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Abstract

We consider the following quasi-linear parabolic system of backward partial differential
equations

(∂t + L)u+ f(·, ·, u,∇uσ) = 0 on [0, T ]× Rd uT = φ,

where L is a possibly degenerate second order differential operator with merely measurable
coefficients. We solve this system in the framework of generalized Dirichlet forms and
employ the stochastic calculus associated to the Markov process with generator L to obtain
a probabilistic representation of the solution u by solving the corresponding backward
stochastic differential equation. The solution satisfies the corresponding mild equation
which is equivalent to being a generalized solution of the PDE. A further main result is
the generalization of the martingale representation theorem using the stochastic calculus
associated to the generalized Dirichlet form given by L. The nonlinear term f satisfies a
monotonicity condition with respect to u and a Lipschitz condition with respect to ∇u.

Keywords: backward stochastic differential equations, quasi-linear parabolic partial differential equations,

Dirichlet forms, generalized Dirichlet forms, Markov processes, martingale representation

1 Introduction

Consider the following quasi-linear parabolic system of backward partial differential equations

(∂t + L)u+ f(·, ·, u,∇uσ) = 0 on [0, T ]× Rd uT = φ, (1.1)

where L is a second order linear differential operator and f is monotone in u and Lipschitz in∇u.
If L has sufficiently regular coefficients there is a well-known theory, to obtain a probabilistic
representation of the solutions to (1.1), using corresponding backward stochastic differential
equations (BSDE) and also to solve BSDE with the help of (1.1), originally due to E. Pardoux
and S. Peng ([17]). The main aim of this paper is to implement this approach for a very general
class of linear operators L, which are possibly degenerate, have merely measurable cofficients
and are in general not symmetric. Solving (1.1) for such general L is the first main task of this
paper. The second main contribution is to prove the martingale representation theorem for the
underlying reference diffusion generated by such general operators L.
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If f and the coefficients of the second-order differential operator L are sufficiently smooth,
the PDE has a classical solution u. Consider Y s,x

t := u(t,Xs,x
t ), Zs,x

t := ∇uσ(t,Xs,x
t ) where

Xs,x
t , s ≤ t ≤ T , is the diffusion process with infinitesimal generator L which starts from x at

time s. Then, using Itô’s formula one checks that (Y s,x
t , Zs,x

t )s≤t≤T solves the BSDEs

Y s,x
t = φ(Xs,x

T ) +

∫ T

t

f(r,Xs,x
r , Y s,x

r , Zs,x
r )dr −

∫ T

t

Zs,x
r dBr. (1.2)

Conversely, by standard methods one can prove that (1.2) has a unique solution (Y s,x
t , Zs,x

t )s≤t≤T

and then u(s, x) := Y s,x
s is a solution to PDE (1.1). BSDEs have been introduced (in their actual

form) by Pardoux and Peng [17] and found applications in stochastic control and mathematical
finance. If f and the coefficients of L are Lipschitz continuous then a series of papers (e.g. [2],
[16] and the reference therein) prove that the above relation between PDE (1.1) and BSDE (1.2)
remains true, if one considers viscosity solutions to PDE (1.1). In both these approaches, since
the coefficients are Lipschitz continuous, the Markov process X with infinitesimal operator L is
a diffusion process which satisfies an SDE and so one may use its associated stochastic calculus.

In [2] Bally, Pardoux and Stoica consider a semi-elliptic symmetric second-order differential
operator L ( which is written in divergence form ) with measurable coefficients. They prove
that the above system of PDE has a unique solution u in some functional space. Then using
the theory of symmetric Dirichlet forms and its associated stochastic calculus, they prove that
the solution Y s.x of the BSDE yields a precised version of the solution u so that, moreover, one
has Y s,x

t = u(t,Xt−s), P
x-a.s. In [21], the analytic part of [2] has been generalized to a non-

symmetric case with L satisfying the weak sector condition. Here the weak sector condition
means

((1− L)u, v) ≤ K((1− L)u, u)1/2((1− L)v, v)1/2, for u, v ∈ D(L),

for some constant K > 0. In [13], A.Lejay considers the generator L = 1
2

∑d
i,j=1

∂
∂xi

(aij
∂

∂xj
) +∑d

i=1 bi(x)
∂
∂xi

for bounded a, b. In [27], T.S. Zhang and Q.K.Ran (see also [26]) consider L of
a more general form, but a = (aij) is required to be uniformly elliptic and b ∈ Lp for p > d.
Anyway, since L satisfies the weak sector condition in this case, it generates a sectorial ( i.e. a
small perturbation of a symmetric) Dirichlet form, so the theory of Dirichlet forms from [14]
can be applied in [26], [27].

In [23] Stannat extends the known framework of Dirichlet forms to the class of generalized
Dirichlet forms. By this we can analyze differential operators where the second order part may
be degenerate and at the same time the first order part may be unbounded satisfying no global
Lp-condition for p ≥ d. The motivation for this paper is to extend the results in [2] to the case,
where L generates a generalized Dirichlet form so that we can allow the coefficients of L to be
more general.

In this paper, we consider PDE (1.1) for a non-symmetric second order differential operator
L, which is associated to the bilinear form

E(u, v) :=
d∑

i,j=1

∫
aij(x)

∂u

∂xi
(x)

∂v

∂xj
(x)m(dx) +

∫
c(x)u(x)v(x)

+
d∑

i=1

∫ d∑
j=1

aij(x)(bj(x) + b̂j(x))
∂u

∂xi
v(x)m(dx) ∀u, v ∈ C∞

0 (Rd).

(1.3)
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for u, v ∈ C∞
0 (Rd), where C∞

0 (Rd) denotes the space of infinitely differentiable functions with
compact support. We stress that (aij) is not necessarily assumed to be (locally) strictly positive
definite, but may be degenerate in general. When b ≡ 0, the bilinear form E satisfies the weak
sector condition. For the perturbation term given by b we need bσ ∈ L2(Rd;Rd,m). Here
σσ∗ = a and σ∗ is the transpose of the matrix of σ. That implies that we do not have the
weak sector condition for the bilinear form. We use the theory of generalized Dirichlet forms
and its associated stochastic calculus ( cf [22-25]) to generalize the results in [2]. Here m is
a finite measure or Lebesgue measure on Rd. If D is a bounded open domain, we choose m
as 1D(x)dx. Then in certain cases the solution of PDE (1.1) satisfies the Neumann boundary
condition. If we replace C∞

0 (Rd) by C∞
0 (D), the solution of PDE (1.1) satisfies the Dirichlet

boundary condition.
In the analytic part of our paper, we do not need E to be a generalized Dirichlet form.

We start from a semigroup (Pt) satisfying conditions (A1)-(A4), specified in Section 2 below.
Such a semigroup can, however, be constructed from a generalized Dirichlet form. It can also
be constructed by other methods (see e.g. [11]). Under conditions (A1)-(A4), the coefficients
of L may be quite singular and only very broad assumptions on a and b are needed (see the
examples in Section 4 and Section 5).

The paper is organized as follows. In Sections 2 and 3, we use functional analytical methods
to solve PDE (1.1) in the sense of Definition 2.3, i.e. there are sequences {un} which are strong
solutions with data (φn, fn) such that

‖un − u‖T → 0, ‖φn − φ‖2 → 0, lim
n→∞

fn = f in L1([0, T ];L2).

Here ‖ · ‖T := (supt≤T ‖ · ‖22 +
∫ T

0
Ea,b̂
c2+1(·)dt)1/2, where Ea,b̂ is the summand in the left hand side

of (1.3) with b ≡ 0. The above definition for the solution is equivalent to that of the following
mild equation in L2-sense

u(t, x) = PT−tφ(x) +

∫ T

t

Ps−tf(s, ·, us, Dσus)(x)ds.

If we use the definition of weak solution to define our solution as in [2], uniqueness of the
solution can not be obtained since only |bσ| ∈ L2(Rd;m). Furthermore, the function f in PDE
(1.1) need not be Lipschitz continuous with respect to the third variable; monotonicity suffices.
And µ which appears in the monotonicity conditions (see condition (H2) in Section 3.2 below)
can depend on t. f is, however, assumed to be Lipschitz continuous with respect to the last
variable. We emphasize that the first order term of L cannot be incorporated into f without
the condition that b is bounded. Hence we are forced to take it as part of L and hence have
to consider a diffusion process X in (1.2) which is generated by an operator L which is the
generator of a (in general non-sectorial) generalized Dirichlet form. We also emphasize that
under our conditions, PDE (1.1) cannot be tackled by standard monotonicity methods (see
e.g. [3]) because of the lack of a suitable Gelfand triple V ⊂ H ⊂ V ∗ with V being a reflexive
Banach space.

In Section 4, we extend the stochastic calculus of generalized Dirichlet forms in order to
generalize the martingale representation theorem. In order to treat BSDE, we show in Theorem
4.8 that there exists a set of null capacity N outside of which the following representation
theorem holds : for every bounded F∞-measurable random variable ξ, there exists a predictable
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process (φ1, ..., φd) : [0,∞)× Ω → Rd, such that for each probability measure ν, supported by
Rd \ N , one has

ξ = Eν(ξ|F0) +
d∑

i=0

∫ ∞

0

φi
sdM

(i)
s P ν − a.s..

As a result, one can choose the exceptional set N such that if the process X starts from a point
of N c, it remains always in this set. As a consequence we deduce the existence of solutions for
the BSDE using the existence for PDE (1.1) in the usual way, however, only under Pm, because
of our general coefficients of L (c.f. Theorem 4.12).

In Section 5, we employ the martingale representation to deduce existence and uniqueness
for the solutions of BSDE (1.2). As a consequence, in Theorem 5.7, existence of solutions for
PDE (1.1), not covered by our analytic results in Section 2, is obtained by u(s, x) = Y s

s , where
Y s
t is the solution of the BSDE. Moreover we have, Y s

t = u(t,Xt−s), P
x-a.s., x ∈ Rd\N .

2 Preliminaries

Let σ : Rd 7→ Rd ⊗ Rk be a measurable map. Then there exists a measurable map τ : Rd 7→
Rk ⊗ Rd such that

στ = τ ∗σ∗, τσ = σ∗τ ∗, στσ = σ.

(see e.g. [2, Lemma A.1]). Here σ∗ is the transpose of the matrix of σ. Then a := σσ∗ =
(aij)1≤i,j≤d takes values in the space of symmetric non-negative definite matrices. Let also
b : Rd → Rd be measurable. Assume that the basic measure m(dx) for the generalized Dirichlet
form, to be defined below, is a finite measure or Lebesgue measure on Rd.

Denote the Euclidean norm and the scalar product in Rd by | · |, 〈·, ·〉 respectively, while
on the space of matrices Rd ⊗ Rk we use the trace scalar product and its associated norm,
i.e., for z = (zij) ∈ Rd ⊗ Rk, 〈z1, z2〉 = trace(z1z

∗
2), |z| = (

∑d
i=1

∑k
j=1 z

2
ij)

1/2. Let L2, L2(Rd;Rk)

denote L2(Rd,m), L2(Rd,m;Rk) respectively. And (·, ·) denotes the L2-inner product. And for
1 ≤ p ≤ ∞, ‖ · ‖p denotes the usual norm in Lp(Rd;m). If W is a function space, we will use
bW to denote the bounded function in W .

Furthermore, let aij,
∑d

j=1 aijbj,
∑d

j=1 aij b̂j ∈ L1
loc(Rd,m) and c ∈ L1

loc(Rd,R+;m). We
introduce the bilinear form

E(u, v) :=
d∑

i,j=1

∫
aij(x)

∂u

∂xi
(x)

∂v

∂xj
(x)m(dx) +

∫
c(x)u(x)v(x)

+
d∑

i=1

∫ d∑
j=1

aij(x)(bj(x) + b̂j(x))
∂u

∂xi
v(x)m(dx) ∀u, v ∈ C∞

0 (Rd).

Consider the following conditions:

(A1) The bilinear form

Ea(u, v) =
d∑

i,j=1

∫
aij(x)

∂u

∂xi
(x)

∂v

∂xj
(x)m(dx) ∀u, v ∈ C∞

0 (Rd),
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is closable on L2(Rd,m).

Define Ea
1 (·, ·) := Ea(·, ·) + (·, ·). The closure of C∞

0 (Rd) with respect to Ea
1 is denoted by

F a. Then (Ea, F a) is a well-defined symmetric Dirichlet form on L2(Rd,m).

For the bilinear form

Ea,b̂(u, v) : =
d∑

i,j=1

∫
aij(x)

∂u

∂xi
(x)

∂v

∂xj
(x)m(dx) +

∫
c(x)u(x)v(x)

+
d∑

i=1

∫ d∑
j=1

aij(x)b̂j(x)
∂u

∂xi
v(x)m(dx),

we consider the following conditions:

(A2) There exists a constant c2 ≥ 0 such that Ea,b̂
c2

(·, ·) := Ea,b̂(·, ·) + c2(·, ·) is a coercive closed
form (see e.g. [14]), and there exist constants c1, c3 > 0 such that for u ∈ C∞

0 (Rd)

c1Ea(u, u) ≤ Ea,b̂
c2

(u, u), (2.1)

and ∫
cu2dm ≤ c3(Ea(u, u) + ‖u‖22). (2.2)

Denote Ẽa,b̂(u, v) := Ea,b̂(u, v) + Ea,b̂(v, u). The closure of C∞
0 (Rd) with respect to Ẽa,b̂

c2+1 is
denoted by F . By (2.1) we have F ⊂ F a. And for u ∈ F (2.1) and (2.2) are satisfied.

(A3) |bσ| ∈ L2(Rd;m) and there exists α ≥ 0 such that∫
〈bσ, (∇u2)σ〉dm ≥ −α‖u‖22 u ∈ C∞

0 (Rd). (2.3)

(A4) There exists a positivity preserving C0-semigroup Pt on L1(Rd;m) such that for any
t ∈ [0, T ], ∃CT > 0 such that

‖Ptf‖∞ ≤ CT‖f‖∞.

Then for 0 ≤ t ≤ T , Pt extends to a semigroup on Lp(Rd;m) for all p ∈ [1,∞) by the Riesz-
Thorin Interpolation Theorem (denoted by Pt for simplicity) which is strongly continuous on
Lp(Rd;m). We denote its L2-generator by (L,D(L)) and assume that for any u ∈ bF there

exists uniformly bounded un ∈ D(L) such that Ẽa,b̂
c2+1(un−u) → 0 and that it is associated with

the bilinear form in the sense that E(u, v) = −(Lu, v) for u, v ∈ bD(L).

We emphasize that in contrast to previous work Pt in (A4) is no longer analytic on L2(Rd;m).
By (A4) there exist constants M0, c0 such that

‖Ptf‖2 ≤M0e
c0t‖f‖2, ∀f ∈ L2(Rd;m). (2.4)

To obtain a semigroup Pt satisfying the above conditions, we can use generalized Dirichlet
form. Let us recall the definition of a generalized Dirichlet form from [23]. Let E be a Hausdorff
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topological space and assume that its Borel σ-algebra B(E) is generated by the set C(E) of all
continuous functions on E. Let m be a σ-finite measure on (E,B(E)) such that H := L2(E,m)
is a separable (real) Hilbert space. Let (A,V) be a coercive closed form on H in the sense of
[14]. We will always denote the corresponding norm by ‖ · ‖V . Identifying H with its dual H′

we obtain that V → H ∼= H′ → V ′ densely and continuously.
Let (Λ, D(Λ,H)) be a linear operator on H satisfying the following assumptions:
(i) (Λ, D(Λ,H)) generates a C0-semigroup of contractions (Ut)t≥0 on H.
(ii)V is Λ-admissible, i.e. if (Ut)t≥ can be restricted to a C0-semigroup on V .
Let (Λ,F) with corresponding norm ‖ · ‖F be the closure of Λ : D(Λ,H) ∩ V → V ′ as an

operator from V to V ′ and (Λ̂, F̂) its dual operator.
Let

E(u, v) =
{

A(u, v)− 〈Λu, v〉 if u ∈ F , v ∈ V
A(u, v)− 〈Λ̂v, u〉 if u ∈ V , v ∈ F̂ ,

Here 〈·, ·〉 denotes the dualization between V ′ and V and 〈·, ·〉 coincides with the inner product
(·, ·)H in H when restricted to H ×V . And Eα(u, v) := E(u, v) + α(u, v)H for α > 0. We call E
the bilinear form associated with (A,V) and (Λ, D(Λ,H)). If

u ∈ F ⇒ u+ ∧ 1 ∈ V and E(u, u− u+ ∧ 1) ≥ 0

then the bilinear form is called a generalized Dirichlet form. If the adjoint semigroup (Ût)t≥0 of

(Ut)t≥0 can also be restricted to a C0-semigroup on V . Let (Λ̂, D(Λ̂,H)) denote the generator

of (Ût)t≥0 on H, Â(u, v) := A(v, u), u, v ∈ V and let the coform Ê be defined as the bilinear

form associated with (Â,V) and (Λ̂, D(Λ̂,H)).

Remark 2.1 (i) Some general criteria imposing conditions on a in order that Ea be closable
are e.g. given in [12, Section 3.1] and [14, Chap II, Section 2].

(ii) There are examples considered in [14, Chap. II, Subsection 2d] satisfying (A2). Assume
the Sobolev inequality

‖u‖q ≤ C(Ea(u, u) + ‖u‖22)1/2, ∀u ∈ C∞
0 (Rd),

is satisfied, where 1
q
+ 1

d
= 1

2
and ‖ · ‖q denotes the usual norm in Lq. If |b̂σ| ∈ Ld(Rd;m) +

L∞(Rd;m) and c ∈ Ld/2(Rd;m) + L∞(Rd;m), then (A2) is satisfied. In [27] they consider the

bilinear form Q(u, v) = Ea,b̂(u, v) +
∫
〈d1(x),∇v(x)〉u(x)dm, here d1 ∈ Lq(Rd), q > d. In their

case, the result for the existence of the nonlinear PDE can be obtained by [18, Theorem 4.2.4]
since the nonlinear part is Lipschitz in u and ∇u. In our case, we have more general conditions
on b and f , so that we can not find a suitable Gelfand triple V ⊂ H ⊂ V ∗ with V being a
reflexive Banach space and use monotonicity methods as in [18].

(iii) We can construct a semigroup Pt satisfying (A4) by the theory of generalized Dirichlet
form. More precisely, suppose there exists a constant ĉ ≥ 0 such that Eĉ(·, ·) := E(·, ·) + ĉ(·, ·)
is a generalized Dirichlet form with domain F × V in one of the following three senses:

(a)(E,B(E),m) = (Rd,B(Rd),m),

(Ea,b̂
c2
, F ) = (A,V),

−〈Λu, v〉 − (ĉ− c2)(u, v) =
∑d

i

∫ ∑d
j=1 aij(x)bj(x)

∂u
∂xiv(x)m(dx) for u, v ∈ C∞

0 (Rd);

(b)(E,B(E),m) = (Rd,B(Rd),m),
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A ≡ 0 and V = L2(Rd,m),
−〈Λu, v〉 = Eĉ(u, v) for u, v ∈ C∞

0 (Rd) and C∞
0 (Rd) ⊂ D(L);

(c) Eĉ = A, Λ ≡ 0 (In this case (Eĉ,V) is a sectorial Dirichlet form in the sense of [14]).
Then there exists a sub-Markovian C0-semigroup of contractions P ĉ

t associated with the
generalized Dirichlet form Eĉ. Define Pt := eĉtP ĉ

t . If it is a C0-semigroup on L1 then it satisfies
(A4). Then we have

D(L) ⊂ F ⊂ F.

(iv) The semigroup can be also constructed by other methods. (see e.g. [11], [4], [6]).
(v) By (A3) we have that E is positivity preserving i.e.

E(u, u+) ≥ 0 ∀u ∈ D(L),

which can be obtained by the same arguments as [23, Proposition 4.4].
(vi) The condition that for any u ∈ bF there exists uniformly bounded un ∈ D(L) such that

Ẽa,b̂
c2+1(un − u) → 0 is satisfied if C∞

0 (Rd) ⊂ D(L). It can also be satisfied in the case of (iii) by
the theory of generalized Dirichlet form.

(vii) All the conditions are satisfied by the bilinear form considered in [11], [13], [22, Section
1 (a)] and the following example which is considered in [23].

