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Abstract

If X = X(t, ξ) is the solution to the stochastic porous media equation
in O ⊂ Rd, 1 ≤ d ≤ 3, modelling the self-organized criticality [5] and
Xc is the critical state, then it is proved that

∫∞
0 m(O \ Ot0)dt < ∞,

P-a.s. and limt→∞
∫
O |X(t) − Xc|dξ = ` < ∞, P-a.s. Here, m is the

Lebesgue measure and Otc is the critical region {ξ ∈ O; X(t, ξ) =
Xc(ξ)} andXc(ξ) ≤ X(0, ξ) a.e. ξ ∈ O. If the stochastic Gaussian per-
turbation has only finitely many modes (but is still function-valued),
limt→∞

∫
K |X(t)−Xc|dξ = 0 exponentially fast for all compact K ⊂ O

with probability one, if the noise is sufficiently strong. We also recover
that in the deterministic case ` = 0.
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1 Introduction

The self-organized criticality is a property of dynamical systems which have
a critical point as an attractor and which emerges spontaneously to this
attractor. If X = X(t, ξ), t ≥ 0, ξ ∈ O ⊂ Rd, d = 1, 2, 3, is the state of the
system distributed in the spatial domain O and if Xc = Xc(ξ) is a critical
state, then X(t, ·) divides the space into the following three spatial regions:

critical region Otc = {ξ ∈ O; X(t, ξ) = Xc(ξ)},
subcritical region Ot− = {ξ ∈ O; X(t, ξ) < Xc(ξ)},

supercritical region Ot+ = {ξ ∈ O; X(t, ξ) > Xc(ξ)},
The main feature of the self-criticality phenomena is that the subcritical
and supercritical regions are unstable and absorbed in time by the critical
region via an autonomous mechanism. The standard model of self-organized
criticality is the celebrated sand-pile model introduced by Bak, Tang and
Wiesenfeld [1], which is formalized via automation theory ([2]) and leads to
parabolic nonlinear equations of porous media type

(1.1)
∂X

∂t
= a∆H(X −Xc) in (0,∞)×O,

where a > 0 and H is the Heaviside functions. (See, also, [3] for a com-
plete description of this model.) In the presence of a stochastic Gaussian
perturbation, the model is best described by the stochastic (porous media)
equation

(1.2)
dX(t)− a∆H(X(t)−Xc) = σ(X(t)−Xc)dWt in (0,∞)×O,
X(0) = x in O.

In [5], existence and uniqueness of solutions to (1.2) are shown and it is also
proved that we have finite-time extinction of t → X(t) − Xc with positive
probability in 1 − D. In terms of self-organized criticality behavior, this
means that the subcritical and supercritical regions are absorbed in finite-
time with positive probability by the critical region Otc. Our aim here is to
establish a similar result in dimensions d = 2, 3, at least asymptotically. The
first main result, Theorem 2.2 below, amounts to saying that ”for almost all
{tn} → ∞” we have

(1.3) lim
n→∞

m(O \ Otnc ) = 0, P-a.s.,
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where m is the Lebesgue measure on O and we assume for the initial state
that x ≥ Xc a.e. in O. The second main result, Theorem 2.3 below, says
that X(t), multiplied by the exponential of the function-valued noise, con-
verges to Xc in L1(O) asymptotically and that, if the noise is nondegenerate
away from the boundary of O (see (2.10) below), then X(t) itself converges
asymptotically to Xc locally in L1(O) exponentially fast.

Notation. In the following, O is a bounded and open subset of Rd, d ≥
1, with smooth boundary, and Lp(O), 1 ≤ p ≤ ∞, is the space of all p-
integrable functions inO with the usual norm denoted by | · |p. For k =
1, 2, Hk(O), H1

0 (O) and H−1(O) are standard Sobolev spaces on O. More
precisely, H1

0 (O) is the subspace of functions u ∈ H1(O) with zero trace on
the boundary ∂O of O and H = H−1(O) is the dual of H1

0 (O) with the norm

|u|−1 =
〈
A−1u, u

〉 1
2

2
.

Here, A = −∆, D(A) = H1
0 (O) ∩ H2(O) and 〈·, ·〉2 is the scalar product

of L2(O).
Everywhere in the following, {Ω,F ,Ft,P} is a stochastic basis and {βj}∞j=1

is a sequence of mutually independent Brownian motions which induces the
filtration {Ft}t≥0. By Lq(0, T ;Lp(Ω, Y )), where Y is a Hilbert space, we
denote the space of all q-integrable processes u : (0, T ) → Lp(Ω, Y ). By
C([0, T ];L2(Ω, Y )) we denote the space of all Y -valued processes which are
mean-square continuous on [0, T ].

2 Hypotheses and the main result

Consider the equation

(2.1)

dX(t)− a∆ψ(X(t))dt 3 σ(X(t))dWt in (0,∞)×O,
X(0, ξ) = x(ξ), ξ ∈ O,
ψ(X(t, ξ)) 3 0, on (0,∞)× ∂O.

