h

lh

∫ 1

0

E
∥∥B′′(Xlh + r (Xs −Xlh))(Xs −Xlh, Xs −Xlh)

∥∥2
HS(U0,H)

dr ds

≤
m−1∑
l=0

∫ (l+1)h

lh

E
[(

R
∥∥Xs −Xlh

∥∥2
Hβ

)2]
ds = R2

(
m−1∑
l=0

∫ (l+1)h

lh

E
∥∥Xs −Xlh

∥∥4
Hβ

ds

)

≤ R2

(
m−1∑
l=0

∫ (l+1)h

lh

R (s− lh)
min(4(γ−β),2)

ds

)
≤ R3

(
m−1∑
l=0

h(1+min(4(γ−β),2))

)

≤ R3Mh(1+min(4(γ−β),2)) = R3Thmin(4(γ−β),2) ≤ R6

Mmin(4(γ−β),2)

for all m ∈ {0, 1, . . . ,M} and all M,K ∈ N.
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5.5 Temporal discretization error: Proof of (95)

In order to show (95), we first estimate

E
∥∥∥∥Xt −Xs −

∫ t

s

B(Xs) dW
K
u

∥∥∥∥2
H

for all s, t ∈ [0, T ] with s ≤ t and all K ∈ N. More precisely, we have

E
∥∥∥∥Xt −Xs −

∫ t

s

B(Xs) dW
K
u

∥∥∥∥2
H

≤ 5 · E
∥∥∥(eA(t−s) − I

)
Xs

∥∥∥2
H

+ 5 · E
∥∥∥∥∫ t

s

eA(t−u)F (Xu) du

∥∥∥∥2
H

+ 5 · E
∥∥∥∥∫ t

s

eA(t−u)B(Xu) d
(
Wu −WK

u

)∥∥∥∥2
H

+ 5 · E
∥∥∥∥∫ t

s

(
eA(t−u) − I

)
B(Xu) dW

K
u

∥∥∥∥2
H

+ 5 · E
∥∥∥∥∫ t

s

(B(Xu)−B(Xs)) dW
K
u

∥∥∥∥2
H

and using (100) shows

E
∥∥∥∥Xt−Xs−

∫ t

s

B(Xs) dW
K
u

∥∥∥∥2
H

≤ 5
∥∥∥(−A)

−γ
(
eA(t−s) − I

)∥∥∥2
L(H)

E∥(−A)
γ
Xs∥

2
H

+ 5 (t− s)

(∫ t

s

E
∥∥∥eA(t−u)F (Xu)

∥∥∥2
H
du

)
+ 20R5

(
sup

j∈J\JK

ηj

)2α
+ 5

(∫ t

s

E
∥∥∥(eA(t−u) − I

)
B(Xu)

∥∥∥2
HS(U0,H)

du

)
+ 5

(∫ t

s

E ∥B(Xu)−B(Xs)∥2HS(U0,H) du

)
for all s, t ∈ [0, T ] with s ≤ t and all K ∈ N. This implies

E
∥∥∥∥Xt −Xs −

∫ t

s

B(Xs) dW
K
u

∥∥∥∥2
H

≤ 5R (t− s)
2γ

+ 5 (t− s)

(∫ t

s

E ∥F (Xu)∥2H du

)
+ 20R5

(
sup

j∈J\JK

ηj

)2α
+ 5

(∫ t

s

∥∥∥(−A)
−δ
(
eA(t−u) − I

)∥∥∥2
L(H)

E
∥∥∥(−A)

δ
B(Xu)

∥∥∥2
HS(U0,H)

du

)
+ 5R2

(∫ t

s

E ∥Xu −Xs∥2H du

)
≤ 5R (t− s)

2γ
+ 5R (t− s)

2
+ 20R5

(
sup

j∈J\JK

ηj

)2α
+ 5

(∫ t

s

(t− u)
2δ E

∥∥∥(−A)
δ
B(Xu)

∥∥∥2
HS(U0,H)

du

)
+ 5R2

(∫ t

s

∥∥∥(−A)
−β
∥∥∥2
L(H)

E ∥Xu −Xs∥2Hβ
du

)
for all s, t ∈ [0, T ] with s ≤ t and all K ∈ N. Therefore, we obtain

E
∥∥∥∥Xt −Xs −

∫ t

s

B(Xs) dW
K
u

∥∥∥∥2
H

≤ 5R (t− s)
2γ

+ 5R (t− s)
2

+ 20R5

(
sup

j∈J\JK

ηj

)2α
+ 5R

(∫ t

s

(t− u)
2δ

du

)
+ 5R4

(∫ t

s

E ∥Xu −Xs∥2Hβ
du

)
≤ 10R3 (t− s)

2γ
+ 20R5

(
sup

j∈J\JK

ηj

)2α
+ 5R (t− s)

(1+2δ)
+ 5R4

(∫ t

s

E ∥Xu −Xs∥2Hβ
du

)
≤ 15R3 (t− s)