Example 2.2 Let bi ∈ L2(Rd; dx), 1 ≤ i ≤ d. Consider the bilinear form

E(u, v) :=
d∑

i,j=1

∫
Rd

∂u

∂xi

∂v

∂xj
dx−

d∑
i=1

∫
bi
∂u

∂xi
vdx;u, v ∈ C∞

0 (Rd)

Assume there exist constants c, L ≥ 0 such that∫
〈b,∇u〉dx ≤ 2c‖u‖1 for all u ∈ C∞

0 (Rd), u ≥ 0,

−
d∑

i,j=1

∫
bi
∂u

∂xj
dxhihj ≤ L‖u‖1|h|2,

for all u ∈ C∞
0 (Rd), u ≥ 0, h ∈ Rd,

(or equivalently, b is quasi-monotone, i.e.

〈b(x)− b(y), x− y〉 ≤ L|x− y|2,∀x, y ∈ Rd, )

and for some continuous, monotone increasing function f : [0,∞) → [1,∞) with
∫∞
0

dr
f(r)

= ∞
we have that

|b(x)| ≤ f(|x|), x ∈ Rd.

Then in [23, Subsection II.2] it is proved that there exists a generalized Dirichlet form in L2(Rd)
extending Ec. We denote the semigroup associated with Ec by P c

t . If we define Pt := ectP c
t ,

then it is the semigroup associated with E . By the computation in [23, Subsection II.2], Pt is
sub-Markovian. So it satisfies the conditions (A1)-(A4).

Further examples are presented in Section 4 (see Examples 4.2 and 4.3) and Section 6.
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Then we use the same notation F̂ , CT , ‖·‖T associated with Ea,b̂ as in [2]: CT = C1([0, T ];L2)∩
L2([0, T ];F ), which turns out to be the appropriate space of test functions, i.e.

CT = {ϕ : [0, T ]× Rd → R|ϕt ∈ F for almost each t,

∫ T

0

Ea,b̂(ϕt)dt <∞,

t→ ϕt is differentiable in L2and t→ ∂tϕt is L
2 − continuous on [0, T ]}.

Here and below we set Ea,b̂(u) for Ea,b̂(u, u). We also set C[a,b] = C1([a, b];L2) ∩ L2([a, b];F ).
For ϕ ∈ CT , we define

‖ϕ‖T := (sup
t≤T

‖ϕt‖22 +
∫ T

0

Ea,b̂
c2

(ϕt)dt)
1/2.

F̂ is the completion of CT with respect to ‖ · ‖T . By [2], F̂ = C([0, T ];L2) ∩ L2(0, T ;F ). We
define the space F̂ a w.r.t. Ea

1 analogous to F̂ . Then we have F̂ ⊂ F̂ a. We also introduce the
following space

W 1,2([0, T ];L2(Rd)) = {u ∈ L2([0, T ];L2); ∂tu ∈ L2([0, T ];L2)},

where ∂tu is the derivative of u in the weak sense (see e.g. [3]).

2.1 Linear Equations

Consider the linear equation

(∂t + L)u+ f = 0, 0 ≤ t ≤ T,

uT (x) = φ(x), x ∈ Rd,
(2.5)

where f ∈ L1([0, T ];L2), φ ∈ L2.
As in [2] we set Dσϕ := (∇ϕ)σ for any ϕ ∈ C∞

0 (Rd), define V0 = {Dσϕ : ϕ ∈ C∞
0 (Rd)}, and

let V be the closure of V0 in L2(Rd;Rk). Then we have the following results:

Proposition 2.3 Assume (A1)-(A3) hold. Then:
(i) For every u ∈ F a there is a unique element of V , which we denote by Dσu, such that

Ea(u) =

∫
〈Dσu(x), Dσu(x)〉m(dx).

(ii) Furthermore, if u ∈ F̂ a, then there exists a measurable function φ : [0, T ] × Rd 7→ Rd

such that |φσ| ∈ L2((0, T )× Rd) and Dσut = φtσ for almost all t ∈ [0, T ].
(iii)Let un, u ∈ F̂ a be such that un → u in L2((0, T ) × Rd) and (Dσu

n)n is Cauchy in
L2([0, T ]×Rd;Rk). Then Dσu

n → Dσu in L2((0, T )×Rd;Rk), i.e. Dσ is closed as an operator
from F̂ a into L2((0, T )× Rd).

Proof See [2, Proposition 2.3]. �
For u ∈ F, v ∈ bF , we define

E(u, v) := Ea,b̂(u, v) +

∫
〈bσ,Dσu〉vm(dx).

Notation We denote by ∇̃u the set of all measurable functions φ : Rd → Rd such that
φσ = Dσu as elements of L2(Rd,Rk).
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2.2 Solution of the Linear Equation

We recall the following standard notions.

Definition 2.4 (strong solutions) A function u ∈ F̂ ∩ L1((0, T );D(L)) is called a strong
solution of equation (2.5) with data φ, f , if t 7→ ut = u(t, ·) is L2-differentiable on [0, T ], ∂tut ∈
L1((0, T );L2) and the equalities in (2.5) hold m-a.e..

Definition 2.5 (generalized solutions) A function u ∈ F̂ is called a generalized solution of
equation (2.5), if there are sequences {un} which are strong solutions with data (φn, fn) such
that

‖un − u‖T → 0, ‖φn − φ‖2 → 0, lim
n→∞

fn = f in L1([0, T ];L2).

Proposition 2.6 Assume (A3)-(A4) hold.
(i) Let f ∈ C1([0, T ];Lp) for p ∈ [1,∞). Then

wt :=

∫ T

t

Ps−tfsds ∈ C1([0, T ];Lp),

and

∂twt = −PT−tfT +

∫ T

t

Ps−t∂sfsds.

(ii) Assume that φ ∈ D(L), f ∈ C1([0, T ];L2) and for each t ∈ [0, T ], ft ∈ D(L) . Define

ut := PT−tφ+

∫ T

t

Ps−tfsds.

Then u is a strong solution of (2.5) and, moreover, u ∈ C1([0, T ];L2).

Proof By the same arguments as in [2, Proposition 2.6]. �

Remark 2.7 Here in (ii) we add the assumption φ ∈ D(L) and ft ∈ D(L), t ∈ [0, T ], as we
can not deduce Ptφ ∈ D(L) for φ ∈ L2, since (Pt) might not be analytic.

Proposition 2.8 Suppose (A4) holds. If u is a strong solution for (2.5), it is a mild solution
for (2.5) i.e.

ut = PT−tφ+

∫ T

t

Ps−tfsds.

Proof For fixed t, ϕ ∈ D(L̂)

(uT , P̂T−tϕ)− (ut, ϕ) =

∫ T

t

(−Lus − fs, P̂s−tϕ)ds+

∫ T

t

(us, L̂P̂s−tϕ)ds.

Here L̂, P̂t denote the adjoints on L
2(Rd,m) of L, Pt respectively. As u is a strong solution, we

can deduce that

(ut, ϕ) = (PT−tφ+

∫ T

t

Ps−tfsds, ϕ).
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Since D(L̂) is dense in L2, the result follows. �

Proposition 2.9 Assume that conditions (A1)-(A4) hold, f ∈ L1([0, T ];L2) and φ ∈ L2.
Then equation (2.5) has a unique generalized solution u ∈ F̂ and

ut = PT−tφ+

∫ T

t

Ps−tfsds. (2.6)

The solution satisfies the three relations:

‖ut‖22 + 2

∫ T

t

Ea,b̂(us)ds ≤ 2

∫ T

t

(fs, us)ds+ ‖φ‖22 + 2α

∫ T

t

‖us‖22ds, 0 ≤ t ≤ T. (2.7)

‖u‖2T ≤MT (‖φ‖22 + (

∫ T

0

‖ft‖2dt)2). (2.8)∫ T

t0

((ut, ∂tϕt) + Ea,b̂(ut, ϕt) +

∫
〈bσ,Dσut〉ϕtdm)dt =

∫ T

t0

(ft, ϕt)dt+ (φ, ϕT )− (ut0 , ϕt0), (2.9)

for any ϕ ∈ bCT , t0 ∈ [0, T ]. MT is a constant depending on T . (2.9) can be extended easily for
ϕ ∈ bW 1,2([0, T ];L2) ∩ L2([0, T ];F ).

Moreover, if u ∈ F̂ is bounded and satisfies (2.9) for any ϕ ∈ bCT with bounded f, φ, then
u is a generalized solution given by (2.6).

Proof [Existence] Define u by (2.6). First assume that φ, f are bounded and satisfy the
conditions of Proposition 2.6 (ii). Then, since u is bounded and by Proposition 2.6 we know that
u is a strong solution of (2.5), hence it obviously satisfies (2.9). Furthermore, u ∈ C1([0, T ];L2).
Hence, actually u ∈ bCT and consequently,∫ T

t

((us, ∂tus) + Ea,b̂(us, us) +

∫
〈bσ,Dσus〉usdm)ds =

∫ T

t

(fs, us)ds+ (φ, uT )− (ut, ut).

By (2.3) we have
∫
〈bσ,Dσus〉usdm ≥ −α‖us‖22. Hence

‖ut‖22 + 2

∫ T

t

Ea,b̂(us)ds ≤ 2

∫ T

t

(fs, us)ds+ ‖φ‖22 + 2α

∫ T

t

‖us‖22ds, 0 ≤ t ≤ T.

As ∫ T

t

(fs, us)ds =

∫ T

t

((fs, PT−sφ) + (fs,

∫ T

s

Pr−sfrdr))ds

≤
∫ T

t

‖fs‖2‖PT−sφ‖2ds+
∫ T

t

‖fs‖2‖
∫ T

s

Pr−sfrdr‖2ds

≤M0e
T−t(‖φ‖2

∫ T

t

‖fs‖2ds+
∫ T

t

(‖fs‖2
∫ T

s

‖fr‖2dr)ds),

and ∫ T

t

‖us‖22ds ≤MT−t(‖φ‖22 + (

∫ T

0

‖ft‖2dt)2),

we get

‖ut‖22 +
∫ T

t

Ea,b̂(us)ds ≤MT−t(‖φ‖22 + (

∫ T

0

‖ft‖2dt)2).
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Hence, it follows that

‖u‖2T ≤MT (‖φ‖22 + (

∫ T

0

‖ft‖2dt)2). (2.10)

Here MT−t can change from line to line and is independent of f, φ. Now we will obtain the
result for general data φ and f . Let (fn)n∈N be a sequence of bounded function in C1([0, T ];L2)

such that ft ∈ D(L) for a.e. t ∈ [0, T ] and
∫ T

0
‖fn

t − ft‖2dt→ 0 (This sequence can be obtained
since {αtg(x);αt ∈ C∞

0 [0, T ], g ∈ bD(L)} is dense in L1([0, T ];L2)). Take bounded functions
(φn)n∈N ⊂ D(L) such that φn → φ in L2. Let un denote the solution given by (2.6) with
f = fn, φ = φn.

By linearity, un − um is associated with (φn − φm, fn − fm). Since by (2.10)

‖un − um‖2T ≤MT (‖φn − φm‖22 + (

∫ T

0

‖fn
t − fm

t ‖2dt)2),

we can deduce that (un)n∈N is a Cauchy sequence in F̂ . Hence u = limn→∞ un in ‖ · ‖T is the
generalized solution of (2.5) and we have

ut = PT−tφ+

∫ T

t

Ps−tfsds.

Next we prove (2.7)(2.8) (2.9) for u. We have (2.9) for un with fn, φn and ϕ ∈ bCT , i.e.∫ T

0

((unt , ∂tϕt) + Ea,b̂(unt , ϕt) +

∫
〈bσ,Dσu

n
t 〉ϕtdm)dt =

∫ T

0

(fn
t , ϕt)dt+ (φn, ϕT )− (un0 , ϕ0).

We have

|
∫ T

0

Ea,b̂(unt − ut, ϕt)dt| ≤ K(

∫ T

0

Ea,b̂
c2+1(u

n
t − ut)dt)

1
2 (

∫ T

0

Ea,b̂
c2+1(ϕt)dt)

1
2

+

∫ T

0

(c2 + 1)(unt − ut, ϕt)dt→ 0,

and

|
∫ T

0

∫
〈bσ,Dσ(u

n
t − ut)〉ϕtdmdt| ≤ ‖ϕ‖∞(

∫ T

0

∫
|bσ|2dmdt)

1
2 (

∫ T

0

∫
|Dσ(u

n
t − ut)|2dmdt)

1
2

= ‖ϕ‖∞(

∫ T

0

∫
|bσ|2dmdt)

1
2 (

∫ T

0

Ea(unt − ut)dt)
1
2

→ 0.

Hence we deduce∫ T

0

((ut, ∂tϕt) + Ea,b̂(ut, ϕt) +

∫
〈bσ,Dσut〉ϕtdm)dt =

∫ T

0

(ft, ϕt)dt+ (φ, ϕT )− (u0, ϕ0),

for any ϕ ∈ bCT .
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As the relations (2.7), (2.8) hold for the approximating functions, we obtain

‖unt ‖22 + 2

∫ T

t

Ea,b̂(uns )ds ≤ 2

∫ T

t

(fn
s , u

n
s )ds+ ‖φn‖22 + 2α

∫ T

t

‖uns‖22ds, 0 ≤ t ≤ T

‖un‖2T ≤MT (‖φn‖22 + (

∫ T

0

‖fn
t ‖2dt)2).

Since ‖unt ‖T → ‖ut‖T , we conclude

lim
n→∞

∫ T

0

Ea,b̂(unt )dt =

∫ T

0

Ea,b̂(ut)dt.

It is easy to see that limn→∞
∫ T

t
(fn

s , u
n
s )ds =

∫ T

t
(fs, us)ds. Then by passing to the limit in the

above relations, we can get (2.7) and (2.8) for u.
[Uniqueness] Let v ∈ F̂ be another generalized solution of (2.5) and (vn)n∈N , (φ̃

n)n∈N , (f̃
n)n∈N

be the corresponding approximating sequences in the definition of generalized solutions. By
Proposition 2.8

sup
t∈[0,T ]

‖unt − vnt ‖22 ≤MT (‖φn − φ̃n‖22 + (

∫ T

0

‖fn
t − f̃n

t ‖2dt)2).

Letting n→ ∞, this implies u = v.
For the last result we note that ∀t0 ≥ 0, ϕ ∈ bCT∫ T

t0

((ut, ∂tϕt)+Ea,b̂(ut, ϕt)+

∫
〈bσ,Dσut〉ϕtdm)dt =

∫ T

t0

(ft, ϕt)dt+(φ, ϕT )− (ut0 , ϕt0). (2.11)

For t ≥ 1
n
, define

unt := n

∫ 1
n

0

ut−sds, fn
t := n

∫ 1
n

0

ft−sds, φn := n

∫ 1
n

0

uT−sds.

Let us check that each un also fulfills (2.11) with fn, φn. We set ϕs
r := ϕr+s for 0 ≤ s+ r ≤ T .

Then for fixed t0 ∈ (0, T ], and n ≥ 1
t0
,∫ T

t0

((unt , ∂tϕt) + Ea,b̂(unt , ϕt) +

∫
〈bσ,Dσu

n
t 〉ϕtdm)dt

=n

∫ 1
n

0

∫ T

t0

(ut−s, ∂tϕt) + Ea,b̂(ut−s, ϕt) +

∫
〈bσ,Dσut−s〉ϕtdm)dtds

=n

∫ 1
n

0

∫ T−s

t0−s

(ut, ∂tϕ
s
t) + Ea,b̂(ut, ϕ

s
t) +

∫
〈bσ,Dσut〉ϕs

tdm)dtds

=n

∫ 1
n

0

[

∫ T−s

t0−s

(ft, ϕ
s
t)dt+ (uT , ϕ

s
T−s)− (ut0−s, ϕ

s
t0−s)dt]ds

=n

∫ 1
n

0

[

∫ T

t0

(ft−s, ϕt)dt+ (uT−s, ϕT )− (ut0−s, ϕt0)dt]ds

=

∫ T

t0

(fn
t , ϕt)dt+ (φn, ϕT )− (unt0 , ϕt0)dt.
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For the mild solution v associated with f, φ, the above relation also holds with vn replacing un.
Hence we have∫ T

t0

(((u− v)nt , ∂tϕt) + Ea,b̂((u− v)nt , ϕt) +

∫
〈bσ,Dσ(u− v)nt 〉ϕtdm)dt = −((u− v)nt0 , ϕt0).

And we have (u − v)nt ∈ bC[ 1
n
,T ]. Hence, the above equation holds with (u − v)nt as a test

function, i.e. for n ≥ 1
t0∫ T

t0

(((u−v)nt , ∂t(u−v)nt )+Ea,b̂((u−v)nt , (u−v)nt )+
∫

〈bσ,Dσ(u−v)nt 〉(u−v)nt dm)dt = −((u−v)nt0 , (u−v)
n
t0
).

So we have

‖(u− v)nt0‖
2
2 + 2

∫ T

t

Ea,b̂((u− v)nt , (u− v)nt )dt ≤ 2α

∫ T

t0

‖(u− v)nt ‖22dt.

By Gronwall’s Lemma it follows that

‖(u− v)nt0‖
2
2 = 0.

Letting n → ∞, we have ‖ut0 − vt0‖2 = 0. Then letting t0 → 0, we have ‖u0 − v0‖ = 0. Then

ut = PT−tφ+
∫ T

t
Ps−tfsds is a generalized solution for (2.5). �

2.3 Basic Relations for the Linear Equation

In this Section we assume that (A1)-(A4) hold.

Lemma 2.10 If u is a bounded generalized solution of equation (2.5), then u+ satisfies the
following relation for 0 ≤ t1 < t2 ≤ T

‖u+t1‖
2
2 ≤ 2

∫ t2

t1

(fs, u
+
s )ds+ ‖u+t2‖

2
2.

Proof Choose the approximation sequence un for u as in the existence proof of Proposition
2.9. Denote its related data by fn, φn .

We have the following equations:

lim
n→∞

sup
t∈[0,T ]

‖unt − ut‖2 = 0, lim
n→∞

∫ T

0

Ea,b̂(unt − ut)dt = 0,

lim
n→∞

∫ T

0

‖fn
t − ft‖2dt = 0, lim

n→∞
‖φn − φ‖2 = 0.

Suppose that the following holds

‖(unt1)
+‖22 ≤ 2

∫ t2

t1

(fn
s , (u

n
s )

+)ds+ ‖(unt2)
+‖22, (2.12)
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where 0 ≤ t1 ≤ t2 ≤ T . Since ‖un‖2 are uniformly bounded, we have

lim
n→∞

∫ t2

t1

(fn
s , (u

n
s )

+)ds =

∫ t2

t1

(fs, u
+
s )ds.

By passing n to the limit in equation (2.12) we get for 0 ≤ t1 ≤ t2 ≤ T ,

‖u+t1‖
2
2 ≤ 2

∫ t2

t1

(fs, u
+
s )ds+ ‖u+t2‖

2
2.

Therefore, the problem is reduced to the case where u belongs to bCT ; in the remainder
we assume u ∈ bCT . (2.9), written with u+ ∈ bW 1,2([0, T ];L2) ∩ L2([0, T ];F ) as test function,
takes the form ∫ t2

t1

(ut, ∂t(u
+
t ))dt+

∫ t2

t1

Ea,b̂(ut, u
+
t )dt+

∫ t2

t1

∫
〈bσ,Dσut〉u+t dmdt

=

∫ t2

t1

(ft, u
+
t )dt+ (ut2 , u

+
t2
))− (ut1 , u

+
t1
)),

(2.13)

By [3, Theorem 1.19], we obtain∫ t2

t1

(ut, ∂t(u
+
t ))dt =

1

2
(‖u+t2‖

2
2 − ‖u+t1‖

2
2).

Then

‖u+t1‖
2
2 + 2

∫ t2

t1

Ea,b̂(ut, u
+
t )dt+ 2

∫ t2

t1

∫
〈bσ,Dσut〉u+t dmdt

=2

∫ t2

t1

(ft, u
+
t )dt+ ‖u+t2‖

2
2.