Here, a is a positive constant and

(H1) ψ(r) = sign r,

where sign r = r|r|−1 if r 6= 0, sign 0 = [−1, 1],
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(H2) σ(X)dW =
∞∑
k=1

µkXekdβk,

where {µk} is a sequence of real numbers such that

(2.2)
∞∑
k=1

µ2
kλ

2
k <∞

and {ek} is the orthonormal basis in L2(O) consisting of eigenvectors of A
with eigenvalues {λk}, that is, Aek = λkek, k = 1,.... Here {λj}∞j=1 is taken
in increasing order.

Definition 2.1 Let x ∈ H = H−1(O). An H-valued continuous Ft adapted
process X = X(t) is said to be a solution to equation (2.1) if, on every
interval (0, T ), T > 0,

(2.3) X ∈ L1(Ω× (0, T )×O) ∩ L2(0, T ;L2(O, H))

and there is η ∈ L1(Ω× (0, T )×O) such that

(2.4)

〈X(t), ej〉2 = 〈x, ej〉2 +

∫ t

0

∫
O
η(s, ξ)∆ej(ξ)dξ ds

+
∞∑
k=1

µk

∫ t

0

〈X(s)ek, ej〉2 dβk(s), ∀j ∈ N, t ∈ [0, T ],

(2.5) η ∈ ψ(X) a.e. on (0, T )×O × Ω.

One of the main results established in [5] (see, also, [4]) is that, for each
x ∈ Lp(O), p ≥ 4, there is a unique solution X ∈ L∞(0, T ;Lp(Ω,O)) ∩
L2(Ω, C([0, T ];H−1(O))) to equation (2.1). Moreover, if x ≥ 0 a.e. in O,
then X ≥ 0 a.e., P-a.s. (See [5, Theorem 2.2].) Other existence results for
the stochastic porous media equation (2.1) for general maximal monotone
functions ψ with the range all of R were established in [6], [9].

In this paper we prove the following asymptotic results for solutions to
equation (2.1).
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Theorem 2.2 Assume that (H1) and (H2) hold and that x ∈ L4(O), x ≥ 0,
on O. Then

(2.6) lim
t→∞

∫
O
X(t, ξ)dξ = ` <∞, P-a.s.

and

(2.7)

∫ ∞
0

m(O \ Ot0)dt <∞, P-a.s.,

where m is the Lebesgue measure and

Ot0 = {ξ ∈ O; X(t, ξ) = 0}, t ≥ 0.

As mentioned earlier, Theorem 2.2 applies to the self-organized stochastic
model (1.2), that is,

(2.8)
dX(t)− a∆ sign (X(t)−Xc)dt = σ(X(t)−Xc)dWt,

X(0) = x−Xc in O.

If x −Xc ≥ 0 a.e. in O, then X(t) −Xc ≥ 0 a.e. on O for all t ≥ 0, P-a.s.
and so, by Theorem 2.2, it follows that m(O \Ot0) ∈ L1(0,∞), P-a.s., which
roughly speaking means that, ”for almost all sequences” {tn} → ∞, we have
m(O \ Ot0)→ 0, P-a.s.

As regards the asymptotic result (2.6), one might expect that ` = 0, P-a.s.
Indeed, this is the case in the deterministic case (see [3]). For equation (2.1),
we have

lim
t→∞

X(t) = 0 in L1
loc(O),

if the Gaussian noise σ(X)W has a finite number of modes, that is,

(2.9) σ(X)W (t) =
N∑
k=1

µkekX(t)βk(t) on (0,∞)×O

and

(2.10) µ̃(ξ) =
N∑
k=1

µ2
kek(ξ) > 0, ∀ξ ∈ O.

More precisely,
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Theorem 2.3 Consider the situation of Theorem 2.2. In addition, assume
that (2.9) holds and set

µ(t) = −
N∑
k=1

µkekβk(t), t ≥ 0.

Then:

(i) lim
t→∞

eµ(t)X(t) = 0 in L1(O), P-a.s. In particular, ` = 0 in the deter-

ministic case (cf. [3]).

(ii) If, additionally, (2.10) holds, then

lim
t→∞

X(t) = 0 in L1
loc(O) P-a.s..

Moreover, for each compact set K ⊂ O,
(2.11)∫

K

X(t, ξ)dξ ≤ |x|2m(K)1/2 exp

sup
K

(µ̃)1/2

(
N∑
k=1

βk(t)

)1/2 e
− t

2
inf
K′

µ̃
,

t ≥ 0, P-a.s.,

where K ′ ⊂ O is any compact neighborhood of K. In particular (by
the law of the iterated logarithm for Brownian motion), there exists a
constant ρK > 0 such that, for P-a.e. ω ∈ Ω

(2.12)

∫
K

X(t, ξ, ω)dξ ≤ |x|2m(K)1/2e−ρKt, ∀t ≥ t0(ω).

We note that, if |µ1| > 0, then assumption (2.10) holds, because the first
eigenfunction of the Laplace operator is strictly positive on O (see, e.g.,
[7, p. 340]).