2γ
+ 20R5

(
sup

j∈J\JK

ηj

)2α
+ 5R4

(∫ t

s

(
E ∥Xu −Xs∥4Hβ

) 1
2

du

)
≤ 15R3 (t− s)

2γ
+ 20R5

(
sup

j∈J\JK

ηj

)2α
+ 5R4

(∫ t

s

(
R (u− s)

min(4(γ−β),2)
) 1

2

du

)
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and hence

E
∥∥∥∥Xt −Xs −

∫ t

s

B(Xs) dW
K
u

∥∥∥∥2
H

≤ 15R3 (t− s)
2γ

+ 20R5

(
sup

j∈J\JK

ηj

)2α
+ 5R5

(∫ t

s

(u− s)
min(2(γ−β),1)

du

)
≤ 15R3 (t− s)

2γ
+ 20R5

(
sup

j∈J\JK

ηj

)2α
+ 5R5 (t− s)

(1+min(2(γ−β),1))
(101)

≤ 15R3 (t− s)
2γ

+ 20R5

(
sup

j∈J\JK

ηj

)2α
+ 5R6 (t− s)

min(4(γ−β),2)

≤ 20R8 (t− s)
min(4(γ−β),2γ)

+ 20R5

(
sup

j∈J\JK

ηj

)2α
for all s, t ∈ [0, T ] with s ≤ t and all K ∈ N. Now we prove (95). To this end we note that
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holds for all m ∈ {0, 1, . . . ,M} and all M,K ∈ N. Hence, (101) yields
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for all m ∈ {0, 1, . . . ,M} and all M,K ∈ N.
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5.6 Lipschitz estimates: Proof of (96)

Before we estimate E
∥∥ZN,M,K

m − Y N,M,K
m

∥∥2
H

for m ∈ {0, 1, . . . ,M} and for N,M,K ∈ N, we need some
preparations. More precisely, we have
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for all s ∈ [lh, (l + 1)h], l ∈ {0, 1, . . . ,M − 1} and all M,K ∈ N. This implies
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for all s ∈ [lh, (l + 1)h], l ∈ {0, 1, . . . ,M − 1} and all M,K ∈ N. Hence, we obtain

E
∥∥∥∥B′(Xlh)

∫ s

lh

B(Xlh) dW
K
u −B′

(
Y N,M,K
l

)∫ s

lh

B
(
Y N,M,K
l

)
dWK

u

∥∥∥∥2
HS(U0,H)

=
∑
j∈JK
ηj ̸=0

ηj · E
∥∥∥B′(Xlh)(B(Xlh) gj)−B′

(
Y N,M,K
l

)(
B
(
Y N,M,K
l

)
gj

)∥∥∥2
HS(U0,H)

(s− lh)

≤
∑

j,k∈J
ηj ,ηk ̸=0

ηj ηk E
∥∥∥B′(Xlh)(B(Xlh) gj) gk −B′

(
Y N,M,K
l

)(
B
(
Y N,M,K
l

)
gj

)
gk

∥∥∥2
H
(s− lh) (102)

= (s− lh) · E
∥∥∥B′(Xlh)B(Xlh)−B′

(
Y N,M,K
l

)
B
(
Y N,M,K
l

)∥∥∥2
HS(2)(U0,H)

≤ c2 · (s− lh) · E
∥∥∥Xlh − Y N,M,K

l

∥∥∥2
H

≤ R3 · E
∥∥∥Xlh − Y N,M,K

l

∥∥∥2
H

32



for all s ∈ [lh, (l+ 1)h], l ∈ {0, 1, . . . ,M − 1} and all M,K ∈ N. Additionally, (87) and the fact ∥PN (v)∥H ≤
∥v∥H for all v ∈ H show
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(103)

and due to (102) we finally obtain
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for all m ∈ {0, 1, . . . ,M} and all N,M,K ∈ N.

5.7 Iterated integral identity: Proof of (83)

First of all, we have∫ (m+1)T
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P-a.s. for allm ∈ {0, 1, . . . ,M−1} and allN,M,K ∈ N. Moreover, since the bilinear operatorB′(Y N,M,K
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P-a.s. holds for all j ∈ JK , m ∈ {0, 1, . . . ,M − 1} and all N,M,K ∈ N (see (3.6) in Section 10.3 in [34]), we
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P-a.s. for all j ∈ JK , m ∈ {0, 1, . . . ,M − 1} and all N,M,K ∈ N (see (3.15) in Section 10.3 in [34]) then
yields∫ (m+1)T
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P-a.s. for all m ∈ {0, 1, . . . ,M − 1} and all N,M,K ∈ N which shows (83).
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[18] Gyöngy, I. Lattice approximations for stochastic quasi-linear parabolic partial differential equations
driven by space-time white noise. II. Potential Anal. 11, 1 (1999), 1–37.
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