(2.14)

Next we prove for u ∈ bF
E(u, u+) ≥ 0. (2.15)

We have the above relation for u ∈ D(L). For u ∈ bF , by (A4) we can choose a uniformly

bounded sequence {un} ⊂ D(L) such that Ea,b̂
c2+1(un − u) → 0. Then we have

|
∫
〈bσ,Dσu〉u+dm−

∫
〈bσ,Dσun〉u+n dm|

≤|
∫
〈bσ,Dσun −Dσu〉u+n dm|+ |

∫
〈bσ,Dσu〉(u+n − u+)dm|

≤M(

∫
|Dσun −Dσu|2dm)

1
2 + |

∫
〈bσ,Dσu〉(u+n − u+)dm|

→0.
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Because Ea,b̂(u+) ≤ Ea,b̂(u), supn Ea,b̂(u+n ) ≤ supn Ea,b̂(un) <∞, we also have

|Ea,b̂(un, (un)
+)− Ea,b̂(u, u+)|

≤|Ea,b̂
c2+1(un − u, (un)

+) + Ea,b̂
c2+1(u, (un)

+ − u+)|
+ (c2 + 1)|(un − u, (un)

+)|+ (c2 + 1)|(u, (un)+ − u+)|

≤K(Ea,b̂
c2+1(un − u))

1
2 (Ea,b̂

c2+1((un)
+))

1
2 + |Ea,b̂

c2+1(u, (un)
+ − u+)|

+ (c2 + 1)(‖(un)+‖2‖un − u‖2 + (c2 + 1)‖(un)+ − u+‖2‖u‖2)
→0.

As a result we have (2.15) for u ∈ bF . So we have

‖u+t1‖
2
2 ≤ 2

∫ t2

t1

(ft, u
+
t )dt+ ‖u+t2‖

2
2.

�
To extend the class of solutions we are working with to allow f ∈ L1(dt× dm), we need the

following proposition. It is a modified version of the above lemma.

Lemma 2.11 Let u ∈ bF̂ and f ∈ L1(dt × dm) satisfying the weak relation (2.9) with test
functions in bCT and some function φ ≥ 0, φ ∈ L2∩L∞. Then u+ satisfies the following relation
with 0 ≤ t1 < t2 ≤ T

‖u+t1‖
2
2 ≤ 2

∫ t2

t1

(fs, u
+
s )ds+ ‖u+t2‖

2
2.

Proof First note that we can prove analogously to the above proof that for each u ∈ bCT
satisfying the weak relation (2.9) with data (φ, f) over the interval [t1, t2], where ε ≤ t1 ≤ t2 ≤ T
for ε > 0, the following holds

‖u+t1‖
2
2 ≤ 2

∫ t2

t1

(ft, u
+
t )dt+ ‖u+t2‖

2
2.

For u ∈ F̂ we take approximating functions un and (φn, fn) as in the last part of the proof of
Proposition 2.9 . And we have that un satisfies the weak relation (2.9) for the data φn, fn with
test functions in bCT over the interval [ε, t2] and

1
n
≤ ε ≤ t2 ≤ T . Note

lim
n→∞

∫ T

ε

‖fn
t − ft‖1dt = 0.

Then we have

‖(unt1)
+‖22 ≤ 2

∫ t2

t1

(fn
t , (u

n
t )

+)dt+ ‖(unt2)
+‖22,

where ε ≤ t1 ≤ t2 ≤ T for ε > 0. The convergence of all terms, which do not depend on f ,
follows by the same arguments as in the above proof. Since u is bounded, it is easy to see that
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un is uniformly bounded. Then we have

lim
n→∞

|
∫ t2

t1

(fn
s , (u

n
s )

+)ds−
∫ t2

t1

(fs, u
+
s )ds|

≤M lim
n→∞

∫ t2

t1

‖fn
s − fs‖1ds+ lim

n→∞

∫ t2

t1

(fs, (u
n
s )

+ − u+s )ds

=0.

Finally, we obtain

‖u+t1‖
2
2 ≤ 2

∫ t2

t1

(ft, u
+
t )dt+ ‖u+t2‖

2
2,

where ε ≤ t1 ≤ t2 ≤ T for ε > 0. Letting ε→ 0, the assertion follows. �
The next Proposition is a modification of [2, Proposition 2.9]. It represents a version of the

maximum principle.

Proposition 2.12 Let u ∈ bF̂ and f ∈ L1(dt × dm), f ≥ 0, satisfying the weak relation
(2.9) with test functions in bCT and some function φ ≥ 0, φ ∈ L2 ∩ L∞. Then u ≥ 0 and it is
represented by the following relation:

ut = PT−tφ+

∫ T

t

Ps−tfsds.

Here we use Pt is a C0-semigroup on L1(Rd;m) to make Ps−tfs meaningful.

Proof Let (fn)n∈N be a sequence of bounded functions such that

0 ≤ fn ≤ fn+1 ≤ f, lim
n→∞

fn = f.

Since fn is bounded, we have fn ∈ L1([0, T ];L2). Define

unt := PT−tφ+

∫ T

t

Ps−tf
n
s ds.

Then by Proposition 2.9, un ∈ F̂ is a unique generalized solution for the data (φ, fn). Clearly
0 ≤ un ≤ un+1 for n ∈ N . Define y := un − u and f̃ := fn − f . Then f̃ ≤ 0 and y satisfies the
weak relation (2.9) for the data (0, f̃). Therefore by Lemma 2.11, we have for t1 ∈ [0, T ]

‖y+t1‖
2
2 ≤ 2

∫ T

t1

(f̃s, y
+
s )ds ≤ 0.

We conclude that ‖y+t1‖22 = 0. Therefore, u ≥ un ≥ 0 for n ∈ N . Set v := limn→∞ un. By (2.7)
we have

‖unt ‖22 + 2

∫ T

t

Ea,b̂(uns )ds ≤ 2

∫ T

t

(fn
s , u

n
s )ds+ ‖φ‖22 + 2α

∫ T

t

‖uns‖22ds,

which implies that

‖unt ‖22 + 2

∫ T

t

Ea,b̂(uns )ds ≤ 2M

∫ T

t

∫
|fn

s |dmds+ ‖φ‖22 + 2α

∫ T

t

‖uns‖22ds.
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By Gronwall’s Lemma, we have supn supt∈[0,T ] ‖unt ‖22 ≤const. And we obtain limn→∞ ‖unt −
vt‖22 = 0 and

lim
n→∞

|
∫ T

t

∫
(fn

s u
n
s − fsvs)dmds| = 0.

By [14, Lemma 2.12] we have∫ T

t

Ea,b̂
c2+1(vs)ds ≤

∫ T

t

lim inf
n→∞

Ea,b̂
c2+1(u

n
s )ds ≤ lim inf

n→∞

∫ T

t

Ea,b̂
c2+1(u

n
s )ds.

Finally, for t ∈ [0, T ] we get

‖vt‖22 + 2

∫ T

t

Ea,b̂(vs)ds ≤ lim
n→∞

‖unt ‖22 + lim inf
n→∞

∫ T

t

Ea,b̂(uns )ds

≤ lim
n→∞

(2

∫ T

t

(fn
s , u

n
s )ds+ ‖φ‖22) + lim

n→∞
2α

∫ T

t

‖uns‖22ds

=2

∫ T

t

(fs, vs)ds+ ‖φ‖22 +
∫ T

t

‖vs‖22ds.

Since the right hand side of this inequality is finite and t 7→ vt is L
2-continuous, it follows that

v ∈ F̂ .
Now we show that v satisfies the weak relation (2.9) for the data (φ, f). As ϕn(t) :=

‖unt − vt‖2 is continuous and decreasing, we conclude by Dini’s theorem

lim
n→∞

sup
t∈[0,T ]

‖unt − vt‖2 = 0,

and therefore

lim
n→∞

∫ T

0

‖unt − vt‖22 = 0.

Furthermore, there exists K ∈ R+ and a subsequence (nk)k∈N such that

|
∫ T

0

Ea,b̂
c2+1(u

nk
s )ds| ≤ K ∀k ∈ N.

in particular ∫ T

0

∫
|Dσu

nk
s |2dmds ≤ K

c1
∀k ∈ N.

We obtain

lim
k→∞

∫ T

0

Ea,b̂(unk
s , ϕs)ds =

∫ T

0

Ea,b̂(vs, ϕs)ds,

and

lim
k→∞

∫ T

0

∫
〈bσ,Dσu

nk
s 〉ϕsdmds =

∫ T

0

∫
〈bσ,Dσvs〉ϕsdmds,

which implies (2.9) for v associated to (φ, f). Clearly u − v satisfies (2.9) with data (0, 0) for
ϕ ∈ bCT . By Proposition 2.9 we have u− v = 0. Since

vt = PT−tφ+

∫ T

t

Ps−tfsds,
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the assertion follows. �

Corollary 2.13 Let u ∈ bF̂ and f ∈ L1(dt × dm) satisfy the weak relation (2.9) with test
functions in bCT and some function φ ∈ L2 ∩ L∞. Let g ∈ L1(dt× dm) be a bounded function
such that f ≤ g. Then u is represented by the following relation:

ut = PT−tφ+

∫ T

t

Ps−tfsds.

Proof Define fn := (f ∨ (−n)) ∧ g, n ∈ N. Then (fn)n∈N is a sequence of bounded functions

such that fn ↓ f and fn ≤ g then by the same arguments as in Proposition 2.12, the assertion
follows. �

The following proposition is a modification of [2, Proposition 2.10] . It is essential for the
analytic treatment of the non-linear equation (1.1) which is done in the next Section.

Proposition 2.14 Let u = (u1, ..., ul) be a vector valued function where each component is
a generalized solution of the linear equation (2.5) associated to certain data f i, φi, which are
bounded and satisfy the conditions in Proposition 2.6 (ii) for i = 1, ..., l. Denote by φ, f the
vectors φ = (φ1, ..., φl), f = (f 1, ..., f l) and by Dσu the matrix whose rows consist of the row
vectors Dσu

i. Then the following relations hold m-almost everywhere

|ut|2 + 2

∫ T

t

Ps−t(|Dσus|2 +
1

2
c|us|2)ds = PT−t|φ|2 + 2

∫ T

t

Ps−t〈us, fs〉ds. (2.16)

|ut| ≤ PT−t|φ|+
∫ T

t

Ps−t〈ûs, fs〉ds. (2.17)

Here we write x̂ = x/|x|, for x ∈ Rl, x 6= 0 and x̂ = 0, if x = 0.

Proof By Proposition 2.6 (ii) we have u ∈ bCT .
First we assume l = 1. If we can check that u2 satisfies (2.9) with data (2uf − 2|Dσu|2 −

cu2, φ2) for ϕ ∈ bCT , then (2.16) will follow by Corollary 2.13. We have the following relations:∫ T

0

(u2t , ∂tϕt)dt = 2

∫ T

0

(ut, ∂t(utϕt))dt+ (u20, ϕ0)− (u2T , ϕT ),

Ea,b̂(u2t , ϕt) = 2Ea,b̂(ut, utϕt)− (2|Dσut|2 + cu2t , ϕt),

and ∫
〈bσ,Dσ(u

2
t )〉ϕtdm = 2

∫
〈bσ,Dσut〉utϕtdm.

For the second relation, we use (2.2). Since u is a generalized solution of (2.5), we have∫ T

0

(ut, ∂t(utϕt))dt− (uT , uTϕT ) + (u0, u0ϕ0)−
∫ T

0

(ft, utϕt)dt

=−
∫ T

0

Ea,b̂(ut, utϕt)dt−
∫ T

0

∫
〈bσ,Dσut〉utϕtdmdt.
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By the above relations, we have∫ T

0

(u2t , ∂tϕt)dt+ (u20, ϕ0)− (u2T , ϕT ) +

∫ T

0

(Ea,b̂(u2t , ϕt) +

∫
〈bσ,Dσ(u

2
t )〉ϕtdm)dt

=2

∫ T

0

(ftut, ϕt)dt−
∫ T

0

(2|Dσut|2 + c|ut|2, ϕt)dt.

(2.18)

Hence, by Corollary 2.13 (2.16) holds in the case l = 1. To deduce this relation in the case
l > 1, it suffices to add the relations corresponding to the components |uit|2, i = 1, ..., l.

For (2.17), define for ε > 0, hε(t) :=
√
t+ ε−

√
ε for t ≥ 0. Then by integration by parts,

we have
Ea,b̂(hε(|u|2), ϕ) =Ea,b̂(|u|2, h′ε(|u|2)ϕ)− (h′′ε(|u|2)|Dσ(|u|2)|2, ϕ)

+ (c(hε(|u|2)− |u|2h′ε(|u|2)), ϕ),
an ∫ T

0

(hε(|ut|2), ∂tϕt)dt =

∫ T

0

(|ut|2, ∂t(ϕth
′
ε(|ut|2)))dt− (|uT |2, ϕTh

′
ε(|uT |2))

+ (|u0|2, ϕ0h
′
ε(|u0|2)) + (hε(|uT |2), ϕT )− (hε(|u|20), ϕ0).

If we choose ϕh′ε(|u|2) as test function in (2.18), we have∫ T

0

(|ut|2, ∂t(ϕth
′
ε(|ut|2)))dt+ (|u0|2, ϕ0h

′
ε(|u0|2))− (|uT |2, ϕTh

′
ε(|uT |2))

+

∫ T

0

(Ea,b̂(|ut|2, ϕth
′
ε(|ut|2)) +

∫
〈bσ,Dσ(|ut|2)〉ϕth

′
ε(|ut|2)dm)dt

=2

∫ T

0

(〈ft, ut〉, ϕth
′
ε(|ut|2))dt−

∫ T

0

(2|Dσut|2 + c|ut|2, ϕth
′
ε(|ut|2))dt.

By the above relations we have∫ T

0

(hε(|ut|2), ∂tϕt)dt− (hε(|uT |2), ϕT ) + (hε(|u0|2), ϕ0)

+

∫ T

0

(Ea,b̂(hε(|ut|2), ϕt) +

∫
〈bσ,Dσ(hε(|ut|2))〉ϕtdm)dt

=

∫ T

0

−(h′′ε(|ut|2)|Dσ(|ut|2)|2, ϕt) + (c(hε(|u|2)− |u|2h′ε(|u|2)), ϕ)dt

+ 2

∫ T

0

(〈ft, ut〉h′ε(|ut|2), ϕt)dt−
∫ T

0

(h′ε(|ut|2)(2|Dσut|2 + c|ut|2, ϕt)dt.

As
|Dσ(|u|2)|2 = 4〈u,Dσu(Dσu)

∗u〉,
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we deduce
2〈f, u〉h′ε(|u|2)− 2h′ε(|u|2)|Dσu|2 − h′′ε(|u|2)|Dσ(|u|2)|2

=
〈f, u〉 − |Dσu|2

(|u|2 + ε)
1
2

+
|u|2〈û, Dσu(Dσu)

∗û〉
(|u|2 + ε)

3
2

=
〈f, u〉

(|u|2 + ε)
1
2

− ε|Dσu|2 + |u|2(|Dσu|2 − 〈û, Dσu(Dσu)
∗û〉)

(|u|2 + ε)
3
2

≤ 〈f, u〉
(|u|2 + ε)

1
2

.

By Proposition 2.14 and since c(hε(|us|2)− 2|us|2h′ε(|us|2)) ≤ 0, we deduce

hε(|ut|2) ≤ PT−thε(|φ|2) +
∫ T

t

Ps−t
〈fs, us〉

(|us|2 + ε)
1
2

ds.

Letting ε→ 0 obtain the results. �
The next corollary is a version of the above proposition for general data. Here we use Pt is

a C0-semigroup on L1.

Corollary 2.15 Let u = (u1, ..., ul) be a vector-valued function, where each component is a
generalized solution of the linear equation (2.5) associated to certain data f i ∈ L1([0, T ];L2), φi ∈
L2 for i = 1, ..., l. Denote by φ, f the vectors φ = (φ1, ..., φl), f = (f 1, ..., f l) and by Dσu the
matrix whose rows consist of the row vectors Dσu

i. Then the following relations hold m-almost
everywhere

|ut|2 + 2

∫ T

t

Ps−t(|Dσu|2 +
1

2
c|us|2)ds = PT−t|φ|2 + 2

∫ T

t

Ps−t〈us, fs〉ds. (2.19)

|ut| ≤ PT−t|φ|+
∫ T

t

Ps−t〈ûs, fs〉ds. (2.20)

Proof Analogously to the proof of Proposition 2.14 it is enough to verify (2.19) for l = 1. For
φ ∈ L2, f ∈ L1([0, T ], L2), take φn, fn as in Proposition 2.9, then we have

(a). un,t := PT−tφn +
∫ T

t
Ps−tfn,sds is a generalized solution ,

(b). limn→∞
∫ T

t
‖fn,s − fs‖2ds = 0,

(c). limn→∞ ‖φn − φ‖2 = 0,
(d). limn→∞ ‖un − u‖T = 0.

By Proposition 2.14 we have

|un,t|2 + 2

∫ T

t

Ps−t(|Dσun,s|2 +
1

2
c|un,s|2)ds = PT−t|φn|2 + 2

∫ T

t

Ps−t〈un,s, fn,s〉ds. (2.21)
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By (b) and (d) we obtain

‖
∫ T

t

Ps−t((un,s, fn,s)− (us, fs))ds‖1

≤C
∫ T

t

(‖un,s‖2‖fn,s − fs‖2 + ‖fs‖2‖un,s − us‖2)ds

≤C( sup
s∈[0,T ]

‖un,s‖2
∫ T

t

‖fn,s − fs‖2ds+ sup
s∈[0,T ]

‖un,s − us‖
∫ T

t

‖fs‖2ds)

→0.

Here we used that Pt is a C0-semigroup on L1(Rd;m). By (d) we conclude that∫ T

t

‖|Dσun,s|2 − |Dσus|2‖1ds

≤((

∫ T

t

‖Dσun,s‖22ds)
1
2 + (

∫ T

t

‖Dσus‖22ds)
1
2 )(

∫ T

t

‖Dσun,s −Dσus‖22ds)
1
2

=((

∫ T

t

Ea(un,s)ds)
1
2 + (

∫ T

t

Ea(us)ds)
1
2 )(

∫ T

t

Ea(un,s − us)ds)
1
2

→0,

and that ∫ T

t

‖|cun,s|2 − |cus|2‖1ds

≤((

∫ T

t

‖c1/2un,s‖22ds)
1
2 + (

∫ T

t

‖c1/2us‖22ds)
1
2 )(

∫ T

t

‖c1/2un,s − c1/2us‖22ds)
1
2

≤M((

∫ T

t

Ea,b̂
c2+1(un,s)ds)

1
2 + (

∫ T

t

Ea,b̂
c2+1(us)ds)

1
2 )(

∫ T

t

Ea,b̂
c2+1(un,s − us)ds)

1
2

→0.

Thus, we obtain

lim
n→∞

∫ T

t

Ps−t(|Dσun,s|2)ds =
∫ T

t

Ps−t|Dσus|2ds,

and

lim
n→∞

∫ T

t

Ps−t(|cun,s|2)ds =
∫ T

t

Ps−t|cus|2ds.

Passing to the limit in equation (2.21) we get (2.19).
For proving (2.20), we use the same method. �

Lemma 2.16 If f, g ∈ L1([0, T ];L2) and φ ∈ L2, then:∫ T

t

Ps−t(fsPT−sφ)ds ≤
1

2
PT−tφ

2 +

∫ T

t

∫ T

s

Ps−t(fsPr−sfr)drds, m− a.e. (2.22)

Proof Define
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ht := PT−tφ, vt :=

∫ T

t

Ps−tfsds.

By (2.19) we deduce

h2t + 2

∫ T

t

Ps−t(|Dσhs|2 +
1

2
c|hs|2)ds = PT−tφ

2,

v2t + 2

∫ T

t

Ps−t(|Dσvs|2 +
1

2
c|vs|2)ds = 2

∫ T

t

Ps−t(fs

∫ T

s

Pr−sfrdr)ds,

and

htvt + 2

∫ T

t

Ps−t(〈Dσhs, Dσvs〉+
1

2
chsvs)ds =

∫ T

t

Ps−t(fsPT−sφ)ds.

So, we have∫ T

t

Ps−t(fsPT−sφ)ds =htvt + 2

∫ T

t

Ps−t(〈Dσhs, Dσvs〉+
1

2
chsvs)ds

≤1

2
(h2t + v2t ) +

∫ T

t

Ps−t(|Dσhs|2 + |Dσvs|2 +
1

2
c|vs|2 +

1

2
c|hs|2)ds

=
1

2
PT−tφ

2 +

∫ T

t

∫ T

s

Ps−t(fsPr−sfr)drds.

(2.23)

�

3 The Non-linear Equation

In the case of non-linear equations, we are going to consider systems of equations, with the
unknown functions and their first-order derivatives mixed in the non-linear term of the equation.
The non-linear term is a given measurable function f : [0, T ]×Rd ×Rl ×Rl ⊗Rk → Rl, l ∈ N .
We are going to treat the following system of equations.

(∂t + L)u+ f(·, ·, u,Dσu) = 0 uT = φ. (3.1)

Here φ ∈ L2(Rd, dm;Rl).