The proofs of Theorems 2.2 and 2.3 are given in Sections 3 and 4, respec-
tively. For simplicity, we take a = 1 in (2.1).
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3 Proof of Theorem 2.2

Consider the approximating equation

(3.1)

dXλ(t)−∆(ψλ(Xλ(t)) + λXλ(t))dt = σ(Xλ(t))dWt in (0,∞)×O,
Xλ(0) = x on O,
Xλ = 0 on (0,∞)× ∂O,

where λ ∈ (0, 1) and

ψλ(r) =
1

r
(1− (1 + λψ)−1(r)) =


r

λ
if |r| ≤ λ,

1 if r > λ,

−1 if r < −λ.
(Here 1 is the identity map.) As shown in [4, Theorem 2.2] and [5, Proposition
3.5], equation (3.1) has a unique solution Xλ in the sense of Definition 2.1
and

Xλ ∈ L2(Ω, C([0, T ];H)) ∩ L2(0, T ;L2(Ω, H1
0 (O))).

Moreover, since x ∈ L4(O) and x ≥ 0, also Xλ ≥ 0 on (0,∞)×O × Ω and,
as proved in [5], for λ→ 0, we have for all T > 0,

(3.2)

Xλ → X weakly in L2(Ω× (0, T )×O),

weak∗ in L∞(0, T ;L2(Ω, L2(O)) and

strongly in L2(Ω;C([0, T ];H)),

and

(3.3) ψλ(Xλ)) + λXλ → η weakly in L2(Ω× (0, T )×O)

(3.4) η ∈ ψ(X) a.e. on Ω× (0,∞)×O.
By Ito’s formula and the monotonicity of ψλ, we have (cf. [9, Proof of
Theorem 2.8 and Remark 2.9(iii)])

1

2
|Xλ(t)|22 +

∫ t

0

∫
O
∇(ψλ(Xλ) + λXλ) · ∇Xλdξ ds

=
1

2
|x|22 +

1

2

∞∑
k=1

µ2
k

∫ t

0

∫
O
|Xλ(s)ek|2dξ ds

+
∞∑
k=1

µk

∫ t

0

∫
O
X2
λ(s)ekdξdβk(s), t ∈ [0,∞), P-a.s.,
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and t→ Xλ(t) ∈ L2(O) is continuous P-a.s.
This yields, since ‖ek‖∞ ≤ Cλk, because d ≤ 3,

(3.5)

|Xλ(t)|22 + 2λ

∫ t

0

|∇Xλ(s)|22ds ≤ |x|22 + C

∞∑
k=1

µ2
kλ

2
k

∫ t

0

|Xλ(s)|22ds

+
∞∑
k=1

µk

∫ t

0

∫
O
X2
λ(s)ekdξ dβk(s).

Then, by (2.2) and by the Burkholder–Davis–Gundy inequality, we obtain
the estimate that for some constant CT > 0 and all λ ∈ (0, 1)

(3.6) E sup
t∈[0,T ]

|Xλ(t)|22 + λE
∫ T

0

|∇Xλ(s)|22ds ≤ CT |x|22.

To see this we consider the real-valued martingale

Nt :=
∞∑
k=1

µk

∫ t

0

∫
O
X2
λ(s)ekdξdβk(s), t ∈ [0, T ].

We recall that since x ∈ L4(O), by [5, Lemma 3.1] the above sum converges
in L2(Ω; C([0, T ]; R)) by (2.2). Then (3.5), the Burkholder-Davis-Gundy
inequality for p = 1 and Fubini’s theorem imply that for some constants
C1, C2 > 0

E sup
t∈[0,T ]

|Xλ(t)|22 ≤ |x|22 + C1

∫ T

0

E|Xλ(s)|22 ds

+ 3E

{ ∞∑
k=1

µ2
k

∫ T

0

(∫
O
X2
λ(s)ekdξ

)2

ds

} 1
2


≤ |x|22 + C1

∫ T

0

E|Xλ(s)|22 ds(3.7)

+

(
∞∑
k=1

µ2
k||ek||2∞

) 1
2

E

[
sup
s∈[0,T ]

|Xλ(s)|2
(∫ T

0

Xλ(s)|22ds
) 1

2

]

≤ |x|22 + C1

∫ T

0

E|Xλ(s)|22 ds

+ C2

(
E sup
t∈[0,T ]

|Xλ(t)|22

) 1
2 (∫ T

0

E|Xλ(s)|22 ds
) 1

2

.

8



Hence Young’s inequality and Gronwall’s Lemma imply that

E sup
t∈[0,T ]

|Xλ(t)|22 ≤ Ct|x|22(3.8)

for some ct ∈ (0,∞). But since the right hand side of (3.7) also dominates
the second term in the left hand side of (3.5), by (3.8) we deduce (3.6).

Now, arguing as in Proposition 3.5 in [5], we consider a function ϕλ ∈
C3
b (R) such that ϕλ(0) = 0 and

(3.9)

ϕ′λ(r) =
r

λ
for |r| ≤ λ, ϕ′λ(r) = 1 + λ for r ≥ 2λ,

ϕ′λ(r) = −1− λ for r ≤ −2λ and 0 ≤ ϕ′′λ(r) ≤
C

λ
,

for all r ∈ R and some C > 0.
This is a smooth approximation of the function r → |r| and it is easily

seen that

(3.10) |ϕ′λ(r)− ψλ(r)| ≤ Cλ, ∀r ∈ R, λ > 0.

We set Y ε
λ = (1 + εA)−1Xλ and note that

dY ε
λ (t) + A(1 + εA)−1(ψλ(Xλ(t)) + λXλ(t))dt = (1 + εA)−1σ(Xλ(t))dWt

Y ε
λ (0) = (1 + εA)−1Xλ(0), ε > 0.

Also, the process t→ Y ε
λ (t) is continuous H1

0 (O)-valued on [0, T ]. Then, by
Ito’s formula applied to the H1

0 -valued process Y ε
λ , we have

(3.11)∫
O
ϕλ(Y

ε
λ (t, ξ))dξ

+

∫ t

0

∫
O
∇((1 + εA)−1(ψλ(Xλ(s, ξ)+λXλ(s, ξ))·∇ϕ′λ(Y ε

λ (s, ξ))dξ ds

=

∫
O
ϕλ((1 + εA)−1x)dξ

+
∞∑
k=1

µ2
k

∫ t

0

∫
O
ϕ′′λ(Y

ε
λ (s, ξ))|(1 + εA)−1(Xλek)(s, ξ)|2ds dξ

+
∞∑
k=1

µk

∫ t

0

〈
ϕ′λ(Y

ε
λ (s, ξ)), (1 + εA)−1(Xλek)(s, ξ))

〉
2
dβk(s),

∀t ≥ 0, P-a.s.
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Now, recalling that Xλ ∈ L2(0, T ;L2(Ω, H1
0 (O)) for all λ > 0, we have that

Y ε
λ → Xλ strongly in L2(0, T ;H1

0 (O)),P-a.s. as ε → 0. Similarly, for all
T > 0, we have

∇((1 + εA)−1(ψλ(Xλ) + λXλ)) → ∇(ψλ(Xλ) + λXλ)

(1 + εA)−1(Xλek) → Xλek

strongly in L2(0, T ;L2O)), P-a.s. as ε→ 0.
Furthermore, it is easy to see that by (3.6) and the Burkholder–

Davis–Gundy inequality for p = 1, the stochastic term converges in
L1(Ω;C([0, T ], L2(O)), as ε → 0. Also, the first term in (3.11) converges
for a.e. t ∈ [0, T ] after passing to a subsequence εn → 0. So, altogether, we
obtain

(3.12)

∫
O
ϕλ(Xλ(t))dξ

+

∫ t

0

ds

∫
O
∇(ψλ(Xλ(s)) + λXλ(s)) · ∇ϕ′λ(Xλ(s))dξ

=

∫
O
ϕλ(x)dξ +

∞∑
k=1

µ2
k

∫ t

0

∫
O
ϕ′′λ(Xλ(s))|Xλ(s)ek|2dξ ds

+
∞∑
k=1

µk

∫ t

0

〈Xλ(s)ek, ϕ
′
λ(Xλ(s))〉2 dβk(s) for a.e. t > 0, P-a.s.

On the other hand, by the L2(O)-continuity of Xλ it follows that the first
term in (3.12) is continuous, as are all the other terms in (3.12). Hence,
(3.12) holds for all t ≥ 0, P-a.s.

On the other hand, by (3.9) we have the following estimate

(3.13)

∞∑
k=1

µ2
k

∫ t

0

∫
O
ϕ′′λ(Xλ)|Xλek|2dξ ds

≤ 4λC
∞∑
k=1

µ2
kλ

2
k

∫ t

0

∫
O

1λ(s, ξ)dξ ds, P-a.s.,

where 1λ is the characteristic function of the set

{(s, ξ, ω) ∈ (0,∞)×O × Ω; 0 ≤ Xλ(s, ξ, ω) ≤ 2λ}.
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Now, we prove

(3.14) lim
λ→0

∫
O
ϕλ(Xλ(t, ξ))dξ =

∫
O
X(t, ξ)dξ, ∀t ≥ 0 weakly in L2(Ω).

Indeed, by (3.9) we have for fixed t ≥ 0∫
O
ϕλ(Xλ(t, ξ))dξ = (1 + λ)

∫
[Xλ(t,ξ)≥2λ]

Xλ(t, ξ)dξ

+
1

2λ

∫
[Xλ≤λ]

X2
λ(t, ξ)dξ +

∫
[λ≤Xλ≤2λ]

ϕλ(Xλ(t, ξ))dξ.

Taking into account (3.2) and that ϕλ(r) ≤ Cλ for r ∈ [λ, 2λ], this yields

(3.15)

∫
O
ϕλ(Xλ(t, ξ))dξ =

∫
O
Xλ(t, ξ)dξ + o(λ), a.e. ∀t ≥ 0, P-a.s.

We also note that, by (3.2), we have

(3.16) Xλ(t) → X(t) weakly in L2(Ω×O), for all t > 0.