Definition 3.1 (Generalized solutions of the nonlinear equation) A generalized solution
of equation (3.1) is a system u = (u1, u2, ..., ul) of l elements in F̂ with the property that
f i(·, ·, u,Dσu) belongs to L

1([0, T ];L2) and there are sequences {un} which are strong solutions
of (3.1) with data (φn, fn) such that

‖un − u‖T → 0, ‖φn − φ‖2 → 0, and lim
n→∞

fn(·, ·, un, Dσun) = f(·, ·, u,Dσu) in L
1([0, T ];L2).

Definition 3.2 (Mild equation) For every i ∈ {1, ..., l} we define the mild equation as

ui(t, x) = PT−tφ
i(x) +

∫ T

t

Ps−tf
i(s, ·, us, Dσus)(x)ds,m− a.e.. (3.2)
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Lemma 3.3 u is a generalized solution of the nonlinear equation (3.1) if and only if it solves
the mild equation (3.2).

Proof The assertion follows by Proposition 2.9. �
We will use the following notation

‖φ‖22 =
l∑

i=1

‖φi‖22, φ ∈ L2(Rd;Rl),

E(u, v) =
l∑

i=1

E(ui, vi), Ea(u, v) =
l∑

i=1

Ea(ui, vi), u, v ∈ F l,

‖u‖2T := sup
t≤T

‖ut‖22 +
∫ T

0

Ea,b̂
c2+1(ut)dt, u ∈ F̂ l.

3.1 The Case of Lipschitz Conditions

In this subsection we consider a measurable function f : [0, T ]×Rd ×Rl ×Rl ⊗Rk → Rl such
that

|f(t, x, y, z)− f(t, x, y′, z′)| ≤ C(|y − y′|+ |z − z′|), (3.3)

with t, x, y, y′, z, z′ arbitrary and C is a constant independent of t, x. Set f 0(t, x) := f(t, x, 0, 0).

Proposition 3.4 Assume that the conditions (A1)-(A4) hold and that f satisfies condition
(3.3), f0 ∈ L2([0, T ] × Rd, dt × dm;Rl) and φ ∈ L2(Rd;Rl). Then the equation (3.1) admits a
unique generalized solution u ∈ F̂ l and it satisfies the following estimate

‖u‖2T ≤ e
T (1+2C+C2

c1
+2α+c2)(‖φ‖22 + ‖f0‖2L2([0,T ]×Rd)).

Proof If u ∈ F̂ l, then by relation (3.3) we have

|f(·, ·, u,Dσu)| ≤ |f(·, ·, u,Dσu)− f(·, ·, 0, 0)|+ |f(·, ·, 0, 0)|
≤ C(|u|+ |Dσu|) + |f0|.

As f0 ∈ L2([0, T ] × Rd, dt × dm;Rl) and |Dσu| is an element of L2([0, T ] × Rd), we get
f(·, ·, u,Dσu) ∈ L2([0, T ]× Rd;Rl).

Now we define the operator A : F̂ l → F̂ l by

(Au)it := PT−tφ
i +

∫ T

t

Ps−tf
i(s, ·, us, Dσus)ds, i = 1, ..., l.

Then Proposition 2.9 implies that Au ∈ F̂ l. In the following we write f i
u,s := f i(s, ·, us, Dσus).

Since (Au)it − (Av)it =
∫ T

t
Ps−t(f

i
u,s − f i

v,s)ds is the mild solution with data (f i
u − f i

v, 0), by the
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same arguments as in Proposition 2.9 we have

‖
∫ T

t

Ps−t(f
i
u,s − f i

v,s)ds‖2[t,T ] ≤MT (

∫ T

t

‖fu,s − fv,s‖2ds)2

≤MT (T − t)

∫ T

t

‖fu,s − fv,s‖22ds

≤MT (T − t)

∫ T

t

(‖us − vs‖22 + ‖Dσus −Dσvs‖22)ds

≤MT (T − t)‖u− v‖2[t,T ],

where MT can change from line to line. Here ‖u‖[Ta,Tb] := (supt∈[Ta,Tb]
‖ut‖22+

∫ Tb

Ta
Ea,b̂
c2+1(ut)dt)

1
2 ,

where 0 ≤ Ta ≤ Tb ≤ T . Fix T1 sufficiently small such that γ := MT (T − T1) < 1. Then we
have :

‖Au− Av‖2[T1,T ] ≤ γ‖u− v‖2[T1,T ].

Then there exists a unique u1 ∈ F̂[T1,T ] such that Au1 = u1 where F̂[Ta,Tb] := C([Ta, Tb];L
2) ∩

L2((Ta, Tb);F ) for Ta ∈ [0, T ] and Tb ∈ [Ta, T ].
We define the operator A1 : F̂ l → F̂ l by

(A1u)it := PT1−tu
i
1,T1

+

∫ T1

t

Ps−tf
i(s, ·, us, Dσus)ds, i = 1, ..., l.

Then by the same method as above, we get

‖A1u− A1v‖2[t,T1]
≤MT (T1 − t)‖u− v‖2[t,T1]

.

Now we choose T2 < T1 such that MT (T1 − t) < 1. Hence there exists a unique u2 ∈ F̂[T2,T1]

such that A1u2 = u2. Define u := u11[T1,T ] + u21[T2,T1). Then we have if T2 ≤ t ≤ T1, that

PT−tφ
i +

∫ T

t

Ps−tf
i(s, ·, us, Dσus)ds

= PT−tφ
i +

∫ T1

t

Ps−tf
i(s, ·, us, Dσus)ds+

∫ T

T1

Ps−tf
i(s, ·, u1,s, Dσu1,s)ds

= PT−tφ
i +

∫ T1

t

Ps−tf
i(s, ·, us, Dσus)ds+ PT1−t(u

i
1,T1

− PT−T1φ
i)

= PT−tφ
i +

∫ T1

t

Ps−tf
i(s, ·, us, Dσus)ds+ PT1−tu

i
1,T1

− PT−tφ
i

= ui2,t.

If t > T1,

(Au)it = PT−tφ
i +

∫ T

t

Ps−tf
i(s, ·, u1,s, Dσu1,s)ds

= ui1,t,

Therefore, we can construct a solution over the interval [T2, T ]. Clearly there exists n ∈ N such
that T < n(T − T1). Hence, the construction is done after n steps.
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In order to obtain the estimate in the statement, we write

|
∫ T

t

(fu,s, us)ds|

≤
∫ T

t

‖f0
s ‖2‖us‖2ds+ C

∫ T

t

‖us‖22ds+ C

∫ T

t

‖Dσus‖2‖us‖2ds

≤1

2

∫ T

t

‖f 0
s ‖22ds+ (

1

2
+ C +

1

2c1
C2)

∫ T

t

‖us‖22ds+
c1
2

∫ T

t

Ea(us)ds.

By relation (2.7) of Proposition 2.9 it follows that

‖ut‖22 + 2

∫ T

t

Ea,b̂(us)ds ≤ 2

∫ T

t

(fu,s, us)ds+ ‖φ‖22 + 2α

∫ T

t

‖us‖22ds

≤ ‖φ‖22 +
∫ T

t

‖f 0
s ‖22ds+ (1 + 2C +

C2

c1
+ 2α+ c2)

∫ T

t

‖us‖22ds

+

∫ T

t

Ea,b̂(us)ds.

Now by Gronwall’s lemma the desired estimate follows.
[Uniqueness] Let u1 and u2 be two solutions of equation (3.1). By using (2.7) for the

difference u1 − u2 we get

‖u1,t − u2,t‖22 + 2

∫ T

t

Ea,b̂(u1,s − u2,s)ds

≤2

∫ T

t

(f(s, ·, u1,s, Dσu1,s)− f(s, ·, u2,s, Dσu2,s), u1,s − u2,s)ds+ 2α

∫ T

t

‖u1,s − u2,s‖22ds

≤2

∫ T

t

C(|Dσu1,s −Dσu2,s|, |u1,s − u2,s|)ds+ (2α+ C)

∫ T

t

‖u1,s − u2,s‖22ds

≤(
C2

c1
+ c2 + 2α+ C)

∫ T

t

‖u1,s − u2,s‖22ds+
∫ T

t

Ea,b̂(u1,s − u2,s)ds.

By Gronwall’s lemma it follows that

‖u1,t − u2,t‖22 = 0,

hence u1 = u2. �

3.2 The Case of Monotonicity Conditions

Let f : [0, T ]×Rd ×Rl ×Rl ⊗Rk → Rl be a measurable function and φ ∈ L2(Rd,m;Rl) be the
final condition of (3.1). We impose the following conditions:
(H1) (Lipschitz condition in z) There exists a fixed constant C > 0 such that for t, x, y, z, z′

arbitrary
|f(t, x, y, z)− f(t, x, y, z′)| ≤ C|z − z′|.
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(H2) (Monotonicity condition in y) For x, y, y′, z arbitrary, there exists a function µt ∈ L1([0, T ];R)
such that

〈y − y′, f(t, x, y, z)− f(t, x, y′, z)〉 ≤ µt|y − y′|2,
and αt :=

∫ t

0
µsds.

(H3) (Continuity condition in y) For t, x and z fixed, the map

y 7→ f(t, x, y, z)

is continuous.
We need the following notation:

f 0(t, x) := f(t, x, 0, 0), f ′(t, x, y) := f(t, x, y, 0)− f(t, x, 0, 0),

f
′,r(t, x) := sup

|y|≤r

|f ′(t, x, y)|.

(H4)For each r > 0, f
′,r ∈ L1([0, T ];L2).

(H5) ‖φ‖∞ <∞, ‖f 0‖∞ <∞, |φ| ∈ L2, |f0| ∈ L2([0, T ];L2).
If m(Rd) <∞ the last two conditions in (H5) are ensured by the boundedness of φ and f0.

The condition (H1), (H4), and (H5) imply that if u ∈ bF̂ , then |f(u,Dσu)| ∈ L1([0, T ];L2).
Under the above condition we can’t conclude that f(t, x, ·, Dσ·) is a map from V to V ′. Hence
we can’t use the monotonicity method to prove the existence of solutions.

Lemma 3.5 In (H2) without loss of generality we can assume that µt ≡ 0.

Proof Let us make the change u∗t = exp(αt)ut and

φ∗ = exp(αT )φ, f ∗
t (y, z) = exp(αt)ft(exp(−αt)y, exp(−αt)z)− µty,

for the data. Next we will prove that u is a generalized solution associated to the data (φ, f)
if and only if u∗ is a solution associated to the data (φ∗, f ∗). Hence we can write

uit = PT−tφ
i(x) +

∫ T

t

Ps−tf
i(s, ·, us, Dσus)(x)ds,

equivalently as

ui,∗t =exp(αt)PT−tφ
i(x) + exp(αt)

∫ T

t

Ps−tf
i(s, ·, us, Dσus)(x)ds

=exp(αT )PT−tφ
i(x) + (exp(αt)− exp(αT ))PT−tφ

i(x)

+

∫ T

t

(exp(αt)− exp(αs))Ps−tf
i(s, ·, us, Dσus)(x)ds

+

∫ T

t

exp(αs)Ps−tf
i(s, ·, us, Dσus)(x)ds

=PT−tφ
i,∗(x) +

∫ T

t

Ps−t(exp(αs)f
i(s, ·, us, Dσus)(x))ds

−
∫ T

t

µs exp(αs)PT−tφ
i(x)ds−

∫ T

t

∫ l

t

µs exp(αs)Pl−tf
i(l, ·, ul, Dσul)dsdl
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=PT−tφ
i,∗(x) +

∫ T

t

Ps−t(exp(αs)f
i(s, ·, exp(αs)u

∗
s, exp(αs)Dσu

∗
s)(x))ds

−
∫ T

t

Ps−t(µs exp(αs)PT−sφ
i(x) +

∫ T

s

µs exp(αs)Pl−sf
i(l, ·, ul, Dσul)dl)ds

=PT−tφ
i,∗(x) +

∫ T

t

Ps−tf
i,∗(s, ·, u∗s, Dσu

∗
s)(x)ds.

Next we prove f ∗ satisfies (H1)-(H5). It is obvious that (H1), (H3)-(H5) are satisfied. Let us
prove that f ∗ satisfies (H2) with µt ≡ 0. We have

〈y − y′, f ∗(t, x, y, z)− f ∗(t, x, y′, z)〉
=〈y − y′, µty

′ − µty〉
+ (exp(αt))

2〈exp(−αt)y − exp(−αt)y
′, f(t, x, exp(−αt)y, exp(−αt)z)〉

− (exp(αt))
2〈exp(−αt)y − exp(−αt)y

′, f(t, x, exp(−αt)y
′, exp(−αt)z)〉

≤ − |y − y′|2µt + µt(exp(αt))
2| exp(−αt)y − exp(−αt)y

′|2

=0.

Thus, by making the transformation f → f ∗, we can assume that µt ≡ 0. �

Lemma 3.6 Assume that conditions (A1)-(A4), (H1) and the following weaker form of
condition (H2) (with µt ≡ 0) hold:

(H2’) 〈y, f ′(t, x, y)〉 ≤ 0 for all t, x, y.

If u is a generalized solution of (3.1), then there exists a constant K depending on C, µt, T, α
such that

‖u‖2T ≤ K(‖φ‖22 +
∫ T

0

‖f0
t ‖22dt). (3.4)

Proof Since u is a solution of (3.1), by Proposition 2.9 we have

‖ut‖22 + 2

∫ T

t

Ea,b̂(us)ds ≤ 2

∫ T

t

(fs, us)ds+ ‖uT‖22 + 2α

∫ T

t

‖us‖22ds.

Conditions (H1) and (H2’) yield

〈fs(us, Dσus), us〉 =〈fs(us, Dσus)− fs(us, 0) + f ′
s(us) + f0

s , us〉
≤|fs(us, Dσus)− fs(us, 0)||us|+ 〈f ′

s(us), us〉+ |f0
s ||us|

≤(C|Dσus|+ |f 0
s |)|us|.

Hence, it follows that

‖ut‖22 + 2

∫ T

t

Ea,b̂(us)ds ≤2

∫ T

t

∫
(C|Dσus|+ |f0

s |)|us|dmds+ ‖uT‖22 + 2α

∫ T

t

‖us‖22ds

≤
∫ T

t

Ea,b̂(us)ds+ (
C2

c1
+ 1 + 2α+ c2)

∫ T

t

‖us‖22ds+
∫ T

t

‖f0
s ‖22ds+ ‖uT‖22.
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Then Gronwall’s Lemma yields

‖u‖2T ≤ K(‖φ‖22 +
∫ T

0

‖f0
t ‖22dt).

�
By a modification of the arguments in [2, Lemma 3.3] we have the following estimates.

Lemma 3.7 Assume that conditions (A1)-(A4), (H1) and (H2’) hold. If u is a generalized
solution of (3.1), there exists a constant K, which depends on C, µ and T , such that

‖u‖∞ ≤ K(‖φ‖∞ + ‖f0‖∞). (3.5)

Proof By Corollary 2.15 we have

|ut|2 + 2

∫ T

t

Ps−t(|Dσu|2) ≤ PT−t|φ|2 + 2

∫ T

t

Ps−t〈us, fs(us, Dσus)〉ds. (3.6)

Following the same arguments as in the proof of Lemma 3.6 we deduce

〈fs(us, Dσus), us〉 ≤ (C|Dσus|+ |f0
s |)|us|.

And by Corollary 2.15 (2.20) we get

|us| ≤ PT−s|φ|+
∫ T

s

Pr−s(C|Dσur|+ |f 0
r |)dr.

Then we have ∫ T

t

Ps−t〈fs(us, Dσus), us〉ds

≤
∫ T

t

Ps−t[(PT−s|φ|+
∫ T

s

Pr−s(C|Dσur|+ |f 0
r |)dr)(C|Dσus|+ |f 0

s |)]ds.

So, by (3.6) and Lemma 2.16 we obtain

|ut|2 + 2

∫ T

t

Ps−t(|Dσus|2)ds

≤PT−t|φ|2 + 2(

∫ T

t

Ps−t[(PT−s|φ|+
∫ T

s

Pr−s(C|Dσur|+ |f 0
r |)dr)(C|Dσus|+ |f 0

s |)]ds)

≤3PT−t|φ|2 + 2C2

∫ T

t

∫ T

s

Ps−t(|Dσus|Pr−s|Dσur|)drds+ 2

∫ T

t

∫ T

s

Ps−t(|f 0
s |Pr−s|f 0

r |)drds

+ 2

∫ T

t

∫ T

s

Ps−t[Pr−s(C|Dσur|+ |f 0
r |)(C|Dσus|+ |f 0

s |)]drds.
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Since ∫ T

t

∫ T

s

Ps−t[Pr−s(C|Dσur|+ |f 0
r |)(C|Dσus|+ |f 0

s |)]drds

≤1

2

∫ T

t

∫ T

s

[Ps−t(C|Dσus|+ |f 0
s |)2] + Ps−t[(Pr−s(C|Dσur|+ |f 0

r |))2]drds

≤
∫ T

t

∫ T

s

C2Ps−t|Dσus|2 + Ps−t|f0
s |2 +

1

2
Pr−t(C|Dσur|+ |f 0

r |)2drds

≤2C2(T − t)

∫ T

t

Ps−t|Dσus|2ds+ 2(T − t)

∫ T

t

Ps−t|f 0
s |2ds,

and since by Schwartz’s inequality one has∫ T

t

∫ T

s

Ps−t(|Dσus|Pr−s|Dσur|)drds

≤
∫ T

t

∫ T

s

1

2
(Ps−t|Dσus|2)drds+

∫ T

t

∫ T

s

1

2
(Pr−t|Dσur|2)drds

≤(T − t)

∫ T

t

Ps−t|Dσus|2ds,

we conclude

|ut|2 + 2

∫ T

t

Ps−t(|Dσus|2)ds

≤3PT−t|φ|2 + 6C2(T − t)

∫ T

t

Ps−t|Dσus|2ds+ 6(T − t)

∫ T

t

Ps−t|f 0
s |2ds.

Hence, the first estimate of this lemma holds on the interval [T − ε, T ] where ε > 0 such that
6C2ε = 1. So we can deduce by iteration the estimate over the interval [0, T ]. We obtain from
the first estimate

|ut|2 ≤ sup
t∈[0,T ]

sup
x∈Rd

K̃(PT−t|φ|2 + (T − t)

∫ T

t

Ps−t|f 0
s |2ds)

≤ sup
t∈[0,T ]

K̃(‖φ2‖∞ + T 2‖f 0‖2∞)

≤K2(‖φ‖2∞ + ‖f0‖2∞),

which implies (3.5). �
By the same methods as in [2, Theorem 3.2], we obtain the following results. As the method

is similar as in the proof of [2, Theorem 3.2], we will give the proof in the Appendix A.

Theorem 3.8 Suppose that m(dx) is a finite measure and that conditions (A1)-(A4), (H1)-
(H5) hold. Then there exists a unique generalized solution of equation (3.1) and it satisfies the
following estimates for some K1 and K2 independent of u, φ, f

‖u‖2T ≤ K1(‖φ‖22 +
∫ T

0

‖f0
t ‖22dt).
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‖u‖∞ ≤ K2(‖φ‖∞ + ‖f0‖∞).

Lemma 3.9 Assume conditions (A1)-(A4),(H1)-(H5) hold. If u ∈ F̂ is bounded and for
ϕ ∈ bCT satisfies∫ T

0

E(ut, ϕt) + (ut, ∂tϕt)dt =

∫ T

0

(ft(ut, Dσut), ϕt)dt+ (uT , ϕT )− (u0, ϕ0).

Then we have

‖ut‖22 + 2

∫ T

t

Ea,b̂(us)ds ≤ 2

∫ T

t

(fs(us, Dσus), us)ds+ ‖φ‖22 + 2α

∫ T

t

‖us‖22ds, 0 ≤ t ≤ T.

Proof Define uht = 1
2h

∫ t+h

t−h
usds. Choose φt = uht , then we have

∫ T

t

E(ut, uht ) +
1

2h
(ut, ut+h)−

1

2h
(ut, ut−h)dt =

∫ T

t

(ft(ut, Dσut), u
h
t )dt+ (uT , u

h
T )− (ut, u

h
t ).

That is to say,

1

2h

∫ T

T−h

(ut, ut+h)dt−
1

2h

∫ t

t−h

(ut, ut+h)dt+

∫ T

t

E(ut, uht )dt

=

∫ T

0

(ft(ut, Dσut), u
h
t )dt+ (uT , u

h
T )− (ut, u

h
t ).