(Indeed, {Xλ(t)} is strongly convergent to X(t) in L2(Ω;H) for each
t ∈ [0,∞) and is bounded in L2(Ω×O) for all t ∈ [0,∞).)

Then, by (3.15) and (3.16) we find that

lim
λ→0

∫
O
ϕλ(Xλ(t, ξ))dξ =

∫
O
X(t, ξ)dξ, ∀t ≥ 0 weakly in L2(Ω),

as claimed.
Now, we set

Iλ(t) =

∫ t

0

∫
O

(∇ψλ(Xλ) + λ∇Xλ) · ∇ϕ′λ(Xλ)dξ ds, t ≥ 0,(3.17)

Mλ(t) =
∞∑
k=1

µk

∫ t

0

〈Xλek, ϕ
′
λ(Xλ)〉2 dβk(s), t ≥ 0.(3.18)

We recall that, by (H2),

Mλ(t) =

∫ t

0

〈ϕ′λ(Xλ(s)), σ(Xλ(s))dW (s)〉2

=

∫ t

0

〈σ(Xλ(s))
∗ϕ′(Xλ(s)), dW (s)〉2 .
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where, for h ∈ L2(O),

σ(Xλ(s))h =
∞∑
k=1

µk 〈ek, h〉2Xλ(s)ek.

We shall prove below that, for the adjoint operators σ(Xλ(s))
∗ on L2(O) we

have, for all T > 0,

(3.19) σ(Xλ)
∗ϕ′λ(Xλ)→ σ(X)∗η weakly in L2((0, T )×O × Ω) as λ→ 0.

This implies that

(3.20)
lim
λ→0

Mλ(t) = M(t) =
∞∑
k=1

µk

∫ t

0

〈X(s)ek, η〉2 dβk(s)

weakly in L2(Ω), ∀t ≥ 0.

Now, let us prove (3.19). First, we note that by (3.3), (3.4), (3.6) and (3.10)
as λ→ 0

(3.21) Xλ → X and ϕ′λ(Xλ)→ η weakly in L2((0, T )×O × Ω),

and that, by (3.9) and (3.4),

(3.22) |ϕ′λ(Xλ)|∞, |η|∞ ≤ 2,

where the norm refers to L∞((0, T ) ×O × Ω). (3.22) implies that, for some
constant C = C(T,O) > 0

E
∫ T

0

|σ(Xλ(s))
∗ϕ′(Xλ(s))|22ds

= E
∫ T

0

sup
|h|2≤1

〈
ϕ′(Xλ(s)),

∞∑
k=1

µk 〈ek, h〉2Xλ(s)ek

〉2

2

ds

≤ C
∞∑
k=1

µ2
kλ

2
λE
∫ T

0

|Xλ(s)|2ds,

which, by (3.21) is uniformly bounded for λ ∈ (0, 1). Hence

(3.23) {σ(Xλ)
∗ϕ′(Xλ)}λ∈(0,1] is bounded in L2((0, T )×O × Ω).
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Now, let F ∈ L∞((0, T )× Ω;H1
0 (O)). Then∣∣∣∣E∫ T

0

〈F (s), σ(X(s))∗η(s)− σ(Xλ(s))
∗ϕ′λ(Xλ(s))〉2 ds

∣∣∣∣
≤
∣∣∣∣E∫ T

0

〈F (s), σ(X(s))(η(s)− ϕ′λ(Xλ(s)))〉2 ds
∣∣∣∣

+

∣∣∣∣E∫ T

0

〈F (s), σ(X(s)−Xλ(s))ϕ
′
λ(Xλ(s))〉2 ds

∣∣∣∣
≤

∣∣∣∣∣
N∑
k=1

µkE
∫ T

0

〈〈F (s), X(s)ek〉2 ek, η(s)− ϕ′λ(Xλ(s))〉2 ds

∣∣∣∣∣
+E

∫ T

0

(
∞∑

k=N+1

µ2
k 〈ek, η(s)− ϕ′λ(Xλ(s))〉22

) 1
2

|F (s)X(s)|2ds

+

∣∣∣∣∣
N∑
k=1

µkE
∫ T

0

〈ek, ϕ′λ(Xλ(s))〉2 〈F (s)ek, X(s)−Xλ(s)〉2 ds

∣∣∣∣∣
+E

∫ T

0

(
∞∑

k=N+1

µ2
k 〈ek, ϕ′λ(Xλ(s))〉22

) 1
2

|F (s)(X(s)−Xλ(s))|2ds

of which the second and fourth term by (3.21), (3.22) and the boundedness
of F converge to zero uniformly in λ ∈ (0, 1) as N → ∞. By (3.21), the
same is true for the first term for each fixed N as λ → 0. Furthermore, the
third term is up to a constant C(T,O) > 0 dominated by

|F |L∞((0,T )×O;H1
0 )

N∑
k=1

µkE
∫ T

0

|X(s)−Xλ(s)|2−1ds,

which, for each fixed N as λ → 0, also converges to zero by (3.2). Hence,
first letting λ→ 0 and then N →∞ and, using (3.23), we obtain (3.19).

Then, by (3.12), (3.13), (3.14) and (3.20), we have

(3.24)

∫
O
X(t, ξ)dξ + Ĩ(t) =

∫
O
x(ξ)dξ +M(t), ∀t ≥ 0, P-a.s.,

where

(3.25) Ĩ(t) = w − lim
λ→0

Iλ(t), t ≥ 0,

13



and w − limλ→0 denotes weak limit in L2(O).
We set

Z(t) =

∫
O
X(t, ξ)dξ, t ≥ 0.

We see that Z is a nonnegative semimartingale with EZ(t) <∞, ∀t ≥ 0.
By (3.6) and (3.2) and lower-semicontinuity, it follows that, for all T > 0,

(3.26) E

[
sup
t∈[0,T ]

|X(t)|22

]
<∞,

where we note that supt∈[0,T ] |X(t)|22 = ess supt∈[0,T ]|X(t)|22 since P-a.s.
t 7→ |X(t)|22 is lower-semicontinuous by Definition 2.1. The latter then to-
gether with (3.26) implies that P-a.s. the function t → X(t) is weakly con-
tinuous in L2(O) on [0,∞) and so the function t→ Z(t) is P-a.s. continuous
on [0,∞). Define

I(t) := Z(0)− Z(t) +M(t), t ≥ 0,

then I is a continuous version of Ĩ. We note that, clearly, by (3.25) for all
0 ≤ s ≤ t

Ĩ(s) ≤ Ĩ(t), P-a.s.

with the P-exceptional set depending on s, t.
Hence (first considering all rational s, t ∈ [0,∞), 0 ≤ s ≤ t), we conclude

by continuity that

I(s) ≤ I(t), ∀ 0 ≤ s ≤ t, P-a.s.,

i.e. I is a P-a.s. nondecreasing process.
Hence, altogether we have

Z(t) + I(t) = Z(0) +M(t), ∀t ≥ 0,

where M is a continuous local martingale and I is an a.s. nondecreasing
process. Then, by [8, p. 139] we may conclude that

(3.27) ∃ lim
t→∞

Z(t) <∞, I(∞) <∞, P-a.s.

It follows therefore that there exists

(3.28) ` = lim
t→∞

∫
O
X(t, ξ)dξ, P-a.s.

14



Fix t ≥ 0. Noting that P-a.s.

(3.29)

Iλ(t) ≥
∫ t

0

∇ψλ(Xλ(s)) · ∇ϕ′λ(Xλ(s))ds

=

∫ t

0

∇ψλ(Xλ(s)) · ∇ψλ(Xλ(s))ds,

it follows by (3.3), (3.6) and (3.25) that, as λ→ 0,

(3.30) ψλ(Xλ)→ η weakly in L2((0, T )× Ω;H1
0 (O)).

This, as well as (3.25), remains true if P is replaced by ρ · P for every ρ ∈
L∞(Ω), ρ ≥ 0. Hence (3.29) and (3.25) imply

E
[∫ t

0

|∇η|22ds ρ
]
≤ lim inf

λ→0
E[Iλ(t)ρ] = E[Ĩ(t)ρ].

Since ρ ∈ L∞(Ω), ρ ≥ 0, was arbitrary, this implies that∫ t

0

|∇η|22ds ≤ Ĩ(t), P-a.s.

Hence, by continuity,∫ t

0

|∇η|22ds ≤ I(t), ∀ t ≥ 0, P-a.s.

and, consequently, by (3.27),

(3.31) lim
t→0

∫ t

0

|∇η|22ds ≤ I(∞) <∞, P-a.s.

Now, by the Sobolev embedding theorem, we have by (3.31) that

(3.32)

∫ ∞
0

dt

(∫
O
|η|p∗dξ

) 2
p∗

<∞, P-a.s.,

where 1
p∗

= 1
2
− 1

d
for d > 2, p∗ ∈ [2,∞) for d = 2 and p∗ =∞ for d = 1.

Recalling that η ∈ sign X = 1 on [X 6= 0], a.e. on (0,∞) × O × Ω, it
follows by (3.32) that∫ ∞

0

(m(O \ Ot0))
2
p∗ dt <∞, P-a.s.,

which implies (2.7), as claimed. This completes the proof of Theorem 2.2.
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4 Proof of Theorem 2.3

Assume in this section that (2.9) holds. We recall that

(4.1) µ = −
N∑
k=1

µkekβk, µ̃ =
N∑
k=1

µ2
ke

2
k

and that the initial datum x belongs to L4(O).
Take

(4.2) Y (t) = eµ(t)X(t), ∀ t ≥ 0.

Then we have (see [5, Lemma 4.1])

(4.3)

d

dt
Y (t) = eµ∆ψ(e−µY )− 1

2
µ̃Y, ∀t ≥ 0, P-a.s.,

Y (0) = x on O,
ψ(e−µY ) ∈ H1

0 (O), ∀t ≥ 0, P-a.s.,

where the derivative d
dt

is taken in H−1(O). (Recall that ψ(r) = sign r and
in (4.3), by Definition 2.1, there arises a section η of sign (e−µY ).)