(3.7)

Letting h→ 0 in (3.7), the assertion follows . �
For the case m(dx) = dx, we will use a weight function of the form π(x) = exp[−ρθ(x)],

with θ ∈ C1(Rd) being a fixed function such that 0 ≤ θ(x) ≤ |x|, and θ(x) = |x| if |x| ≥ 1, and
ρ ∈ R+. If one chooses ρ > 0, then clearly one has m(Rd) < ∞. We denote the generalized
Dirichlet form, function spaces and the generator associated with ρ > 0 by Eρ, F̂ ρ, Cρ

T , Lρ

respectively. In the case ρ = 0, we drop ρ in the notation, i.e. E = E0. And for the case ρ = 0,
we need the following condition.

(A2’) (Sobolev inequality) If ρ = 0, then σ is a bounded measurable field in Rd and

‖u‖q ≤ CEa(u, u)1/2, ∀u ∈ C∞
0 (Rd),

where 1
q
+ 1

d
= 1

2
and ‖ · ‖q denotes the usual norm in Lq. And |b̂σ| ∈ Ld(Rd; dx) + L∞(Rd;m),

c ∈ Ld/2(Rd; dx) + L∞(Rd; dx).

If (A2’), (A2) are satisfied, for u, v ∈ bF , we have

Eρ(u, v) =

∫
〈Dσu,Dσv〉dm+

∫
cuvdm+

∫
〈(bσ + b̂σ,Dσu〉vdm.

If ρ = 0, we additionally have

Ea,b̂(u, u) ≤ CEa
1 (u, u),
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and that F = F a. We also need the following condition:

(H6). Ea(u) <∞, u ∈ L2 ⇒ u ∈ F.

The Sobolev inequality and (H6) are satisfied if a is uniformly elliptic. By [21, Lemma 4.20]
we have:

Lemma 3.10 Assume conditions (A2’) and (H6) hold. Let ρ > 0 and suppose σ is bounded.
Then it holds

Eρ(u, ϕ) = E(u, ϕ exp(−θρ)) + (Mρu, ϕ)ρ,

for u ∈ Fρ, ϕ ∈ bFρ, where Mρu = ρ〈Dσθ,Dσu〉.

Theorem 3.11 Suppose thatm(dx) = dx, σ is bounded and that the conditions (A1)(A2’)(A3)(A4),
(H1)-(H5), (H6) hold. Then there exists a unique generalized solution of equation (3.1) and it
satisfies the following estimates with constants K1 and K2 independent of u, φ, f

‖u‖2T ≤ K1(‖φ‖22 +
∫ T

0

‖f0
t ‖22dt).

‖u‖∞ ≤ K2(‖φ‖∞ + ‖f 0‖∞).

Proof Set for ρ > 0

fρ(t, x, y, z) := f(t, x, y, z) + ρ
k∑

l=1

d∑
i=1

σi
l(x)∂iθ(x)zl(x),

and consider
(∂t + Lρ)u+ fρ(u,Dσu) = 0, uT = φ. (3.8)

The associated weak equation has the form ∀ϕ ∈ bCρ
T∫ T

0

Eρ(ut, ϕt) + (ut, ∂tϕt)ρdt =

∫ T

0

(fρ
t (ut, Dσut), ϕt)ρdt+ (uT , ϕT )ρ − (u0, ϕ0)ρ. (3.9)

As fρ satisfies conditions (H1)-(H5), we have a generalized solution uρ of (3.8).
Fix ρ > 0 and take fn ∈ C∞

0 (Rd) such that fn(x) = 1 for x ∈ Bn(0), fn(x) = 0 for
x ∈ Bc

2n(0), ∂xi
fn(x) are uniformly bounded and ∂xi

fn(x) → 0 as n → ∞. If ϕ ∈ bCT , then
ϕfn exp(θρ) ∈ bCρ

T . As∫ T

0

Eρ(uρt , ϕtfn exp(θρ))+ (uρt , ∂tϕtfn)dt =

∫ T

0

(fρ
t (u

ρ
t , Dσu

ρ
t ), fnϕt)dt+(uρT , fnϕT )− (uρ0, fnϕ0),

by Lemma 3.10 we have∫ T

0

E(uρt , ϕtfn) + (uρt , ∂tϕtfn)dt =

∫ T

0

(ft(u
ρ
t , Dσu

ρ
t ), fnϕt)dt+ (uρT , fnϕT )− (uρ0, fnϕ0). (3.10)

If u ∈ F̂ρ̃ satisfies (3.10) for fixed ρ̃ with test function ϕ ∈ bCT , then u satisfies (3.9) for ρ ≥ ρ̃,
with test functions ϕ where ϕ ∈ bCρ

T .
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Now fix ρ1 > 0. Then there exists a solution uρ1 of (3.8) associated to ρ1. We conclude uρ1

satisfies the weak equation (3.9) for all ρ > ρ1 with ϕ ∈ bCρ
T . Then by Lemma 3.9 and the same

arguments as in the uniqueness proof of Theorem 3.8 we have uρ1 = uρ for all ρ > ρ1.
Finally, we deduce that a solution uρ̃ of (3.8) associated to ρ̃ is a solution of (3.8) for all

ρ > 0. Then by Theorem 3.8, we have

‖uρ̃‖2T,ρ ≤ K1(‖φ‖22,ρ +
∫ T

0

‖f 0
t ‖22,ρdt).

Letting ρ→ 0, by Fatou’s Lemma, we obtain

‖uρ̃‖2T = lim
ρ→0

‖uρ̃‖2T,ρ

≤ lim
ρ→0

K1(‖φ‖22,ρ +
∫ T

0

‖f 0
t ‖22,ρdt)

= K1(‖φ‖22 +
∫ T

0

‖f0
t ‖22dt),

and
‖uρ̃‖∞ ≤ K2(‖φ‖∞ + ‖f 0‖∞).

By (H6), we have uρ̃ ∈ L2((0, T ), F ). For uρ̃ ∈ F̂ ρ for ρ > 0, we can obtain

‖uρ̃t+hn
− uρ̃t‖2,ρ → 0.

Then there exists a subsequence such that uρ̃t+hnk
→ uρ̃t for m-almost every x. Hence, uρ̃t+hnk

→
uρ̃t for dx-almost every x. Then by the same arguments as Lemma 3.9, we have

|‖uρ̃t‖22,ρ − ‖uρ̃t+h‖
2
2,ρ| ≤2[|

∫ t+h

t

(uρ̃s, f
ρ
s )ρds|+ |

∫ t+h

t

Ea,b̂(uρ̃s)ds|+ α

∫ t+h

t

‖uρ̃s‖22,ρds]

≤M
∫ t+h

t

‖fs‖2,ρds+M

∫ t+h

t

Ea,b̂
c2+1(u

ρ̃
s)ds

Letting ρ→ 0, we get

|‖uρ̃t‖22 − ‖uρ̃t+h‖
2
2| ≤M

∫ t+h

t

‖fs‖2ds+M

∫ t+h

t

Ea,b̂
c2+1(u

ρ̃
s)ds.

Hence we have uρ̃t+hnk
→ uρ̃t in L

2(Rd, dx). Since this reasoning holds for every sequence hn → 0,

we have uρ̃ ∈ C([0, T ], L2), hence uρ̃ ∈ F̂ . By above arguments, we deduce that∫ T

0

E(uρ̃t , ϕtfn) + (uρ̃t , ∂tϕtfn)dt =

∫ T

0

(ft(u
ρ̃
t , Dσu

ρ̃
t ), fnϕt)dt+ (uρ̃T , fnϕT )− (uρ̃0, fnϕ0).

Letting n→ ∞, we conclude that∫ T

0

E(uρ̃t , ϕt) + (uρ̃t , ∂tϕt)dt =

∫ T

0

(ft(u
ρ̃
t , Dσu

ρ̃
t ), ϕt)dt+ (uρ̃T , ϕT )− (uρ̃0, ϕ0).
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Since ft(u
ρ̃
t , Dσu

ρ̃
t ) ∈ L1([0, T ];L2), we can choose (fn)n∈N ⊂ C∞

0 ([0, T ] × Rd) such that∫ T

0
‖fn

t − ft(u
ρ̃
t , Dσu

ρ̃
t )‖2dt → 0. Let vn be the generalized solution associated with (fn, φ).

Then vn is bounded. For

vt := PT−tφ(x) +

∫ T

t

Ps−tf(s, ·, uρ̃s, Dσu
ρ̃
s)(x)ds,

we have ‖vn − v‖T → 0. On the other hand, by Lemma 3.9 we have

‖uρ̃t − vnt ‖22 + 2

∫ T

t

Ea,b̂(uρ̃s − vns )ds ≤2

∫ T

t

(fs(u
ρ̃
s, Dσu

ρ̃
s)− fn

s , u
ρ̃
s − vns )ds+ 2α

∫ T

t

‖uρ̃s − vns ‖22ds

≤2M

∫ T

t

‖fs(uρ̃s, Dσu
ρ̃
s)− fn

s ‖2ds+ 2α

∫ T

t

‖uρ̃s − vns ‖22ds.

By Gronwall’s lemma we obtain ‖vn − uρ̃‖T → 0, as n→ ∞. Therefore, we have uρ̃t = vt. �

4 Martingale representation for the processes

4.1 Representation under P x

In order to obtain the results for the probabilistic part, we need E to be a generalized Dirich-
let form in the sense of Remark 2.1 (iii) with c2, ĉ ≡ 0 and c ≡ 0. The Markov process
X = (Ω,F∞,Ft, Xt, P

x) is properly associated in the resolvent sense with E , i.e. Rαf :=
Ex

∫∞
0
e−αtf(Xt)dt is an E-quasi-continuous m-version of Gαf , where Gα, α > 0 is the resol-

vent of E and f ∈ Bb(Rd) ∩ L2(Rd;m). The coform Ê introduced in Section 2 is a generalized
Dirichlet form with the associated resolvent (Ĝα)α>0 and there exists an m-tight special stan-
dard process property associated in the resolvent sense with Ê . From now on, we obtain all the
results under the above assumption.

We will now introduce the spaces which will be relevant for our further investigations. Define

M := {M |M is a finite additive functional, Ez[M2
t ] <∞, Ez[Mt] = 0

for E − q.e.z ∈ E and all t ≥ 0}.

M ∈ M is called a martingale additive functional(MAF). Furthermore, define

Ṁ = {M ∈ M|e(M) <∞}.

Here e(M) = 1
2
limα→∞ α2Em[

∫∞
0
e−αtM2

t dt]. The elements of Ṁ are called martingale additive
functional’s (MAF) of finite energy. Let M ∈ M. There exists an E-exceptional set N , such
that (Mt,Ft, Pz)t≥0 is a square integrable martingale for all z ∈ E\N . By [25, Theorem 2.10]
Ṁ is a real Hilbert space with inner product e.

We consider the following condition:

(A5) X is a continuous conservative Hunt process in the state space Rd∪{∂}. Ĝα is strongly
continuous on V and Ê is quasi-regular. C∞

0 (Rd) ⊂ F and for u ∈ F , there exists a sequence
{un} ⊂ C∞

0 (Rd) such that E(un−u, un−u) → 0, n→ ∞. Fk := {x ∈ Rd, |x| ≤ k} is an E-nest.
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Remark 4.1 The last two conditions in (A5) are satisfied if C∞
0 (Rd) is dense in F . They

are also satisfied in our next two examples.

Example 4.2 Consider b = (bi) : Rd → Rd be a Borel-measurable vector field. Let us define

Lu = ∆u+ 〈b,∇u〉, ∀u ∈ C∞
b (Rd).

Assume that
lim

|x|→∞
〈b(x), x〉 = −∞,

and that there exist C1, C2,m ∈ [0,∞) such that

|b(x)| ≤ C1 + C2|x|m x ∈ Rd

Then by [8, Theorem 5.3], there exists a probability measure µ on Rd such that∫
Rd

Ludµ = 0 ∀u ∈ C∞
b (Rd).

And
b ∈ L2(µ).

By [8, Theorem 3.1] we have dµ � dx and the density admits a representation ϕ2, where
ϕ ∈ H1,2(Rd, dx). The closure of

E0(u, v) =
1

2

∫
〈∇u,∇v〉dµ; u, v ∈ C∞

0 (Rd),

on L2(Rd, µ) is a Dirichlet form. Denote b0 := 2∇ϕ/ϕ and β := b − b0. Then we have
β ∈ L2(Rd;Rd, µ). Then by [22, Proposition 1.10 and Proposition 2.4] (L,C∞

0 (Rd)) is L1-unique.
Then by the proof of [22, Proposition 2.4] for u ∈ bF there exists a sequence {un} ⊂ C∞

0 (Rd)
such that E(un − u, un − u) → 0, n→ ∞.

Consider the bilinear form

E(u, v) = 1

2

∫
〈∇u,∇v〉dµ−

∫
〈1
2
β,∇u〉vdµ u, v ∈ C∞

0 (Rd).

Then by the computation in [25, Section 4d] we have that conditions (A1)-(A5) hold for the
bilinear form E .

Example 4.3 Consider d ≥ 2, A = (aij) a Borel-measurable mapping on Rd with values in
the non-negative symmetric matrices on Rd, and let b = (bi) : Rd → Rd be a Borel-measurable
vector field. Consider the operator

LA,bψ = ∂i(a
ij∂jψ) + bi∂iψ, ∀ψ ∈ C∞

0 (Rd),

where we use the standard summation rule for repeated indices. By H1,p(Rd, dx) we denote
the standard Sobolev space of functions on Rd whose first order derivatives are in Lp(Rd, dx).
Assume that for p > d

(C1)aij ∈ Hp,1
loc (Rd, dx), (aij) is uniformly strictly elliptic in Rd.
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(C2)bi ∈ Lp
loc(Rd, dx).

Here byH1,p
loc (Rd, dx) we denote the class of all functions f on Rd such that fχ ∈ H1,p(Rd, dx)

for all χ ∈ C∞
0 (Rd). And Lp

loc(Rd, dx) denotes the class of all functions f on Rd such that
fχ ∈ Lp(Rd) for all χ ∈ C∞

0 (Rd). Assume that there exists V ∈ C2(Rd) (”Lyapunov function”)
such that

lim
|x|→∞

V (x) = +∞, lim
|x|→∞

LA,bV (x) = −∞.

Examples of V can be found in [9] and the reference therein.
Then by [9, Theorem 2.2] there exists a probability measure µ on Rd such that∫

Rd

LA,bψdµ = 0 ∀ψ ∈ C∞
0 (Rd).

Then by [9, Theorem 2.1] we have dµ � dx and that the density admits a representation
ϕ2, where ϕ2 ∈ H1,p

loc (Rd, dx). The closure of

E0(u, v) =
1

2

∫
〈∇ua,∇v〉dµ; u, v ∈ C∞

0 (Rd),

on L2(Rd, µ) is a Dirichlet form.
If in addition, there is a positive Borel function θ on [0,∞) such that limt→∞ θ(t) = +∞

and
LA,bV (x) ≤ c1 − c2θ(|A− 1

2 b|)|A− 1
2 b|2

outside some ball, then by [7, Theorem 2.6] b ∈ L2(Rd;Rd, µ). Set b0 = (b01, ..., b
0
d), where

b0i := 2
∑d

j=1 a
ij∂jϕ/ϕ, i = 1, ..., d. And β := b − b0. By [7, Theorem 2.6] β ∈ L2(Rd;Rd, µ).

Then by [22, Proposition 1.10 and Proposition 2.4] (L,C∞
0 (Rd)) is L1-unique. Then by the

proof of [22, Proposition 2.4] for u ∈ bF there exists a sequence {un} ⊂ C∞
0 (Rd) such that

E(un − u, un − u) → 0, n→ ∞.
Consider the bilinear form

E(u, v) = 1

2

∫
〈∇ua,∇v〉dµ−

∫
〈1
2
β,∇u〉vdµ u, v ∈ C∞

0 (Rd).

Then by the computation in [25, Section 4d] we have that conditions (A1)-(A5) hold for the
bilinear form E .

For an initial distribution µ ∈ P(Rd), here P(Rd) denotes all the probabilities on Rd, we will
prove the Fukushima reprensentation property mentioned in [19] holds for X, i.e. there is an
algebra K(Rd) ⊂ Bb(Rd) which generates the Borel σ-algebra B(Rd) and is invariant under Rα

for α > 0, and there are finitely many continuous martingales M1, ...,Md over (Ω,Fµ,Fµ
t , P

µ)
such that for any potential u = Rαf , where α > 0 and f ∈ K(Rd), the martingale part M [u] of
the semimartingale u(Xt)− u(X0) has the martingale representation in terms of (M1, ...,Md),
that is, there are predictable processes F1, ..., Fd on (Ω,Fµ,Fµ

t ) such that

M
[u]
t =

d∑
j=1

∫ t

0

F j
s dM

j
s P µ − a.s..
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By [24, Theorem 4.5], if Ĝα is sub-Markovian and strongly continuous on V , the Fukushima
decomposition holds for u ∈ F .

Let us first calculate the energy measure related to 〈M [u]〉, u ∈ C∞
0 (Rd). By [25, (23)], for

bounded g ∈ L1(Rd,m), we have∫
Ĝγgdµ〈M [u]〉 = lim

α→∞
α(Uα+γ

〈M [u]〉1, Ĝγg)

= lim
α→∞

lim
t→∞

EĜγg·m(αe
−(γ+α)t〈M [u]〉t) + lim

α→∞
EĜγg·m(

∫ ∞

0

〈M [u]〉tα(γ + α)e−(γ+α)tdt)

= lim
α→∞

lim
t→∞

α〈µ〈M [u]〉, e
−(γ+α)t

∫ t

0

P̂sĜγgds〉

+ lim
α→∞

α(γ + α)(

∫ ∞

0

e−(γ+α)tEĜγg·m((u(Xt)− u(X0)−N
[u]
t )2)dt)

= lim
α→∞

α(γ + α)(

∫ ∞

0

e−(γ+α)tEĜγg·m((u(Xt)− u(X0))
2)dt)

= lim
α→∞

2α(u− αGαu, uĜγg)− α(u2, Ĝγg − αĜαĜγg)

=2(−Lu, uĜγg)− (−Lu2, Ĝγg)

=2E(u, uĜγg)− E(u2, Ĝγg)

=2Ea(u, uĜγg)− Ea(u2, Ĝγg) + 2

∫
〈bσ,Dσu〉uĜγgm(dx)−

∫
〈bσ,Dσu

2〉Ĝγgm(dx)

=2Ea(u, uĜγg)− Ea(u2, Ĝγg)

=2

∫
〈Dσu,Dσ(uĜγg)〉dm−

∫
〈Dσu

2, Dσ(Ĝγg)〉dm

=2

∫
〈Dσu,Dσu〉Ĝγgdm.

Thus, by [25, Theorem 2.5] we obtain

µ〈M [u]〉 = 2〈Dσu,Dσu〉 · dm.

So, for u, v ∈ C∞
0 (Rd), under P x for quasi every point x,

〈M [u],M [v]〉t = 2

∫ t

0

(
d∑

i,j=1

k∑
l=1

σi
lσ

j
l

∂u

∂xi
∂v

∂xj
)(Xs)ds. (4.1)

Then by (A5) and [24, Theorem 4.4], we deduce (4.1) for every u, v ∈ F .
By (A5) Fk = {x ∈ Rd, |x| ≤ k}, k ∈ N is an E-nest. By [25, Theorem 3.6], for ui(x) = xi, we

have the Fukushima decomposition for A[ui], and let M (i) ∈ Ṁloc,(Fk)k∈N
be the associated local

martingale additive functional. We define the stochastic integral f ·M (i) for f ∈ L2(Rd;µ〈M(i)〉)

as in [12, p243], and for L ∈ Ṁ we have

〈f ·M (i), L〉 = f · 〈M (i), L〉.
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Theorem 4.4 Assume (A5) holds. Let u ∈ C1
0(Rd), then

M [u] =
d∑

i=1

uxi
·M (i).

Proof By [25, Theorem 3.6], we have

〈M [u] −
d∑

i=1

uxi
·M (i)〉t =

n∑
i,j=1

∫ t

0

uxi
(Xs)uxj

(Xs)d〈M (i),M (j)〉s

− 2
n∑

i,j=1

∫ t

0

uxi
(Xs)uxj

(Xs)d〈M (i),M (j)〉s

+
n∑

i,j=1

∫ t

0

uxi
(Xs)uxj

(Xs)d〈M (i),M (j)〉s

=0.