First, we shall establish a few estimates on the solution Y to (4.3), which
have also an interest in themselves.

Lemma 4.1 We have

(4.4) |Y (t)|2 ≤ |x|2, ∀t ≥ 0,P-a.s.

Proof. Consider the solution Yλ to the approximating equation

(4.5)

dYλ
dt

= eµ∆(ψλ(e
−µYλ) + λe−µYλ)−

1

2
µ̃Yλ,

Yλ(0) = X, Yλ ∈ L2(0, T ;H1
0 (O)),

which corresponds to (3.1), i.e. Yλ = eµXλ. Multiplying (4.5) by Yλ and
integrating over O, we obtain

(4.6)

1

2

d

dt
|Yλ(t)|22 +

∫
O
∇(ψλ(e

−µYλ) + λe−µYλ)∇(eµYλ)dξ

= −1

2

∫
O
Y 2
λ µ̃dξ ≤ 0, for a.e. t > 0,
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because µ̃ ≥ 0, a.e. on O × Ω. On the other hand, recalling that

(4.7) ∇(ψλ)(z) =


1

λ
∇z if |z| < λ,

0 if |z| ≥ λ,

we get, by (4.6),

1

2

d

dt
|Yλ(t)|22 +

1

λ

∫
O

1∗∗λ e
2µ[|∇Xλ|2 + 2Xλ∇Xλ · ∇µ]dξ

+ λ

∫
O
e2µ[|∇Xλ|2 + 2Xλ∇Xλ · ∇µ]dξ ≤ 0 a.e. t ≥ 0,

where 1∗∗λ is the characteristic function of {(t, ξ); 0 ≤ (e−µYλ)(t, ξ) ≤ λ}.
This yields

d

dt
|Yλ(t)|22 ≤ 2

∫
O

(
1

λ
1∗∗λ + λ

)
|Xλ|2e2µ|∇µ|2dξ

≤ 2λ

∫
O

(1 + |Xλ|2)e2µ|∇µ|2dξ, a.e. t > 0.

Integrating, we obtain

(4.8) |Yλ(t)|22 ≤ |x|22 + 2λ

∫ t

0

|(1 +X2
λ)1/2eµ|∇µ||22ds, ∀t ≥ 0, P-a.s.

Defining Y
(N)
λ := Xλ(e

µ ∧ N) and Y (N) := X(eµ ∧ N), N ∈ N, we deduce
from (3.2) that for all ρ ∈ L∞(Ω), ρ ≥ 0, as λ→∞,

Y
(N)
λ → Y (N) weak∗ in L∞(0, T ;L2(Ω, ρP;L2(O)).

Hence

(4.9) ess sup
t∈[0,T ]

E[|Y (N)(t)|22ρ] ≤ lim inf
λ→∞

ess sup
t∈[0,T ]

E[|Y (N)
λ (t)|22ρ].

But, by (4.8), for all N ∈ N,

E[|Y (N)
λ (t)|22ρ] ≤ |x|22E[ρ] + 2λ‖ρ‖∞C, ∀t ≥ 0, P-a.s.,
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where

C :=

∫ T

0

(E|eµ|∇µ||44)1/2dt · sup
λ∈(0,1)

ess sup
t∈[0,T ]

(E|1 +Xλ|44)1/2

is finite by [5, Lemma 3.1]. Hence, letting first λ → 0 and then N → ∞ in
(4.9), since ρ ∈ L∞(Ω), ρ ≥ 0, was arbitrary, we obtain that

|Y (t)|22 ≤ |x|22 for a.e. t > 0, P-a.s.

Now (4.4) follows, since P-a.s. t→ |Y (t)|22 is lower-semicontinuous.

Now, let us turn to the proof of Theorem 2.3.
To prove (i), let us assume that for some sequence tn →∞ we have that

(4.10) |Y (tn)|1 ≥ δ > 0, ∀n ∈ N.

Here and below Y (t) = Y (t, ω) for a fixed ω ∈ Ω such that (4.4) holds. By
(4.4), selecting a subsequence if necessary, we have Y (tn) → g weakly in
L2(O) as n→∞. We have that g ≥ 0 and by (4.10)

(4.11) g 6≡ 0.

We recall from the proof of Theorem 2.2 that t 7→
∫
OX(t)dξ is continuous,

hence so is t→
∫
O Y (t)dξ. So, for every n ∈ N, there exists εn > 0 such that

(4.12)

∣∣∣∣∫
O
Y (t)dξ −

∫
O
Y (tn)dξ

∣∣∣∣ ≤ 1

n
, ∀t ∈ (tn − εn, tn + εn).

It follows by (2.7) that for some subsequence tnk → ∞ there exist sk ∈
(tnk − εnk , tnk + εnk), k ∈ N, such that∫

1{X(sk)6=0}dξ = m(O \ Osk0 )→ 0 as k →∞.

Hence, selecting another subsequence if necessary, we have

1{X(sk)6=0} → 0 a.e. as k →∞

and by (4.4) that X(sk)→ g̃ weakly in L2(O).
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As a consequence of the first, we obtain

Y (sk) = Y (sk)1{X(sk) 6=0} → 0 a.e. as k →∞,

which, in turn, implies that g̃ = 0. Hence, by (4.12)∫
g dξ = lim

k→∞

∫
Y (tnk)dξ = lim

k→∞

∫
Y (sk)dξ =

∫
g̃ dξ = 0.

Hence, g = 0 a.e., since g ≥ 0. This contradiction to (4.11) proves that a
sequence tn → 0 with (4.10) does not exist and assertion (i) follows.

Clearly, to prove (ii), it suffices to prove the exponential decay part of
Theorem 2.3 (ii). So, additionally, assume that (2.10) holds and let K ⊂ O,

K compact, and K ′ ⊂ O a compact neighborhood of K, i.e., K ⊂
◦
K ′. Let

µ∗ ∈ C∞0 (O) such that 0 ≤ µ∗ ≤ 1, µ∗ = 1 on K and µ∗ = 0 on O \ K ′.
Furthermore, let CK := infK′ µ̃. We multiply equation (4.5) by µ∗Yλ and
integrate over O to obtain

(4.13)

1

2

d

dt
|(µ∗)

1
2Yλ(t)|22 +

CK
2
|(µ∗)

1
2Yλ(t)|22

≤ 1

2

d

dt
|(µ∗)

1
2Yλ(t)|22 +

1

2

∫
O
µ̃µ∗Y 2

λ dξ

= −
∫
O
∇(ψλ(e

−µYλ)) · ∇(eµµ∗Yλ)dξ

−λ
∫
O
∇(e−µYλ) · ∇(eµµ∗Yλ)dξ

= −1

λ

∫
O

1∗∗λ

[
|∇Xλ|2 + 2Xλ∇Xλ ·

(
∇µ+

1

2

∇µ∗

µ∗

)]
e2µµ∗dξ

−λ
∫
O

[
|∇Xλ|2 + 2Xλ∇Xλ ·

(
∇µ+

1

2

∇µ∗

µ∗

)]
e2µµ∗dξ

≤
∫
O

(
1

λ
1∗λ + λ

)
X2
λ

[
2|∇µ|2µ∗ +

1

2

|∇µ∗|2

µ∗

]
e2µdξ

≤ 2λ

∫
O

(1 +X2
λ)[|∇µ|2µ∗ + |∇(µ∗)

1
2 |2]e2µdξ.

Denoting the latter by λ
2
ηλ(t), we deduce that

d

dt
(|(µ∗)

1
2Yλ(t)|22eCKt) ≤ ηλ(t)e

CKt, for a.e. t > 0, P-a.s.
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Integrating from 0 to t, we obtain

(4.14) |(µ∗)
1
2Yλ(t)|22 ≤ |(µ∗)

1
2x|22e−CKt + λ

∫ t

0

eCK(s−t)ηλ(s)ds, t ≥ 0, P-a.s.

Now analogous arguments as in the proof of Lemma 4.1 imply that after
letting λ→ 0, inequality (4.14) turns into

(4.15)
|(µ∗) 1

2Y (t)|22 ≤ e−CKt|(µ∗) 1
2x|22, t ≥ 0, P-a.s.,

≤ e−CKt|x|22.

Hence∫
K

X(t)dξ =

∫
K

Y (t)eµ(t)dξ

≤ |(µ∗) 1
2Y (t)|2

∫
K

exp

2(µ̃)
1
2

(
N∑
k=1

βk(t)
2

) 1
2

 dξ


1
2

≤ e−
CK
2
t|x|2 exp

sup
K

(µ̃)
1
2

(
N∑
k=1

βk(t)
2

) 1
2

m(K)
1
2 ,

i.e. (2.11) is proved.

Remark 4.2 For existence of solutions to equation (2.1) in the special case
(2.9), it is not absolutely necessary to assume that {ek} ⊂ H1

0 (O) is a basis of
eigenfunctions for A. It suffices to assume that ek ∈ C2(O) and the proof of
Theorem 2.3 is essentially the same. Then one might choose ek, 1 ≤ k ≤ N ,
such that

inf{µ̃(ξ); ξ ∈ O} = ρ > 0

and, in this case, the exponential decay in Theorem 2.3 is global in O. More
precisely, in (2.3) the compact sets K and K ′ can be replaced by O, and, in
this case, (2.11) strengthens to

(4.16) lim
t→∞

X(t) = 0 in L1(O), P-a.s.,

and, therefore, ` = 0, P-a.s. The details are omitted.

20



Remark 4.3 If condition (2.10) does not hold, the following slightly weaker
statements still hold. Since µ̃ is analytic on O, the set {ξj ∈ O; µ̃(ξj)}
is countable and, therefore, µ̃(ξ) ≥ ρK > 0, ∀ξ ∈ K, for any compact
K ⊂ O \ {ξj}. Then the proof of Theorem 2.3 applies word by word and we
have (2.11) and (2.12) in this case, too.
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