�
Then by [25, Lemma 2.4, Lemma 1.18], we have

〈M (i),M (j)〉t = 2

∫ t

0

k∑
l=1

σi
l(Xs)σ

j
l (Xs)ds. (4.2)

Lemma 4.5 Assume (A5) holds. Let C1 be a uniformly dense subset of C0(Rd). Here C0(Rd)
denotes the continuous function with compact support. Then the family {f ·M [u] : f ∈ C1, u ∈
C∞

0 (Rd)} of stochastic integrals is dense in (Ṁ, e).

Proof Suppose that an MAFM ∈ Ṁ is e-orthogonal to the above family, namely,
∫
X
fdµ〈M,M [u]〉 =

0,∀f ∈ C1, u ∈ C∞
0 (Rd). This identity extends to all u ∈ F by [24, (13)] and (A5). Hence,

〈M,M [u]〉 = 0 ∀u ∈ F .

In particular, this holds for u = Gαg, α > 0,∀g ∈ C0(Rd). By [12, Theorem A.3.20] we deduce
that M = 0. �

Theorem 4.6 Assume (A5) holds. Then the space Ṁ can be represented by stochastic
integrals based on M (i) =M [xi], 1 ≤ i ≤ d:

Ṁ = {
d∑

i=1

fi ·M (i) :
d∑

i,j=1

k∑
l=1

∫
Rd

(fifjσ
l
iσ

l
j)(x)m(dx) <∞}, (4.3)

and

e(
d∑

i=1

fi ·M (i)) =
d∑

i,j=1

k∑
l=1

∫
Rd

(fifjσ
l
iσ

l
j)(x)m(dx).
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Proof The space of the right hand side of (4.3) is dense in (Ṁ, e), since it contains the set

{f ·M [u] =
d∑

i=1

(fuxi
) ·M (i); f ∈ C0(Rd), u ∈ C1

0(Rd)},

which is dense in (Ṁ, e) by Lemma 4.5. Hence, it is enough to show that the right hand side
of (4.3) is closed in (Ṁ, e).

Suppose that limn→∞ e(Mn −M) = 0 for

Mn =
d∑

i=1

f
(n)
i ·M (i),

d∑
i,j=1

∫
Rd

aijf
(n)
i f

(n)
j dm <∞,M ∈ Ṁ.

Set fn := (fn
1 , ..., f

n
d ). Since

e(Mn −Mm) =

∫
Rd

|(fn − fm)σ|2dm,

we deduce that fnσ converges in L2(Rd;m) to some hi for each i = 1, ..., d. Let h = (h1, ..., hd)
and f = hτ . Set M ′ =

∑d
i=1 fi ·M (i), then

e(Mn −M ′) =

∫
D

|(fn − f)σ|2dm

=

∫
D

|fnσ − h|2dm.

which converges to zero as n→ ∞. Therefore, we have M =M ′ and

e(M) =
d∑

i,j=1

k∑
l=1

∫
Rd

(fifjσ
l
iσ

l
j)(x)m(dx) <∞.

�
As a consequence, X satisfies Assumption (1) in [19]. Hence by [19, Theorem 3.1], we have

the martingale representation theorem for X:

Theorem 4.7 Assume (A5) holds. Let µ ∈ P(Rd) charging no set of zero capacity. Then for
any square-integrable martingale N = (Nt)t≥0 on (Ω,Fµ,Fµ

t , P
µ), there are unique predictable

processes (F i
t ) such that

Nt −N0 =
d∑

i=0

∫ t

0

F i
sdM

(i)
s P µ − a.s..

Moreover, by an analogous method to [19, Theorem 3.1] we have the martingale represen-
tation theorem for X which is similar to [2].

Theorem 4.8 Assume (A5) holds. Then there exists some exceptional set N such that the
following representation result holds. For every bounded F∞-measurable random variable ξ,
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there exists an predictable process (φ1, ..., φd) : [0,∞)×Ω → Rd, such that for each probability
measure ν, supported by Rd \ N , one has

ξ = Eν(ξ|F0) +
d∑

i=0

∫ ∞

0

φi
sdM

(i)
s P ν − a.s.,

and

Eν

∫ ∞

0

|φsσ(Xs)|2ds ≤
1

2
Eνξ2.

If another predictable process φ′ = (φ′
1, ..., φ

′
d) satisfies the same relations under a certain

measure P ν , then one has φ′
tσ(Xt) = φtσ(Xt), dt× dP ν − a.s..

Proof Suppose that N is some fixed exceptional set. By K we denote the class of bounded
random variables for which the statement holds outside this set. By the same arguments as
in the proof of [2, Theorem 4.7] we have that if (ξn) ⊂ K is a uniformly bounded increasing
sequence and ξ = limn→∞ ξn then ξ ∈ K.

Let K(Rd) ⊂ Bb(Rd) be a countable set which is closed under multiplication, generates
the Borel σ-algebra B(Rd) and Rα(K(Rd)) ⊂ K(Rd) for each α ∈ Q+. Such K(Rd) can be
constructed as follows. Choose N0 ⊂ Bb(Rd) to be a countable set which generates the Borel
σ-algebra B(Rd). For l ≥ 1 define Nl+1 = {g1...gk, Rαfg1...gk, f, gi ∈ Nl, k ∈ N ∪ {0}, α ∈ Q+}
and K(Rd) := ∪∞

l=0Nl.
Let C0 be all ξ = ξ1 · · · ξn, n ∈ N , ξj =

∫∞
0
e−αjtfj(Xt)dt, where αj ∈ Q+, fj ∈ K(Rd), j =

1, ..., n. Following the same arguments as the proof in [19, Lemma 2.2], we have that the
completion of the σ-algebra generated by C0 is F∞ . By the first part of our proof a monotone
class argument reduces the proof to the representation of a random variable in C0.

Let ξ ∈ C0. Following the same arguments as the proof of [19, Theorem 3.1], we have

Nt = Ex(ξ|Ft) =
∑
m

Zm
t ,

where the sum is a finite one, and for each m, Zm = Zt has the following form

Zt = Vtu(Xt),

(the superscript m will be dropped if no confusion may arise), where Vt =
∏k′

i=1

∫ t

0
e−βisgi(Xs)ds

and u(x) = Rβ1+...+βk
(h1(Rβ2+...+βk

h2...(Rβk
hk)...) for βi ∈ Q+, gi, hi ∈ K(Rd). We have u ∈

K(Rd). Hence, by the Fukushima decomposition and the Fukushima representation we obtain

u(Xt)− u(X0) =M
[u]
t + A

[u]
t =

d∑
j=1

∫ t

0

Gj
sdM

(j)
s + A

[u]
t P x − a.s.. (4.4)

for some predictable processes Gj. Then by the same arguments as the proof of [19, Theorem
3.1], we deduce that

Nt =
d∑

i=1

∫ t

0

∑
m

V m
s ·Gm,i

s dM (i)
s P x − a.s..
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As (4.4) holds for every x outside a set of zero capacity. Then we take the exceptional set N
in the assertion to be the union of all these exceptional sets corresponding to u ∈ K(Rd). �

One may represent separately the positive and the negative parts and then we have the
following corollary.

Corollary 4.9 Assume (A5) holds. Let N be the set obtained in the preceding theorem.
Then for any F∞-measurable nonnegative random variable ξ ≥ 0 there exists a predictable
process φ = (φ1, ..., φd) : [0,∞)× Ω → Rd such that the following holds

ξ = Ex(ξ|F0) +
d∑

i=0

∫ ∞

0

φi
sdM

(i)
s P x − a.s.,

and

Eν

∫ ∞

0

|φsσ(Xs)|2ds ≤
1

2
Eνξ2,

for each point x ∈ N c such that Exξ <∞.
If another predictable process φ′ = (φ′

1, ..., φ
′
d) satisfies the same relations under a certain

measure P x, then one has φ′
tσ(Xt) = φtσ(Xt), dt× dP x − a.s.

4.2 Representation under Pm

In the following, we use the notation
∫ t

0
ψ(s,Xs).dMs :=

∑d
i=1

∫ t

0
ψi(s,Xs)dM

(i)
s .

Lemma 4.10 Assume (A1)-(A5) hold. If u ∈ D(L) and ψ ∈ ∇̃u, then

u(Xt)− u(X0) =

∫ t

0

ψ(Xs).dMs +

∫ t

0

Lu(Xs)ds Pm − a.s..

Proof The assertion follows by the Fukushima decomposition, (4.2) and Theorem 4.6. �

The aim of the rest of this section is to extend this representation to time dependent
functions u(t, x).

Lemma 4.11 Assume (A1)-(A5) hold. Let u : [0, T ]× Rd → R be such that
(i) ∀s, us ∈ D(L) and s→ Lus is continuous in L

2.
(ii) u ∈ C1([0, T ];L

2).
Then clearly u ∈ CT . Moreover, for any ψ ∈ ∇̃u and any s, t > 0 such that s + t < T , the

following relation holds Pm-a.s.

u(s+ t,Xt)− u(s,X0) =

∫ t

0

ψ(s+ r,Xr).dMr +

∫ t

0

(∂s + L)u(s+ r,Xr)dr.

Proof We prove the above relation with s = 0, the general case being similar. Let 0 = t0 <

t1 < ... < tp = t be a partition of the interval [0, t] and write

u(t,Xt)− u(0, X0) =

p−1∑
n=0

(u(tn+1, Xtn+1)− u(tn, Xtn)).
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Then, on account of the preceding lemma, each term of the sum is expressed as

u(tn+1, Xtn+1)− u(tn, Xtn)

=u(tn+1, Xtn+1)− u(tn+1, Xtn) + u(tn+1, Xtn)− u(tn, Xtn)

=

∫ tn+1

tn

ψn+1(Xs).dMs +

∫ tn+1

tn

Lutn+1(Xs)ds+

∫ tn+1

tn

∂sus(Xtn)ds,

where ψn+1 = (ψn+1
1 , ..., ψn+1

d ) ∈ ∇̃utn+1 and the last integral is obtained by using the Leibnitz-
Newton formula for the L2-valued function s → us. Below we estimate in L2 the differences
between each term in the last expression and the similar terms corresponding to the formula
we have to prove. Here we use mPt ≤ m i.e.

∫
Ptfdm ≤

∫
fdm for f ∈ B+. This holds since

P̂t is sub-Markovian. Then we have

Em(

∫ tn+1

tn

ψn+1(Xs).dMs −
∫ tn+1

tn

ψ(s,Xs).dMs)
2

=Em

∫ tn+1

tn

|(ψn+1(Xs)− ψ(s,Xs))σ(Xs)|2ds

≤
∫ tn+1

tn

Ea(utn+1 − us)ds.

Since s→ Lus is continuous in L
2, it follows that s→ us is continuous w.r.t. Ea

1 -norm. Hence
the difference appearing in the last integral Ea(utn+1 − us) is uniformly small, provided the
partition is fine enough. From this one deduces that

p−1∑
n=0

∫ tn+1

tn

ψn+1(Xs).dMs →
∫ t

0

ψ(s+ r,Xr).dMr.

The next difference is estimated by using Minkowski’s inequality

(Em(

p−1∑
n=0

∫ tn+1

tn

(Lutn+1 − Lus)(Xs)ds)
2)1/2

≤
p−1∑
n=0

∫ tn+1

tn

(Em(Lutn+1 − Lus)
2(Xs))

1/2ds

≤
p−1∑
n=0

∫ tn+1

tn

‖Lutn+1 − Lus‖2ds,

so that it is similarly expressed as in integral of a uniformly small quantity.
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For the last difference we write

(Em(

p−1∑
n=0

∫ tn+1

tn

(∂sus(Xtn)− ∂sus(Xs))ds)
2)1/2

≤
p−1∑
n=0

∫ tn+1

tn

(Em(∂sus(Xtn)− ∂sus(Xs))
2)1/2ds

=

p−1∑
n=0

∫ tn+1

tn

(Em(∂sus(Xtn)
2 + Ps−tn(∂sus)

2(Xtn)− 2∂sus(Xtn)(Ps−tn∂su)(Xtn)))
1/2ds

=

p−1∑
n=0

∫ tn+1

tn

(Em((∂sus(Xtn)− (Ps−tn∂sus)(Xtn))
2 + (Ps−tn(∂sus)

2(Xtn)− ((Ps−tn∂sus)(Xtn))
2)))1/2ds

≤
p−1∑
n=0

(

∫ tn+1

tn

∫
(∂sus − Ps−tn∂sus)

2 + Ps−tn(∂sus)
2 − (Ps−tn∂sus)

2dm))1/2ds.

From the hypotheses it follows that this will tend also to zero if the partition is fine enough.
Hence the assertions follow �

Theorem 4.12 Assume (A1)-(A5) hold. Let f ∈ L1([0, T ];L2) and φ ∈ L2(Rd) and define

ut := PT−tφ+

∫ T

t

Ps−tfsds.

Then for each ψ ∈ ∇̃u and for each s ∈ [0, T ], the following relation holds Pm-a.s.

u(s+ t,Xt)− u(s,X0) =

∫ t

0

ψ(s+ r,Xr).dMr −
∫ t

0

f(s+ r,Xr)dr.

In particular, if u is a generalized solution of PDE (3.1), the following BSDE holds Pm-a.s.

u(t,Xt−s) = φ(XT−s) +

∫ T

t

f(r,Xr−s, u(r,Xr−s), Dσu(r,Xr−s))dr −
∫ T−s

t−s

ψ(s+ r,Xr).dMr.

Proof Assume first that φ and f satisfy the conditions in Proposition 2.6 (ii). Then we have

u satisfies the conditions in Lemma 4.11. Then by Lemma 4.11, the assertion follows. For the
general case we choose un associated (fn, φn) as in Proposition 2.9. Then we have if n → ∞,
‖un − u‖T → 0. For un we have

un(s+ t,Xt)− un(s,X0) =

∫ t

0

ψn(s+ r,Xr).dMr −
∫ t

0

fn(s+ r,Xr)dr. (4.5)

As

Em|
∫ t

0

(ψn(s+ r,Xr)− ψp(s+ r,Xr).dMr|2 ≤ Em

∫ t

0

|(ψn(s+ r,Xr)− ψp(s+ r,Xr))σ(Xr)|2dr

≤
∫ t

0

Ea(uns+r − ups+r)dr.

Letting n→ ∞ in (4.5), we obtain the assertion. �

42



5 BSDE’s and Generalized Solutions

The set N obtained in Theorem 4.8 will be fixed throughout this Section. By Theorem 4.8 we
can solve BSDE’s under all measures P x, x ∈ N c, at the same time. We will treat systems
of l equations, l ∈ N, associated to Rl-valued functions f : [0, T ] × Ω × Rl × Rl ⊗ Rk 7→ Rl.
These functions are assumed to depend on the past in general and it turns out that a good
theory is developed assuming that they are predictable. This means that we consider the map
(s, ω) 7→ f(s, ω, ·, ·) as a predictable process with respect to the canonical filtration of our
process (Ft).

Lemma 5.1 Assume (A5) holds. Let ξ be an FT -measurable random variable and f :
[0, T ]×Ω 7→ R an (Ft)t≥0-predictable process. Let A be the set of all points x ∈ N c for which
the following integrability condition holds

Ex(|ξ|+
∫ T

0

|f(s, ω)|ds)2 <∞.

Then there exists a pair (Yt, Zt)0≤t≤T of predictable processes Y : [0, T )× Ω 7→ R, Z : [0, T )×
Ω 7→ Rd, such that under all measures P x, x ∈ A, they have the following properties:
(i) Y is continuous,
(ii) Z satisfy the integrability condition∫ T

0

|Ztσ(Xt)|2dt <∞, P x − a.s..

(iii) The local martingale
∫ t

0
Zs.dMs, obtained by integrating Z against the coordinate martin-

gales, is a uniformly integrable martingale,
(iv) they satisfy the equation

Yt = ξ +

∫ T

t

f(s, ω)ds−
∫ T

t

Zs.dMs, P x − a.s., 0 ≤ t ≤ T.

If another pair (Y ′
t , Z

′
t) of predictable processes satisfies the above conditions (i),(ii),(iii),(iv),

under a certain measure P ν with the initial distribution ν supported by A, then one has
Y. = Y.′, P ν − a.s. and Ztσ(Xt) = Z ′

tσ(Xt), dt× P ν − a.s..

Proof The representation of the positive and negative parts of the random variable ξ+
∫ T

0
fsds

give us the predictable process Z such that

ξ +

∫ T

0

fsds = EX0(ξ +

∫ T

0

fsds) +

∫ T

0

Zs.dMs.

Then we get the process Y by the formula

Yt = EX0(ξ +

∫ T

0

fsds) +

∫ t

0

Zs.dMs −
∫ t

0

fsds.

�
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Definition 5.2 Let ξ be an Rl-valued, FT -measurable, random variable and f : [0, T ] ×
Ω × Rl × Rl ⊗ Rk 7→ Rl a measurable Rl-valued function such that (s, ω) 7→ f(s, ω, ·, ·) as a
process is predictable. Let p > 1 and ν be a probability measure supported by N c such that
Eν |ξ|p < ∞. We say that a pair (Yt, Zt)0≤t≤T of predictable processes Y : [0, T ) × Ω 7→ Rl,
Z : [0, T ) × Ω 7→ Rl ⊗ Rd is a solution of the BSDE (5.1) in Lp(P ν) with data (ξ, f) provided
that Y is continuous under P ν and satisfies both the integrability conditions∫ T

0

|f(t, ·, Yt, Ztσ(Xt))|dt <∞, P ν − a.s.,

Eν(

∫ T

0

|Ztσ(Xt)|2dt)p/2 <∞,

and the following equation, with 0 ≤ t ≤ T ,

Yt = ξ +

∫ T

t

f(s, ω, Ys, Zsσ(Xs))ds−
∫ T

t

Zs.dMs, P ν − a.s.. (5.1)

Let f : [0, T ] × Ω × Rl × Rl ⊗ Rk 7→ Rl be a measurable Rl-valued function such that
(s, ω) 7→ f(s, ω, ·, ·) is predictable and satisfies the following conditions:
(Ω1) (Lipschitz condition in z) There exists a constant C > 0 such that for all t, ω, y, z, z′

|f(t, ω, y, z)− f(t, ω, y, z′)| ≤ C|z − z′|.

(Ω2) (Monotonicity condition in y) There exists a function µt ∈ L1([0, T ],R) such that for all
ω, y, y′, z,

〈y − y′, f(t, ω, y, z)− f(t, ω, y′, z)〉 ≤ µt|y − y′|2,

and αt :=
∫ t

0
µsds <∞.

(Ω3) (Continuity condition in y) For t, ω and z fixed, the map

y 7→ f(t, ω, y, z),

is continuous.
We need the following notation

f0(t, ω) := f(t, ω, 0, 0), f ′(t, ω, y) := f(t, ω, y, 0)− f(t, ω, 0, 0),

f
′,r(t, ω) := sup

|y|≤r

|f ′(t, ω, y)|.

Let ξ be an Rl-valued, FT -measurable, random variable and, for each p > 0 denote by Ap the
set of all points x ∈ N c for which the following integrability conditions hold,

Ex

∫ T

0

f
′,r
t dt <∞, ∀r ≥ 0, (5.2)

Ex(|ξ|p + (

∫ T

0

|f 0(s, ω)|ds)p) <∞.
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Denote by A∞ the set of points x ∈ N c for which (5.2) holds and with the property that
|ξ|, |f 0| ∈ L∞(P x).

Proposition 5.3 Under the conditions (A5), (Ω1), (Ω2), (Ω3), there exists a pair (Yt, Zt)0≤t≤T

of predictable processes Y : [0, T ) × Ω 7→ Rl, Z : [0, T ) × Ω 7→ Rl ⊗ Rd that forms a solution
of the BSDE (5.1) in Lp(P x) with data (ξ, f) for each point x ∈ Ap. Moreover, the following
estimate holds with some constant K that depends only on C, µ and T ,

Ex( sup
t∈[0,T ]

|Yt|p + (

∫ T

0

|Ztσ(Xt)|2dt)p/2) ≤ KEx(|ξ|p + (

∫ T

0

|f 0(s, ω)|ds)p), x ∈ Ap.

If x ∈ A∞, then supt∈[0,T ] |Yt| ∈ L∞(P x).
If (Y ′

t , Z
′
t) is another solution in Lp(P x), for some point x ∈ Ap, then one has Yt = Y ′

t and
Ztσ(Xt) = Z ′

tσ(Xt), dt× P x − a.s..

The proof is based on more or less standard methods. Therefore, we include it not here,
but in the Appendix below.

We shall now look at the connection between the solutions of BSDE’s introduced in this
Section and PDE’s studied in Section 3. In order to do this we have to consider BSDE’s over
time intervals like [s, T ], with 0 ≤ s ≤ T . Since the present approach is based on the theory of
Markov processes, which is a time homogeneous theory, we have to discuss solutions over the
interval [s, T ], while the process and the coordinate martingales are indexed by a parameter in
the interval [0, T − s].

Let us give a formal definition for the natural notion of solution over a time interval [s, T ].
Let ξ be an FT−s-measurable, Rl-valued, random variable and f : [s, T ]×Ω×Rl×Rl⊗Rk → Rl

an Rl-valued, measurable map such that (f(s + l, ω, ·, ·))l∈[0,T−s] is predictable with respect to
(Fl)l∈[0,T−s]. Let ν be a probability measure supported by N c such that Eν |ξ|p < ∞. We say
a pair (Yt, Zt)s≤t≤T of processes Y : [s, T ] × Ω → Rl, Z : [s, T ] × Ω → Rl ⊗ Rd is a solution in
Lp(P ν) of the BSDE (5.3) over the interval [s, T ] with data (ξ, f), provided that they have the
property that reindexed as (Ys+l, Zs+l)l∈[0,T−s] these processes are (Fl)l∈[0,T−s]-predictable, Y is
continuous and together they satisfy the integrability conditions∫ T

s

|f(t, ·, Yt, Ztσ(Xt−s))|dt <∞, P ν − a.s..

Eν(

∫ T

s

|Ztσ(Xt−s)|2dt)p/2 <∞.

and the following equation under P ν ,

Yt = ξ +

∫ T

t

f(r, Yr, Zrσ(Xr−s))dr −
∫ T−s

t−s

Zs+l.dMl, s ≤ t ≤ T. (5.3)

The next result gives a probabilistic interpretation of Theorem 3.8. Let us assume that f :
[0, T ] × Rd × Rl × Rl ⊗ Rk → Rl is the measurable function appearing in the basic equation
(3.1). Let φ : Rd → Rl be measurable and for each p > 1, denote by Ap the set of points
(s, x) ∈ [0, T )×N c with the following properties

Ex

∫ T

s

f
′,r(t,Xt−s)dt <∞, ∀r ≥ 0. (5.4)
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Ex(|φ|p(XT−s) + (

∫ T

s

|f 0(t,Xt−s)|ds)p) <∞.

Set A = ∪p>1Ap, Ap,s = {x ∈ N c, (s, x) ∈ Ap}, and As = ∪p>1Ap,s, s ∈ [0, T ). By the
same arguments as in [2, Theorem 5.4], we have the following results. In particular, we can
reconstruct solutions to PDE (3.1) using Proposition 5.3.

Theorem 5.4 Assume that (A5) holds and f satisfies conditions (H1),(H2),(H3). Then there
exist nearly Borel measurable functions (u, ψ), u : A → Rl, ψ : A → Rl ⊗ Rd, such that, for
each s ∈ [0, T ) and each x ∈ Ap,s, the pair (u(t,Xt−s), ψ(t,Xt−s))s≤t≤T solves the BSDE (5.3)
in Lp(P x) with data (φ(XT−s), f(t,Xt−s, y, z)) over the interval [s, T ].

In particular, the functions u, ψ satisfy the following estimates, for (s, x) ∈ Ap,

Ex( sup
t∈[s,T ]

|u(t,Xt−s)|p + (

∫ T

s

|ψσ(t,Xt−s)|2dt)p/2) ≤ KEx(|φ(XT−s)|p + (

∫ T

s

|f0(t,Xt−s)|dt)p).

Moreover, suppose (A1)-(A4) hold, and the conditions in Theorem 3.11 hold when m(dx) = dx.
If f and φ satisfy the conditions (H4) and (H5) then the complement of A2.s is m-negligible (i.e.
m(Ac

2,s) = 0) for each s ∈ [0, T ), the class of u1A2 is an element of F̂ l which is a generalized
solution of PDE (3.1), ψσ represents a version of Dσu and the following relations hold for each
(s, x) ∈ A and 1 ≤ i ≤ l,

ui(s, x) = Ex(φi(XT−s)) +

∫ T

s

Exf i(t,Xt−s, u(t,Xt−s), Dσu(t,Xt−s))dt. (5.5)

Proof We will assume that φ and f0 are bounded; the general case is then obtained by ap-

proximation. Then the sets Ap, p > 0, are all equal. We construct the functions (u, ψ) on A as
follows. For s ∈ [0, T ), denote by (Y s

t , Z
s
t )s≤t≤T the solution in Proposition 5.3, of the BSDE

(5.3) over the interval [s, T ], in L2(P x), x ∈ As with data (φ(XT−s(ω)), f(t,Xt−s(ω), y, z)).
Since Xr ∈ As+r, P

x-a.s., by the uniqueness part of that proposition one deduces that

Y s+r
t ◦ θr = Y s

t , t ∈ [s+ r, T ), P x − a.s.,

(Zs+r
t σ(Xt−s−r)) ◦ θr = Zs

t σ(Xt−s), dt× P x − a.s.

for each fixed r ∈ [0, T − s) and all measures P x, x ∈ As. In particular, if we define

u(s, x) := Ex(Y s
s ),

we will have, for any x ∈ As,

u(t,Xt−s) = EXt−s(Y t
t ) = Ex(Y t

t ◦ θt−s|Ft−s) = Y s
t P x − a.s..

SetWl(s, ω) := Zs
l+sσ(Xl)(ω), for (s, ω) ∈ [0, T )×Ω and l ∈ [0, T−s). One hasWl(r+s, θr(ω)) =

Wl+r(s, ω), dl×P x−a.s. In terms of the time-space Markov process X̂ defined as in [2, Section

4.2], we have Wl(θ̂r(s, ω)) = Wl+r(s, ω). Therefore, t → U i
j,t(s, ω) =

∫ t∧T
0

W i
j,l(s, ω)dl, with

1 ≤ i ≤ l and 1 ≤ j ≤ k, represents an additive functional for the time-space process X̂.
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By [20, Theorem 66.2 ] we deduce that there exists a nearly Borel measurable function ψ̃i
j :

[0, T )× Rd → R, such that ψ̃i
j(t,Xt−s(ω)) = W i

j,t−s(s, ω), dt× P x-a.s. for each x ∈ As. Define

ψ := ψ̃τ.

Then we have Zs
t σ(Xt−s) = ψσ(t,Xt−s)dt× P x − a.s.,∀x ∈ As. Now we have

ui(s, x) = Ex(φi(XT−s)) +

∫ T

s

Exf i(t,Xt−s, u(t,Xt−s), ψσ(t,Xt−s))dt,

since φ and f0 are bounded. In particular, we have that t→ u(t,Xt−s) is continuous P
x-a.s. for

each x ∈ As, because u may be written as the difference two X̂-excessive functions with regular
potential part (cf. [5]). This implies u(·, X·−s) = Y s

· . u(·, X·−s), ψ(·, X·−s) solves the BSDE
(5.3) in Lp(P x) over the time interval [s, T ]. By Theorem 4.12, we have that u is a generalized
solution of (3.1) and that ψσ represents a version of Dσu. �

Remark 5.5 In the above theorem, we need the analytic results, i.e. the existence of a
generalized solution of nonlinear equation (3.1), to obtain the above results. In the following
example, we drop the conditions (A1)-(A4), in particular, we don’t need |bσ| ∈ L2(Rd;m) and
use the results that the existence of the solution of BSDE (5.3) to obtain the existence of a
generalized solution of nonlinear equation (3.1), which is not covered by our analytic results in
Section 2.

Example 5.6 Consider d ≥ 2, A = (aij) a Borel-measurable mapping on Rd with values in
the non-negative symmetric matrices on Rd, and let b = (bi) : Rd → Rd be a Borel-measurable
vector field. Consider the operator

LA,bψ = aij∂i∂jψ + bi∂iψ, ∀ψ ∈ C∞
0 (Rd),

where we use the standard summation rule for repeated indices. By H1,p(Rd, dx) we denote
the standard Sobolev space of functions on Rd whose first order derivatives are in Lp(Rd, dx).
Assume that for p > d

(C1)aij = aji ∈ Hp,1
loc (Rd, dx), 1 ≤ i, j ≤ d.

(C2)bi ∈ Lp
loc(Rd, dx).

(C3) for all V relatively compact in Rd there exist νV > 0 such that

ν−1
V |h|2 ≤ 〈ha, h〉 ≤ νV |h|2 for all h ∈ Rd, x ∈ V

Here byH1,p
loc (Rd, dx) we denote the class of all functions f on Rd such that fχ ∈ H1,p(Rd, dx)

for all χ ∈ C∞
0 (Rd). And Lp

loc(Rd, dx) denotes the class of all functions f on Rd such that
fχ ∈ Lp(Rd) for all χ ∈ C∞

0 (Rd). Assume that there exists V ∈ C2(Rd) (”Lyapunov function”)
such that

lim
|x|→∞

V (x) = +∞, lim
|x|→∞

LA,bV (x) = −∞.

Examples of V can be found in [9] and the reference therein.
Then by [9, Theorem 2.2] there exists a probability measure µ on Rd such that∫

Rd

LA,bψdµ = 0 ∀ψ ∈ C∞
0 (Rd).

47



Then by [9, Theorem 2.1] we have dµ � dx and that the density admits a representation
ϕ2, where ϕ2 ∈ H1,p

loc (Rd, dx). The closure of

E0(u, v) =
1

2

∫
〈∇ua,∇v〉dµ; u, v ∈ C∞

0 (Rd),

on L2(Rd, µ) is a Dirichlet form.
Set b0 = (b01, ..., b

0
d), where b

0
i :=

∑d
j=1(∂jaij + 2aij∂jϕ/ϕ), i = 1, ..., d. And β := b − b0.

Then, β ∈ L2
loc(Rd;Rd, µ). Then by [22, Proposition 1.10 and Proposition 2.4] (L,C∞

0 (Rd))
is L1-unique. Then by the proof of [22, Proposition 2.4] for u ∈ bF there exists a sequence
{un} ⊂ C∞

0 (Rd) such that E(un − u, un − u) → 0, n→ ∞.
Consider the bilinear form

E(u, v) = 1

2

∫
〈∇ua,∇v〉dµ−

∫
〈1
2
β,∇u〉vdµ u, v ∈ C∞

0 (Rd).

Then by the computation in [25, Section 4d] we have that conditions (A5) hold for the bilinear
form E . Then we can use the first part of Theorem 5.4 to obtain the following results.

Theorem 5.7 Consider the bilinear form obtained in Example 5.6. If f satisfies conditions
(H1),(H2),(H3). Then there exist nearly Borel measurable functions (u, ψ), u : A→ Rl, ψ : A→
Rl ⊗ Rd, such that, for each s ∈ [0, T ) and each x ∈ Ap,s, the pair (u(t,Xt−s), ψ(t,Xt−s))s≤t≤T

solves the BSDE (5.3) in Lp(P x) with data (φ(XT−s), f(t,Xt−s, y, z)) over the interval [s, T ].
In particular, the functions u, ψ satisfy the following estimates, for (s, x) ∈ Ap,

Ex( sup
t∈[s,T ]

|u(t,Xt−s)|p + (

∫ T

s

|ψσ(t,Xt−s)|2dt)p/2) ≤ KEx(|φ(XT−s)|p + (

∫ T

s

|f0(t,Xt−s)|dt)p).

Moreover, suppose f and φ satisfy the conditions (H4) and (H5) then the complement of A2.s

is µ-negligible (i.e. µ(Ac
2,s) = 0) for each s ∈ [0, T ), the class of u1A2 is an element of F̂ l which

is a generalized solution of (3.1), ψσ represents a version of Dσu and the following relations
hold for each (s, x) ∈ A and 1 ≤ i ≤ l,

ui(s, x) = Ex(φi(XT−s)) +

∫ T

s

Exf i(t,Xt−s, u(t,Xt−s), Dσu(t,Xt−s))dt.

Proof By [22, Lemma 3.1], we have for u ∈ D(LA,b), u ∈ D(E0) and E0(u, u) ≤ −
∫
Luudµ.

By this, the first part of proof in Proposition 2.9 hold in this case i.e. the mild solution is
equivalent to the generalized solution. Then the results in Theorem 4.12 hold. By the same
arguments as in the proof of Theorem 5.4 and using Ptµ = µ, the assertion follows. �

6 Further Examples

The following two examples discuss the case where PDE satisfies some boundary conditions.

Example 6.1 . Let D ⊂ Rd be a bounded domain satisfying the cone condition. We choose
m(dx) = 1D(x)dx. If E is a sectorial Dirichlet form, it is associated to a reflecting diffusion X
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in the state space D. Then by Theorem 3.8 there exists a solution to the non-linear parabolic
equation

(∂t + L)u+ f(t, x, u,Dσu) = 0, 0 ≤ t ≤ T,

uT (x) = φ(x), x ∈ Rd,

∂u(t, ·)
∂ν

|∂D = 0, t > 0,

where ∂
∂ν

denotes the normal derivative. Then Theorem 5.5 provides a probabilistic interpre-
tation for this equation.

Example 6.2 .Let D ⊂ Rd be a bounded domain satisfying the cone condition. We choose
m(dx) = 1D(x)m(dx) and replace C∞

0 (Rd) by C∞
0 (D). Then the results in Theorem 3.8 apply

and there exists a solution u1 ∈ F = H1
0 (D) to the following non-linear parabolic equation:

(∂t + L)u+ f(t, x, u,Dσu) = 0, 0 ≤ t ≤ T,

uT (x) = φ(x), x ∈ Rd.

Assume E satisfies the weak sector condition. Let X0 denote the diffusion associated with
ER, where ER denotes the Dirichlet form which has the same form as E with the reference
measure m(dx) replaced by dx. Then define

Xt :=

{
X0

t , if t < τ,
∆ otherwise,

where τ = inf{t ≥ 0, X0
t ∈ Dc ∪∆}. Assume (A5) holds for X0. We use Theorem 5.5 for X0

with the data (φ(X0
T−s)1{T−s<τ}, 1[0,τ+s](r)f(r,X

0
r−s, Yr, Zrσ(X

0
r−s)). Then there exist nearly

Borel measurable functions (u, ψ), u : A → Rl, ψ : A → Rl ⊗ Rd, such that, for each s ∈ [0, T )
and each x ∈ Ap,s, the pair (u(t,X0

t−s), ψ(t,X
0
t−s))s≤t≤T solves the BSDE

Yt = φ(X0
T−s)1{T−s<τ}+

∫ T∧(τ+s)

t∧(τ+s)

f(r,X0
r−s, Yr, Zrσ(X

0
r−s))dr−

∫ T−s

t−s

Zs+l.dMl, s ≤ t ≤ T.

Then by [17, Proposition 2.6] we have

Yt = 0, Zt = 0 when t ∈ [τ + s, T ],

and the pair (u(t,Xt−s), ψ(t,Xt−s))s≤t≤T solves the BSDE

Yt = φ(XT−s) +

∫ T

t

f(r,Xr−s, Yr, Zrσ(Xr−s))dr −
∫ T−s

t−s

Zs+l.dMl, s ≤ t ≤ T.

In particular, the functions u, ψ satisfy the following estimates, for (s, x) ∈ Ap,

Ex( sup
t∈[s,T ]

|u(t,Xt−s)|p + (

∫ T

s

|ψσ(t,Xt−s)|2dt)p/2) ≤ KEx(|φ(XT−s)|p + (

∫ T

s

|f0(t,Xt−s)|dt)p).

The class of u1A2 is an element in F̂ l which is an m-version of u1, ψσ represents a version of
Dσu and the following relations hold for each (s, x) ∈ A and 1 ≤ i ≤ l,

ui(s, x) = Ex(φi(XT−s)) +

∫ T

s

Exf i(t,Xt−s, u(t,Xt−s), ψ(t,Xt−s)σ(Xt−s))dt. (6.1)
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Appendix A. Proof of Theorem 3.8
[Uniqueness]
Let u1 and u2 be two solutions of equation (3.1). By using (2.7) for the difference u1 − u2

we get

‖u1,t − u2,t‖22 + 2

∫ T

t

Ea,b̂(u1,s − u2,s)ds

≤2

∫ T

t

(f(s, ·, u1,s, Dσu1,s)− f(s, ·, u2,s, Dσu2,s), u1,s − u2,s)ds+ 2α

∫ T

t

‖u1,s − u2,s‖22ds

≤2

∫ T

t

C(|Dσu1,s −Dσu2,s|, |u1,s − u2,s|)ds+ 2α

∫ T

t

‖u1,s − u2,s‖22ds

≤(
C2

c1
+ c2 + 2α)

∫ T

t

‖u1,s − u2,s‖22ds+
∫ T

t

Ea,b̂(u1,s − u2,s)ds.

By Gronwall’s lemma it follows that

‖u1,t − u2,t‖22 = 0,

hence u1 = u2.
[Existence] The existence will be proved in four steps.
Step 1: Suppose there exists r ∈ R such that

r ≥ 1 +K(‖φ‖∞ + ‖f 0‖∞ + ‖f ′,1‖∞),

where K is the constant appearing in Lemma 3.7 (3.5), and f is uniformly bounded on the set

Ar = [0, T ]× Rd × {|y| ≤ r} × Rl ⊗ Rk.

Define
M := sup{|f(t, x, y, z)| : (t, x, y, z) ∈ Ar} <∞.

Next we regularize f with respect to the variable y by convolution

fn(t, x, y, z) = nl

∫
Rl

f(t, x, y′, z)ϕ(n(y − y′))dy′,

where ϕ is a smooth nonnegative function with support contained in the ball {|y| ≤ 1} such
that

∫
ϕ = 1. Then f = limn→∞ fn and for each n, ∂yifn are uniformly bounded on Ar−1. Set

hn(t, x, y, z) := fn(t, x,
r − 1

|y| ∨ (r − 1)
y, z).

Then each hn satisfies the Lipschitz condition with respect to both y and z. Thus by Proposition
3.4 each hn determines a solution un ∈ F̂ l of (3.1) with data (φ, hn). By the same arguments
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as in [21, Theorem 4.19], we have that hn satisfies conditions (H1) and (H2’) with the same
constants (C > 0 and µ = 0). As m is a finite measure and f

′,1 ∈ L∞([0, T ] × Rd), we have
f

′,1 ∈ L2([0, T ];L2). Since

|hn(t, x, 0, 0) =|fn(t, x, 0, 0)|

≤nl

∫
Rl

|f(t, x, y′)− f 0(t, x) + f 0(t, x)||ϕ(n(−y′))|dy′

≤|f0(t, x)|+ f
′,1(t, x),

one deduces from Lemma 3.7 that ‖un‖∞ ≤ r − 1 and ‖un‖T ≤ KT . Since hn = fn on Ar−1, it
follows that un satisfies (3.1) with data (φ, fn).

Now for b > 0, set

dn,b(t, x) := sup
|y|≤r−1,|z|≤b

|f(t, x, y, z)− fn(t, x, y, z)|.

Obviously one has |dn,b| ≤ 2M . Moreover, on account of the y-continuity and of the uniform
z-continuity, one sees that for fixed t, x, b, the family of functions

{f(t, x, ·, z)||z| ≤ b},

is equicontinuous and then compact in C({|y| ≤ r − 1}). Since the convolution operators
approach the identity uniformly on such a compact set, we get

lim
n→∞

dn,b(t, x) = 0,

which implies limn→∞ dn,b(t, x) = 0 in L2(dt×m) because of our assumption that m(Rd) <∞.

Moreover, for u ∈ F̂ l, |u| ≤ r − 1

|f(u,Dσu)− fn(u,Dσu)| ≤1{|Dσu|≤b}dn,b + 2M1{|Dσu|>b}

≤dn,b +
2M

b
|Dσu|.

Next we will show that (un)n∈N is a ‖ · ‖T -Cauchy sequence. By (2.7) for the difference ul−un,
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we have

‖ul,t − un,t‖22 + 2

∫ T

t

Ea,b̂(ul,s − un,s)ds

≤2

∫ T

t

(fl(s, ·, ul,s, Dσul,s)− fn(s, ·, un,s, Dσun,s), ul,s − un,s)ds+ 2α

∫ T

t

‖ul,s − un,s‖22ds

≤2

∫ T

t

(|fl(s, ·, ul,s, Dσul,s)− f(s, ·, ul,s, Dσul,s)|, |ul,s − un,s|)ds

+ 2

∫ T

t

(|fn(s, ·, un,s, Dσun,s)− f(s, ·, un,s, Dσun,s)|, |ul,s − un,s|)ds

+ 2

∫ T

t

(|f(s, ·, ul,s, Dσul,s)− f(s, ·, ul,s, Dσun,s)|, |ul,s − un,s|)ds

+ 2

∫ T

t

(f(s, ·, ul,s, Dσun,s)− f(s, ·, un,s, Dσun,s), ul,s − un,s)ds+ 2α

∫ T

t

‖ul,s − un,s‖22ds

≤2

∫ T

t

(|fl(s, ·, ul,s, Dσul,s)− f(s, ·, ul,s, Dσul,s)|, |ul,s − un,s|)ds

+ 2

∫ T

t

(|fn(s, ·, un,s, Dσun,s)− f(s, ·, un,s, Dσun,s)|, |ul,s − un,s|)ds

+ 2

∫ T

t

C(|Dσul,s −Dσun,s|, |ul,s − un,s|)ds+ 2α

∫ T

t

‖ul,s − un,s‖22ds

≤2

∫ T

t

(dl,b(s, ·) + dn,b(s, ·), |ul,s − un,s|)ds+ 2

∫ T

t

2M

b
(|Dσul,s|+ |Dσun,s|, |ul,s − un,s|)ds

+ 2

∫ T

t

C(|Dσul,s −Dσun,s|, |ul,s − un,s|)ds+ 2α

∫ T

t

‖ul,s − un,s‖22ds

≤
∫ T

t

‖dl,b(s, ·)‖22ds+
∫ T

t

‖dn,b(s, ·)‖22ds+
1

b2

∫ T

t

(‖Dσul,s‖22 + ‖Dσun,s‖22)ds

+ (1 + 4M2 +
C2

c1
+ 2α+ c2)

∫ T

t

‖ul,s − un,s‖22ds+
∫ T

t

Ea,b̂(ul,s − un,s)ds.

Since ‖un‖T ≤ KT , we have ∫ T

0

‖Dσul,s‖22ds ≤
KT

c1
,

where the KT is independent of l and b. Thus, for b, l, n large enough, for arbitrary ε > 0 we
get

‖ul,t − un,t‖22 +
∫ T

t

Ea,b̂(ul,s − un,s)ds ≤ ε+ K̃

∫ T

t

‖ul,t − un,t‖22ds,

where K̃ depends on C,M, µ, α. It is easy to see that Gronwall’s lemma implies that (un)n∈N
is a Cauchy-sequence in F̂ . Define u := limn→∞ un and take a subsequence (nk)k∈N such that
unk

→ u a.e. We have

f(·, ·, unk
, Dσu) → f(·, ·, u,Dσu) in L

2(dt×m).
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Since ‖unk
− u‖T → 0, we obtain

‖Dσu−Dσunk
‖L2(dt×m) → 0.

Then by (H1), it follows that

lim
k→∞

‖f(·, ·, unk
, Dσu)− f(·, ·, unk

, Dσunk
)‖L2(dt×m)

≤ lim
k→∞

C‖Dσu−Dσunk
‖L2(dt×m)

=0.

We also have
‖f(·, ·, unk

, Dσunk
)− fnk

(·, ·, unk
, Dσunk

)‖L2(dt×m)

≤||dnk,b‖L2(dt×m) +
2M

b
‖Dσunk

‖L2(dt×m).

Letting k → ∞ and then b→ ∞ the above equality converges to zero. Finally, we conclude

lim
k→∞

‖fnk
(unk

, Dσunk
)− f(u,Dσu)‖L2(dt×m)

≤ lim
k→∞

‖fnk
(unk

, Dσunk
)− f(unk

, Dσunk
)‖L2(dt×m)

+ lim
k→∞

‖f(unk
, Dσunk

)− f(unk
, Dσu)‖L2(dt×m)

+ lim
k→∞

‖f(unk
, Dσu)− f(u,Dσu)‖L2(dt×m)

=0.

By passing to the limit in the mild equation associated to unk
with data (φ, fnk

), it follows that
u is the solution associated to (φ, f).

Step 2: In this Step we will prove the assertion under the assumption that there exists
some constant r such that f

′,r is uniformly bounded and

r ≥ 1 +K(‖φ‖∞ + ‖f 0‖∞ + ‖f ′,1‖∞),

where K is the constant appearing in Lemma 3.7 (3.5). Define

fn(t, x, y, z) := f(t, x, y,
n

|z| ∨ n
z).

fn ≤ Cn+ ‖f ′,r‖∞ + ‖f0‖∞ on Ar. Each of the functions fn satisfies the same conditions as f
and by Step 1, there exists a solution un associated to the data (φ, fn). One has ‖un‖∞ ≤ r−1,
‖un‖T ≤ KT . Conditions (H1) and (H2) yield

|(fl(ul, Dσul)− fn(un, Dσun), ul − un)|
≤C(|Dσul −Dσun|, |ul − un|) + |(fl(un, Dσun)− fn(un, Dσun), ul − un)|.

Since fn(t, x, y, z)1|z|≤n = f(t, x, y, z)1|z|≤n, and for n ≤ l, |fl − fn|1|z|≥n ≤ 2C|z|1|z|≥n, we have

|(fl(un, Dσun)− fn(un, Dσun), ul − un)| ≤ |(2C|Dσun|1{|Dσun|≥n}, |ul − un|)|.
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Then,

‖ul,t − un,t‖22 + 2

∫ T

t

Ea,b̂(ul,s − un,s)ds

≤2

∫ T

t

(fl(ul,s, Dσul,s)− fn(un,s, Dσun,s), ul,s − un,s)ds+ 2α

∫ T

t

‖ul,s − un,s‖22ds

≤2

∫ T

t

C(|Dσul −Dσun|, |ul − un|)ds+ 2

∫ T

t

|(2C|Dσun|1{|Dσun|≥n}, |ul − un|)|ds

+ 2α

∫ T

t

‖ul,s − un,s‖22ds

≤(
C2

c1
+ 2α+ c2)

∫ T

t

‖ul − un‖22ds+
∫ T

t

Ea,b̂(ul − un)ds+ 8C(r − 1)

∫ T

t

∫
|Dσun|1{|Dσun|≥n}dmds

≤(
C2

c1
+ 2α+ c2)

∫ T

t

‖ul − un‖22ds+
∫ T

t

Ea,b̂(ul − un)ds

+ 8C(r − 1)(

∫ T

t

‖1{|Dσun|≥n}‖22ds)
1
2 (

∫ T

t

‖Dσun‖22ds)
1
2 .

As ‖un‖2T ≤ KT , we have
∫ T

0
‖Dσun‖22ds ≤ KT

c1
. Hence,

n2

∫ T

t

‖1{|Dσun|≥n}‖22ds ≤
∫ T

t

‖Dσun1{|Dσun|≥n}‖22ds ≤
KT

c1
.

Therefore, for n big enough

‖ul,t − un,t‖22 +
∫ T

t

Ea,b̂(ul,s − un,s)ds ≤ (
C2

c1
+ 2α+ c2)

∫ T

t

‖ul − un‖22ds+ ε.

By Gronwalls’ lemma it follows that (un)n∈N is a Cauchy sequence in F̂ l. Hence, u := limn→∞ un
is well defined. We can find a subsequence such that (unk

, Dσunk
) → (u,Dσu) a.e. and conclude

|fnk
(unk

, Dσunk
)−f(u,Dσu)| ≤ C| nk

|Dσunk
| ∨ nk

Dσunk
−Dσu|+ |f(unk

, Dσu)−f(u,Dσu)| → 0.

Since

|fnk
(unk

, Dσunk
)− f(u,Dσu)|

≤|f(u, 0)− f(u,Dσu)|+ |fnk
(unk

, Dσunk
)− fnk

(unk
, 0)|+ |fnk

(unk
, 0)− f 0|+ |f 0 − f(u, 0)|

≤C(|Dσu|+ |Dσunk
|) + 2f

′,r,

we have
fnk

(unk
, Dσunk

) → f(u,Dσu) in L
1([0, T ], L2).

We conclude u is a solution of (3.1) associated to the data (φ, f).
Step 3: Now we only suppose that f

′,1 is bounded. Hence, we can choose a constant r such
that

r ≥ 1 +K(‖φ‖∞ + ‖f 0‖∞ + ‖f ′,1‖∞),
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where K is the constant appearing in Lemma 3.7 (3.5). Let us define

fn :=
n

f ′,r ∨ n
(f − f 0) + f0.

Easily we see that the fn have the same properties as f . Since fn(t, x, y, z) = f(t, x, y, z) for
f

′,r ≤ n, we have
lim
n→∞

fn = f.

We introduce the following notation:

f
′,r
n (t, x) := sup

|y|≤r

|f ′
n(t, x, y)|, and f ′

n(t, x, y) := fn(t, x, y, 0)− f 0(t, x).

By the same arguments as in [21, Theorem 4.19] we have

|f ′,r
n | ≤ n ∧ |f ′,r|.

Hence, by Step 2 we obtain that there exists a solution un associated to the data (φ, fn) such
that ‖un‖∞ ≤ r − 1, ‖un‖T ≤M , where M is a constant. For n ≤ l, we have

|fl − fn| ≤ (C|z|+ |f ′|)| l

f ′,r ∨ l
− n

f ′,r ∨ n
| ≤ (C|z|+ |f ′|)1{f ′,r>n}.

Hence∫ T

t

|(fl(un, Dσun)− fn(un, Dσun), ul − un)|ds ≤ 2(r − 1)

∫ T

t

∫
{f ′,r>n}

(C|Dσun|+ f
′,r)dmds.

We start as in the preceding steps:

‖ul,t − un,t‖22 + 2

∫ T

t

Ea,b̂(ul,s − un,s)ds

≤2

∫ T

t

(fl(ul,s, Dσul,s)− fn(un,s, Dσun,s), ul,s − un,s)ds+ 2α

∫ T

t

‖ul,s − un,s‖22ds

≤2

∫ T

t

C(|Dσul −Dσun|, |ul − un|)ds+ 2

∫ T

t

|(fl(un, Dσun)− fn(un, Dσun), ul − un)|ds

+ 2α

∫ T

t

‖ul,s − un,s‖22ds

≤(
C2

c1
+ 2α+ c2)

∫ T

t

‖ul − un‖22ds+
∫ T

t

Ea,b̂(ul − un)ds+ 4(r − 1)

∫ T

t

∫
{f ′,r>n}

(C|Dσun|+ f
′,r)dmds.

As

lim
n→∞

∫ T

t

∫
{f ′,r>n}

f
′,rdmds = 0,

and ∫ T

t

∫
{f ′,r>n}

|Dσun|dmdt ≤ ‖1{f ′,r>n}‖L2(dt×m)‖Dσun‖L2(dt×m) → 0,
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we have as above that (un)n∈N is a Cauchy sequence in F̂ l. Hence, u := limn→∞ un exists in
F̂ l. We can find a subsequence such that (unk

, Dσunk
) → (u,Dσu) a.e. and we have that

|fnk
(unk

, Dσunk
)− f(u,Dσu)|

≤1{f ′,r≤nk}|f(u,Dσu)− f(unk
, Dσunk

)|+ 1{f ′,r>nk}[|f(u,Dσu)− f 0|+ |f(u,Dσu)− f(unk
, Dσunk

)|]
≤|f(u,Dσu)− f(unk

, Dσunk
)|+ 1{f ′,r>nk}|f(u,Dσu)− f0|

≤|f(unk
, Dσu)− f(unk

, Dσunk
)|+ |f(unk

, Dσu)− f(u,Dσu)|+ 1{f ′,r>nk}|f(u,Dσu)− f 0|.

As in the above proof we have

fnk
(unk

, Dσunk
) → f(u,Dσu),

in L1([0, T ], L2). We conclude u is a solution of (3.1) associated to the data (φ, f).
Step 4: Now we prove the theorem without additional conditions. Define

fn :=
n

f ′,1 ∨ n
(f − f0) + f0.

Since fn(t, x, y, z) = f(t, x, y, z) for f
′,1 ≤ n, we have

lim
n→∞

fn = f.

Introduce the following notation:

f
′,1
n (t, x) := sup

|y|≤1

|f ′
n(t, x, y)| and f ′

n(t, x, y) := fn(t, x, y, 0)− f0(t, x).

As in Step 3 we have
|f ′,1

n | ≤ n ∧ |f ′,1|.

Since f
′,1
n is uniformly bounded, we can apply Step 3. Then we get a solution un for the data

(φ, fn). The convergence of un can be shown analogously to Step 3. �

Appendix B. Proof of Proposition 5.3
Let Mp

x(Rl) denote the set of (equivalence classes of )predictable processes {φt}t∈[0,T ] with
values in Rl such that

‖φ‖Mp
x
:= (Ex[(

∫ T

0

|φr|2dr)p/2])1/p <∞.

Mp
σ,x(Rl ⊗ Rd) denotes the set of (equivalence classes of )predictable processes {φt}t∈[0,T ] with

values in Rl ⊗ Rd such that

‖φ‖Mp
σ,x

:= (Ex[(

∫ T

0

|φrσ(Xr)|2dr)p/2])1/p <∞.

Fix x ∈ Ap.
We note that (Y, Z) solves the BSDE (5.1) with data (ξ, f) iff

(Ȳt, Z̄t) := (eαtYt, e
αtZt),
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solve the BSDE (5.1) with data (eαT ξ, f ′), where

f ′(t, y, z) := eαtf(t, e−αty, e−αtz)− µty.

Therefore, we may replace (Ω2) by

〈y − y′, f(t, ω, y, z)− f(t, ω, y′, z)〉 ≤ 0, for all t, x, y, y′, z.

Step 1 Assume that f is Lipschitz continuous with respect to both y and z. Define a
mapping Φ from B2

x := M2
x(Rl) ×M2

σ,x(Rl ⊗ Rd) into itself as follows. Given (U, V ) ∈ B2
x, we

can set Φ(U, V ) := (Y, Z), where (Y, Z) is the solution of the BSDE (5.1) associated with data
(ξ, f(U, V σ(X))) given by Lemma 5.1. Then by Itô’s formula and BDG inequality, we get

Ex[ sup
t∈[0,T ]

|Yt|2] <∞.

Let (U, V ), (U ′, V ′) ∈ B2
x, (Y, Z) = Φ(U, V ), (Y ′, Z ′) = Φ(U ′, V ′), (Ū , V̄ ) = (U − U ′, V − V ′),

(Ȳ , Z̄) = (Y − Y ′, Z − Z ′). It follows from Ito’s formula that for each γ ∈ R,

eγtEx|Ȳt|2 + Ex

∫ T

t

eγs(γ|Ȳs|2 + |Z̄sσ(Xs)|2)ds

≤2KEx

∫ T

t

eγs|Ȳs|(|Ūs|+ |V̄sσ(Xs)|)ds

≤4K2Ex

∫ T

t

eγs|Ȳs|2 +
1

2
Ex

∫ T

t

eγs(|Ūs|2 + |V̄sσ(Xs)|2)ds,

where K is the Lipschitz constant of f . We choose γ = 1 + 4K2. Then

Ex

∫ T

0

eγs(|Ȳs|2 + |Z̄sσ(Xs)|2)ds ≤
1

2
Ex

∫ T

0

eγs(|Ūs|2 + |V̄sσ(Xs)|2)ds,

from which it follows that Φ is a strict contraction on B2
x equipped with the norm:

|||(Y, Z)|||xγ = (Ex

∫ T

0

eγt(|Yt|2 + |Ztσ(Xt)|2)dt)1/2.

Define a sequence (Y n, Zn) by (Y n+1, Zn+1) := Φ(Y n, Zn). We have for γ = 1 + 4K2

Ex

∫ T

0

eγs(|Y n
s −Y n+1

s |2+|(Zn
s −Zn+1

s )σ(Xs)|2)ds ≤
1

2n
Ex

∫ T

0

eγs(|Y 0
s −Y 1

s |2+|(Z0
s−Z1

s )σ(Xs)|2)ds.

Then we have the a.s. pointwise convergence of (Y n
s , Z

n
s σ(Xs)) under each measure P x, x ∈ A2.

Denote the limit by (Ys, Zsσ(Xs)). Then this is the fixed point of Φ under the norm |||(Y, Z)|||xγ.
So we have (Ys, Zs) is the solution of BSDE (5.1).

Step 2 We assume f, ξ are bounded.
We need the following proposition.
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Proposition B.1 Assume condition (A5). Given V ∈ ∩xM
2
σ,x(Rl⊗Rd), there exists a unique

pair of predictable processes (Yt, Zt) ∈ M2
x ×M2

σ,x(Rl ⊗ Rd), ∀x ∈ N c satisfying under all P x,
x ∈ N c

Yt = ξ +

∫ T

t

f(s, Ys, Vs)ds−
∫ T

t

ZsdMs, 0 ≤ t ≤ T.

Using Proposition B.1, we can construct a mapping Φ from B2
x into itself as follows. For

any (U, V ) ∈ B2
x, (Y, Z) = Φ(U, V ) is the solution of the BSDE

Yt = ξ +

∫ T

t

f(s, Ys, Vs)ds−
∫ T

t

ZsdMs, 0 ≤ t ≤ T.

Then as in Step 1, we have

eγtEx|Ȳt|2 + Ex

∫ T

t

eγs(γ|Ȳs|2 + |Z̄sσ(Xs)|2)ds

=2Ex

∫ T

t

eγs〈Ȳs, f(Ys, Vsσ(Xs))− f(Y ′
s , V

′
sσ(Xs))〉ds

≤2KEx

∫ T

t

eγs|Ȳs| × |V̄sσ(Xs)|ds

≤Ex

∫ T

t

eγs(2K2|Ȳs|2 +
1

2
|V̄sσ(Xs)|2)ds.

Then by the same argument as in Step 1, we obtain the assertion of Proposition 5.3 if f, ξ are
bounded.

Proof of Proposition B.1 We write f(s, y) for f(s, y, Vs).
By C we denote the constant satifying |ξ|2 + supt |f(t, 0)|2 ≤ C a.s.. Define

fn(t, y) := (ρn ∗ f(t, ·))(y),

where ρn : Rl 7→ R+ is a sequence of smooth functions with compact support satisfying∫
ρn(z)dz = 1, which approximate the Dirac measure at 0. Then each fn is locally Lipschitz

in y, uniformly with respect to s and ω.
Define for each m ∈ N ,

fn,m(t, y) := fn(t,
inf(m, |y|)

|y|
y).

Then fn,m is globally Lipschitz and bounded, uniformly w.r.t. (t, ω). As in Step 1, we have a
unique pair (Y n,m

t , Zn,m
t ) ∈M2

x ×M2
σ,x(Rl ⊗ Rd) such that

Y n,m
t = ξ +

∫ T

t

fn,m(s, Y n,m
s )ds−

∫ T

t

Zn,m
s dMs, 0 ≤ t ≤ T.

By Itô’s Formula we have
|Y n,m

t |2 ≤ eTC, 0 ≤ t ≤ T.
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Consequently, for m2 > eTC, (Y n,m
t , Zn,m

t ) does not depend on m. Therefor, we denote it by
(Y n

t , Z
n
t ). Then by the same arguments as [10, Proposition 3.2] we have

Ex( sup
0≤t≤T

|Y k
t − Y l

t |2) + Ex(

∫ T

0

|(Zk
t − Z l

t)σ(Xt)|2dt) ≤ KEx[

∫ T

0

|fk(t, Y k
t )− f l(t, Y k

t )|2dt].

We have for fixed ω,

sup
k>l

∫ T

0

|fk(t, Y k
t )− f l(t, Y k

t )|2dt→ 0, l → ∞.

Then we have

sup
k>l

Ex

∫ T

0

|fk(t, Y k
t )− f l(t, Y k

t )|2dt ≤ Ex sup
k>l

∫ T

0

|fk(t, Y k
t )− f l(t, Y k

t )|2dt→ 0, l → ∞.

and we can obtain a sequence of representable variables that converges rapidly enough under
all measures P x, x ∈ N c. For each l = 0, 1, ... set

nl(x) = inf{n > nl−1(x); sup
k≥n

Ex[

∫ T

0

|fk(t, Y k
t )− fn(t, Y k

t )|2dt] <
1

2l
},

Ȳ l = Y nl(X0), Z̄ l = Znl(X0).

With this sequence one may pass to the limit and define Z ′
s = lim supl→∞ Z̄ l

sσ(Xs) and Zs =
Z ′

sτ(Xs). Then we obtain the claimed results. �
So far we have proved the assertion when ξ, f are bounded. Then by the same arguments

as in [10, Theorem 4.2], one proves the general case. �
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